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Abstract
We investigate the nondegeneracy of higher order Levi forms on weakly nondegenerate
homogeneous CR manifolds. Improving previous results, we prove that general orbits of
real forms in complex flag manifolds have order less or equal than 3 and the compact ones
less or equal 2. Finally we construct by Lie extensions weakly nondegenerate CR vector
bundles with arbitrary orders of nondegeneracy.
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Introduction

The Levi form is a basic invariant of CR geometry (see e.g. [9]). It is a hermitian symmetric
form on the space of tangent holomorphic vector fields, which, when the CR codimension
is larger than one, is vector valued. Its nondegeneracy was shown in [25] to be a sufficient
condition to apply Cartan’s method to investigate equivalence and automorphisms of CR
structures and is an obvious obstruction for locally representing the manifold as a product of
a CR manifold of smaller dimension and of a nontrivial complex manifold. Sufficient more
general conditions preventing a CR manifold M from being foliated by complex leaves of
positive dimension or from having an infinite dimensional group of localCR automorphisms
can be expressed by the nondegeneracy of higher order Levi forms (see e.g. [12,13]). In the
case of homogeneous CR manifolds these properties can be rephrased in terms of their asso-
ciated CR algebras and lead to the notions of weak nondegeneracy and ideal nondegeneracy
in [21]. The last one was renamed contact nondegeneracy and proved sufficient for the finite
dimensionality of the group of CR automorphisms in [18].

Iterations of the Levi forms can be described by building descending chains of algebras
of vector fields, whose lengths can be taken as a measure of nondegeneracy (see Sect. 1.1).
One of these numbers, that we call here Levi order, and relates to weak nondegeneracy, is
the main topic of this paper. The real submanifolds M of a complex flag manifold F of a
semisimple complex group S that are orbits of its real form SR form an interesting class of
homogeneous CR manifolds, that has been studied e.g. in [1,3]. In [10] G. Fels showed that
when the isotropy Q of F is a maximal parabolic subgroup, andM is weakly nondegenerate,
then its Levi order is at most 3 and found an example where it is in fact equal to 3. In Sect.
2 we prove that this bound is valid for general weakly nondegenerate real orbits, dropping
the maximality assumption on Q and give further examples of weakly nondegenerate real
orbits having Levi order 3. Moreover we show that the minimal orbit (the single one which
is compact, cf. [27]) cannot have a finite Levi order larger than 2 and that the same result is
valid for a larger class or orbits, that we name of the minimal type. Orbits which are not of
the minimal type may have any finite order 1, 2, 3. Our methods are illustrated by several
examples. We point out that, together with the new results obtained here, those in [1], where
descriptions in terms of cross-marked Satake diagrams are emphasised, would allow to list
all minimal orbits of Levi orders 1 and 2.

In [10] Fels posed the question of the existence of weakly nondegenerate homogeneous
CR manifolds with Levi order larger than 3. In Sect. 3 we exhibit, by constructing some CR
vector bundles over CP

1, weakly nondegenerate homogeneous CR manifolds having Levi
order q, for every positive integer q .
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1 Nondegeneracy conditions

1.1 Abstract CRmanifolds

In this subsection we discuss some notions of nondegeneracy for general smooth abstract
CR manifolds of type (n, k). We will eventually be interested in the locally homogeneous
case and therefore, in the rest of this section, in their reformulation in the framework of Lie
algebras theory.

We recall that an abstractCR manifold of type (n, k) is defined by the datum, on a smooth
manifoldM of real dimension 2n+k, of a rank n smooth complex linear subbundle T0,1M of
its complexified tangent bundle TCM, satisfying

T0,1M ∩ T0,1M = {0} (1.1)

and the formal integrability condition

[�∞(M, T0,1M), �∞(M, T0,1M)] ⊆ �∞(M, T0,1M). (1.2)

Set

T1,0M = T0,1M, HCM = T1,0M ⊕ T0,1M, HM = HCM ∩ TM. (1.3)

The rank 2n real subbundle HM of TM is the real contact distribution underlying the CR
structure of M.

A smooth R-linear bundle map JM : HM → HM is defined by the equation

T0,1M = {v + iJMv | v ∈ HM}. (1.4)

The map JM squares to −IH and is the partial complex structure of M.

An equivalent definition of the CR structure can be given by assigning first an even
dimensional distribution HM and then a smooth partial complex structure JM on HM in such
a way that the complex distribution (1.4) satisfies (1.2).

Let us denote by H (resp. T , H C, T 0,1, T 1,0) the sheaf of germs of smooth sections of
HM (resp. TM, HCM, T0,1M, T1,0M).

Definition 1.1 A CR manifoldM is called fundamental at its point x if Hx generates the Lie
algebra Tx .

We define recursively a nested sequence of sheaves of germs of smooth complex valued
vector fields on M

T 0,1
0 ⊇ T 0,1

1 ⊇ · · · ⊇ T 0,1
p ⊇ T 0,1

p+1 ⊇ · · · (1.5)

by setting

⎧
⎨

⎩

T 0,1
0 =T 0,1,

T 0,1
p =

⊔

x∈M

{
Z ∈ T 0,1

p−1x

∣
∣
∣ [Z , T 1,0

x ]⊆T 0,1
p−1x + T 1,0

x

}
, for p≥1. (1.6)

By conjugation we obtain another nested sequence of sheaves

T 1,0
0 ⊇ T 1,0

1 ⊇ · · · ⊇ T 1,0
p ⊇ T 1,0

p+1 ⊇ · · · (1.7)
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where
⎧
⎨

⎩

T 1,0
0 =T 1,0,

T 1,0
p =

⊔

x∈M

{
Z ∈ T 1,0

p−1x

∣
∣
∣ [Z , T 0,1

x ]⊆T 1,0
p−1x

+ T 0,1
x

}
, for p≥1. (1.8)

These sequences, considered by Freeman in [12, Thm.3.1], correspond to the chain (1.11)
that we construct in the locally homogeneous case.

In the same paper (cf. [12, Remarks 4.5]) also another sequence, introduced before in
[15,16], was considered, which will correspond to (1.15), namely

H ⊇ H 1 ⊇ · · · ⊇ H p ⊇ H p+1 ⊇ · · · (1.9)

with
{
H 0 = H C,

H p= ⊔
x∈M

{
X ∈ H

p−1
x | [X ,Hx ] ⊆ H

p−1
x

}
, for p > 0.

(1.10)

Definition 1.2 The CR manifold M has, at its point x,

• Levi order q if T 0,1
q−1x 
= T 0,1

q x = {0};
• contact order q if H

q−1
x 
= H

q
x = {0}.

We say that M is, at its point x

• Levi (resp.contact) nondegenerate if it has Levi (resp. contact) order 1;
• weakly (resp.contact) nondegenerate if it has finite Levi (resp. contact) order p≥1;
• holomorphically (resp. contact) degenerate if it is not weakly (resp. contact) nondegen-

erate.

The Levi order at x is the smallest q for which, given any nonzero germ Z̄ ∈T 0,1
x , we can

find a p≤q and Z1, . . . , Zp ∈ T 1,0
x such that

[Z1, [Z2, . . . , [Zp, Z̄ ]]] /∈ H 0
x . (∗)

The contact order can be defined in the same way, but with Z1, . . . , Zp taken in H 0
x . We

have therefore

Proposition 1.1 Let us keep the notation introduced above. Fix a point x in M. Then:

• M has Levi order 1 at x if and only if it has contact order 1 at x .
• If M has finite Levi order q≥2 at x, then it has also finite contact order q ′, with 2≤q ′≤q

at x . ��

1.2 Homogeneous CRmanifolds and CR algebras

Let GR be a Lie group of CR diffeomorphisms acting transitively on a CR manifold M.

Fix a point x of M and let π : GR � g→ g·x ∈M be the natural projection. The differential
at x defines a map π∗ : gR → TxM of the Lie algebra gR of GR onto the tangent space
to M at x . By the formal integrability of the partial complex structure of M, the pullback
q= (πC∗ )−1(T0,1x M) of the space of tangent vectors of type (0, 1) at x by the complexification
of the differential is a complex Lie subalgebra q of the complexification g= C ⊗RgR of gR.
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Vice versa, the assignment of a complex Lie subalgebra q of g yields a formally integrable
GR-equivariant partial complex structure on a locally homogeneous space M of GR by the
requirement that T0,1x M= πC∗ (q) (see e.g. [1,21]). These considerations led to the following
definition.

Definition 1.1 A CR algebra is a pair (gR, q), consisting of a real Lie algebra gR and a
complexLie subalgebraqof its complexificationg= C ⊗RgR, such that the quotientgR/(gR∩
q) is a finite dimensional real vector space.

We call the intersection q ∩ gR its isotropy subalgebra and say that (gR, q) is effective
when q ∩ gR does not contain any nontrivial ideal of gR.

If GR is a real form of a complex Lie algebra G and q the Lie algebra of its closed subgroup
Q, thenM is locallyCR diffeomorphic to the orbit ofGR in the complex homogeneous space
G /Q and itsCR structure is induced by the complex structure ofG /Q.These considerations
can be generalized to locally homogeneous CR manifolds (see e.g. [1]).

The CR-dimension and codimension of M are expressed in terms of its associated CR
algebra (gR, q) by

{
CR − dimCM = dimC q − dimC(q∩q̄),
CR − codimM = dimC g − dimC(q + q̄).

Definition 1.3 We call fundamental a CR algebra (gR, q) such that q+q̄ generates g as a Lie
algebra and we say that it is

• of complex type if q+q̄= g,

• of contact type if q+q̄� g.

A corresponding CR manifold M is in the first case a complex manifold by Newlander-
Nirenberg theorem (cf. [4,22]), while contact type is equivalent to the fact that its CR
distribution is strongly non-integrable.

1.3 Levi-order of weak nondegeneracy

The Levi form is a basic invariant of CR geometry. When M is locally homogeneous, it can
be computed by using its associated CR algebra (gR, q) (for definitions and basic properties,
cf. e.g. [9]). Nondegeneracy of the Levi form can be stated by

∀Z ∈ q\q̄, ∃ Z ′ ∈ q̄ such that [Z , Z ′] /∈ q + q̄.

This is equivalent to

q(1):={Z ∈ q | [Z , q̄] ⊆ q + q̄} = q ∩ q̄.

When this condition is not satisfied, we say that (gR, q) is Levi-degenerate. To measure the
degeneracy of the Levi form, one can consider its iterations: in the homogeneous case this
means, given a Z ∈ q\(q∩q̄), to seek whether it is possible to find L1, . . . , Lp ∈ q̄ such that
[L1, . . . , Lp, Z ] /∈ q+q̄. To this aim, it is convenient to consider the descending chain (see
e.g. [10,12,13,18,21])

{
q(0) ⊇ q(1) ⊇ · · · ⊇ q(p−1) ⊇ q(p) ⊇ q(p+1) ⊇ · · · , with

q(0) = q, q(p) = {Z ∈ q(p−1) | [Z , q̄] ⊆ q(p−1) + q̄} for p≥1.
(1.11)

Note that q∩q̄⊆ q(p) for all integers p≥0. Since by assumption q/(q∩q̄) is finite dimen-
sional, there is a smallest nonnegative integer q such that q(p) = q(q) for all p≥q .
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Definition 1.4 We call (1.11) the descending Levi chain of (gR, q).

Let q be a positive integer. The CR algebra (gR, q) is said to be

• weakly nondegenerate of Levi order q if q(q−1)
� q(q)= q∩q̄.

• strictly nondegenerate if it is weakly nondegenerate of Levi order 1.
• holomorphically degenerate if q(q) 
=q∩q̄ for all integers q>0

Proposition 1.2 The terms q(p) of (1.11) are Lie subalgebras of q.

Proof By definition, q(0) = q is a Lie subalgebra of q. If Z1, Z2 ∈ q(1), then

[[Z1, Z2], q̄] ⊆ [Z1, [Z2, q̄]] + [Z2, [Z1, q̄]] ⊆ [Z1 + Z2, q + q̄] ⊆ q + q̄

because [Zi , q] ⊆ [q, q]⊆ q, and [Zi , q̄]⊆ q+q̄ by the definition of q(1). This shows that q(1)

is a Lie subalgebra of q.
Next we argue by recurrence. Let p≥1 and assume that q(p) is a Lie subalgebra of q. If

Z1, Z2 ∈ q(p+1), then [Z1, Z2] ∈ q(p) by the inductive assumption that q(p) is a Lie subalgebra
and

[[Z1, Z2], q̄] ⊆ [Z1, [Z2, q̄]] + [Z2, [Z1, q̄]] ⊆ [Z1 + Z2, q
(p) + q̄] ⊆ q(p) + q̄,

showing that also [Z1, Z2] ∈ q(p+1). This completes the proof. ��
Let us introduce the notation

H = q + q̄, HR = H∩gR. (1.12)

The weak nondegeneracy defined here is equivalent to the notion of [21], consisting in
the requirement that, for a complex Lie subalgebra f of g,

q ⊆ f ⊆ H �⇒ f = q. (1.13)

Indeed, it easily follows from [21, Lemma 6.1] that

f = q + q̄(∞), with q(∞) =
⋂

p≥0
q(p) (1.14)

is the largest complex Lie subalgebra f of g with q⊆ f ⊆ H .

1.4 Contact nondegeneracy

A less restrictive nondegeneracy condition in terms of iterations of the Levi form can
be expressed by requiring that, given Z ∈ q\(q∩q̄) there are L1, . . . , Lp ∈ H such that
[L1, . . . , Lp, Z ] /∈ H . For a CR algebra of the contact type this is equivalent to the fact
that any ideal a of gR that is contained in HR is contained in q∩ gR. Thus this property was
called ideal nondegeneracy in [21].

When (gR, q) is the CR algebra at x of a (locally) homogeneous CR manifold M, the
subspace HR is the pullback to gR of the real contact distribution associated to the CR
structure of M. Thus this notion was renamed contact nondegeneracy in [18]. It was shown
in [21, Lemma 7.2] that, for the complexification a of the largest ideal of gR contained in
HR, the sum a+q∩ q̄ is the limit of the descending chain

{
q[0] ⊇ q[1] ⊇ · · · ⊇ q[p−1]⊇ q[p]⊇ q[p+1] ⊇ · · · , with

q[0] = H, q[p] = {Z ∈ H | [Z ,H] ⊆ q[p−1]}, for p≥1.
(1.15)

Since q∩ q̄⊆ q[p] for all integers p≥0, the chain (1.15) stabilizes.
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Remark 1.3 Note that, for p≥1,

q[p] = {Z ∈ q[p−1] | [Z , q[0]] ⊆ q[p−1]}. (1.16)

This is true in fact for p=1 and for p>2 follows from q[p−1]⊆ q[p−2].

Definition 1.5 We call (1.15) the descending contact chain.
Let q be a positive integer. The CR algebra (gR, q) is said to have

• finite contact order q if q[q−1]
� q[q]= q∩q̄.

If q[q] 
=q∩q̄ for all integers q>0, we say that (gR, q) is contact degenerate.

We note that we can equivalently use the descending chain
{
a
(0)
R

⊇ a
(1)
R

⊇ · · · ⊇ a
(p−1)
R

⊇ a
(p)
R

⊇ a
(p+1)
R

⊇ · · · , with

a
(0)
R

= HR, a
(p)
R

={X ∈ a
(p−1)
R

| [X ,HR] ⊆ a
(p−1)
R

}, for p≥1
(1.17)

of [21]. This follows from

Lemma 1.4 With the notation introduced above, we have:

1. For each p≥1, a
(p)
R

is a Lie algebra and, for p>1 an ideal of a(1)
R
;

2. Let a(p) be the complexification of a
(p)
R

. Then

q[p] = q∩q̄ + a(p) for all p≥0.

Proof The first statement is trivial. We can check the second one by recurrence. This is in
fact true for p=0, since q+q̄ is the complexification of H . ��
We already considered two descending chains whose length defines the order of contact
nondegeneracy. It is in fact convenient to consider a third one, which is easier to deal with
(see Sect. 2 below), namely:

q{0} ⊇ q{1} ⊇ · · · ⊇ q{p} ⊆ q{p+1} ⊇ · · ·

with

{
q{0} = q(0) = {Z ∈ q | [Z , q̄] ⊆ q + q̄},
q{p} = {Z ∈ q{p−1} | [Z , q + q̄] ⊆ q{p−1} + q̄}, for p>0.

(1.18)

The equivalence is a consequence of

Proposition 1.5 With the notation above:

• q{p} = (q ∩ q̄ + a(p)) ∩ q for all integers p≥0.
• (gR, q) is contact nondegenerate of order q≥1 if and only if

q{p−1} 
= q{q} = q ∩ q̄.

��
Since we obviously have the inclusion

q{p} ⊆ q(p) ∀p≥0, (1.19)

we obtain

Proposition 1.6 If the CR algebra (gR, q) has Levi order q<∞, then (gR, q) has contact
order q ′≤q . A contact degenerate (gR, q) is also holomorphically degenerate. ��

123



S. Marini et al.

2 Orbits of real forms in complex flagmanifolds

2.1 Complex flagmanifolds

A complex flag manifold F is a smooth compact algebraic variety that can be described as
the quotient of a complex semisimple Lie group S by a parabolic subgroup Q; according
to Wolf [27], a real form SR of S has finitely many orbits in F. Only one of them, having
minimal dimension, is compact. With the partial complex structures induced by F, these
orbits make a class of homogeneous CR manifolds that were studied by many authors (see
e.g. [1–3,8,10,11,14,17,19]).

Cross-marked Dynkin diagrams Being connected and simply connected, a complex flag
manifold F= S/Q is completely described by the Lie pair (s, q) consisting of the Lie algebras
of S and of Q and vice versa to any Lie pair (s, q) of a complex semisimple Lie algebra and
its parabolic subalgebra q corresponds a unique flag manifold F. Therefore the classification
of complex flag manifolds reduces to that of parabolic subalgebras of semisimple complex
Lie algebras. Parabolic subalgebras q of s are classified, modulo automorphisms, by a finite
set of parameters. In fact, after fixing any Cartan subalgebra h of s, their equivalence classes
are in one to one correspondence with the subsets of a basis B of simple roots of the root
system R of (s, h) (see e.g. [7, Ch.VIII,§3.4]).

We recall that the Dynkin diagram�B is a graph with no loops, whose nodes are the roots
in B and in which two nodes may be joined by at most 3 edges. Each root β in R can be
written in a unique way as a nontrivial linear combination

β =
∑

α∈Bkβ,α α, (2.1)

with integral coefficients kβ,α which are either all ≥ 0, or all ≤ 0 and we set

supp(β) = {α ∈ B | kβ,α 
= 0}. (2.2)

The parabolic subalgebras q are parametrized, modulo isomorphisms, by subsets � of B:
to a �⊆B we associate

{
Q� = {β ∈ R | kβ,α ≤ 0, ∀ α ∈ �},
qφ = h ⊕ ∑

β∈Q�
sβ, with sβ ={Z ∈ s | [H , Z ]= β(H)Z , ∀H ∈ h}. (2.3)

The set Q� is a parabolic set of roots, i.e.

(Q� + Q�) ∩ R ⊆ Q� and Q� ∪ (−Q�) = R .

To specify the q� of (2.3) we can cross the nodes corresponding to the roots in �. In this
way each cross-marked Dynkin diagram encodes a specific complex flag manifold F�.

Notation 2.1 Let ξ� be the linear functional on the linear span of R which equals one on
the roots in � and zero on those in B\�. Then

Q� = {β ∈ R | ξ
�

(β) ≤ 0} (2.4)
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and we get partitions
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Q� = Qr� ∪ Qn
�, R = Qr� ∪ Qn

� ∪ Qc
�, with

Qr� = {β ∈ Q� | − β ∈ Q�} = {β ∈ R | ξ
�

(β) = 0},
Qn

� = {β ∈ Q� | − β /∈ Q�} = {β ∈ R | ξ
�

(β) < 0},
Qc

� = {β ∈ R | − β ∈ Qn
�} = {β ∈ R | ξ

�

(β) > 0}.

(2.5)

We recall (see e.g. [7, Ch.VIII,§3]):

• qr� = h ⊕ ∑
β∈Qr� sβ is a reductive complex Lie algebra;

• qn� = ∑
β∈Qn� sβ is the nilradical of q�;

• q� = qr� ⊕ qn� is the Levi-Chevalley decomposition of q�;
• qc� = ∑

β∈Qc� sβ is a Lie subalgebra of s consisting of ads-nilpotent elements;

• q∨
� = qr� ⊕ qc� is the parabolic Lie subalgebra of s opposite of q�, decomposed into the
direct sum of its reductive subalgebra qr� and its nilradical qc�.

2.2 Real forms

Let us take, as we can, S connected and simply connected. Then real automorphisms of its
Lie algebra s lift to automorphisms of the Lie group S, so that real forms SR of S are in
one-to-one correspondence with the anti-C-linear involutions σ of s . We will denote by sσ

the real Lie subalgebra consisting of the fixed points of σ: it is the Lie algebra of the real
form Sσ of fixed points of the lift σ̃ of σ to S. Its orbits are CR submanifolds M�,σ of F�

whose CR algebra at the base point Q is the pair (sσ, q�).

Definition 2.1 (cf. [1, §5]) A parabolic CR algebra is a pair (sσ, q�) consisting of a real
semisimple Lie algebra sσ and a parabolic complex Lie subalgebra q� of its complexification
s . We say that (sσ, q�) is minimal if M�,σ is the minimal orbit in F� of the real form Sσ of
S.

When sσ is not simple, the corresponding orbits M�,σ are CR diffeomorphic to a cartesian
product of orbits of simple real Lie groups (see e.g. [3]).If

M�,σ � M�1,σ1 × · · · × M�k ,σk , (2.6)

we call each M�i ,σi a factor of M�,σ.

A simple sσ is of the real type if also s is simple; otherwise, s is the direct sum of two
complex simple Lie algebras s′, s′′, which are R-isomorphic to sσ, and we say in this case
that sσ is of the complex type.

To list all the orbits of a real form, one can use the fact that the isotropy subalgebra sσ ∩ q

contains a Cartan subalgebra hR of sσ (see e.g. [3]). By choosing h equal to its complexifica-
tion, we obtain on R a conjugation which is compatible with the one defined on s by its real
form sσ (and which, for simplicity, we still denote by σ). Vice versa, an orthogonal involution
σ of R lifts, although in general not in a unique way, to a conjugation of s. The conjugation
on s depends indeed also on the description of which roots in R σ• = {β ∈R | σ(β)= − β} are
compact. This is determined by the choice of a Cartan involution θ on s, with θ(h)= h and
σ ◦ θ = θ ◦ σ, which induces a map, that we will denote by the same symbol,

θ : R � α → − σ(α) ∈ R . (2.7)
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We will write for simplicity ᾱ instead of σ(α) and R • for R σ• when this will not cause
confusion. We recall that κσ ={X ∈ sσ | θ(X)=X} is a maximal compact Lie subalgebra of
sσ and that we have the Cartan decomposition

sσ = κσ ⊕ pσ, with pσ = {X ∈ sσ | θ(X)=−X}
of sσ. When θ(α)= α, then either sα is contained in the complexification κ of κσ (compact
root) or in the complexification p of pσ (hermitian root).

The subalgebras q� ∩ q̄�, q� and q̄� turn out to be direct sums of h and root subspaces
sα; in particular q� ∩ q̄� is the direct sum of h and the root subspaces sα with sα + sᾱ ⊂ q�.

We note that q� ∩ q̄� is a Lie subalgebra of s and (q� + q̄�) is a (q� ∩ q̄�)-module.
Having fixed a base B of simple roots of the root system R associated to (s, h), the orbit

of the real form is determined by the data of:

• a subset � of B specifying the parabolic subalgebra q�;
• a conjugation σ of R ;
• a splitting R σ• =R σ•,+∪R σ•,− of R σ• into a first set consisting of the compact and a second

of the hermitian roots.

We point out that different choices of σ may yield the same CR submanifold M�,σ. In
particular, we can conjugate σ by any element of the subgroup of the Weyl group generated
by reflections with respect to roots in B\�.

2.3 Contact nondegeneracy for parabolic CR algebras

Since by definition simple Lie algebra have no proper nontrivial ideals, we obtain

Proposition 2.1 A real orbitM�,σ which is fundamental and does not have a totally complex
factor is contact nondegenerate.

Proof We can indeed reduce to the case where (sσ, q�) is effective and sσ is simple, in which
the proof is straightforward. ��
We have the following criterion

Proposition 2.2 A real orbitM�,σ is fundamental iff its C R algebra (sσ, q�) is fundamental.
Let (sσ, q�) be a parabolic CR algebra and set

�σ
◦ = {α ∈ � | σ(α) � 0}.

If �σ◦ =∅, then (sσ, q�) is fundamental. When �σ◦ 
= ∅, we have

• (sσ, q�) is fundamental if and only if (sσ, q�σ◦ ) is fundamental;• (sσ, q�) and (sσ, q�σ◦ ) are fundamental if and only if

Q̄ c
�σ◦ ∩ �σ

◦ = ∅. (2.8)

Proof If �σ◦ = ∅, then B ⊆Q� ∪ Q̄� and hence (sσ, q�) is trivially fundamental. Let us con-
sider next the case where �σ◦ 
= ∅.

Since �σ◦ ⊆ �, we have q� ⊆ q�σ◦ and therefore (sσ, q�σ◦ ) is fundamental when (sσ, q�)

is fundamental. To show the vice versa, we note that any Lie subalgebra of s containing q�

is of the form q� for some � ⊆�. If it contains q�+q̄�, then � ⊆ �σ◦. This proves the first
item.
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It suffices to prove the second item in the case where �= �σ◦. Then condition (2.8) is
equivalent to the fact that each α ∈B belongs either to Q� or to Q̄� and is therefore clearly
sufficient for (sσ, q�) being fundamental. Vice versa, when this condition is not satisfied,
we can pick α ∈ Q̄ c

�∩�. Then q{α} is a proper parabolic subalgebra of s containing both q�

and q̄�. Therefore q�+ q̄� generates a proper Lie subalgebra of s and hence (sσ, q�) is not
fundamental. This completes the proof. ��
Example 2.3 Fix n≥3. The cross-marked Dynkin diagram

α1 α2 αk αn−1 αn
○ ○ · · · ○ · · · ○ ○× × ×

describes the flag manifold F� of SLn+1(C) consisting of flags

�2 ⊂ �3 ⊂ · · · ⊂�n−2 ⊂ �n−1,

where �d is a d-dimensional linear subspace of C
n+1 . Here

R = {±(ei−e j ) | 1≤i≤n+1}, α
i
=ei−ei+1 and �= {α

i
| 2≤ i ≤ n−1}.

We consider the conjugation σ defined by

σ(e1) = −en+1, σ(ei ) = −ei , for 1<i≤n, σ(en+1) = −e1.

Then (sσ, q�) is contact nondegenerate of order [(n−1)/2]. It is weakly nondegenerate for
n = 3, 4 and holomorphically degenerate for n≥5.

2.4 Conditions for weak nondegeneracy

To discuss weak nondegeneracy, we observe that the terms of the chain (1.11) for (sσ, q�)

can be described by the combinatorics of the root system. We recall that the chain is

q
(0)
� ⊇ q

(1)
� ⊇ · · · ⊇ q

(p)
� ⊇ q

(p+1)
� ⊇ · · ·

with q
(0)
� = q� and q

(p)
� = {Z ∈ q

(p−1)
� | [Z , q̄�] ⊆ q

p−1
� + q̄�} for p≥1.

Each q
(p)
� in the chain is the direct sum of h and root spaces sα . Let us set

Q
p
� = {α ∈ R | sα ⊆ q

(p)
� }, so that q

(p)
� = h ⊕

∑

α∈Qp�
sα . (2.9)

With the notation of Sect. 2.1, we have Q0
� = Q� and

{
Q1

� = {α ∈ Q� | (α+Q̄�) ∩ R ⊆ Q� + Q̄�},
Q
p
� = {α ∈ Q

p−1
� | (α +Q̄�) ∩ R ⊆ Q

p−1
� + Q̄�}, for p>1.

(2.10)

This yields a characterization of weak nondegeneracy in terms of roots:

Proposition 2.4 A necessary and sufficient condition for (sσ, q�) being weakly nondegener-

ate of Levi order q is that Q
q−1
� 
=Q

q
� =Q� ∩ Q̄�. ��

Remark 2.5 The necessary and sufficient condition for (sσ, q�) being weakly nondegenerate
is that (cf. [1, Lemma 12.1])

{
∀ β ∈Q�\Q̄�, ∃ k ∈ Z+, ∃ α1, . . . , αk ∈ Q̄� s.t.
γh = β+∑h

i=1αi ∈R , ∀1≤h≤k γk /∈ Q� ∪ Q̄�.
(2.11)
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Definition 2.2 For any rootβ ∈Q�\Q̄� wedenote by qσ
�(β) and call itsLevi order the smallest

number k for which (2.11) is valid. We put qσ
�(β)= +∞ when (2.11) is not valid for any

positive integer k.

Lemma 2.6 Assume that β ∈Q�\Q̄� has finite Levi order qσ
�(β)=q and (2.11) is satisfied for

a sequence α1, . . . , αq . Then

(i) αi ∈ Q̄�\Q� for all 1≤i≤q;
(ii) β +∑

i≤hαi ∈ Q�\Q̄� for all h<q;
(iii) (2.11) is satisfied by all permutations of α1, . . . , αq ;
(iv) αi + α j /∈R for all 1≤i< j≤q .

Proof Let us first prove (ii). With the notation in (2.11), we observe that γh /∈ Q̄� for h<q,
because, otherwise, γq ∈ Q̄�.

Next we prove (iii). Let {Zα}α∈R ∪ {Hi ∈ h | 1≤i≤�} be a Chevalley basis for (s, h). Then
(2.11) is equivalent to the fact that

[Zαq , .Zαq−1 , . . . , Zα1 , Zβ]:=[Zαq , [Zαq−1 , [. . . , [Zα1 , Zβ] . . .]]] /∈ q� + q̄�.

The item (iii) follows because

[Zαq , . . . , Zαi+1 , Zαi , . . . , Zα1 , Zβ] − [Zα q , . . . , Zαi , Zαi+1 , . . . , Zα1 , Zβ]
= [Zα q , . . . , [Zαi+1 , Zαi ], . . . , Zα1 , Zβ]

and, by the minimality assumption, the right hand side belongs to q�+q̄�.

Let us prove (i) by contradiction. If αi ∈Q� ∩ Q̄� for some 1≤i≤q, then we could assume
by (i i i) that it was αq . Then

[Zαq−1 , . . . , Zα1 , Zβ] ∈ q� + q̄� �⇒ [Zαq , Zαq−1 , . . . , Zα1 , Zβ] ∈ q� + q̄�

yields the contradiction. Also (iv) is an easy consequence of (i i i), because if αi + α j

(1≤i, j≤q) is a root, than it would belong to Q̄� ∩Qc
� and, by substituting to the two roots

αi , α j the single root αi + α j we would obtain a sequence satisfying (2.11) and containing
q−1 terms.

The proof is complete. ��
Remark 2.7 Since ξ�(α)≥1 for all α ∈Q c

�, if β ∈Q� ∩ Q̄ c
� and qσ

�(β)<+∞, then

qσ
�(β) ≤ 1 − ξ

�

(β). (2.12)

Corollary 2.8 If β ∈Q r
�\Q̄�, then its Levi order is either one or +∞. ��

We obtain also a useful criterion of weak nondegeneracy (cf. [3, Thm.6.4])

Proposition 2.9 The parabolic CR algebra (sσ, q�) is weakly nondegenerate if and only if

∀ β ∈Q� ∩ Q̄ c
� ∃ α ∈ Q̄� ∩ Q c

� such that β + α ∈ Q̄ c
�. (2.13)

Proof By Lemma 2.6 the condition is necessary. To prove that it is also sufficient, we can
argue by contradiction: if we could find β ∈Q∩ Q̄ c

� with qσ
�(β)= +∞, then by (2.13) we

could construct an infinite sequence (αi )i≥1 in Q̄� ∩Q c
� with

γ
h

= β +
∑h

i=1
α
i

∈ Q� ∩ Q̄ c
�, ∀h = 1, 2, . . .

Since ξ�(γh) ≥ ξ�(β)+h and ξ� is bounded, we get a contradiction. ��
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2.5 Levi order of general orbits

To discuss Levi order of weakly nondegenerate real orbits M�,σ in F� by employing
Lemma 2.6, we introduce:

Definition 2.3 If β ∈R , we denote by q(β) the largest positive integer q for which

∃ α
1
, . . . , α

q
∈ R s.t.

⎧
⎪⎨

⎪⎩

αi + α j /∈ R ∪ {0}, ∀1≤i, j≤q,
γi1,...,ih = β + αi1 + · · · + αih ∈ R ,

for all distinct i1, . . . , ih in {1, . . . , q}.
(2.14)

Proposition 2.10 Let β ∈R belong to a simple root system containing more than two ele-
ments. Then q(β)≤4 and, if q(β)=4 and (α1, α2, α3, α4) is a sequence satisfying (2.14),
then

β +α1 + α2 + α3 + α4 = − β . (2.15)

More precisely we obtain:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(β)=1, if β belongs to a root system of type A2;
or is a long root of a root system of type B2;

q(β)=2, if β belongs to a root system of type A≥3,C,

or is a short root of a system of type B2,G;
q(β)=3, if β is a short root of a root system of type B≥3,F;
q(β)=4, if β belongs to a root system of type D,E,

or is a long root of a root system of type B≥3,F,G.

(2.16)

Proof For short we will call admissible a sequence (αi ) for which (2.14) is valid. Let us set

Radd(β) = {α ∈ R | β + α ∈ R }.
We consider the different cases using for root systems the notation of [6].

Type A We have R ={±(ei − e j ) | 1≤i< j≤n} where e1, . . . , en is an orthonormal basis
of R

n . We can take β = e2−e1. Then

Radd(e2−e1) = {e1 − ei | i>2} ∪ {ei − e2 | i > 2}. (∗A)
An admissible sequence (αi ) can contain at most one element from each of the two sets in
the right hand side of (∗A).

If n = 3, then Radd(β)= {e3−e2, e1−e3} contains two elements, whose sum is still a root
and therefore q(β)= 1.

If n>3, then the only possible choice is that of a couple of roots ei−e2, e1−e j with
3≤i 
= j≤n and hence q(β)= 2.
Type B We have R = {±ei±e j | 1≤i< j≤n}∪{±ei | 1≤i≤n}, for an orthonormal basis
e1, . . . , en of R

n (n≥2).
If β is a short root, we can take β = −e1. Then

Radd(−e1) = {±ei | 2 ≤ i ≤ n} ∪ {e1±e j | 2 ≤ j ≤ n}. (∗B)
An admissible sequence contains at most one root from the first and two from the second set
in the right hand side of (∗B). Thus q(−e1)≤3. The sequence e1−e2, e1+e2 satisfies (2.14)
and therefore q(−e1)≥2.
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Wehave equality if n=2, because in this caseRadd(−e1)={±e2, e1±e2} and themaximal
admissible sequences are then (e2), (−e2), (e1+e2, e1−e2).

If n>2 the admissible sequence

(e1+e2, e1−e2, e3)

shows that q(−e1)=3. All admissible maximal sequences are of this form.
If β is a long root, we can assume that β = − e1−e2. Then

Radd(−e1−e2)={e1, e2} ∪ {e1±e j | j>2} ∪ {e2±e j | j>2}. (∗∗B)
An admissible sequence contains at most two equal terms from the first and two from each of
the second and third on the right hand side of (∗∗B). Moreover, if one term is taken from the
first, we can take at most one from each one of the other two. This implies that q(−e1−e2)≤4
and in fact q(−e1−e2)=4, with maximal sequences isomorphic to one of

e1 + e3, e1 − e3, e2 + e4, e2 − e4,

e1, e1, e1−e3, e1+e3,

which, summed up to (−e1−e2), gives e1+e2.
Type C We can take R ={±ei±e j | 1≤i< j≤n}∪{±2ei | 1≤i≤n}, for an orthonormal

basis e1, . . . , en of R
n (n≥3).

If β is a short root, we can assume that β =(−e1−e2). Then

Radd(−e1−e2) = {2e1, 2e2} ∪ {e1±e j | j ≥ 3} ∪ {e2±e j | j ≥ 3}. (∗C)

An admissible sequence may contain both roots of the first, but at most one root from each
the second and third sets on the right hand side of (∗C). Moreover, a term in one of the last
two forbids the corresponding term in the first one. This yields q(−e1−e2)=2,with maximal
sequences isomorphic to (the third one should be omitted if n=3)

(2e1, 2e2), (2e1, e2+e3), (e1+e3, e2+e4)

If β is a long root, we can assume that β =−2e1. Then

Radd(−2e1) = {e1±ei | i > 1}. (**C)

We note that q(−2e1)≤4. We cannot take in an admissible sequence both the element e1+ei
and e1−ei , because they add up to the root 2ei . Hence in fact q(−2e1)=2, with maximal
sequence isomorphic to

e1+e2, e1+e3.

Type DWe can take R = {±ei±e j | 1≤i< j≤n},where e1, . . . , en is an orthonormal basis
of R

n (n≥4).
We can assume that β = −e1−e2. We have

Radd(−e1−e2) = {e1±e j | j ≥ 3} ∪ {e2±e j | j ≥ 3}. (∗D)

An admissible sequence contains at most two elements from each set in the right hand side
of (∗D). Therefore q(−e1−e2)≤4 and in fact we have equality with maximal admissible
sequences isomorphic to

e1+e3, e1−e3, e2+e4, e2−e4,

which, summed up to (−e1−e2), give e1+e2.
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Type E Since the root systems E6 and E7 can be considered as subsystems of E8, we will
restrain to this case. We consider, for an orthonormal basis e1, . . . , e8 of R

8,

R = {±ei±e j | 1≤i< j≤8} ∪
{
1
2

∑8

i=1
(−1)hi ei

∣
∣
∣
∣ hi ∈ Z,

∑8

i=1
hi ∈ 2Z

}

.

We can take β = (−e1−e2). Then
⎧
⎪⎨

⎪⎩

Radd(−e1−e2) = {e1±ei | 3≤i≤8} ∪ {e2±ei | 3≤i≤8}
∪

{
1
2

(

e1+e2+
∑8

i=3
(−1)hi ei

) ∣
∣
∣
∣ hi ∈ Z,

∑8

i=3
hi ∈ 2Z

} (∗E)

An admissible sequence may contain at most two roots from each set on the right hand side
of (∗E) and no more than four terms. Clearly we can take the maximal sequence

e1+e3, e1−e3, e2+e4, e2−e4,

showing that q(−e1−e2)= 4.Moreover, any admissible sequence containing four terms sums
up to (−e1−e2) to yield e1+e2.

Type F For an orthonormal basis e1, e2, e3, e4 of R
4 we take

R = {±ei | 1≤i≤4} ∪ {±e1±e j | 1≤i< j≤4} ∪ { 12 (±e1±e2±e3±e4)}.
If β is a short root, we can take β=−e1. Then

Radd(−e1) = {±ei | 2≤i≤4} ∪ {e1±ei | 2≤i≤4} ∪ { 12 (e1±e2±e3±e4)}. (∗F)
To build an an admissible sequence we can take at most one element from the first, two
from the second and from the third set in the right hand side of (∗F). Indeed two roots of
the form 1

2 (±e1±e2±e3±e4) do not add up to a root if and only if they differ by only one
sign. Moreover, no root can be taken from the first if one is taken from the last set. These
considerations imply that q(−e1)≤3 and in fact equality holds, as (−e1) is contained in a
subsystem of type B3.

If β is a long root, we can assume β=(−e1−e2). We have
{
Radd(−e1−e2) = {e1, e2} ∪ {e1±ei | 3≤i≤4}

∪{e2±ei | 3≤i≤4} ∪ { 12 (e1+e2±e3±e4)}.
(∗∗F)

We note that the sum of four terms of Radd(−e1−e2) is a linear combination β+k1e1+k2e2
+k3e3+k4e4 with k1+k2≥2 and therefore, if they form an admissible sequence, is equal to
e1+e2. Since R contains subsystems of type B3, there are indeed admissible sequences with
four elements.

Type G For an orthonormal basis e1, e2, e3 of R
3 we set

R = {±(ei − e j ) | 1≤i< j≤3} ∪ {±(2ei − e j − ek) | {i, j, k} = {1, 2, 3}}.
We consider firs the case of a short root. We can take β = e2−e1. Then

Radd(e2−e1) = {e3−e2, e1−e3} ∪ {2e1−e2−e3, e1+e3−2e2}. (∗G)

Maximal admissible sequences have a root from the first and one from the second set, hence
q(e2−e1)= 2 and, moreover, summed up to e2−e1, give e1−e2.

As a long root we take β = (e2+e3−2e1). Then

Radd(e2+e3−2e1) = {e1−e2, e1−e3} ∪ {e1+e2−2e3, e1+e3−2e2}. (∗∗G)
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One checks that in this case q(e2+e3−2e1)= 4, with a maximal admissible sequence

e1−e2, e1−e2, e1−e2, e1+e2−2e3

which indeed sums up to the opposite root 2e1−e2−e3.
The proof is complete. ��

As an easy consequence we obtain:

Theorem 2.11 Let M�,σ be a real orbit which is fundamental and weakly nondegenerate.
Then its Levi order is less or equal to 3.

Proof This is a consequence of Prop.2.10 and the fact that, if β does not belong to Q̄�, then
− β ∈ Q̄� because Q̄� is a parabolic set of roots. ��
Example 2.12 ([10, §7]) Let n be an integer ≥ 3 and fix a symmetric C-bilinear form b

on C
2n+1. The Lie algebra of the group of C-linear transformations of C

2n+1 that keep b

invariant is a simple complex Lie algebra o2n+1(C) of type Bn, with root system

R = {±ei | 1 ≤ i ≤ n} ∪ {±ei±e j | 1≤i< j≤n}
for an orthonormal basis e1, . . . , en of R

n . Fix k with 1<k<n. The cross-marked Dynkin
diagram

α1 α2 αk αn−1 αn
○ ○ · · · ○ · · · ○ ○×

represents the grassmannian of totally b-isotropic k-planes in C
2n+1 . Here αi =ei−ei+1 for

1≤i<n and αn = en . We have �={αk} and

ξ
�

(ei ) =
{
1, if 1≤i≤k,

0, if k<i≤n.

Real forms are obtained by fixing a conjugation σ on C
2n+1 . Then

bσ(v,w) = b(v, σ(w)), ∀v,w ∈ C
2n+1

is hermitian symmetric and nondegenerate, of signature (p, q) for a pair of nonnegative
integers with p+q=2n+1. The Lie algebra of the group of C-linear transformations which
keep fixed both b and bσ is a real form sσ of s�o2n+1(C), which is isomorphic to the real
simple Lie algebra o(p, q).

We define a conjugation σ on R by

σ(e1) = en, σ(ei ) = −ei , if 1< i < n, σ(en) = e1.

According to the number of compact roots between e2, . . . , en−1, this conjugation corre-
sponds to any of the Lie algebras o(p, 2n+1− p) with 1≤p≤2n. The orbitM�,σ consists of
bσ-isotropic k-spaces �k with dim(�k ∩ σ(�k))=k−1. By (1.13), since q� is maximal, if the
parabolic CR algebra (sσ, q�) is fundamental and not totally complex, then it is also weakly
nondegenerate. To compute its Levi order we observe that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Qc
� ∩ Q̄c

� = {e1 + en},
Qc

� ∩ Q̄� = {ei | 1≤i≤k} ∪ {ei±e j | 1≤i≤k< j≤n},
Q� ∩ Q̄c

� = {−ei | 2≤i≤k} ∪ {en} ∪ {en±e j | k< j<n}
∪{−ei±e j | 2≤i≤k< j<n} ∪ {±e1−ei | 2≤i≤k}
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The fact that Qc
� ∩ Q̄c� 
=∅ shows that (sσ, q�) is not totally complex.

Since en ∈Q� ∩ Q̄c
� and e1 ∈ Q̄� ∩ Qc

� add up to e1+en, the CR algebra (sσ, q�) is
fundamental and therefore, as we noticed above, weakly nondegenerate.

The roots βi = − (e1+ei ), for 2≤i≤k belong to Q� ∩ Q̄c
� and have ξ�(βi )= −2. Since

ξ�(e1+e2)= 1 and ξ�(α)≤ 1 for all α ∈ Q̄� ∩Qc
�, no chain (2.11) that added up to βi yields

e1+en contains less than three elements. By Theorem 2.11 this shows that (sσ, q�) has Levi
order 3. We have indeed

(−e1−ei ) + e1 + e1 + (ei+en) = e1+en .

Example 2.13 Consider a simple complex Lie algebra s of type D4. Its root system is
described, by using an orthonormal basis e1, e2, e3, e4 of R

4, by

R = {±ei±e j | 1≤i< j≤4}.
Consider the complex flag manifold F� corresponding to the cross-marked Dynkin diagram

α3
○

α2 α1
○ ○×

○

α4

with α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4, α4 = e3 + e4 and �= {α2}.
It is the grassmannian of projective lines contained in the nondegenerate quadric complex

hypersurface in CP
7. The grading functional is

ξ
�

(ei ) =
{
1, i = 1, 2,

0, i = 3, 4.

Take the conjugation

σ(e1) = e4, σ(e2) = −e2, σ(e3) = −e3, σ(e4) = e1.

We have

Qc
� ∩ Q̄c = {e1+e4}.

This shows that (sσ, q�) is not totally complex and therefore, since q� is maximal parabolic,
this CR algebra is weakly nondegenerate iff it is fundamental. We have

⎧
⎪⎨

⎪⎩

Q c
� ∩ Q̄� = {e1−e3, e1−e4, e2−e3, e2−e4, e3−e4, e1+e2, e1+e3, e2+e3, e2+e4}
Q� ∩ Q̄c� = {e3+e4, e4−e1, e3−e2, −e1−e2,−e1−e3, e4−e2, e4−e3,

−e2−e3, e1−e2}.
Note that e3+e4 ∈Q� ∩ Q̄c and e1−e3 ∈ Q̄∩Qc sum up to e1+e4. This shows that (sσ, q�)

is not totally complex and fundamental. Since q� is maximal parabolic, this implies that
(sσ, q�) is weakly nonedegenerate.

The root β =−e1−e2 belongs to Q� ∩ Q̄c
� and ξ�(β)= −2. Since all roots α in Q̄� ∩Qc

�

distinct from e1+e2 have ξβ(α)=1, a sequence satisfying (2.11) and summing up with β to
{e1+e4} contains at least 3 elements. By Theorem 2.11 this shows that (sσ, q�) has Levi
order 3. An admissible sequence for −e1−e2 is (e1−e3, e1+e3, e2+e4).
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Example 2.14 Consider a semisimple complexLie algebra s of typeG2.Having fixed aCartan
subalgebra, we can write its root system in the form

R = {±(ei − e j ) | 1≤i< j≤3} ∪ {±(2eσ1 − eσ2 − eσ3) | σ ∈ S3, σ
2

< σ
3
},

for an orthonormal basis e1, e2, e3 of R
3 . We consider the complex flag manifold F� corre-

sponding to the cross-marked Dynkin diagram

α2 α1
○ ○×

α1 =e1 − e2 α2 =2e2 − e1 − e3.

It corresponds to the grading functional ξ� with

ξ
�

(e1) = 1, ξ
�

(e2) = 1, ξ
�

(e3) = 0.

We consider the conjugation defined by

σ(e1) = e3, σ(e2) = e2, σ(e3) = e1.

Then

Qc
� ∩ Q̄c

� = {2e2 − e1 − e3}.
Since q� is maximal and Qc

� ∩ Q̄c
� 
=∅, then is sufficient to check that (sσ, q�) is weakly

nondegenerate to find that it is also fundamental.
The root β = 2e3−e1−e2 belongs to Q� ∩ Q̄c

�. We have

Q c
� ∩ Q̄� = {e1 − e3, e2 − e3, 2e1 − e2 − e3}.

Since ξ� equals one on every root of Q c
� ∩ Q̄�, a sequence satisfying (2.11) has at least three

roots. We find indeed that

e2 − e3, e2 − e3, e2 − e3

is a sequence with the desired properties, proving that (sσ, q�) is fundamental and has Levi
order three.

2.6 Levi order of orbits of theminimal type

Weak nondegeneracy for minimal orbits was characterized in [1, Thm.11.5] by using their
description in terms of cross-marked Satake diagrams (see e.g. [5,24]).

Let hR be a maximally vectorial Cartan subalgebra of sσ, h its complexification and R
the root system of (s, h). Then all roots in R • are compact. We can select a basis B such
that the conjugate of any positive noncompact root stays positive. This condition defines
an involution ε :B→B, which keeps fixed the elements of B • =B ∩R • and such that, for
nonnegative nα,β∈ Z,

{
ᾱ = − α, ∀ α ∈ B•,
ᾱ = ε(α) + ∑

β∈B•nα,β β, ∀ α ∈ B\B•.
(2.17)

The Satake diagram 	B is obtained from �B by painting black the roots in B• and joining
by an arch the pairs of distinct simple roots α1, α2 with ε(α1) = α2 .
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Minimal orbits correspond to cross-marked Satake diagrams: they are associated to
parabolic q� for which all roots in Q c

�∩ Q̄ n
� are compact.

Let us drop the assumption that hR is maximally vectorial. The map θ : α �→ −ᾱ induced
on R by the Cartan involution (see Sect. 2.2) acts on Q c

� ∩ Q̄ n
�, which is therefore the union

of its fixed points, which are roots in R •, and of pairs (α,−ᾱ) of distinct roots.

Definition 2.4 We say that the CR algebra (sσ, q�) and the corresponding CR manifold
M�,σ are of the minimal type if the roots in Q c

� ∩ Q̄ n
� are fixed by the Cartan involution, i.e.

if

Q c
� ∩ Q̄ n

� ⊆ R • (2.18)

Lemma 2.15 For a parabolic CR algebra (sσ, q�) the following are equivalent to the fact
that it is of the minimal type:

ξ
�

(β̄) ≥ 0, ∀ β ∈ Q c
�\R •; (2.19)

ξ
�

(β̄) = 0, ∀ β ∈ (Q c
� ∩ Q̄�)\R •. (2.20)

Proof (2.19) is equivalent to (2.20). Indeed, since ξ�(β̄)≤ 0 for all β ∈Q̄�, clearly (2.19)
is a consequence of (2.20). The two are equivalent because ξ�(β̄)>0 for β ∈ Q̄ c

� and
R = Q̄� ∪ Q̄ c

�. The equivalence of (2.18) with (2.19) reduces to the observation that the
elements of Q c

� on which ξ� ◦ σ is negative make the set Q c
� ∩ Q̄ n

�. ��
Example 2.16 Keep the notation of Example 2.12. The cross-marked Dynkin diagram of B3

α1 α2 α3
○ ○ ○× ×

corresponds to

� = {α
1
, α
3
}, ξ

�

(ei ) =
{
2, i=1,

1, i = 2, 3.

Consider the conjugation

σ(e1) = e2, σ(e2) = e1, σ(e3)= −e3.

Since �⊂R •, by Proposition 2.2 the CR algebra (sσ, q�) is fundamental. We have

Q c
� ∩ Q̄ c

� = {e1, e2, e1+e2, e1−e3, e2+e3},
Q c

� ∩ Q̄� = {e3, e1+e3, e1−e2},
Q� ∩ Q̄ c

� = {−e3, e2−e3, e2−e1}.
This (sσ, q�) is of the minimal type, because

Qc = (Q c
� ∩ Q̄ c

�)∪ {e1−e2, e3}⊂ (Q c
� ∩ Q̄ c

�)∪R •.

However, (sσ, q�) is not theCR algebra of the minimal orbit of a real form of SO7(C) in F�,

because, although α1, α3 ∈R • and ᾱ2= α1 + α2 +2 α3 � 0, showing that the basis α1, α2, α3
defines an S-chamber according to [3], the diagram obtained by blackening the nodes α1, α3
is not Satake. The equalities

⎧
⎪⎨

⎪⎩

(−e3+(e1+e3)=e3 ∈Q c
� ∩ Q̄ c

�,

(e2−e3)+e3=e2 ∈Q c
� ∩ Q̄ c

�,

(e2−e1)+(e1+e3)=e2+e3 ∈Q c
� ∩ Q̄ c

�,
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show that (sσ, q�) is weakly nondegenerate.
We can choose real forms SO(2, 5) or SO(3, 4) compatible with the complex symmetric

bilinear form b used to define SO7(C). Then M�,σ consists of pairs (�1 ⊂ �3) with a bσ-
isotropic �1 with �1∩�̄1 = {0} and an �3 on which the restriction of bσ has rank 1.

Theorem 2.17 A real orbit M�,σ of the minimal type is either holomorphically degenerate
or has Levi order less or equal two.

Proof Let (sσ, q�) be a parabolicCR algebra of the minimal type. Keeping the notation used
throughout the section, we note that (2.18) can be rewritten in the form

ξ
�

(β) ≥ 0, ∀ β ∈Q̄ c
�\R •. (∗)

Let β ∈Q� ∩ Q̄ c
�. If β /∈R •, then ξ�(β)= 0 by (∗) and hence, by Corollary 2.8, qσ

�(β) is
either 1 or +∞.

Let us consider now the casewhere qσ
�(β) is an integerq>1.Then β ∈R •.Let (α1, . . . , αq)

be a sequence satisfying (2.11) and thus the conditions in Lemma 2.6. Since Q c
� ∩ Q̄ c

� ∩
R • = ∅, there is at least one root αi which does not belong to R •. By the Lemma we can
assume it is α1 . Then β + α1 belongs to (Q� ∩ Q̄ c

�)\R • and therefore, by the first part of the
proof, qσ

�(β + α1)=1. This implies that q=2. The proof is complete. ��
Lemma 2.18 The parabolic CR algebra (sσ, q�) of a minimal orbit is of the minimal type.

Proof Suppose that � is the set of crossed roots in a cross-marked Satake diagram. Since
all roots β in Q c

� are positive, by (2.17), if β ∈Q c
�\R •, then its conjugate β̄ is positive, and

hence has ξ�(β)≥0. This shows that (2.18) is valid, i.e. that M�,σ is of the minimal type. ��
Corollary 2.19 A minimal orbitM�,σ is either holomorphically degenerate or has Levi order
less or equal to two. ��
Example 2.20 Consider the CR algebra described by the cross-marked Satake diagram

○ ● ○×
It is associated to the minimal orbit M�,σ of SU(1, 3) is the Grassmannian of isotropic
two-planes of C

4 for a hermitian symmetric form of signature (1, 3).
Here s � sl4(C), R = {±(ei − e j ) | 1≤i< j≤4}, B = {{e1−e2, e2−e3, e3−e4} for an

orthonormal basis e1, e2, e3, e4 of R
4, �= {e2−e3},

ξ(ei ) =
{
1, i=1, 2,

0, i=3, 4,

{
σ(e1) = −e4, σ(e2) = −e2,

σ(e3) = −e3, σ(e4) = −e1.

We obtain

Qc� ∩ Q̄c� = {e1 − e4},
Q̄� ∩ Qc

� = {e1 − e3, e2 − e3, e2 − e4},
Q� ∩ Q̄c� = {e3 − e4, e3 − e2, e1 − e2}.

Since Qc
� ∩ Q̄c� is nonempty, e1−e4 = (e3−e4)+(e1−e3) and q� is maximal, we obtain that

(sσ, q�) is fundamental and weakly nondegenerate. Since ξ�(e3−e2)=−1 and ξ� is 1 on all
the elements of Q̄� ∩ Qc

�, the Levi order is at least, and thus equal, by Theorem 2.17, to 2.
We have in fact

e1 − e4 = (e3 − e2) + (e1−e3) + (e2−e4), e1 − e4 = (e1 − e2) + (e2−e4).
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Example 2.21 Consider the CR algebra described by the cross-marked Satake diagram

α1 α2 α3 α4 α5
● ○ ● ○ ●×

Here R = {±(ei−e j ) | 1≤i< j≤6}, αi = ei−ei+1, �={α3},

ξ
�

(ei ) =
{
1, for 1≤i≤3,

0, for 4≤i≤6,
σ(ei ) =

{
ei+1, if i is odd,

ei−1, if i is even.

It corresponds to the CR algebra (sσ, q�), with sσ � sl3(H), of the grassmannian M�,σ of
3-planes of C

6 � H
3 containing a quaternionic line. We have

Q c
� ∩ Q̄ c

� = {e1−e5, e1−e6, e2−e5, e2−e6},
Q c

� ∩ Q̄� = {e1−e4, e2−e4, e3−e4, e3−e5, e3−e6},
Q� ∩ Q̄ c

� = {e2−e3, e1−e3, e4−e3, e4−e6, e4−e5}
Since q� is maximal, it suffices to note that (e4−e5)+(e1−e4)=e1−e5 ∈Q c

�∩Q̄ c
� to conclude

that (sσ, q�) is fundamental and weakly nondegenerate.
We have Q� ∩ Q̄ c

� ∩R • = {e4−e3}. Since both
(e4−e3)+(e1−e4) = e1−e3 ∈ Q� ∩ Q̄ c

�, (e4−e3)+(e2−e4) = e2−e3 ∈ Q� ∩ Q̄ c
�

we get qσ
�(e4−e3)= 2, showing that the Levi order of (sσ, q�) equals two.

Example 2.22 The CR algebra described by the cross-marked Satake diagram

○ ○ ○ ○ ○ ○

× × ×
○ ○ ○ ○ ○ ○

× × ×
corresponding to (sσ, q�),with sσ � sl7(C), is fundamental andweakly nondegenerate. This
can be proved e.g. by applying the criteria in [1]. Since R •=∅, its Levi order is one.

Example 2.23 Keep the notation of Example 2.12 and consider the cross-marked Dynkin
diagram of B3

α1 α2 α3
○ ○ ○×

corresponding to

� = {α
1
}, ξ

�

(ei ) =
{
1, i=1,

0, i = 2, 3.

Consider the conjugation

σ(e1) = −e2, σ(e2) = −e1, σ(e3)= e3.

Then, for the corresponding CR algebra (sσ, q�), we have

Q c
� ∩ Q̄ c

� = {e1−e2},
Q c

� ∩ Q̄� = {e1, e1+e2, e1+e3, e1−e3},

123



S. Marini et al.

Q� ∩ Q̄ c
� = {−e2, −e1−e2, −e2+e3, −e2−e3}.

Since ξ�(γ)=1 for all γ ∈Q c
� ∩ Q̄�, and ξ�(γ)≥−1 for all γ ∈Q c

� ∩ Q̄�, the Levi order of
(sσ, q�) is two. Then (sσ, q�) is a CR algebra is of the minimal type, although is not the CR
algebra of a minimal orbit.

Remark 2.24 It was observed in [3] that a parabolic CR algebra (sσ, q�) can always be
described by using a base B associated to an S-chamber: this means one with ᾱ� 0 for all
α ∈B\(�∪B •). The condition of being of the minimal type translates for this choice of B
into the fact that ᾱ � 0 also for the elements in �\B •. The real dimension of M�,σ is the
difference dimC(s)− dimC(q�∩q̄�), i.e. #R− #(Q�∩Q̄�). Thus, in case � contains a root
α /∈B • with ᾱ ≺ 0, the symmetry with respect to α yields a new basis B ′ that, with the crosses
in the same positions, describes a new real orbit whose dimension is smaller by one unit.
Then, parametrizing the real orbits that we can describe, after having made a fixed choice of
hR, by using the Weyl chambers of R , those of the minimal type are a sort of local minima
with respect to dimension. One has to be cautious because, unless hR is maximally vectorial,
there can be several inequivalent choices of B such that ᾱ � 0 for all α ∈B\B • that we can
look at as yielding different local minima for the dimension of a class of real orbits.

2.7 Further examples

Wealready showed that there areweakly nondegenerateCR algebras (sσ, q�) ofLevi order 3,
which, by Theorem 2.17, are not of the minimal type. In this subsection we exhibit examples
of weakly nondegenerate parabolic CR algebras which are not of the minimal type and have
Levi orders 1, 2.

Example 2.25 Consider sl3(C) as a simple real Lie algebra. Its complexification is the direct
sum of two copies of sl3(C). Its root system can be described, after fixing orthogonal basis
e1, e2, e3, e4 and e′

1, e
′
2, e

′
3, e

′
4 of two copies of R

4, by

R = {±(ei − e j ) | 1≤i< j≤4} ∪ {±(e′
i − e′

j ) | 1≤i< j≤4}.
Let us consider the cross-marked Dynkin diagram

α1 α2 α3
○ ○ ○× ×
α′
1 α′

2 α′
3

○ ○ ○× ×
where αi =(ei−ei+1) and α′

i =(e′
i−e′

i+1), with �={α1, α3}∪{α′
1, α

′
3}.

Let us fix the conjugation

σ(ei ) =
{
e′
i+1, i = 1, 3,

e′
i−1, i = 2, 4,

σ(e′
i ) =

{
ei+1, i = 1, 3,

ei−1, i = 2, 4,

Then

Q c
� ∩ Q̄ c

� = {e1−e3, e2−e4} ∪ {e′
1−e′

3, e
′
2−e′

4},
Q c

� ∩ Q̄� = {e1−e2, e1−e4, e3−e4} ∪ {e′
1−e′

2, e
′
1−e′

4, e
′
3−e′

4},
Q� ∩ Q̄ c

� = {e2−e1, e2−e3, e4−e3} ∪ {e′
2−e′

1, e
′
2−e′

3, e
′
4−e′

3}.
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Since all roots in � have a negative conjugate, the parabolic CR algebra (sσ, q�) is funda-
mental. It is not of the minimal type because R • = ∅ and

Q n
�∩Q̄ c

� = {e2−e1, e4−e3} ∪ {e′
2−e′

1, e
′
4−e′

3} 
= ∅.

Let us check that (sσ, q�) has Levi order 1. We get indeed

(e2−e1) + (e1−e4) = (e2−e4), (e′
2−e′

1) + (e′
1−e′

4) = (e′
2−e′

4),

(e2−e3) + (e3−e4) = (e2−e4), (e′
2−e′

3) + (e′
3−e′

4) = (e′
2−e′

4),

(e2−e3) + (e1−e2) = (e1−e3), (e′
2−e′

3) + (e′
1−e′

2) = (e′
1−e′

3),

(e4−e3) + (e1−e4) = (e1−e3), (e′
4−e′

3) + (e′
1−e′

3) = (e′
1−e′

3).

This also shows that (sσ, q�) is weakly nondegnerate. The orbit M�,σ is a CR manifold of
CR dimension 6 and CR codimension 4. Its points are quadruples (�1, �

′
1, �3, �

′
3) of linear

subspaces of a C
4 � H

2 with �1, �
′
1 complex lines such that �1+�′

1 is a quaternionic line and
�3, �′

3 complex hypersurfaces with �3∩�′
3 = �1+�′

1.

Example 2.26 Consider a root system

R = {±ei±e j | 1≤i< j≤4}
of type D4 and the maximal parabolic q� described by the cross-marked Dynkin diagram

α3
○

α2 α1
○ ○×

○

α4

Here αi =ei−ei+1, for 1≤i≤3 and α4 =e3+e4, �= {α2},

ξ
�

(ei ) =
{
1, i = 1, 2,

0, i = 3, 4.

With the conjugation

σ(e1) = e4, σ(e2) = −e3, σ(e3) = −e2, σ(e4) = e1,

we obtain

Q c
� ∩ Q̄ c

� = {e1+e4, e2+e4, e1−e3, e2−e3}
Q c

� ∩ Q̄� = {e1+e2, e1+e3, e2+e3, e1−e4, e2−e4}
Q� ∩ Q̄ c

� = {e4−e3, e4−e2, −e2−e3, e4−e1, −e3−e1},
(Q n

� ∩ Q̄ c
�)\R • = {e4−e2, −e3−e1}.

It is easy to check, using the fact that q� is maximal, that (sσ, q�) is fundamental and weakly
nondegenerate; moreover the last line of the equalities above shows that (sσ, q�) is not of
the minimal type. To check that (sσ, q�) is Levi nondegenerate (i.e. has Levi order 1) we
observe that

(e4−e3) + (e1−e4) = (e1−e3),

(e4−e2) + (e1+e2) = (e1+e4),

(−e2−e3) + (e1+e2) = (e1−e3),
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(e4−e1) + (e1+e2) = (e2+e4),

(−e1−e3) + (e1+e2) = (e2−e3).

Example 2.27 Consider a root system

R ={±(ei+e j ) | 1≤i≤ j≤3} ∪ {±(ei−e j ) | 1≤i< j≤3}
of type C3 and the cross-marked Dynkin diagram

α1 α2 α3
○ ○ ○×

with α1 =e1−e2, α2 =e2−e3, α3 =2e3 and � = {α2} so that

ξ
�

(ei ) =
{
1, i=1, 2,

0, i = 3.

Consider the conjugation

σ(e1) = e3, σ(e2) = −e2, σ(e3)= e1.

We obtain

Q c
� ∩ Q̄ c

� = {e1+e3},
Q c

� ∩ Q̄� = {2e1, 2e2, e1+e2, e2+e3, e1−e3, e2−e3}
Q� ∩ Q̄ c

� = {2e3, −2e2, e3−e2, e1−e2, e3−e1, −e1−e2}.
Since the parabolic q� is maximal, it is easy to check that (sσ, q�) is fundamental and weakly
nondegenerate. It has Levi order two, as one can check from

2e3 + (e1−e3) = (e1+e3), −2e2 + (e1+e2) + (e2+e3) = (e1+e3)

(e3−e2) + (e1+e2) = (e1+e3), (e1−e2) + (e2+e3) = (e1+e3),

(e3−e1) + 2e1 = (e1+e3), (−e1−e2) + 2e1 + (e2+e3) = (e1+e3).

3 Weakly nondegenerate CRmanifolds with larger Levi orders

Fix any integer q≥1. In this last section we discuss in detail the example of a homogeneous
CR manifold M of CR dimension q+1 and CR codimension 1 which is fundamental and
weakly nondegenerate of Levi order q .

The compact group SU(2) acts transitively on the complex projective line CP
1. The

homogeneous complex structure of CP
1 can be defined by the totally complex CR algebra

(su(2), b), where su(2) is the real Lie algebra of anti-Hermitian 2×2 matrices and b a Borel
subalgebra of its complexification sl2(C). This CR algebra corresponds to the simple cross-
marked Satake diagram

α

●

×
The root systemof the complexification sl2(C) isR ={±(e1−e2)}. andwe takeα = (e1−e2),
with fundamental weight ω = α /2.

123



Higher order Levi forms…

With our usual notation, �={α}, so that b= q�; moreover ξ�(ei )=(−1)i+1/2 and
sσ =su2, with conjugation σ(e1)=e2, σ(e2) = e1.

The irreducible finite dimensional complex linear representations of sl2(C) are indexed by
the nonnegative integral multiples k· ω ofω and the corresponding irreducible sl2(C)-module
Vk·ω can be identified with the space of complex homogeneous polynomials of degree k in
two indeterminates

Vk ω =
{∑k

h=0
ahz

hwk−h
∣
∣
∣
∣ ah ∈ C

}

.

We have

Vk ω =
⊕k

h=0
V(k−2h)ω

k ω ,

where, for a diagonal H in the canonical Cartan subalgebra of sl2(C),

V(k−2h)ω

k ω = {v ∈ Vk ω | H ·v = (k−2h)ω(H)v} = {a · zhwk−h | a ∈ C}, 0≤h≤k,

are the one-dimensional weight spaces contained in Vk ω.

Since ω̄=−ω, we have Vk ω =Vk ω. The anti-C-linear automorphism θk ω of Vk ω defined
by the conjugation σ comes from (z, w) �→ (−w̄, z̄) and therefore

θ

(∑k

h=0
ahz

hwk−h
)

=
∑k

h=0
(−1)hāhw

hzk−h

Then θ
2
k ω equals idVk ω for k even and −idVk ω for k odd. Accordingly, for k even Vk ω is

the complexification of an irreducible (k+1)-dimensional representation of the real type,
that we will denote by VRk ω; for k odd is isomorphic to a 2(k+1)-dimensional irreducible
representation of the quaternionic type of su2 (see e.g. [7, Ch.IX, App.II, Prop.2]).

Remark 3.1 Studying irreducible representation of su2 turns out to be of some interest in
quantum physics, as they arise when considering rotations on fermionic and bosonic systems
(for more details see [26, Ch.5 , §5]).

The subspace

V−
k ω =

⊕

k<2h≤2k
V(k−2h)ω

k ω

is a b-submodule of Vk ω and we can consider the semidirect sum b⊕V−
k ω as a subalgebra

of the abelian extension sl2(C)⊕Vk ω (cf. e.g. [23, Ch.VII,§3]). We may consider the map
SL2(C) → CP

1 associated to our choice of a Borel subalgebra B as a principal bundle with
structure groupB.Then the Lie pair (sl2(C)⊕Vk ω, b⊕V−

k ω) defines a complex holomorphic

vector bundle Ek with base CP
1 and typical fiber Vk ω/V−

k ω�⊕
2h≤kV

(k−2h) ω

k ω (this is an
example of Mostow fibration, see e.g. [20] and the bibliography there in).

Proposition 3.2 Let q be any positive integer. Then

(gR, q′
�) = (su2⊕ VR

2q ω, b⊕ V−
2q ω) (3.1)

is the CR algebra of a CR manifold E2q , of C R dimension q+1 and CR codimension 1,
which is fundamental and weakly nondegnenerate of Levi order q .
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Proof We have

V̄
−
2q ω=V+

2q ω =
⊕q

h=1
V2h ω
2q ω and V2q ω = V−

2q ω ⊕ V 0
2q ω ⊕ V+

2q ω.

If Zα, Z− α, H is the canonical basis of sl2(C) and w a nonzero vector of V
−2q ω

2q ω , then the

images of X− α,w , Xαw , . . . , X
q−1
α w generate q′

�/(q′
�∩q̄′

�). Since

[Xα, . . . , Xα︸ ︷︷ ︸
h times

, X
q−h
α w ] = X

q
αw ∈ V 0

2q ω\{0}, [X q+1
α w , X− α] = −2X

q
αw ∈ V 0

2q ω\{0}

weobtain that E2q is fundamental andweakly nondegenerate.With the notation of the previous
section, we have Q c

�∩Q̄�={α}, with ξ�(α)=1 and ξ�(−2 j ω)=− j . Since g/(q′
�+q̄′

�) is
generated by the image of V 0

2q ω, by the above considerations the Levi order of an element of

V−2 j ω

2q ω equals j . This shows that the Levi order of (gR, q′
�) is q . ��

In an analogous way we can also prove

Proposition 3.3 For each positive integer q , the homogeneous CR manifold E2q is contact
nondegenerate of order q . ��
Remark 3.4 Representations Vk ω with an odd k are canonically associated with complex
holomorphic vector bundles Ek, of rank (k+1), with base CP

1.
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