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High‑resolution shock‑capturing 
numerical simulations 
of three‑phase immiscible 
fluids from the unsaturated 
to the saturated zone
Alessandra Feo1,2* & Fulvio Celico1

Numerical modeling of immiscible contaminant fluid flow in unsaturated and saturated porous 
aquifers is of great importance in many scientific fields to properly manage groundwater resources. 
We present a high‑resolution numerical model that simulates three‑phase immiscible fluid flow in 
both unsaturated and saturated zone in a porous aquifer. We use coupled conserved mass equations 
for each phase and study the dynamics of a multiphase fluid flow as a function of saturation, capillary 
pressure, permeability, and porosity of the different phases, initial and boundary conditions. To deal 
with the sharp front originated from the partial differential equations’ nonlinearity and accurately 
propagate the sharp front of the fluid component, we use a high‑resolution shock‑capturing method 
to treat discontinuities due to capillary pressure and permeabilities that depend on the saturation 
of the three different phases. The main approach to the problem’s numerical solution is based on 
(full) explicit evolution of the discretized (in‑space) variables. Since explicit methods require the time 
step to be sufficiently small, this condition is very restrictive, particularly for long‑time integrations. 
With the increased computational speed and capacity of today’s multicore computer, it is possible to 
simulate in detail contaminants’ fate flow using high‑performance computing.

Modeling the dynamics of a contaminant’s fate, nonaqueous immiscible fluid, and/or water into an aquifer 
medium, immiscible fluid migration in the unsaturated soil/porous medium to the saturated zone is challenging. 
The governing equations are coupled Richard’s  equation1 for each phase and are nonlinear partial differential 
equations (PDEs), based on Darcy’s Law and the mass and momentum conservation principles. Recent reviews 
on state-of-the-art numerical solutions on the Richards’ equation through the vadose zone and saturated zone 
can be found  in2–5, and Ref.6 for a much broader application on modeling soil processes.

Because these equations are highly nonlinear, degenerate elliptic-parabolic  PDEs7, with a possible dominat-
ing hyperbolic advection term (the effect of gravity), cannot be resolved analytically, except for very simpli-
fied one-dimensional  cases5,8. Therefore, numerical approximations schemes such as Finite Difference Method 
(FDM), Finite Element Method (FEM), or mixed  combinations9, among others, are used to simulate unsatu-
rated–saturated flow models. Several methods were proposed to resolve convergence issues and reduce mass-
balance  errors10,11. Several papers show results on numerical simulations for transient saturated-unsaturated 
water  flow4,12–15.  In9 an improved method for treating the unsaturated zone and saturated water flow together, 
using an improved FDM and FEM mixed combination is presented. The horizontal direction of the governing 
equation is discretized using the FEM, while the FDM is used in the vertical direction.

The objective of this paper is to study the dynamics of transient regime three-dimensional (3D) three-phase 
of heterogeneous, anisotropic, immiscible fluids flow from the unsaturated to the saturated zone, where one of 
these phases is a nonaqueous phase liquid (NAPL) and investigate how this contaminant front propagates and 
how it is distributed in temporal and spatial small/large scales evolution.

Example multiphase fluids flow models for NAPL infiltration in both, a saturated-unsaturated zone can be 
found  in16,17. The governing equations are described through Richards’ equation as a conservation equation 
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for each phase in a porous medium. The nonlinear character of these PDEs is represented by the relationship 
between the permeability-saturation, which is responsible for creating sharp (shocks) front, and capillary pres-
sure-saturation of each phase. The functional dependence of these relationships may vary strongly, depending 
on the (hydro)geological features, the composition of the fluids, and the combination of the phases present in 
the system. The nonlinearity of the coefficients in the equation that holds at the continuum level is no longer 
guaranteed at the discrete level and have shown global mass balance  errors18–20.

Most of the discretized methods used up to now use implicit methods in which the time is calculated back-
ward, instead of explicit methods, that are forward in time. The implicit methods produce a high number of 
linear equations that have to be solved by a computer and become computationally expensive. On the other 
hand, explicit methods give a very clean way to calculate the dependence on time. They were not much used in 
the past because the time step size has to be very small; otherwise the numerical solution could rapidly diverge. 
Considering the high nonlinearity of the governing equations, these methods have been put aside.

New solutions techniques are called to improve discretization methods and scheme both in space and time. 
Time discretization is of paramount importance to study variably saturated phenomena in the transient regime 
and analyze real-time water/contaminant flow and migrations since space and time discretization affect compu-
tational accuracy and convergence. With the increased computational speed and capacity of today’s multicore 
computers, GPUs’ progress accelerated computing, new powerful programming tools (mostly open source) 
capable of enhancing modeling tools and managing big data. It is a great and unique moment and opportunity 
to simulate in detail the contaminants’ fate for a variably saturated flow.

The evolution in time is performed using an explicit method rather than the most used, implicit one. Explicit 
methods like the forward Euler method are straightforward compared with the implicit method but require the 
time step size to be sufficiently small since they are ’conditionally stable.’ This condition is very restrictive, par-
ticularly for long-time integrations, and requires the use of High-Performance Computing (HPC). In contrast to 
the explicit method, the implicit methods such as the backward Euler method and the Crank-Nicholson meth-
ods are unconditionally stable but very expensive from the computational point of view and vastly used in the 
literature, see, for example, the implicit iteration  IMPES21 for two-dimensional heterogeneous porous medium.

This paper presents a high-resolution three-dimensional (3D) numerical results using a new code (CactusHy-
dro) that uses an explicit method called high-resolution shock-capturing (HRSC) flux conservative  method22 to 
treat jump discontinuities of the parameters. For the time evolution, we use an explicit method, the forward Euler 
method, that has not been used very often in groundwater flow literature. The main approach to the problem’s 
numerical solution is based on (full) explicit evolution of the discretized (in-space) variables. This technique 
ensures the mass-conservation of the various components and accurately propagates the fluid component’s sharp 
front. These explicit methods are not too much expensive as the implicit ones, but instead, they need a very 
small-time step size. For that reason, it is also necessary to implement HPC and, thus, massively parallelization 
to treat large scale problems with small-time step size.

CactusHydro is based on the Cactus computational  toolkit23, an open-source software framework for devel-
oping parallel HPC simulation codes. We check our code’s validity with two analytical examples, the inviscid 
Burgers’ equation and the Buckley–Leverett model , and a 2D numerical unsaturated–saturated water flow 
 model9 together with the sand tank experimental data conducted in Ref.24 (see Supplementary Information). 
We then apply to a case where we show results of a contaminant, a nonaqueous phase liquid (NAPL) released 
from the vadose zone that goes downward to the saturated zone. Our results are obtained by running our code 
on a parallel system machine with a large number of processors.

Flow governing equations and mathematical setup
The equation that describes a multiphase fluid flow in a porous medium is calculated using the conservation 
equation for the mass and momentum for each fluid phase. For three-phase fluid flow in terms of nonaqueous 
(n), water (w), and air (a) is given by

where α = (n,w, a) and, Darcy’s velocity for each phase is given by,

Substituting Eq. (2) into Eq. (1) we get,

where xi = (x1, x2, x3) are the spatial cartesian coordinates, and x0 = t is the time coordinate, kijα is the effec-
tive permeability tensor [L2] , ρα is the density [ M

LT2 ] , µα is the dynamics viscosity [ MLT ] , pα is the fluid pressure 
[ M
T2L

] , g is the gravitational acceleration [ L
T2 ] , z is the depth [L], qα is the mass source/sink [ML ] , φ is the poros-

ity, Sα is the dimensionless volumetric saturation which is the fraction of the total available volume (inside the 
porous media) occupied by that component. These equations include 16 dependent variables in the general case, 
ρw , ρn, ρa, Sw , Sn, Sa,φ, kw , kn, ka, pw , pn, pa,µw ,µn,µa , and the three terms, qw , qn, qa . As a consequence of this, 
we need 13 additional relationships to obtain a solution for the system (3). One relationship corresponds to the 
sum of the volumetric saturations equal to one,
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For a three-phase fluid flow, we need two capillary pressures. In our formulation, we used the capillary pressure 
for the air-water phase and the capillary pressure for the air-nonaqueous phase, respectively

indeed, pa , pw and pn are not independent and we have that the capillary pressure of the nonaqueous-water phase 
is given by, pcnw = (pn − pw) = (pcaw − pcan).

In this paper, we developed a general formulation for three-phases immiscible fluids flow . We consider 
nonzero pressure gradients (see Ref.25,26 where the air gradient pressure is assumed negligible). In general, the 
capillary pressure is a function of saturation. From Eq. (5) we have two relationships. The porosity φ is a function 
of the pressure (and is one relationship). Densities and viscosities are funcions of phase pressures (and correspond 
to six relationships). The effective permeability tensor can be written as kijw = krw kij , kijn = krn k

ij , kija = kra k
ij , 

where krw , krn , and kra are the dimensionless relative permeabilities for the phases w, n, a respectively. kij is the 
absolute permeability, that depends on the properties of the porous medium. They are function of saturations 
(and are three relationships).

Finally, we can rewrite Eq. (3) using the capillary pressures (5) and the relative permeabilities,

in terms of the variables pa, Sw , Sn , and Sa.
The system of Eqs. (4, 6) need to specify the five functions, krα = krα(Sa, Sn, Sw)) , pcan = pcan(Sa, Sn, Sw) , 

and pcaw = pcaw(Sa, Sn, Sw) . We will be back to this point at the end of this section. But it is worth noticing that 
choices of solutions correspond to the possible different porous medium. But the numerical solution and the 
method we apply here is not affected by any particular option.

To complete the mathematical description, we need the expressions for qα , the boundary conditions, and 
the initial conditions. Before doing that, let us write the rock compressibility cR as a function of the porosity 
and pressure,

and consider the Taylor expansion up to order one in cR where we get a linear approximation for the porosity

Let us define the product of the porosity φ and the saturation for each phase as, σw ≡ φSw , σn ≡ φSn, σa ≡ φSa , 
then Eqs. (4) and (8) can be written as,

where φ0 is the porosity at the reference pressure p0 , which we consider to be the atmospheric pressure. Now we 
can write the left-hand side of Eq. (8) as a function of the pressure,

where p will be associated to pa and the system of PDEs (6) becomes

and ( α = w, n, a):

where the

do not depend on the spatial derivative of the saturation and the

(4)Sw + Sn + Sa = 1.

(5)pcaw = (pa − pw), pcan = (pa − pn),

(6)

∂

∂t
(ρwφSw) =

∂

∂xi

[

ρw
krw

µw
kij
(

∂pa

∂xj
−

∂pcaw

∂xj
+ ρwg

∂z

∂xj

)]

+ qw ,

∂

∂t
(ρnφSn) =

∂

∂xi

[

ρn
krn

µn
kij
(

∂pa

∂xj
−

∂pcan

∂xj
+ ρng

∂z

∂xj

)]

+ qn,

∂

∂t
(ρaφSa) =

∂

∂xi

[

ρa
kra

µa
kij
(

∂pa

∂xj
+ ρag

∂z

∂xj

)]

+ qa,

(7)cR =
1

φ

∂φ

∂p
,

(8)φ = φ0[1+ cR(p− p0)].

(9)σa + σn + σw = φ0[1+ cR(p− p0)],

(10)
∂φ

∂t
= φ0cR

∂p

∂t

(11)
∂σa

∂t
+

∂σn

∂t
+

∂σw

∂t
= φ0cR

∂p

∂t
,

(12)
∂σ(α)

∂t
= −

∂

∂xi

[

Fi(α)(Sw , Sn, Sa, p)

]

+
∂

∂xi

[

Qi
(α)(Sw , Sn, Sa, p)

]

(13)Fi(α)(Sw , Sn, Sa, p) = −
kr(α)(Sw , Sn, Sa)

µ(α)

kij
(

∂p

∂xj
+ ραg

∂z

∂xj

)



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5212  | https://doi.org/10.1038/s41598-021-83956-w

www.nature.com/scientificreports/

depends on the spatial derivative of the saturation, where we assumed constant density–viscosity for each phase.
The PDEs system to be numerically resolved is composed by (11, 12) and variables p, σw , σn, σa , together 

with the functional form of the relative permeabilities (15) and capillary pressures (19) (see next subsection). We 
separated the right-hand side of the system (12) in advection (hyperbolic) PDEs, the one that also depends on 
the spatial derivative of the pressure p and the gravity g [Eq. (13)], and parabolic PDEs, the one proportional to 
the capillary pressures pc [Eq. (14)] in the variable saturation. These two pieces will be treated differently when 
we used numerical methods. The hyperbolic PDEs is responsible for the shock formation when the flow passes 
through a discontinuity and has to be treated using a mass-conservative numerical method.

Permeabilities and capillary pressures model. Now that we have the complete system of three-phase 
flow equations, we need to define the functional form for the relative permeabilities and capillary pressures. The 
relative permeabilities for three phases has been extended from the two-phase  expressions27 and are given by,

where the total effective liquid saturation, Set , is defined as

and Swir is the irreducible wetting phase saturation. For the capillary pressure, we use the van Genuchten  model19 
where the effective saturation, Se , has the following form,

and α and n are model parameters. Defining m = 1− 1
n , from which we get, n = 1

1−m , and resolving for pc we 
obtain

where pc0 = α−1 is the capillary pressure at Se = 0 . The water content Sw is entirely determined by the capillary 
pressure between the NAPL and water, pcnw = pcnw(Sw) . The total liquid content St = Sw + Sn (or alterna-
tively, the air saturation Sa = 1− St ) is completely determined by the capillary pressure between air and NAPL, 
pcan = pcan(St) . From the definition of capillary pressure, it follows that the capillary pressure between air and 
water is not an independent quantity but is given by, pcaw = pcan + pcnw . As a consequence of these wettability 
assumptions, the local saturated distribution of a three-phase water-NAPL-air system is determined by two-
phase capillary pressure-saturation relationships for air-water and air-NAPL. The capillary pressures are given by,

High performance computing and CactusHydro
Most of the multiphase/three-phase groundwater flow equation solvers employ either FDM or finite element 
method (FEM) in the three coordinate space. Hybrid combinations are also  possible9. Other used methods are: 
transversal methods of lines for the numerical modeling of vertical infiltration into the vadose  zone28,29, or a 
WENO based method of  lines30. Although there were very few attempts to use a supercomputer to simulate 
subsurface solute transport, the situation has changed in the last ten years.. New codes use HPC, for example, 
 PFLOTRAN31,32, Parflow Hydrologic  model33,34,  RichardsFOAM35, CATHY (CATchment HYdrology)36. But it 
should be noticed that none of them systematically use explicit forward in time evolutions and conservative high-
resolution shock capturing methods to efficiently study the dynamics of multicomponent flow in porous soil.

Most of these codes are written in Fortran language (as, for example, PFLOTRAN), while few are written 
in C++/C. Both programming languages are efficient for large computation problems and are well supported 
compared with other languages. Some codes, as for example, RichardsFOAM, only treat Richard’s equation and 
study the water fluxes at the watershed scale. Most of the codes used FDM, FEM, and less often, FVM. Some 
codes are commercial software such as, COMSOL  Multiphysics37, FEFLOW (Finite Element subsurface FLOW 
system)38. It is expected that, if properly applied, different spatial discretization methods should not change 
results too much when other numerical methods are used.

Our interest is focused on the application of software and codes to large-scale hydrological modeling, similar 
to CATHY, ParFlow, PFLOTRAN, etc., and use sufficiently finer mesh size, especially in the vertical direction 
or refinement in the area where the contaminant or the principal problem is evolved. This paper presents a new 
code (CactusHydro) that performs high-resolution numerical simulations in multiphase flow from the vadose 
zone to the saturated one in a porous medium. CactusHydro is a code written in C/Python language and is 
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based on the open-source Cactus  toolkit20,23,39, an open-source software framework for developing parallel high-
performance simulations codes. Data are evolved on a cartesian mesh with six refinement level using  Carpet40,41. 
We discretize the domain problem using the FDM and implement the explicit (forward) Euler method for the 
space-time evolution of the system.

Numerical methods
The strong nonlinearities in the previous system of PDEs are represented by the relationship between the perme-
ability-saturation, which is responsible for creating the shocks, and capillary pressure-saturation of each phase. 
This situation has to be described accurately in time (and space) and needs high-resolution and refinement at a 
small scale (vertical and horizontal) up to a large scale. The crucial part to notice is the fact that the dominant 
piece of the multiphase flow PDEs that has to do with the water and nonaqueous phase is dominated by the 
hyperbolic part (the one proportional to gravity and the gradient of the pressure, rather than the elliptic part of 
the equation (proportional to the capillary pressure). We will use explicit methods to resolve the part of the PDEs 
equation that has a hyperbolic structure and resolve it in an explicit way to eliminate the oscillations/shocks that 
are caused due to the term proportional to the gravity constant.

When introducing the formal properties of numerical solutions methods of PDEs associated with conserva-
tion laws, two fundamental theorems are underlining the importance of using a conservative formulation. The 
first one is due to Lax, and  Wendorff42 and the second by Hou and  LeFloch43. Namely, that conservative numerical 
schemes, if convergent, do converge to the weak solution of the problem. The second theorem states that non-
conservative numerical schemes do not converge to the correct solution if a shock wave (or discontinuity) is 
present in the flow. These two theorems state that if a conservative formulation is used, then we are guaranteed 
that the numerical solution will converge to the correct one, while if a conservative formulation is not used, we 
are guaranteed to converge to the incorrect solution in the likely event in which the flow develops a discontinuity.

The main approach to the numerical solution of the problem is based on a class of semi-discrete methods 
(Ordinary differential equation (ODE) in time and discretized in space) conservative flux methods of the type 
discussed in Kurganov and Tadmor (KT)22 using upwind fluxes. This approach is based on (full) explicit in the 
time evolution of the discretized equation using the so-called methods of lines (MoL) for the time evolution of 
the discretized (in space) variables. This technique allows to overcome the major limitation of the solution meth-
ods used before and to ensure mass conservation of the various components easily and accurately propagate the 
sharp front of the fluid component. This has the main drawback that the size of the time step that must be used 
to ensure convergence is much smaller than the one that can be used with an implicit scheme or semi-implicit 
one, like the one used in IMPES  simulations21. In particular, to deal with the sharp front originated from the 
nonlinearity of the equations, we use a high-resolution shock-capturing (HRSC) method to treat discontinuities 
due to the capillary pressure (air-nonaqueous), (water-nonaqueous) and the permeabilities that depend on the 
saturation of the three different phases.

The conservation form (second-order scheme) in the 1D-case (straightforwardly generalized to 2D and 3D) 
is given  by22,

with the numerical flux,

and the discretized variable uj(t) are approximated TVD limited piecewise linear (discontinuous at the cell inter-
face) that assume the values u−j+1/2 and u+j+1/2 at the boundary between the cell j and j + 1 and aj+1/2(t) is the 
maximum of the spectral radius of F ′(u) . We can now use the crucial simplification (that it is now accurate at first-
order in space) that holds true when F(u) does not change sign (as it is for our equations) for different values of 
u(t) at the interface. Namely we assume: Hj+1/2(t) = −F(u+j+1/2(t)) if F(u(t)) < 0 and Hj+1/2(t) = F(u−j+1/2(t)) 
if F(u(t)) > 0.

The HRSC methods possess the following properties: sharp resolution of discontinuities without considerable 
smearing; at least second-order of accuracy on smooth parts of the solution; absence of spurious oscillations 
in the solution; convergence to the “weak” solution as the grid is refined; no use of artificial-viscosity terms. 
The method belongs to the class of Monotonic Upstream-centered Scheme for Conservation Law (MUSCL) 
suggested by van Leer in 1973, and the KT scheme is second-order accurate in space. To achieve second-order 
accuracy, one needs to use analytical information on the form of the flux. However, as in this work, the use of 
the first-order upwind formula for the fluxes, and the minmod flux limiter, only the point values of the flux are 
required. This is of great advantage since it can use tabulated values for permeabilities. The only penalty is that it 
is first-order not only at the discontinuities but also over the whole simulation grid. But one has to keep in mind 
that any methods will be first-order at the physical discontinuities, and the problems we target to study involve 
following real-discontinuities.
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Results
In this study, some tests are performed to verify the accuracy and reliability of the HRSC method and the Cac-
tusHydro code. The results are compared with analytical models and experimental data results.

The inviscid Burgers’ equation. To show the effectiveness of the method, we consider the inviscid Burg-
ers’ hyperbolic equation, which represents a model for nonlinear wave propagation and how the use of a (sim-
plified) HRSC method is capable of dealing with sharp fronts (or discontinuities) and to evolve them correctly 
as well as to follow the shock-formation and the rarefaction. Figure 1 shows (in black) the initial conditions 
u(x, 0) = cos(x) for |x| < π/4 and its evolution, moving from the left to the right, using the employed HRSC 
method at different values of t (colored lines). One may observe the formation of the jump discontinuity (shock). 
It is also observed the formation of a rarefaction when the propagation velocity ( v(x, t) = 2u(x, t) ) grows with 
respect to x. When it decreases, there is the formation of a shock. When the shock is completely formed (purple 
color), the method correctly evolves the shock front. This technique allows overcoming the major limitation of 
the solution methods described in the previous section, easily ensuring mass-conservation of the various com-
ponents, and accurately propagating the sharp front of the fluid component.

We also considered the Courant–Friedrichs–Lewy (CFL) restrictions in our simulations. In particular, at any 
fixed spatial resolution, one has to select a time step size so that the evolution is convergent in time. We checked 
that the used time step size at any resolution fulfills the CFL conditions. For example, in this test case of the Burg-
ers’ equation, we set, to accurately follow the formation of the shock discontinuity the CFL factor to be 0.001.

Linear waterflood. To verify that the numerical code is properly solving the governing equations and deal-
ing with sharp front coming from discontinuities, it is important to compare our numerical results with analyti-
cal results from simplified examples. An analytical solution for a one-dimensional problem is given by the Buck-
ley–Leverett  model44 which estimates the advance of a fluid displacement front in an immiscible displacement 
process in the horizontal direction (zero gravity force) and zero capillary pressure.

The one-dimensional test is performed using full 3D-code evolution and imposing constant values of all vari-
ables along with two directions with constant boundary conditions achieving an effective 1D evolution. Along 
this direction is keeping fixed pressure difference and the evolved direction in x is L = 25m long with a cell 
resolution of dx = 0.125m . We consider a pipe in which the initial pressure was set to be a fixed gradient. This 
is not a profile of a stationary two-phase fluid flow with constant flux. Nevertheless, in a few second it stabilizes 
to the right initial conditions. The data for this problem is given in Table 1. Relative permeabilities were taken 
from Eq. (15) as a function of water saturation.

Figure 2, shows the behavior of the product of saturation and the porosity ( σalpha ) as a function of the distance 
for different values of the time, for a two-phase nonaqueous-water flood (with σa = 0 ), and using CactusHydro 
code. Notice that σa + σw + σn = φ which is equal to 0.30 (see Table 1). We also show the comparison with a 
double resolution cell, dx = 0.250m which perfectly match with the one corresponsing to dx = 0.125m . This 
also shows very good convergence for the results of the numerical simulations.We also compare the analytical 
result coming from the Buckley–Leverett model using the same parameters in the theoretical expression. Notice 
how the numerical results perfectly match the theoretical expectation even in the discontinuity zone. This is 

Figure 1.  Formation of a shock and rarefaction using the Burgers’ equation. The solution at the initial condition 
for t = 0 is represented by a cosine function moving from the left to the right and its time evolution using the 
HRSC FD method. Notice the formation of a discontinuity jump (shock) and the creation of a rarefaction.
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due to the use of a mass-conservative method implemented in the code. Relative permeabilities were chosen 
as a function of water saturation, as appears in Table 1, where the zero gravity and zero capillary pressure were 
imposed. From this Fig. 2 one can notice a sharp front predicted by the analytical solution and the numerical 
result which, fits perfectly.

More in detail, Fig. 2 (left-hand side) showed the NAPL saturation as a function of the distance x from the 
NAPL injection at several values of t using a dx resolution of 0.125m . We then compared the analytical solution 
of the Buckley–Leverett model (the dashed black line at t = 7.0 h) with the numerical results at dx = 0.250m 
(the cyan dashed line at t = 7.0 h) and, dx = 0.125m (the grey line at t = 7.0 h). These lines fit very nicely. The 
pressure difference between the two end-point is kept fixed at the boundary, and indeed, the pressure gradi-
ent is changing with time as the nonaqueous component replaces water. See right-hand side of Fig. 2. Clearly, 

Table 1.  Data used in the numerical simulations to be compared with the one-dimensional Buckley–Leverett 
waterflood problem.

Parameter Value

Absolute permeability, k 4.14× 10−10 m2

Porosity, φ0 0.30

Reservoir length, L 25.00m

Cross-sectional area, A 0.75× 0.75m2

Oil viscosity, µn 0.10000 kg/ms

Water viscosity, µw 0.00100 kg/ms

Oil density, ρn 881 kg/m3

Water density, ρw 1000 kg/m3

Van Genuchten, n, m n = 2,m = 1/2

Irreducible wetting phase saturation, Swir 0.057

Total pressure gradient ∇p = 104 Pa/m

Figure 2.  Comparison of NAPL saturation as a function of the distance from NAPL injection and the analytical 
 solution44 and numerical results from CactusHydro code for a two-phase nonaqueous-water flood.

Figure 3.  Comparison of NAPL saturation as a function of the distance from NAPL injection and the analytical 
 solution44 and numerical results from CactusHydro code for a two-phase nonaqueous-water flood.
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mesh-independency and time resolution should be checked. Fig. 3 shows (for the Buckley–Leverett problem) 
mesh-independency for several values of the spatial grid resolution ( dx = 0.125m, dx = 0.250m, dx = 0.500m ) 
where we use an equispaced cubic grid, and with respect to time resolution ( dt = dt/2).

Three‑dimensional unsaturated three‑phase fluid flow with gravity. An additional numerical test 
code, before showing a 3D example, is provided in the Supplementary Information. Our code results are com-
pared with a two-dimensional numerical unsaturated–saturated water flow  model9, together with the sand tank 
experimental data conducted by Koichi et al.24. See Table S1 for a list of parameters used in the 2D example, and 
Figure S1 for a comparison between the water table elevations measured in a sand tank  experiment24 and the 
water table elevations calculated with CactusHydro as a function of the distance at different times..

Now that we have shown some tests, we can apply CactusHydro to a specific 3D example. In this example, 
we show the impact of an undetected leak of NAPL phase liquid onto a surface and, as a consequence of the 
gravity, moves from the unsaturated to the saturated zone. We consider a three-phase fluid case in which the 
contaminant is a light nonaqueous phase liquid (LNAPL) for which the density is less than the water. See Table 2 
for details on the parameters. It provides a summary of the physical properties of the porous medium and fluids, 
initial conditions, and numerical model discretization data. The relative permeabilities and capillary pressure 
were taken from Eqs. (15, 19) which consider three-phase fluid flow relations.

Figure 4 shows an example result of a numerical simulation of three-phase fluid flow (water, LNAPL, air) 
performed using a spatial grid resolution of dx = 0.5m and a total grid dimension of 80m× 30m and 20m in 
the z–x axis. The simulation has been successfully performed using CactusHydro on a parallel cluster dedicating 
to HPC at Parma University (Parma).

Initially, there is a constant leak of NAPL situated on top of this figure (left-hand side), in the unsaturated 
zone composed by a porous medium and a contaminant density situated at z = 10 meters. The water table is 
at z = 0 coordinate, and there is a gradient of gravity of 15 degrees. The LNAPL contaminant flows downward 
saturated zone due to the gravitational force. It then arrives at the water table, where a capillary pressure between 
air-contaminant and contaminant-water is present. The contaminant has a density lighter than the water. It 
remains around the water table while part of it goes in the left direction due to the pressure gradient (bottom, 
left-hand side). On the other column at the right-hand side, the same situation is viewed in the z–y plane. Notice 
the effect of the capillary pressure between contaminant and water, which causes a movement of the water flow 
in their vicinity. The right-hand side of this figure shows the z–y axis where there is a zero-gravity component 
effect and thus, no privileged direction in the y axes. The transient numerical simulation shows the behavior of 
this contaminant for a period of time of around five days, although it is possible to go further in the simulation.

Conclusions
In this paper we have presented high-resolution 3D numerical results of three-phase immiscible fluids flow from 
the unsaturated to the saturated zone in a porous medium. They were obtained using a new code, CactusHydro, 
based on the Cactus toolkit (an open-source that provides a range of parallel computational capabilities). The 
governing equations are coupled general Richards’ equations for each phase (water, NAPL, and air). We investi-
gated the three-phase immiscible fluid flow dynamics as a function of the saturation, capillary pressure, relative 
permeability of the different phases, using different initial and boundary conditions.

To deal with the sharp front originated from the partial differential equations’ nonlinearity and accurately 
propagate the fluid component sharp front, we use a high-resolution shock-capturing (HRSC) method to treat 
discontinuities due to capillary pressures and permeabilities that depend on the saturation of the three differ-
ent phases. The innovative method considered in CactusHydro is the (first-order accurate) upwind fluxes in 
the conservative-flux methods discussed  in22. This approach is based on (full) explicit in the time evolution of 
the discretized equation using the so-called methods-of-lines (MoL) for the time evolution of the discretized 

Table 2.  Data used in the 3D transient three-phase fluid flow, with an LNAPL released in the unsaturated 
porous medium zone that goes downward directed to the saturated aquifer. Data results from numerical 
simulations using CactusHydro.

Parameter Value

Absolute permeability, k 4.14× 10−10m2

Porosity, φ0 0.3

Simulated region , x × y × z 80m× 20m× 30m

Resolution, dx 0.50m

Oil viscosity, µn 10−1 kg/ms

Water viscosity, µw 10−3 kg/ms

Oil density, ρn 881 kg/m3

Water density, ρw 103 kg/m3

Van Genuchten, n, m n = 2,m = 1/2

Irreducible wetting phase saturation, Swir 0.057

Capillary pressure air-water at zero saturation, pcaw0 0.081m

Capillary pressure air-nonaqueous at zero saturation, pcan0 0.0566m
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(in-space) variables, and a finite volume method MUSCL scheme (Monotonic Upstream-centered Scheme for 
Conservation Laws (van Leer, 1979).

We compare our numerical results with known analytical models such as the Burgers’ equation and the 
Buckley–Leverett model. An additional numerical test code is the comparison with a two-dimensional unsatu-
rated–saturated water flow model, together with the sand tank experimental data conducted by Koichi et al.24 (see 
Supplementary Information). Lastly, we consider a simple three-phase fluid flow case in which a contaminant 

Figure 4.  Example of a numerical simulation of a three-phase fluid flow simulation (water + LNAPL + air) 
performed using a spatial grid resolution of 0.50m and a grid dimension of 80m× 30m× 20m , at different 
times. The simulation has been performed using CactusHydro code. Left-hand side shows the (z–x) plane. 
Right-hand side shows the (z–y) one.
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(LNAPL) leak onto the surface and, as a consequence of the gravity, moves from the unsaturated to the saturated 
zone.

These techniques allow overcoming the previous section’s solution methods’ major limitation and ensuring 
the various components’ mass-conservation. Also accurately propagating the sharp front of the fluid component. 
This has a drawback: the size of the time step that must be used to ensure convergence is much smaller than 
the one used with an implicit scheme or semi-implicit one like the one used in IMPES. The numerical results 
are very encouraging and show the robust capabilities of this code (and methods). We plan to apply it to more 
realistic cases in future works.
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