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Marzia Bisi, Maria Groppi, Giorgio Martalò∗ and Romina Travaglini
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Abstract. A mathematical model for the degradation of the organic frac-
tion of solid waste in landfills, by means of an anaerobic bacterial popula-

tion, is proposed. Additional phenomena, like hydrolysis of insoluble substrate

and biomass decay, are taken into account. The evolution of the system is
monitored by controlling the effects of leachate recirculation on the hydrolytic

process. We investigate the optimal strategies to minimize substrate concen-

tration and recirculation operation costs. Analytical and numerical results are
presented and discussed for linear and quadratic cost functionals.

1. Introduction. Waste management is nowadays a problem of urgency and inter-
est for national and local authorities that have to implement strategies and decision
policies in their intervention area.
Traditionally, landfills were conceived as containment vessels, where waste was sim-
ply stored; such approach has already revealed some criticisms, like the requirement
of new stocking sites and the formation and diffusion of contaminated leachate that
can pollute soils and aquifers [7, 11]. These raised findings can be overcome by a
different recent approach, according to which landfills are controlled sites (biore-
actors), where the solid waste is treated and stabilized. In particular, the organic
fraction can be reduced and used to produce some byproducts [20, 23], like biogas
and compost.
As regards agricultural fertilizers (compost), they can be produced from organic
waste by means of an aerobic phenomenon of degradation [11]; the digestion pro-
cess due to a bacterial population can be controlled, for example, by manipulating
the levels of oxygen concentration in the composting system atmosphere. Some
optimal control problems have been formulated recently [16, 17] to give some indi-
cations about the optimal aeration strategies to improve biocell performance.
Under anaerobic conditions, the transformation of soluble component of the organic
fraction implies the production of biogas, similar to methane but with a heating
value lower than the methane one [9, 13]; in this context several optimization prob-
lems have been formulated [4, 5, 6] to individuate the best feeding strategies that
maximize the biogas production and the soluble substrate reduction. Some factors
can influence the process performance; for example, the leachate recirculation can
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be manipulated and controlled in order to improve the system mixing [29, 31], and
consequently to stimulate the degradation.
A recent paper [25] presents a simple model of landfill describing the degradation
of the soluble substrate by means of a bacterial population, acting under anaero-
bic conditions in a batch bioreactor. More precisely, a two components substrate
and a bacterial population (biomass) are taken into account and their evolution
is governed by two different phenomena: (i) the soluble substrate is degraded by
the anaerobic biomass; (ii) the insoluble substrate is solubilized by means of a hy-
drolytic process. The leachate recirculation is the process to be controlled and it
can stimulate or inhibit solubilization of the insoluble component. Such scenario
can be modeled by a system of ordinary differential equations, that constitute an
appropriate description of the evolution of main variables in the case of perfect
mixing. In [25] the authors have individuated and analyzed the optimal control to
reach a given target configuration in minimum time.
In this paper, we propose a control problem for anaerobic degradation in a batch
bioreactor, under perfect mixing conditions. The natural phenomenon of bacteria
death, not taken into account in [25], is now introduced in the model. Therefore,
the organic matter is modeled as a two components substrate - soluble and insol-
uble - and the following transformation phenomena are considered: (i) anaerobic
digestion: the bacterial population grows by consuming soluble organic matter; (ii)
hydrolysis: i.e. solubilization of the insoluble substrate; (iii) biomass decay: bacte-
ria death produces new insoluble substrate.
The control variable represents the effects of leachate recirculation on the solubi-
lization of the insoluble substrate. The leachate recirculation can be achieved by
means of a proper device spraying the leachate in the system. The traditional ap-
proach based on the injection of leachate directly on the organic waste surface [15]
has been overcome by current strategies of horizontal trenches [24], vertical wells
[8] and permeable blankets [12], preventing the increase of odors and gas emissions.
The control is carried out by monitoring the leachate flow through the system. Un-
like [25], we deal here with a finite horizon control problem, whose main goal is to
find the best strategies optimizing an objective functional, that balances the mini-
mization of leachate recirculation cost in a given time range and the minimization
of substrate components at the final time.
As concerns this last task, it is known [25] that anaerobic processes in biogas pro-
duction show in the first phase a negligible amount of methane [10]. In this paper
we focus on such phase, which is mainly aimed at improving the mixing in the
system, by reaching at the end a better configuration with low concentrations of
substrate components as effect of a proper leachate recirculation.
As regards the recirculation cost, we remind here that an economic contribution
is required in terms of technology, electricity and working hours; because of the
several cost sources, we will analyze two different objective functionals depending
linearly and quadratically on the control variable. The consequent optimal profiles
will be computed and discussed.
The paper is organized as follows: we introduce the mathematical model and some
basic properties in Section 2; the optimal control problem is formulated and an-
alyzed by means of Pontryagin’s theory in Section 3; some numerical results, for
both linear and quadratic cost functionals, are presented and discussed in Section
4; some concluding remarks are given in Section 5.
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2. The model. We propose a model describing the action of an anaerobic bacterial
population, that degrades the soluble fraction of the substrate in a batch bioreactor.
The insoluble part undergoes a hydrolytic process before being digested; in addition,
a biomass decay phenomenon is taken into account.
Under perfect mixing conditions, the time evolution of the involved quantities is
governed by a system of ordinary differential equations

dS1

dτ
= −γ̃ (Q) c̃hS1 + b̃X

dS2

dτ
= −µg̃ (S2)X + γ̃ (Q) c̃hS1

dX

dτ
= µg̃ (S2)X − b̃X ,

(1)

where τ is the time variable, S1 (τ), S2 (τ) and X (τ) denote the insoluble substrate,
the soluble component and the biomass at time τ , respectively. The term µg̃ (S2)X
represents the degradation and γ̃ (Q) describes the effects of the leachate recircula-
tion on the hydrolytic phenomenon; the solubilization of insoluble substrate depends
on the flow rate Q ∈ [0, Qmax]. The positive constants µ, b̃ and c̃h represent the
maximum growth rate, the biomass decay parameter and the hydrolysis coefficient,
respectively.
The total mass conservation

S1 (τ) + S2 (τ) +X (τ) = S1 (0) + S2 (0) +X (0) =: m (2)

is used to introduce the following scaled quantities

t = µτ , s1 =
S1

m
, s2 =

S2

m
, x =

X

m
, q =

Q

Qmax
,

where 0 ≤ s1, s2, x, q ≤ 1 and the flow rate Q has been scaled with its maximum
admissible value Qmax.
From (1) the nondimensional system of equations is deduced

ṡ1 = −γ (q) chs1 + b (1− s1 − s2)

ṡ2 = −g (s2) (1− s1 − s2) + γ (q) chs1 ,
(3)

where the overdots denote the derivative with respect to t; the conservation (2)
is used to replace x by 1 − s1 − s2; functions γ, g and parameters b and ch are
the nondimensional version of the corresponding physical quantities (in particular

ch = c̃h/µ and b = b̃/µ).
We assume that

H0 - γ ∈ C1([0, 1]), γ(0) = 0, γ′(q) > 0 for any q ∈ [0, 1];
H1 - g ∈ C0 ([0, 1]) with g (0) = 0 and g (s2) > 0 for any s2 ∈ (0, 1].

Under hypothesis H0, we may introduce the control variable

u := γ (q) ,

representing the effects of leachate recirculation on the hydrolytic process. The
admissible control set for u is given by

U := {ν : [0, tf ] −→ [0, umax] , ν Lebesgue measurable} , (4)
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and without any loss of generality we may assume umax = 1.
Then the model (3) can be written as

ṡ1 = −uchs1 + b (1− s1 − s2)

ṡ2 = −g (s2) (1− s1 − s2) + uchs1 .
(5)

Note also that, under hypothesis H1, the set

F = {(s1, s2) ∈ [0, 1]× [0, 1] such that s1 + s2 ≤ 1} (6)

is positively invariant, i.e any solution starting from a state in F remains in F for
any time.

2.1. Basic properties in presence of a constant flow rate. We shortly analyze
some properties of model (5) when a suitable strategy guarantees the same flow rate
at any time, i.e. u (t) = θ ∈ [0, 1] for any t > 0; the model can be rewritten as

ṡ1 = −θchs1 + b (1− s1 − s2)

ṡ2 = −g (s2) (1− s1 − s2) + θchs1 .
(7)

We consider also the following additional hypothesis about the smoothness of bac-
terial growth function g

H2 - g ∈ C1 ([0, 1]) and g′ (s2) > 0 for any s2 ∈ [0, 1].

We discuss separately the case θ = 0, in which the hydrolytic process does not play
any role and the evolution is driven only by biomass decay phenomenon and soluble
substrate degradation. In this case system (7) reduces to

ṡ1 = b (1− s1 − s2)

ṡ2 = −g (s2) (1− s1 − s2) .
(8)

We can easily observe that any configuration in

C = {(s1, s2) ∈ F such that s1 + s2 = 1}
is a steady solution of system (8); in addition any other solution in phase space
can be explicitly computed for any initial state σ0 =

(
s0

1, s
0
2

)
∈ F ; more precisely,

trajectory Tσ0 starting from σ0 is given by

Tσ0 =
{

(s1, s2) ∈ F such that bG (s2) + s1 = bG
(
s0

2

)
+ s0

1

}
,

where G (s2) is a primitive function of 1/g (s2).
We observe that the state vector defined by (8) is such that

(ṡ1, ṡ2) · n =
1√
2

(b− g (s2)) (1− s1 − s2) > 0 if and only if b− g (s2) > 0 ,

where n is the unit outgoing vector orthogonal to line C; by reminding that F is
the positive invariant set (6), one can conclude about stability of equilibria on line
C. In particular, let s∗2 ∈ [0, 1] be (if it exists) the unique solution of

b− g (s2) = 0 (9)

(its uniqueness follows from hypothesis H2); then line C can be rewritten as union
of two subsets

C = C1 ∪ C2
where

C1 = {(s1, s2) ∈ C such that 0 ≤ s2 ≤ s∗2}
C2 = {(s1, s2) ∈ C such that s∗2 < s2 ≤ 1} ;

equilibria in C1 are stable, while those in C2 are unstable. We notice here that
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Figure 1. Phase portrait in absence of solubilization of the insol-
uble substrate (u (t) = 0 for any t > 0). Bacterial growth is de-
scribed by a Monod response function (10); parameters c = 0.417
and b = 0.19 are purely illustrative.

C1 = C and C2 = ∅ if equation (9) has no solution in [0, 1]. Results are summarized
in Figure 1, when the bacterial growth is modeled by a Monod function [18]

g (s2) =
s2

s2 + c
, (10)

where c is the half saturation constant.
As regards the case θ 6= 0, we notice that system (7) admits the equilibrium con-
figuration E1 = (0, 1), representing total solubilization of insoluble substrate and
absence of bacterial population; we observe also that E1 does not depend on the
parameter θ. A second equilibrium E2 is admitted if (9) has solution s∗2; such
equilibrium is given by (s∗1, s

∗
2), where

s∗1 =
b (1− s∗2)

b+ θch
. (11)

As concerns the local stability of equilibria, the Jacobian matrix J associated to
system (7), evaluated at the equilibrium state E2, has two negative eigenvalues,
guaranteeing local stability of E2 when it exists. As regards equilibrium E1, the
jacobian matrix J evaluated in such state has eigenvalues

λ1 = −θch < 0 and λ2 = g (1)− b
and the stability strictly depends on the sign of λ2.
We notice that if b > g(1) then λ2 < 0 and E1 is stable, while E2 is not admitted,
since equation (9) has not solution in [0, 1]. When b < g(1), system (7) admits
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Figure 2. Second component of equilibria versus the bifurcation
parameter b in the case of Monod response function (10). Contin-
uous and dashed lines denote stability and instability of equilibria,
respectively. The bifurcation value is b∗ ' 0.705.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Insoluble substrate s
1

S
o

lu
b

le
 s

u
b

s
tr

a
te

 s
2

(a)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Insoluble substrate s
1

S
o

lu
b

le
 s

u
b

s
tr

a
te

 s
2

(b)

E
2

 E
1

 E
1

Figure 3. Phase portrait for system (7), when the bifurcation
parameter b is less (panel (a)) or greater (panel (b)) than the bi-
furcation value b∗ ' 0.705. Bacterial growth is modeled by Monod
growth function (10); parameters c = 0.417, ch = 0.245, θ = 0.3.

equilibrium E2, that is stable, while E1 is unstable. Therefore, we can conclude
that b∗ = g(1) is a bifurcation value for parameter b and a transcritical bifurcation
occurs when b = b∗ (see Figure 2). Phase portraits are depicted in Figure 3, for
b < b∗ (panel (a)) and b > b∗ (panel (b)). We observe that global stability of
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equilibria follows from the Poincaré-Bendixson theorem, thanks to local stability
results, together with the existence of the attractive bounded invariant region F in
(6) and by excluding the occurrence of periodic solutions, by means of the Dulac
function [21]

ψ(s1, s2) =
1

1− s1 − s2
.

As last remark, we remind here that the above analysis has been performed under
hypothesis H2; in absence of the monotonicity of g, other response functionals can
be taken into account, like Haldane growth kinetics [1] that considers inhibition
effects due to high concentrations of soluble substrate. When g is not monotonic,
the expected scenario turns out to be richer than the one obtained for monotonic
response functionals, since equation (9) may have several solutions.

3. Pontryagin’s formulation. In this section, we formulate an optimal control
problem whose main goal is to find the best recirculation strategy, that combines
the maximum reduction of any component of the organic matter at the final time
and the limitation of the costs of the recirculation operation in the entire time in-
terval.
As concerns the reduction of the organic matter, the most desired scenario is pro-
vided by the total consumption of both components, i.e. (s1(tf ), s2(tf )) = (0, 0).
We model the first contribution in the objective of the optimal control problem by
requiring the minimization of the quadratic distance from such desired scenario.
Moreover, as pointed out also in other frameworks (see [19, 26, 30]), this require-
ment has the effect of emphasizing/de-emphasizing the large/small deviations from
the target configuration.
As concerns the costs of the recirculation operation, it is known that they can be
modeled as a proper, but unknown, function of the state variables and the control
[27]

ϕ = ϕ(s1, s2;u) ,

taking into account several cost sources (technology, electricity, working hours,. . . ).
In this manuscript, we focus only on fixed costs, that do not depend on the specific
scenario; therefore, we assume

ϕ = ϕ(u) .

Since the dependence of the cost function ϕ on the control variable u is unknown,
in the following analysis we will discuss two particular cases commonly discussed
in the literature on optimal control problems [3, 14], assuming linear and quadratic
dependence on the control.
Mathematically, our goal is therefore to determine the optimal control function
u = u(t) in the admissible control set (4) (with umax = 1), which minimizes

Lk (u) =
(
s2

1(tf ) + s2
2(tf )

)
+ α

∫ tf

0

uk (t) dt , (12)

along the solutions of (5), where k = 1, 2 and α > 0. The functional Lk is a weighted
average of the two contributions described above and the relative weight of each
term on the strategy to be adopted is given by the coefficient α.
By means of Pontryagin’s minimum principle [22], the optimal control problem for
system (5) subject to the minimization of (12) can be formulated in terms of the
Hamiltonian function

Hk = αuk + uchs1 (λ2 − λ1) + b (1− s1 − s2)λ1 − g (s2) (1− s1 − s2)λ2 .
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The adjoint variables λi, i = 1, 2, solve the adjoint system of ordinary differential
equations

λ̇1 = −∂Hk
∂s1

= (b+ uch)λ1 − [g (s2) + uch]λ2

λ̇2 = −∂Hk
∂s2

= bλ1 + [g′ (s2) (1− s1 − s2)− g (s2)]λ2 ,

(13)

with given condition at final time tf

(λ1(tf ), λ2(tf )) = (2s1(tf ), 2s2(tf )) .

For the linear case, when k = 1, we can give the following characterization of the
optimal control 

u = 1 if φ1 < 0

u ∈ (0, 1) if φ1 = 0

u = 0 if φ1 > 0 ,

(14)

where the function φ1 is given by

φ1 =
∂H1

∂u
= α+ chs1 (λ2 − λ1) . (15)

If there exist two times t1, t2 ∈ [0, tf ] such that φ1 (t) = 0 for any t ∈ [t1, t2], then
the corresponding control u (t) ∈ (0, 1) for any t ∈ [t1, t2] is called singular.
If no singular control occurs in the time range [0, tf ], then the optimal control must
be constant or piecewise constant (assuming the minimum or the maximum value)
and is said to be of bang or bang-bang type, respectively. In the latter case, times
at which control passes instantaneously from minimum to maximum value, or vice
versa, are called switching times.
Analogously, for the quadratic control, when k = 2, we can introduce the function

φ2 =
∂H2

∂u
and the condition φ2 = 0 provides the following explicit characterization

of the optimal control in terms of state and adjoint variables

u =
chs1 (λ1 − λ2)

2α
. (16)

3.1. Optimality of singular control for the linear cost functional. We are
interested now in discussing the presence of minimizing singular controls in the case
of linear cost functional (k = 1 in (12)).
Let u be a singular control in [t1, t2] ⊂ [0, tf ] and (s1(t), s2(t)), t ∈ [t1, t2], the
corresponding solution. The problem order is the smallest number n such that the
2n-th derivative

d2n

dt2n
∂H1

∂u
(s1, s2, λ1, λ2, u, t) (17)

explicitly contains the control variable u (if no derivative satisfies this condition
then n =∞). By assuming that

H3 - g ∈ C2 ([0, 1]), g′′ (s2) ≤ 0 for any s2 ∈ [0, 1] ,

the second order derivative of φ1 in (15) is

φ̈1 = c2h (1− s1 − s2)
[
b (λ2 − λ1)− s1g

′ (s2)λ2 + s2
1g
′′ (s2)λ2

]
u

+R (s1, s2, λ1, λ2) ,

and explicitly contains the control variable; therefore the problem is of order 1. We
remark here that Monod function (10) satisfies also hypothesis H3.
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The Legendre-Clebsch condition [27] provides a sufficient condition for the singular
control to be a minimizer; it reads as

M (s1, s2, λ1, λ2) :=
∂

∂u

d2

dt2
∂H1

∂u
≤ 0 (18)

for problems of order 1.
In our case, such derivative is given by

M (s1, s2, λ1, λ2) = c2h (1− s1 − s2)
[
b (λ2 − λ1)− s1g

′ (s2)λ2 + s2
1g
′′ (s2)λ2

]
that in the interior of F and in correspondence of a singular control reduces to

N (s1, s2) = −αbch
s1

(1− s1 − s2)

[
2− g′′ (s2)

g′ (s2)
s1

]
, (19)

since s1 > 0, g′ (s2) > 0 and φ1 (t) = φ̇1 (t) = 0 for any t ∈ [t1, t2], where

φ̇1 (t) = ch (1− s1 − s2) [b (λ2 − λ1) + s1g
′ (s2)λ2] .

For Monod response function (10), the Legendre-Clebsch condition is satisfied since

N (s1, s2) = −2
αbch

s1 (s2 + c)
(1− s1 − s2) (s1 + s2 + c) ≤ 0 ,

and then the singular control can be a minimizer and the optimal control is not
bang-bang in general.

4. Optimal controls. In this section we numerically compute the optimal con-
trols by means of a technique based on a gradient method [2]; optimal strategies
that minimize the objective functional (12), in linear and quadratic case, will be
commented on.
We consider the case of Monod response function (10) and fix from now on the
parameters values

c = 0.417 , b = 0.19 , ch = 0.245 . (20)

We will discuss separately the cases of linear and quadratic objectives.

4.1. Optimal profiles for the linear cost functional. We recall that the opti-
mal control has to minimize the objective functional

L1 (u) = s2
1(tf ) + s2

2(tf ) + α

∫ tf

0

u (t) dt (21)

along the solution of (5) for u belonging to the set U in (4). We consider the
following parameter α and initial configuration:

α = 0.01, (s1(0), s2(0)) = (s0
1, s

0
2) = (0.1, 0.5); (22)

the initial amount of bacteria comes from conservation (2)

x(0) = x0 = 1− s0
1 − s0

2 = 0.4 .

We fix in our simulations a temporal horizon tf = 10.
Figure 4 shows that the optimal control is bang-bang in this case

u =

{
0 for t ∈ [0, ts]

1 for t ∈ (ts, tf ]
(23)

where ts ' 5.25 is the switching time.
The characterization (14) for optimal controls is checked numerically, as shown in

Figure 5, where the optimal control profile and the switching function φ1 (given in
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Figure 4. State variables profiles and optimal control for objective
functional (21), Monod response function (10) and configuration
(22). Parameters are given in (20). The optimal control is of bang-
bang type with a unique switch from 0 to 1 for t = ts ' 5.25
(dashed line).

0 1 2 3 4 5 6 7 8 9 10
t

-0.5

0

0.5

1 Control u

Switching function 
1
 (x 20)

Figure 5. Optimal control u and scaled (×20) switching func-
tion φ1 for objective functional (21), when parameters and initial
configuration are given in (20) and (22), respectively.

(15)) are reported.
For 0 ≤ t ≤ ts the control u = 0 corresponds to the absence of the hydrolytic

process and the system evolution is driven only by degradation and biomass decay.
As clearly indicated in (8), the variation of insoluble substrate concentration s1 is
due only to a gain term, coming from the biomass decay phenomenon. Bacteria
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Figure 6. State variables and optimal control for objective func-
tional (21); initial soluble concentrations s0

2 varies from 0.1 to 0.7,
while parameter α = 0.01 and initial insoluble substrate s0

1 = 0.1
remain fixed.

death produces new insoluble substrate, whose concentration increases (panel (a)
in Figure 4). Analogously, we notice that the equation for soluble component s2

has just a loss term due to degradation, and such component is expected to be
totally consumed (panel (b) in Figure 4). As concerns biomass concentration x,
its profile exhibits a peak at t ' 2.05 (panel (c) in Figure 4); from this time on
the concentration of soluble substrate is not sufficient for degradation to balance
the effects of bacteria death, and the biomass concentration decreases until the
switching time ts.
At the switching time, the hydrolysis starts to play a role; for t > ts the insoluble
substrate decreases since the loss term now balances the gain one due to biomass
decay (see first equation in system (5) and Figure 4(a)). Similarly, the variation of
soluble substrate combines the loss term due to anaerobic degradation and the gain
one coming from the solubilization of the insoluble component that also stimulates
the bacterial growth (see second equation in system (5) and Figure 4(b-c)).
We discuss now the dependence of optimal profiles on the initial configuration.
First, we fix parameter α (α = 0.01) and the first component of substrate s0

1 at
time t = 0 (s0

1 = 0.1). Optimal profiles for varying s0
2 are given in Figure 6. Figure

6 and Table 1 show that any difference in the initial value of soluble substrate
does not affect significantly the solution, especially the switching time and the final
configuration; in fact substrate components and biomass concentration at t = tf ,
as well as switching times, are very close to each other. Small differences in the
switching times suggest that a higher concentration of soluble substrate at t = 0
slightly delays the action of leachate recirculation, since initially a significant part
of soluble substrate has to be consumed.

For α = 0.01 and given initial soluble substrate s0
2 = 0.5, we now investigate the
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s0
2 ts s1(tf ) s2(tf )

0.1 5.03 0.4031 0.1454
0.3 5.10 0.4043 0.1428
0.5 5.25 0.4063 0.1378
0.7 5.58 0.4084 0.1262

Table 1. Switching times and final substrate concentrations for
objective functional (21), when soluble substrate s0

2 varies (α =
0.01, s0

1 = 0.1).
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Figure 7. State variables and optimal control for objective func-
tional (21); initial insoluble concentrations s0

1 varies from 0.1 to 0.4,
while parameter α = 0.01 and initial soluble substrate s0

2 = 0.5 re-
main fixed.

optimal solutions relevant to different values of the first component of substrate
at t = 0. As in the previous case, we can observe (see Table 2) that the final
configuration almost does not change when the initial component of the insoluble
substrate is varied, since no significant difference can be noticed in substrate (and
hence biomass) concentrations at t = tf . As concerns the optimal controls, they
are still piecewise constant with a unique switch from 0 to 1 (see Figure 7(d)) and
the switching time is anticipated for increasing initial values of insoluble substrate,
as shown in Table 2. This latter is confirmed also in Figure 8, where the biomass
is almost absent and the total mass m is mainly given by the insoluble component
of the substrate; in this case, the leachate recirculation starts to play a significant
role very early and its action leads to a significant reduction of the total substrate
(−42.6%).
Finally, we want to analyze the role of the parameter α in determining the optimal

strategy. We remind here that the parameter α represents the relative weight of
each term in the objective functional (12). Low values of α imply that the decision
policy is mainly determined by the minimization of substrate concentrations at final
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Figure 8. State variables and optimal control for objective func-
tional (21), when the initial configuration is given by (s0

1, s
0
2) =

(0.8, 0.1) and α = 0.01.

s0
1 ts s1(tf ) s2(tf )

0.1 5.25 0.4063 0.1378
0.2 5.16 0.4046 0.1406
0.3 5.10 0.4021 0.1422
0.4 5.09 0.3933 0.1414

Table 2. Switching times and final substrate concentrations for
objective functional (21), when insoluble substrate s0

1 varies (α =
0.01, s0

2 = 0.5).

time. When α is large the cost term plays the key role in the adopted strategy.
We consider the initial state (s0

1, s
0
2) = (0.1, 0.5) and let α vary from 0.001 to

1. Optimal controls (see Figure 9) are of bang-bang type in all of these considered
cases. Initially the solution of the system is driven by biomass decay and degradation
phenomena only; then, at the switching time ts, the hydrolysis takes part to the
process and is stimulated by leachate recirculation.
For increasing values of α, the time interval where the control is not zero is reduced
and the effort spent in controlling the process is lower and lower (see index I =∫ tf

0
u(t)dt in Table 3). In fact, for high values of α, the leachate recirculation

operation is considered so expensive that the optimal strategy avoids it; in this
case the total amount of substrate at final time is very large, since the absence of
leachate recirculation does not allow the solubilization of the insoluble component
of the substrate.
We point out that, even if in principle singular arcs have been proved to exist, for
data set used in these simulations they never occurred.
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Figure 9. Optimal controls for objective functional (21), α =
0.001, 0.01, 0.1, 1 and given initial configuration (s0

1, s
0
2) = (0.1, 0.5).

α ts I =

∫ tf

0

u(t)dt s1(tf ) s2(tf )

0.001 2.91 7.0900 0.3943 0.0989
0.01 5.25 4.7500 0.4063 0.1378
0.1 9.26 0.7479 0.7037 0.1222
1 − 0 0.8420 0.0001

Table 3. Switching times, global effort required to control the
system and final substrate concentrations for objective functional,
when α = 0.001, 0.01, 0.1, 1 and (s0

1, s
0
2) = (0.1, 0.5).

4.2. Optimal control with the quadratic cost functional. We now discuss
the case of quadratic cost functional

L2 (u) = s2
1(tf ) + s2

2(tf ) + α

∫ tf

0

u2 (t) dt. (24)

We consider the same reference case of Subsection 4.1, by taking a Monod response
function for bacterial growth and setting α and initial substrate concentrations as

α = 0.01, (s0
1, s

0
2) = (0.1, 0.5). (25)

The optimal control in such case results

u =

{
ũ if φ2 = 0

1 if φ2 < 0 ,

where ũ is given by (16), and the optimal solution is shown in Figure 10.
The above characterization of optimal controls can be verified numerically, as

shown in Figure 11, where the function φ2 is plotted together with the optimal
control function u versus time.
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Figure 10. State variables profiles and optimal control objective
functional (24) with Monod response function (10). Initial config-
uration and parameter α are given in (25); other parameters are
given in (20).
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Figure 11. Optimal control u and scaled (×20) switching func-
tion φ2 for objective functional (24), when parameter α and initial
configuration are given in (25); other parameters are given in (20).

When the cost is modeled by a quadratic function of the control u, in our simu-
lations the optimal control is strictly positive for any time t ≥ 0, contrary to the
linear case. In detail, the initial value of the control is very small, then it gradually
increases and reaches its maximal admissible value u = 1 at t̃ ' 5.88; from this time
on, the control assumes constantly the value 1.
We observe that, in the first phase when the controll is small, the evolution is
mainly driven by degradation and biomass decay phenomena. The soluble sub-
strate is partially consumed, while the insoluble component increases. When the
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Figure 12. State variables and optimal control for objective func-
tional (24), for different values of s0

2 (α = 0.01, s0
1 = 0.1).

control increases and the effects of the leachate recirculation influence significantly
the hydrolytic process, the trend of substrate components changes; the insoluble
substrate strictly decreases, since the hydrolysis balances the biomass decay pro-
cess. Analogously, the soluble substrate concentration increases, since the loss term
due to the degradation is now balanced by the hydrolytic gain term. As concerns
biomass concentration, its profile exhibits a peak (see Figure 10(c)), as in the case
of linear cost functional.
As concerns the dependence of optimal profiles on the initial state, first we con-
sider the case with given parameter α = 0.01 and fixed initial insoluble substrate
concentration s0

1 = 0.1, and let s0
2 vary from 0.1 to 0.7. We observe (see Figure 12

and Table 4) that configurations at t = tf are almost the same for any choice of s0
2;

in particular, different values of s0
2 do not affect the final amounts of substrate and

biomass.
Slight differences can be observed in optimal control profiles in Figure 12(d); in
more detail, time t̃ at which the control assumes its constant maximal value is de-
layed for increasing values of s0

2, as also shown in Table 4.
Analogous results are obtained when we fix s0

2 = 0.5 and let s0
1 vary (see Figure 13

and Table 5); also in this case, the optimal control profiles are qualitatively similar
and show only negligible differences (as in the linear case).

Finally we briefly discuss the dependence of optimal controls on parameter α.
We remind that the weight of the cost term on the decision policy is negligible,
when α is very small; the main goal is the reduction of substrate components at
the final time. For such reason, the optimal strategy is based on the key role of the
leachate recirculation on the evolution (see Figure 14). The optimal control u(t)
assumes lower and lower values for increasing parameter α, since any control opera-
tion is considered too expensive to be implemented when α is large; consequentely,
the effort I is lower and lower (see Table 6) for increasing α. Moreover, we can
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s0
2 t̃ s1(tf ) s2(tf )

0.1 5.72 0.4008 0.1210
0.3 5.78 0.4012 0.1192
0.5 5.88 0.4018 0.1157
0.7 6.16 0.4010 0.1075

Table 4. First time t̃ at which the control assumes constantly
its maximal value and final substrate concentrations for objective
functional (24) and different values of s0

2 (α = 0.01, s0
1 = 0.1).
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Figure 13. State variables and optimal control for objective func-
tional (24), for different values of s0

1 (α = 0.01, s0
2 = 0.5).

s0
1 t̃ s1(tf ) s2(tf )

0.1 5.88 0.4018 0.1157
0.2 5.84 0.4009 0.1171
0.3 5.86 0.3990 0.1169
0.4 6.04 0.3902 0.1135

Table 5. First time t̃ at which the control assumes constantly
its maximal value and final substrate concentrations for objective
functional (24) and different values of s0

1 (α = 0.01, s0
2 = 0.5).

observe that the final amount of insoluble substrate s1 is very large, because of the
negligible role played by the hydrolysis in system evolution (see Table 6).

5. Conclusions. We have proposed a mathematical model for anaerobic degrada-
tion under perfect mixing conditions. We have taken into account a two components
substrate whose soluble component is degraded by an anaerobic bacterial population
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Figure 14. Optimal controls for objective functional (24) and
varying α = 0.001, 0.01, 0.1, 1, when (s0

1, s
0
2) = (0.1, 0.5).

α t̃ I =

∫ tf

0

u(t)dt s1(tf ) s2(tf )

0.001 3.00 8.1174 0.3942 0.0961
0.01 5.88 5.8249 0.4018 0.1157
0.1 − 2.6023 0.5600 0.1186
1 − 0.5777 0.7659 0.0383

Table 6. First time t̃ at which the control assumes constantly
its maximal value, global effort I required to control the process,
final substrate concentrations for objective functional (24), when
α = 0.001, 0.01, 0.1, 1 and (s0

1, s
0
2) = (0.1, 0.5).

and the insoluble one undergoes a solubilization process. We have also considered
the biomass decay. The control variable is assumed to model the effects of leachate
recirculation on the hydrolytic process.
We have discussed the optimal strategies of leachate recirculation in order to mini-
mize the substrate concentrations at a fixed time, which represents the end of the
first phase of the anaerobic processes in biogas production, and also to minimize
the operation costs for monitoring the hydrolysis process. We have found the op-
timal control when the cost of the recirculation operation is modeled by integral
functionals depending linearly or quadratically on the control variable.
In the case of linear costs, the optimal control is of bang-bang type for the cases
considered in the analysis above. The evolution is first driven by degradation and
biomass decay only; the hydrolytic process occurs just in the last part of the evo-
lution. Instead, in case of quadratic costs, the optimal solution is smooth and the
control assumes intermediate values and reaches the maximum gradually. In the
extensive numerical investigation, not shown here for brevity, we have found that



OPTIMAL CONTROL OF LEACHATE RECIRCULATION 19

the time at which the control becomes effective depends crucially on the fixed fi-
nal horizon tf ; the switching time (in the linear case) or the first instant in which
the control is not zero (in the quadratic case) becomes larger and larger if tf is
increased. Moreover, for both linear and quadratic cases, for increasing values of
α, the leachate recirculation is not considered cost-effective and the optimal control
tends to the constant u = 0.
We have discussed also the dependence of the final state on the initial datum,
pointing out that results seem not to depend deeply on the initial substrate con-
centrations. The adopted optimal strategies allow to reach similar final amount of
soluble and insoluble substrates starting from different initial configurations.
Such preliminary results can be seen as a contribution to individuate optimal con-
trol strategies for solid waste reduction in landfills, in support of the few results
available in literature [5, 25]; other distinctive features, like the maximization of
the biogas production and the minimization of storage times, could also be taken
into account. In the first case, the objective functional has to be modified by re-
quiring the minimization of substrate components in the entire time range; in fact,
any substrate reduction corresponds to methane production, whose conversion rate
should be eventually scaled by a given coefficient. In the second case, a time op-
timal control problem has to be formulated, in order to move from a given initial
configuration to a target scenario in minimal time. These problems will be subject
of future investigations.
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