
P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
1
1

On the Lefschetz thimbles structure of the Thirring
model

Kevin Zambello∗ and Francesco Di Renzo
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma and INFN,
Gruppo Collegato di Parma, I-43124 Parma, Italy
E-mail: kevin.zambello@pr.infn.it, francesco.direnzo@pr.infn.it

The complexification of field variables is an elegant approach to attack the sign problem. In one
approach one integrates on Lefschetz thimbles: over them, the imaginary part of the action stays
constant and can be factored out of the integrals so that on each thimble the sign problem dis-
appears. However, for systems in which more than one thimble contribute one is faced with the
challenging task of collecting contributions coming from multiple thimbles. The Thirring model
is a nice playground to test multi-thimble integration techniques; even in a low dimensional the-
ory, the thimble structure can be rich. It has been shown since a few years that collecting the
contribution of the dominant thimble is not enough to capture the full content of the theory. We
report preliminary results on reconstructing the complete results from multiple thimble simula-
tions.
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1. Introduction

The sign problem is a major obstacle hindering the exploration of the QCD phase diagram by
lattice simulations. In a lattice simulation, the task of computing an observable amounts to com-
puting an expectation value 〈O〉 = 1

Z

∫
dUOe−S with respect to the Boltzmann weight e−S, where

S is the action of the system. Since at finite density the QCD action is complex valued, one cannot
sample configurations ∝ e−S to estimate observables by importance sampling. A huge effort is
ongoing to find a way to overcome the sign problem and an elegant approach is the complexifi-
cation of field variables. This approach is being explored by various techniques, i.e. the complex
Langevin method [1] [2], thimble regularisation [3] [4], the generalized thimble method [5] [6] [7]
and the path optimization method [8] [9].

In thimble regularisation one replaces the original integration path by a set of manifolds called
thimbles. Since over thimbles the imaginary part of the action stays constant, integrals on each
thimble can be efficiently estimated by importance sampling. Nonetheless, one also needs to know
the relative weights of the contributions coming from different thimbles. Calculating these weight
has proven to be a tricky point, though some computation methods have been proposed and applied
in simple models [10] [11] [12].

Here we apply thimble regularisation to the 1-dimensional Thirring model. This theory has a
rich thimble structure and it has been shown before that the contribution coming from the dominant
thimble is not enough to reproduce the exact results [13] [14]. Firstly we show that the one-thimble
approximation indeed fails at strong couplings. Then we try to collect the contribution coming
from the sub-dominant thimble. Finally we explore the concept of Taylor expansions applied to
thimble regularisation.

2. The Thirring model

2.1 The theory

On the lattice, the 1-dimensional Thirring model is defined by the action

S = β ∑
n
(1− cos(xn))− log detD

detD =
1

2L−1

(
cosh(Lµ̂ + i∑

n
xn)+ cosh(L asinh(m̂))

)
.

In the above expressions the sums run over the sites of a one-dimensional lattice of length L = Nt ,
xn is the discretization of an auxiliary bosonic field, β = 1

2g2 is the (half inverse squared) coupling
constant, µ̂ and m̂ are respectively the chemical potential and the fermion mass in lattice units.

For this theory the partition function can be solved analytically, hence analytical solutions are
also known for the observables number density and chiral condensate,

〈n〉= 1
L

∂ log Z
∂ µ̂

=
I1(β )

Lsinh(Lµ̂)

I1(β )Lcosh(Lµ̂)+ I0(β )Lcosh(L asinh(m̂))

〈χ̄χ〉= 1
L

∂ log Z
∂ m̂

=
1

cosh(asinh(m̂))

I0(β )
Lsinh(L asinh(m̂))

I1(β )Lcosh(Lµ̂)+ I0(β )Lcosh(L asinh(m̂))
.

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
1
1

On the Lefschetz thimbles structure of the Thirring model Kevin Zambello

In order to thimble regularise the theory, we need to complexify the degrees of freedom first,
xn 7→ zn = xn + iyn. Secondly, we need to identify the critical points. This can be accomplished by
imposing the stationary condition

∂S
∂ zn

= β sin(zn)− i
sinh(Lµ̂ + i∑zn)

cosh(Lµ̂ + i∑zn)+ cosh(L asinh(m̂))
= 0 .

One can see that the sine of zn must take the same value ∀n, therefore the critical points are field
configurations having the same value z on every site apart from a number n− of sites where the
field may take the value π− z. Critical points can be labeled by a pair (n−,z): the integer number
n− can take any value from 0 to L

2 , while the complex values allowed for z are obtained by solving
numerically the stationary condition equation at fixed n−.

The thimble decomposition for this model was discussed in ref. [15]. In presence of a Stokes
phenomenon between two critical points, there is a change in the intersection numbers associated
to those critical points. By studying the imaginary part of the action as a function of µ for the
critical points of the theory, one can look for Stokes phenomena and obtain information on how the
thimble decomposition changes.

Following ref. [15], let’s consider for instance the case of L= 4, m= 1 and β = 1. Fig. 1 shows
how the critical points in the n−= 0 sector move as µ increases (left) and how the imaginary part of
the action changes (center). Only the critical points lying in the left-half complex plane are shown,
since because of a symmetry the others give conjugate contributions. At µ = 0 only the critical
points σ0 and σ0̄ have non-zero intersection numbers. 1 At µ ≈ 0.40 there is a Stokes between
σ2 and σ0̄, the former enters the thimble decomposition and the latter exits the decomposition. At
µ ≈ 0.56 there is a Stokes between σ1 and σ0 and σ1 also acquires a non-zero intersection number.
At µ ≈ 0.73 there is a Stokes between σ1 and σ2 and σ2 leaves the thimble decomposition. From
fig. 1 (right) one can also see that, when σ0̄ and σ2 enter the thimble decomposition, the real part
of the action on these critical points is much larger than the real part of the action on σ0 and σ1,
therefore their contribution is exponentially suppressed.

-3 -2 -1 0
-1

0

1

2

3

Re z

Im
z

σ0

σ1̄

σ1

σ2

σ2̄

σ0̄

Critical points vs µ

0 0.5 1 1.5 2
-25

-20

-15

-10

-5

0

5

µ

Im
S

Im S vs µ

0 0.5 1 1.5 2
-20

-10

0

10

20

30

40

µ

R
e
S

Re S vs µ

Figure 1: Critical points in the n− = 0 sector for m = 1, L = 4 and β = 1. Figures show how the critical
points move as µ increases (left) and the imaginary part (center) and real part (right) of the action evaluated
on those critical points.

1Actually this statement is true if we add a small imaginary part to β , otherwise there is a Stokes between the two
critical points and the thimble decomposition is not well-defined.
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2.2 Numerical results from one-thimble simulations

We ran one-thimble simulations for L = 4, m = 1 and β = 1, 2, 4. The chemical potential
was varied from µ = 0.15 to µ = 1.95. Simulations were performed on the dominant thimble, the
one attached to the critical point σ0. Fig. 2 displays the analytical solutions (solid lines) and the
numerical results from the simulations (data bars) for two observables, the number density and the
chiral condensate.

The one-thimble approximation works well for weak couplings, but it fails at strong couplings
in the transition region. Discrepancies between the analytical solution and the contribution com-
ing from the dominant thimble are visible for both observables at β = 2 and they are especially
noticeable at β = 1.
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Figure 2: Results obtained for the number density (left) and the chiral condensate (right) for m = 1, L = 4
and β = 1, 2, 4 (red, green, blue).

2.3 Numerical results from two-thimble simulations

In order to address the discrepancies observed in the transition region at low β , we tried to
collect the contributions coming from both the dominant thimble and the sub-dominant thimble.
The latter is the one attached to the critical point σ1.

To obtain the relative weight of the contributions we applied the method proposed in ref. [10]:
when two thimbles contribute, the multi-thimble decomposition has the form

〈O〉= Z0〈Oeiω〉0 +Z1〈Oeiω〉1
Z0〈eiω〉0 +Z1〈eiω〉1

=
〈Oeiω〉0 +α〈Oeiω〉1
〈eiω〉0 +α〈eiω〉1

and the relative weight α of the two contributions can be determined by requiring that the thimble
decomposition gives the correct result for an observable already known. In this case the weight
used to compute the chiral condensate was obtained from the analytical solution for the number
density and vice versa. In the following we make use of formalism and notation described in ref.
[10].

A look at the profile of the partial partition function Zn̂
2 for β = 1 and L = 2 provided some

insights that have been useful to perform the Monte Carlo simulations for L = 4. Fig. 3 shows the
2In our Monte Carlo we sample entire SA paths from the weight ∝ Zn̂ by importance sampling. The partial partition

function Zn̂ is as an integral over the path whose initial direction on the tangent plane is defined by the versor n̂.
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partial partition function for σ0 as a function of n0, the component of the initial displacement on
the tangent space along the direction associated to the largest Takagi value. Sharp peaks show up
at given values of n0. For σ1 the peaks are so thin that relevant configurations are not representable
in double precision. Accordingly, for the Metropolis step we proposed new configurations by
choosing smaller rotations between the sub-spaces involving n0 than for the other sub-spaces. For
σ1 we also ran the simulations in quadruple precision.

Results are shown in fig. 4. The region µ ∼ 0.60÷0.75 is still affected by large error bars for
β = 1, but elsewhere one can see that the discrepancies due to the the one-thimble approximation
effectively disappear after taking into account the sub-dominant thimble.
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Figure 3: Profile of log(Z(σ0)
n̂ ) as a function of n0 for m = 1, L = 2, β = 1 and µ = 1.05.
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Figure 4: Results obtained for the number density (left) and the chiral condensate (right) for m = 1, L = 4
and β = 1,2. Results from 1 thimble are displayed respectively in red (β = 1) and green (β = 2). Results
from 2 thimbles are displayed in blue (β = 1, 2).

2.4 The Taylor expansion method

The Thirring model is an example, among others, of a theory where by the one-thimble ap-
proximation one does not fully recover the exact results. While this approximation works well at
low chemical potentials, in the transition region more than one thimble give relevant contributions
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inside the multi-thimble decomposition. In this case, one way to proceed is to try collecting the
contributions from more than one thimble, as we’ve done in the previous section.

However, one could also think of an alternative way (see ref. [3], an article is also being
drafted). In general observables are continuous, even when the multi-thimble decomposition is
discontinuous in presence of Stokes phenomena. Having that in mind, it is possible to Taylor
expand an observable around a point µ0 where only one thimble gives a relevant contribution:

〈O〉(µ) = 〈O〉(µ0)+
∂ 〈O〉
∂ µ

∣∣∣∣
µ0

(µ−µ0)+
1
2

∂ 2〈O〉
∂ µ2

∣∣∣∣
µ0

(µ−µ0)
2 + . . . .

The values of the observable at a chemical potential µ can then be obtained by computing the
Taylor coefficients at µ0 in one-thimble simulations.

We tested such idea on the Thirring model for m = 1, L = 2 and β = 1. Results are displayed
in fig. 5. Displayed on the left are the results obtained by collecting the contribution from the
dominant thimble. The general picture is similar to what happens for L = 4: at low and high
chemical potentials the only relevant contribution comes from the dominant thimble, but this is
not true in the transition region. On the right are the results coming from a third order Taylor
expansion around µ = 0.15. After the conference we made further progress by computing a third
order Taylor expansion around µ = 1.95, also shown in fig. 5. This allowed us to effectively
cover the entire range we’ve explored in µ . The Taylor coefficients have been computed from
one-thimble simulations.
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Figure 5: Results obtained for the number density, m = 1, L = 2 and β = 1.

3. Conclusions

We applied thimble regularisation to the 1-dimensional Thirring model. By performing one-
thimble simulations at m = 1, L = 4 and β = 1, 2, 4 we have confirmed that numerical results do
not reproduce the exact ones in the transition region at low β . We have recovered the exact results
by collecting the contribution from the sub-dominant thimble. We have also explored the concept
of Taylor expansion applied to thimble regularisation. We have tested such idea with parameters
m = 1, L = 2 and β = 1 and we have recovered the exact results from one-thimble simulations for
chemical potentials where the one-thimble approximation does not hold.
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