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Abstract We obtain weighted uniform estimates for the gradient of the solutions
to a class of linear parabolic Cauchy problems with unbounded coefficients. Such
estimates are then used to prove existence and uniqueness of the mild solution to a
semi-linear backward parabolic Cauchy problem, where the differential equation is
the Hamilton—Jacobi-Bellman equation of a suitable optimal control problem. Via
backward stochastic differential equations, we show that the mild solution is indeed
the value function of the controlled equation and that the feedback law is verified.
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1 Introduction

The aim of this paper is to study of the backward parabolic Cauchy problem (BPDE)
of HIB type

Div(t, x) + Av(t,x) = ¥ (x, G(x)Vu(t,x)), t€[0,T), x¢€ RN,

v(T, x) = p(x), x e RV, (BPDE)
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by analytic methods, and show some of its applications to stochastic optimal control
problems.
Here, A is the uniformly elliptic differential operator defined on smooth functions

S by

1
Af(x) = ETV[G(X)G(X)fo(X)] + (B(x), V f(x)),

where G : RY — RN x R¥, B : RV — R¥, 4 is a continuous function which
satisfies some additional conditions and ¢ is a bounded and continuous function in
R¥ (for short feCy (RM)). The particular form of the nonlinear term arises naturally

in the theory of stochastic control (see [12,20]), but it has also an analytic interest.
In recent years much attention has been paid to the uniformly elliptic operator A,
with unbounded coefficients in R", since they naturally appear in the theory of Markov
processes (for a systematic treatment of this argument see [7]). Moreover, the interest
has also been extended to elliptic nonautonomous second order differential operators
[1,13,14]. If f € Cp(RY), under suitable hypothesis the Cauchy problem

[ Diu(t,x) = Au(t,x), t>0,x¢€ RV,
N (1.1)
u(0, x) = f(x), x € RN,

has a unique bounded solution. Moreover, there exists a semigroup {S(#)};>0 of linear
operators in Cp(RY) such that u(r, x) = S@) f(x). In general, this semigroup is
neither strongly continuous nor analytic (see [19]), which is instead the situation in
case of bounded coeffecients (see [16]). The problem of estimating the gradient of the
solution u has already been studied in literature by both analytic ([3-6,9,15,17]) and
probabilistic methods ([8, 10]).

In this paper, under suitable assumptions on the coefficients of the operator A, we
prove the existence and uniqueness of a mild solution to problem (BPDE). This is
not a straightforward task since both G and B may be unbounded. More precisely,
let {S(#)};>0 be the semigroup associated to the Cauchy problem (1.1), and F be the
functional defined by

F(t,u)(x) = ¥(x,G(x)Vu(t,x)), t€[0,T), xeR",
for suitable functions u. We show that the functional

T
(Tv)(t, x) := S(T — t)p(x) —/ S(r —t)F(r,v)(x)dr,
t

admits a unique fixed point v € Cp,([0, T1x RY) N %1 ([0, T) x RY) which satisfies
the following growth condition:

C
GV, e < T—nin lollw, t€l[0,T),
for some C > 0.

@ Springer



Appl Math Optim (2015) 72:1-36 3

The novelty and issue of this estimate is the presence of an unbounded coeffi-
cient which multiplies the gradient; indeed no unbounded function is present in the
classical gradient estimates, obtained both by analytic and probabilistic methods. As
one expects, the presence of this term yields to additional growth conditions on the
coefficients of the operator A.

As it is well known Equation (BPDE) is the Hamilton Jacobi Bellman (HJB)
equation corresponding to an optimal stochastic control problem. Namely If ¢ €
BUC(RY) the regularity of the mild solution v allows us to show that it is exactly the
Value Function associated to the control problem given by the state equation

d: X" = B(X")dt + G(X“)r(X", u;)dt + G(X“)dW,, 7 €t,T],
u N (1.2)
X! =x eR",

and the cost functional is
T
E/ (X, updt + Ep(X7), (1.3)
0

where [, ¢ are measurable functions.

The existence of V, v and the estimate on its growth allow us to identify the optimal
feedback law for the control problems.

The key tool to link (BPDE) and the controlled equation are the backward sto-
chastic differential equations. The interaction between (BPDE), backward stochastic
differential equations and optimal control problem was proved in papers [20] and [21]
for the finite dimensional case and for classical solutions of the parabolic Cauchy
problem

[ ?)—l:(t, x) 4+ Lu(t,x)+ ft, x,u(t,x), Vuo)t,x)=0,1e[0,T], x eRY,

u(T, x) = g(x), x € RV,
where
1 J 92 al 9
L= “ij(t, bi(t, x)—,
5 Z CERUICE e +Z (70
i,j=1 i=l1
o isa (N x d)-matrix valued function and b; are scalar functions, fori = 1, ..., N.For

the infinite dimensional case, we refer to [12] where the authors prove that the solution
to the backward stochastic differential equation is also the unique mild solution of a
suitable partial differential equation.

It is well known that the forward backward stochastic differential system we deal
with, which is

dY: =Y (X¢, Zo)dt + Z.dW,, 1 €[t,T],
dX; = B(X7)dt + G(X)dW,, T€[t,T],
Yr = o(Xr),

X; =X, X € ]RN,

(FBSDE)
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has a solution (X, Y, Z) with X, Y, Z belonging to some suitable spaces, and under
opportune regularity and growth assumptions on ¥, B, G, ¢ the processes ¥ and Z
can indeed be represented by v and GV, respectively (see [20]). These assumptions
are quite strong, since they require differentiability for G, B, f and g. Our analytic
results allow us to obtain these identifications relaxing the hypotheses on the terms of
the Cauchy problem, and so to study the control problem in a more general situation. We
also notice that the needed regularity could be obtained by Bismut-Elworthy formula
but such an approach was exploited in letterature, at our best knowledge, only in the
case of a bounded diffusion, see [8,11].

The paper is organized as follows. In Sect. 2 we prove the existence and uniqueness
of a mild solution to (BPDE), and study some of its regularity properties.

In the first subsection, we show that the estimate

C
IGVS®)elloo = Yl ¢l VI €(0,T],

holds for any ¢ € Cp, (RM), any T > 0 and some positive constant C = C(T).

In the second subsection, we prove some regularity results for the mild solution
v of (BPDE). Moreover, a classical fixed point argument shows the existence and
uniqueness of a local solution to the Cauchy problem (BPDE), solution which can be
extended to the line (—oo, T].

The second part of the paper is devoted to the study of (FBSDE) which, as we
stressed above, is the key tool to prove that v is indeed the value function associated
to problem (1.2).

Finally, in Sect. 4 we introduce the stochastic controlled equation. The regularity
of v and the solvability of (FBSDE) enable us to prove that v is the value function and
that, under suitable assumptions, the feedback law is verified.

Notation. Throughout the paper we denote by B(R) the open ball in RV with center
at x = 0 and radius R, and by B(R) its closure.

2 The Semi-linear PDE

Let us consider the backward Cauchy problem

Dyu(t, x) + Au(t,x) = ¥ (x, G(x)Vu(t,x)), t€[0,T), x e RN,
2.1
u(T, x) = @), x e RV,

where A is the second order elliptic operator, defined on smooth functions f : RY —
R by

1
Af(x) = ETF[Q(X)D)%f(X)] + (B(x), Vf(x)), (2.2)

Q(x) is a positive defined matrix for any x € RY, G = /0, ¢ € Cp(RY), and v is
a continuous function, which satisfies the following condition:
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Hypothesis 2.1 For some constant Ly, > 0 and any x, x1, x2, y1, Y2 € RY we have

[ (x1, x2) — ¥ (y1, y2)| < Ly |x2 = yal + Ly [x1 — y11 (1 + [x2| + |y2])
[ (x, 0)] <Ly. (2.3)

We introduce some definitions, to enlighten the computations in the next pages: for
anyi =1,..., N and any x € RV, we set

N

fix) =127 0ij(») (D;G) G ()], 24)
j=1
N

h(x)V= Z yG,k(x)DkG,m(x)y Yy > 0, (2.5)
k,l,m

) = T2 R2 ]ZIQ,,u)x, . VR=>1. (2.6)

Now we can state the growth hypotheses on the coefficients Q;;(x), B;(x);

Hypothesis 2.2 (i) B; € C'(RY) and Q;; € C*(R"), foranyi, j=1,...,N
(i) Q(x) is a uniformly positive-definite matrix, i.e. there exist a positive function v
and a constant vy > 0, such that v(x) > vy > 0, for any x € RV, and

(Q()§.§) = v(x) €%, for any§,x € RY,
and B is uniformly dissipative, which means that
(B(x),x) <0, V¥xeRY;
(iii) There exist a positive function b and a positive constant by such that
— M(x) > b(x) > by >0, 2.7

where M is the matrix-valued function defined by

N
M:=G([DB)G™' - Z Qij (DijG)G™' = > " B; (D;G)G™"; (2.8)
i,j=1 j=1
(iv) growth conditions on Q and B: there exist positive constants K;, j = 1,...,7,

C, (n e N),and s € [0,3/2], a, B € [0, 2] such that

N 8

Z Ql_] (x)x;

i=1

< Ki(1+ x»%v(x), Vx e RV, (2.9)
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N

K2 D 01 (0)xi ()™ + 4 |xil f; () + xi Bi(x) < K3(1 + |x[), (2.10)
j=1
Vi=1,...,N, VY|x| <R, R>1I,

2 2
K, [(%) +<M)}_bm§,@, R ol
1+ |x] 1+ |x|

N
Vl(z fi(x0)® +h(x)ﬁ) —b(x) < Cp, Vx eRN, VneN,
i=1

fi()>™ < Kev(x), VxeRY, i=1,....N,
h(x)* P < K7v(x), Vx € RV,

(2.12)

Example 2.1 In case of polynomial coefficients, i.e.
0ij () =8 (1 + 1x)", Bix) = ;" (14 xP)2, i j=1,...,N,

the above hypotheses are satisfied with the following choice of §, «, 8 and conditions
onm, py and p3:

§=1/2, a=p=3/2,
05m§1/20r0§m§%(p1+p2)+%_

Under these hypotheses, the Cauchy problem

Diu(t,x) = Au(t,x), t >0, x eRN,
u(0, x) = p(x), x e RV,

admits a classical solution

u € C([0, 00) x RNy n ¢ T221 (0, 00) x RY)

loc

for any § € (0, 1) satisfying
ut, )l < llgle. >0, xeRY

(see [18]).
If we assume that there exist A > 0 and a function f € C2(R") such that

m_f(x) =00, sup (Af(x) = A[(x)) < oo,

li
bel—>+ xeRN

then the classical solution is unique, and we can define a family of bounded operators
{SH}i=0 by S@) f(x) = u(t,x),forany t > 0, x € RN, {S(#)};>0 is the contractive
semigroup of linear operators associated to the operator A and, in general, {S(¢)};>0
is neither strongly continuous nor analytic in C,(RY) (see [19]).

@ Springer



Appl Math Optim (2015) 72:1-36 7

Now we introduce a class of function spaces, which is a natural environment where
to set the Cauchy problem (2.1):

Definition 2.1 For any a > 0, let us consider the space

heCy(IT—a, TIxRY)NCO ([T —a, T) xRN) :

K, = sup (T —0)'2|G(x)Vh(t, x)| < 00
te[T—a,T)
xeRN

endowed with the norm

Illic, = Il + [hlk, (2.13)
where
i, == sup (T —D2IGVAE, )u -
te[T—a,T)

For any a > 0 we define the function F, in such a way:
Fy: [T —a,T)x K, — CRY), F(t,u)(x) = ¢(x, Gx)Vu(t, x)).(2.14)

Throughout this paper we will write F instead of Fr.
At this stage formula

T
v(t,x) =S(T —t)e(x) — / S(r —t)F(r,v)(x)dr, (2.15)
t

is just formal. Since ¥ and G may be unbounded, to justify this formula we need first
to show that the semigroup {S(#)};>0 can actually be applied to F'.

2.1 Weighted Gradient Estimates
Our purpose here is to prove that, for any ¢ € C,(RV) and any ¢ > 0, the function

x = G(x)S(t)p(x) is bounded in RY and that, for any T > 0, there exists a positive
constant Cr such that

C
IGVSW¢llos < 75 Il 1€ O.71.

For this purpose, for any R > 1, we introduce the function ng defined by ng(x) =
n(lx| /R) for any x € RY, where

1, t €[0,1/2],
10 = {exp (1 - =) 1€ (1/2,3/4),
0 t>3/4.

@ Springer
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Clearly, ng € C2(RV),0 < ng < 1inRY,ng = lin B(R/2), and ng = 0 outside
the ball B(R). Moreover, we have

Ding(x) = ——— (el Ry —ZERUR=D" o)
iR = |x|RX[1/2,3/4) (1_(4|x|/R_2)3)277R ) .

N
Z 0:ij(X)Dinr(x)| < Kslh(x)ng(x)'/?, 2.17)

i=1

(2.18)

N
3 3 (Q(x)x,x)  |Tr[OQ)]]
ZQI](X)DU”R(X) §K9( 1 +|x|4 + 1+|x|2 ),

i=1

for any x € RY and any R > 1, where Ky and Ko are positive constant independent
of R.

Remark 2.1 In the right-hand side of (2.17) as exponent of ng we could choose any
number between (0, 1). The exponent 1/3 is enough to prove the following theorem.

Theorem 2.1 Let Hypothesis 2.2 be fulfilled and let ¢ € C,(RN). If u is the classical
solution to the homogenous Cauchy problem

Diu(t,x) = Au(t,x), t>0, xRV,
u(0,x) = ¢(x), x e RV,

ie,ue Cp ([O, 00) X RN) ncl2 ((0, o0) X RN) and it satisfies the above equation
and the initial condition, then the function

(t,x) = G(x)Vu(t, x)

is bounded in [e, T] x RN, for any 0 < € < T. Moreover, there exists a positive
constant Ct such that

2 1GVu(t, Yo < Crllglla, Vi€ (0, T1. (2.19)

Proof FixR > 1,T > Oand letug € Cp ([o, 00) x B(R)) nct? ((0, 00) x B(R))
be the solution to the Cauchy Dirichlet problem

Diug(t,x) = Aug(t,x), t >0, x € B(R),
ugr(t,x) =0, t >0, x €dB(R), (2.20)
ug(0, x) = nr(x)p(x), x € B(R).

We set
vr(t,x) = ug(t, x)* + atnz |G(x)Vur(t,x)|*, 1€[0,T], x € B(R).

Function vg is continuous in its domain, and it solves the Cauchy problem

@ Springer
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D;vg(t,x) — Avg(t,x) = ggr(t,x), t € [0,T], x € B(R),
vr(t,x) =0, t €0, T], x € dB(R), (2.21)
vr(0, x) = (NrY)*(x), x € B(R),

6
where ggr(t,x) =1t Zg,-,R(t, x) and

i=1

N
gLr =—2t""|GVugl* —2ang > Qij(GV(Diug), GV(Djug))
i,j=1
N
—2ang »_ BiDing |GVugl*,

i=1

N
g2k =2ang(G(DB)Vug, GVug) —2ang > Qij{(D;jG)Vug, GVug)
ij=1
N
—2ang »_ Bj{(D;G)Vug, GVug),
j=1
N
gk = —2a|GVug’|GVnrl* = 2ang D" Qij((D;G)Vug, (D;G)Vug),
ij=1
N
g4 ==2anrTrQ(D*nR)1|GVug|*—8ang Y Qij(Ding){(D;G)Vug, GVug)
ij=1
N
—8ang D Qij(Ding)(GV(Djug), GVug),
i,j=1
N
g5k =—4ang > Qij((D;G)V(Diug), GVug)
i,j=1
N
—dang Y Qij{(D;G)Vug, GV(Diug))
ij=1

+4an% (GTr[(VG)G(D*ur)]l, GVug),
g6.r = any|GVug|*.

We are going to prove that there exists a positive constant K, independent of R, such
that gr(¢, x) < Kvg(t, x), forany (¢, x) € [0, T] x B(R).

The terms g1 g and g r are crucial in the estimate of gg, since they allow us to
control all the other terms g; g, i = 3,4, 5, 6.

Using (2.7) in Hypothesis 2.2, we get

@ Springer



10 Appl Math Optim (2015) 72:1-36

N
gLr(t, %) < =271 |GVugl® — 2anzv(x) D |GV (Djug)|?
i=1
—2ang (B, Vnr) |GVug|?,
82,8 = 2anp(MGVug, GVug) < —2angxb(x) |GVug|*,
g3,k < 0.

ga.r 1s the awkward term. We have to pay particular attention to the way we estimate
its addends which we want to compare with g1 g and g2 r.

As far as the first addend is concerned, taking advantage of (2.18) and of the
well known Young’s inequality ab < (€/2)a’ + (2¢)~'b?, which holds true for any
a,b,e > 0, by (2.18) we get

N
2ang Y Qij(Dijnr) |GVugl
i,j=1
N 2

a
Z1GVurl +aeng | > 0ij(Dijne)| 1GVugl?
ij=1

2 2
g|GwR|2+2K9aen§((M) + (M) )|GV14R|2.

A

IA

1+ |x* 1+ |x|?

As far as the second term in the definition of g4 g is concerned, we have

N
8ang Y Qij(Ding)((D;G) Vug. GVug)
i, j=1
N
= (8ank > Qi (Dink)((D;G) G~ GVug, GVug)
ij=1
N N
<8ang »_|Dingl | Y Qij (D;G) G| |G Vugl?
i=1 j=1
N

=8ang Y_|Dingl fi |GVug|*.

i=1

The last term in the definition of g4 g is the worst one because we need to estimate the
growths of both |GVupg| and |GVDjuR | We split it using the following inequality,
which follows applying twice the Young’s inequality, and holds forany A, B, C, € > 0:

1 1 1
ABC < - (26C2 + A+ —34) .
4 € €
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We set
N 1-8/2
5/6
A=dy) > 0ijDing 1GVug|'?,
i=1
B =a'®|GVug|"?,
v 82
1-8/6
C= al/an / Z QijDing
i=1

where § is defined in (2.9), and recall that

1 (x) =

Z Ql] (x)x;

)

RZ

forany x € RN R > 1,j=1,..., N.The particular splitinto A, B and C arises from
2 j=1.....N,and of |GVug|?
which we can estimate with g; r and g r. (2.17) and straightforward computations
yield

N
8ang Y Qij(Ding)(GV(D,ug), GVug)
i,j=1

N
1-6/6
=8> (a1 QVnR); 2 [GV(Djup)]
8/6 —
1@V 1G VUl '/ |GVug|'?)

N
N
< 4aKieny 6/32(%) 2 |GV (Djug)|?
j=1
2a3/2K3 28 N 1/2
0 1@V (1R) T 1GVR +

j=1

N
|GVugrl?,

where we have estimated [(QVng) j|3_28 by (2.17) and we have kept the factor
[(QVnR) ;| since we want as coefficient

12(4 R —2)2
RX<1/2%/4)(| x|/R) @xl/ ) 5
el (1—@x| /R —2)3)

Hence we get

@ Springer
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N 5 2a 3/ 2K2 —28 N
<dakiKfeniy Y| GV(Dup) [ +=———nx > _|(QVna);| (l’) 1GVuRP?
j=l1 j=1

2Nal/? 5
|GVupg|

N
< 4aKiKienkv > |GV(Djup)|’
j=1
2a3/2K 3% 1 12(4 |x| /R — 2)?
+ 0k RX(1/2,3/4)(|XI /R) 5
€ |x] (1 —(@lx|/R—2)3)

N N
DIpHTE
j=1 i=1

2Na'’?

(1{2)372(S 1GVugl?

+

|GVugl?,

The last term that we need to estimate is g5 g. Applying the Young’s inequality with
a and B as in (2.12) we get

N
4ang Z 0i;{(D;G) G™'GV(Diug). GVug)
ij=1
2u N | N o
<k >, |20 (D;G) G| IGVuxl?
=1|j=1

2—a
N | N
+ 2aenk Z Z 0ij (D;G)G™! |GV (Djug)|*.
i=1

N N
2a _
= R IGVur? X fi(0)" +2aeng |GV (Diur)? 3 fi(0)*™,

i=1 i=1

N
dan D, ij{(D;G) G~ GVug, GV(Djup))
ij=1

N N
2a
< iR |GVur? 3 fi(0)" +2a€nz |GV (Diup)? 3 fi(0)*™,
i=1 i=1
[4ank (GTrI(VG) G(D?up)], GVur)

N
=4ank| D" GyD;Gun(GVDur)n(GVug);
iy jlm=1
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N

5 1-8/2 B2
<dary > ||GiDiGin| T IGVDupml ||[GiiDiGm| 1GVuR|
ij.lm=1
2a il
<=0k D |GijDiGm|" 1GVurP
€ .
i,j,l,m=1
N , N
+2aeny > |GiiDiGw|* "> IGV(Diug)?
i,j.lm=1 i=1
2a il
— ?n%h(x)ﬁ |GVugl® + 2aenzh(x)* P " |1GV(Diug) .
i=1
Hence, collecting the similar terms, and recalling that
12(4 |x| /R — 2)?
Ding(x) = X(1/23/4)(| x| /R) SR (X),
x IR (1 —(4|x|/R-2)3)
we deduce that
N

gr(t,x) < [1(t, ) |G)Vug(t, )* + D i |GE)V(Diug)(t, X
i=1

foranyr € (0,T], x € R, where

2q¢'12Nt  at
Lt x) = (—2 +2a+ + ?> (2.22)
12(4 x| /R — 2)?
+2atme<x>2x[l )=l /B) Glel/R-2) >
24 x| R (1 — (4]x| /R —2)3)
3 28,12 N
Zx,B <x>+4Z il 00+ 2525 oy, (v (x))
i=1 i=1 j=1
(2.23)
2 Y 1
+ 2atng(x) (; ; fi)® + ;h(x)ﬂ
2 2
Kee ((Q(x)x,id) . (ITr[Q(xz)]I) ). 2
1+ |x] 1+ |x|
Loi(t,x) = 2arn (—v(x) 2K K ev(x) + 2efi (0> + eh(x)z_ﬂ)
< 2atnpv(x) (—1 +2K 1K€ + 2Kqe + K7€) . (2.25)
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We now choose the parameters a, €, n to guarantee that 7 (¢, x) is bounded from
aboveand I ;(t, x) < Oforanyr € (0,7T],x € RV i =1,..., N.The choice for b
is immediate; indeed, it is easy to see that the right-hand side in (2.25) is non positive
if and only if we choose € > 0 such that

—1+ (2K1K§ +2Ke + K7) € <0,

In such a way, the coefficients of |GV (D;upg) |2 are negative, for any i.

Now we consider /7; it is bounded from above if and only if all the terms in the
brackets in (2.22), (2.23) and (2.24) are bounded. At first we find condition on € such
that (2.24) is bounded; by (2.11) we can easily deduce that (2.24) is smaller than

N
23 A + )P + (eKo/Ka — Db(x) + Ks /K
i=1

This function has the same form of the left-hand side in (2.12), hence forany n € N,
which satisfies

S
T e(1 — Koge/Ky)
(2.24) is bounded from above.
Fixed €, we get an estimate from above of (2.23) provided the following condition

on «a is satisfied:

g2 < Koe
=%

Finally, (2.22) is bounded.
With the previous choices of the parameters, /; turns out to be bounded from above.
From (2.10), (2.11), (2.12) we obtain that g(z, x) < cvg(t, x), for any (¢, x) €
[0, T] x B(R) and some ¢ > 0. Hence, vy satisfies
Dth(ta-x) - AUR(ta -x) S CUR(ta -x)’ te (07 T]’ X € B(R)7
vr(t, x) =0, t€[0,T], x € 9B(R),
vr(0, x) = (NrY)* (x), x € B(R).
The classical maximum principle shows that

lur(t, x)| < K Inrel% < K lell%,, t€l0,T], x € B(R),

for some positive constant K independent of R. Taking the limit as R — oo, we
deduce that the function v(z, x) = u(z, x)® + at |G (x)Vu(t, x)|? satisfies
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2
lv(t, x)| < K llolly

so that the statement is proved. O

Remark 2.2 By the semigroup property, it easily follows that, for any @ > 0, there
exists C = C(w) > 0 such that

Cewl
IGVS¢lloo = —75 19lloo » (2.26)
t
for any # > O and any ¢ € Cp(RN).
Indeed, for any @ > 0, we can choose 0 = o (w) such that e?t~Y2 > 1, for

any t > o.If t > o we can estimate (using (2.19) and recalling that {S(¢)},>0 is a
contraction semigroup)

C
IGVS(D)¢lloc = 1GVS(0)S(t —0)¢lloo < U% 1S(r = 0)¢lloo

Cy Cye®
= S lolleo = S22 lelloo

and therefore (2.26) holds with C = max{C,, o ~/2C,}.
Now we provide a class of operators A which satisfy Hypothesis 2.2.
Example 2.2 Let Q, B be defined as follows:
Qij(¥) = qij (1 +1x)", Bi(x) = =bixi(1+ )P, ¥x e RY,

where m, p > 0, b; > Oforanyi = 1,..., N, and g = g;; is a positive-definite
matrix such that

(qt,€) > w N>, VE e RV,

If N > 2, condition (2.7) is satisfied if and only if
b
m < —,
- B

where b = min{b;}, B = max{b;}. With this restriction, in (2.9) it is possible to choose
6 = 3/2, and conditions (2.10), (2.11) and (2.12) are fulfilled for any p > m — 1.

If N =1, (2.7) is satisfied if 2p + 1 > m, and, to satisfy also (2.9), it is necessary
to take § € [0, 3/2] such that § > 2m (5§ — 1). One can easily check that there exists
8 > 1 which satisfies the previous inequality, and, consequently, if p > m, then even
(2.10), (2.11) and (2.12) are fulfilled.

Proposition 2.1 Under the same assumptions of Theorem 2.1, if ¢ € C g (RN), then
the function
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t,x) > GX)VS(t)p(x)

is bounded in [0, T] x RV,

Proof The proof is quite similar to the one of Theorem 2.1, hence we just sketch it.
We fix R > 1, and denote by u g the solution to the Dirichlet Cauchy problem (2.20).
Further we set

vR(t, x) = up(t, x)* + ang |G Vug(t, ), t€0,T], xeBR).
Function vg is continuous in its domain and it solves the Cauchy problem

D;vg(t,x) — Avg(t,x) = gr(t,x), t € [0,T], x € B(R),
vr(t,x) =0, t €0, T], x € dB(R),
vr(0, x) = (NrY)*(x), x € B(R),

5
where g (1, x) = g1.r(t, X) + D_ gi.r(t, X),

i=2
N
21k = —21GVugl* —2ang D" Qij(GV(Djug), GV(Djug))
ij=1

N
—2ang Y_ BiDing |GVug|*,
i=1

and g; gr,i = 2, 3,4, 5, have been defined in Theorem 2.1. Repeating the computations
of Theorem 2.1, we see that

N
gr < I |GVugl* + > L 1GV(Diug)l*,
i=1

where
22N a
Lh=—-2+anr+ <
12(4|x| /R —2)*
+2cmR<x)2x(l ) (/R / 5
24 IXxI R (1 — (41x| /R —2)3)

N N 3-25 12 N ) _
B G o Kg Ta” ()Y
< o xiBi) +4 X bl £ + =3 |03, (1)

i=1 i=1 j=1

(23 e+ Lacor
R € ! €

i=1
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(Q()x, X)) (WﬂQ@H»Z
K —b(x) ),
' %[( N )+ [+ PP )
b = 2an’ (—v(x) 42K, Kgev(x) + 2¢f,(x)>~% + eh(x)zfﬂ)
< 2ankv(x) (=1 4 2K Kge 4 2Kge + K7€) .

A suitable choice of the parameters a, €, n guarantees that I < 0 and that there exists
a positive constant C such that /1 < C. Hence, v satisfies

D;vg(t, x) — Avg(t,x) < Cugr(t,x),t €[0,T], x € B(R),
vgr(t, x) =0, te0,T], x € 9B(R),
vR(0, x) = (Nrp)*(x), x € B(R),

and the classical maximum principle shows that
lvr(t, )| < K ll¢llee, (2, x) €[0,T] x B(R),

for some positive constant K = K (T') independent of R. Taking the limitas R — +o0,
the assertion follows. O

2.2 Existence and Uniqueness of a Mild Solution to the Problem (2.1)

In this part we will prove that the operator I defined for any u € K7 by
T
Tu)(t,x) := S(T — t)p(x) —/ Sr—0F(r,u)(x)dr, Ytel0,T], xe€ RV,
t

admits a unique fixed point. We call a mild solution of problem (2.1) any fixed point
v € Kr of the operator I'.

Remark 2.3 If 1 satisfies Hypothesis 2.3, then (see (2.14))

(D) I1F(s,u) — F(s, Voo < Ly (T — )2 [u —vli,, sel0,T),xecRY,

@) I F s, wlloe < Ly (14 (T =97 Pk, ). (2:27)
for any u, v € Kr. Moreover, ifu € K7, F(-,u)(-) : [0, T) x RN — RN belongs
to C([0,T) x RN).

The following proposition shows some continuity and boundless properties of the
functions which belong to I, for some a > 0.

Proposition 2.2 Ifu € K, for some a > 0, F satisfies (2.27) and

sup (T — )2 |G Vu(t, )l < 00,
te(T—a,T)

then the functions
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T
(t,x) — F(t,x) :=/ S(r —t)F(r,u)(x)dr
t

and
(t,x) — G(x)VF(t,x)

are continuous and bounded in [T — a, T] x RV,

Proof Forany t € [T — a, T], the functions
~ T ~
x+— F(t,x) :=/ S(r—0)F(r,u)(x)dr, x+— Gx)VF(,x)
t

are continuous in R . Hence it is enough to show that these functions are continuous
with respect to ¢, locally uniformly with respect to x.

Let (tg, x0) € (T —a,T) x RN, B = B(xp, 1) € RN, and fix ¢ € (19 — 6, to + 3),
where 0 < § < min{T — #9, a + top — T'}. We will only prove the continuity from the
right with respect to time, uniformly with respect to x, since the continuity from the
left can be proved arguing in the same way. Hence we consider ¢ € (1, fp 4+ 6). We
have

T
Flao, ) = F(t,)| = / IS0 = 1) F(r ) (x) = SO = )F (r, u) ()| dr
t
t
+ [ 150 =0 F el dr
fo

T
_ / IS( — 1) F(r ) (x) — S — D) F(r, u)()] x.1(F)dr
0]

t
+ [ IS(r—1t0)F(r,u)(x)|dr
1o

=:1I1(t,x) + I(t, x).

Since ||S(r — t9) F(r, u)||oo < C, for any r € (o, fo + 8), I tends to 0, as ¢ tends
to #9, uniformly with respect to x € B.

Now we consider /. Since u € C,;, we can estimate the function under the integral
sign as follows:

1S =10 F ()= S =0 F (. 1) log X017 () < 2Mo [ F(r, )]l
= 2MoLy (14+(T=r)""lulx, ).

for any r € (9, T'), and the last function is integrable in (¢, T').
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Finally, for any r € (0,T), F(r,u) € Cp(RM) by (2.27). Hence S(-) F(r, u)(-)
belongs to C([0, oo) x RY), and

liim |ISr—to)F(r,u)(x) — Sr —t)F(r,u)(x)| =0,
tlty

uniformly with respect to x € B, forany r € (0, T).

By dominated convergence we can conclude that /] tends to O as ¢ approaches fo,
uniformly with respectto x € B.

Proving the continuity of the gradient is a bit more complicated. Let #g, xo, ¢, B, §
be as above; we have

‘G(x)Vf?(to, X) — G)VE(, x)

T
= / IG)VS(r —10) F(r,u)(x) = G(x)VS(r — ) F(r,u)(x)| dr
t

+/t |IG(x)VS(r —to)F(r,u)(x)| dr
0]
=:1)(t, x) + L (1, x).
By Theorem 2.1, there exists a positive constant C such that
IGVS(r = 10)F(r. )l < (r —10)”'C,

for any r € (ty, to + &). Hence fz tends to zero as ¢ tends to #, uniformly with respect
tox € B.

The term [ 1 should be analyzed differently. Fix € > O and ¢ € (¢, fo + §) such that
t —to < €. Now we split the integral:

11(t, x)

T
= / , |Gx)VS(r —t)F(r,u)(x) — Gx)VS(r —)F(r,u)(x)|dr
to+e€

to+€2
+/ IG)VS(r —10)F(r,u)(x) = GX)VSr — ) F(r, u) ()| x@.1)(r)dr
1

0
=:Ji1(t, x) + J2(2, x).

Easy computations show that there exists a positive constant C > 0, independent
of ¢, x, such that

J(t,x) < Ce, Vi€ (to,to+€>), VxeB.
For J1, it is enough to observe that the function under the integral sign converges to

0 pointwise with respect to ¢, locally uniformly with respect to x, and that the function
h, defined by
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h) = CrLy (14 (T =" Plule, ) (6= 10072 + ¢ =10 = )7'12)

is independent on ¢ and x and bounds J; from above. Dominated convergence allows
us to conclude that Jj (¢, x) vanishes to 0 as ¢ tends to fg, locally uniformly with respect
to x. Hence, there exists ¢ < €2 such that, if to—t <ccandx € B,then Ji(f,x) <e€.

It means that there exists a suitable C > 0 such that 1 1(t, x) < Ceforanyt > to — c
and x € B. O

We now look for a solution to problem (2.1) in [C7. At first, we show that, if u is a
mild solution of (2.1) in Ky, for some a € (0, T), then it is the unique mild solution
in such a space.

Proposition 2.3 (Uniqueness) If problem (2.1) admits a mild solution in IC,, then it
is unique.

Proof Letu, v € K, be two mild solutions of (2.1). Then, taking (2.3) and (2.19) into
account, forany t € [T — a, T] we get

T
IGV(u —v)(t, )l < / GVS(r—1t)(F(r,u) — F(r,v))dr
t

e¢]

T
< cTLI,,/ r ="V IGY(u — v)(r. Yoo dr
tT T
< C%L%/,/ (r —t)l/zdr(/ (s —r)~1/2
t r
IGV(u —v)(s, -)IloodS)
T K
= C%L?p/ IGV @ —v)(s, ->||oods(/ r—n~'"?
t t
(s —r)l/zdr)
T
= C%Lfbn/ GV (u — v)(s, ) o ds
t

Hence, by the Gronwall Lemma we deduce that |GV (4 — v)(¢, -)||oc = O, for any
t € [0, T). To conclude, it is enough to observe that

T
/ S(r—1t)(F(r,u) — F(r,v))dr
t

lu = vl =

o]

T

< L¢/ 1GY (ulr, ) — v(r, )l dr
t

= 0.

Now, we prove the existence of a mild solution of problem (2.1).
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Theorem 2.2 There exist 56 < T such that the operator T, defined by

T
F(v)(t,x):S(T—t)w(x)—/ S(r—t)F(r,v)(x)dr, (t,x) e (T—6,T] x RN,
t
(2.28)

for any v € Ks, admits a unique fixed point.

Proof Set

N 0,1 _ N .
ICS’R:Iher([T—(S,T]xR)ﬂC (IT 8,T)X]R).]7

Inllxc; < R

endowed with the norm |||, (see (2.13)). Since K’s,g C Ks, Proposition 2.3 shows
that if we find that I" is a contraction in Cs g then its unique fixed point is the unique
mild solution to problem (2.1) which belongs to ;.

Hence we prove that I'(v) € Ks g for any v € s g, and there exists ¢ < 1 such
that

IT) =TWlks, =cllu—vllic, . Yu,v € Ksg.
For this purpose, we set

Cr:= sup 12 |GVSQ)|
te(0,T]

and recall that sup, o 77 [IS(@)]l < 1 since {S(7)};>0 is a contraction semigroup.
Then by the second inequality in (2.27) we have

T
/ S(r—t)F(r,v)dr
t

T, Dl = el + ‘

T
/ S(r—t)F(r,0)dr
t

< N@lloo + 2Ly (T =) v, , + (T — 1)Ly
< @l +2Ly 8" i, , + SLy. (2.29)

"

o0

and
(T =2 IGVT (v(t, ) loo

T
< Crllgllo + (T — r)”chLw/ r =02 UGV, Yo + 1) dr
t

T
< Cr ¢l + CrLy(T —)'/? ||v||zc,s,R/ r =) V2(T = dr
t

+2(T —t)CrLy
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< Crl¢llo + 7CrLy (T =)' ]k, , + 2(T = )CrLy

< Crllglle + 78'>CrLy [vlix, o +26Cr Ly (2.30)
Moreover, ’
IT(u(, ) =T, Nle < /t IS(r —1) (F(r,u) — F(r,v))lloc dr
<2Ly8"? lu—vllg, , (2.31)

and
(T — )2 |GV (u(t, -)) — GVT (u(t, )l oo

T
<(T- r)”chLw/ (- = 2 NGVur, ) — GV o dr
t

T
< (T =0'"2CrLy lu—vllk, , / r—0" VAT —r)"dr
t

<a(T —0'"2CrLy lu—vlk,,
< 78" 2Cr Ly llu = vl , - (2.32)

Now we have to choose § and R. Set
8= 4Ly +27CrLy) > AT
in (2.31) and (2.32); it immediately follows that

IT@) = T @)k, , < 2Ly8"? llu = vlig, , + 87 CrLy Ju = vl ,
— sl/2 (2Ly +7CrLy) llu — vllics &

=5 llu —vllics 4 »

and so I' is a 1/2-contraction. To show that I" maps X g into itself, it is sufficient to
take

R=2(1+2Cr) (¢l +8Ly) .
Indeed, substituting in (2.29) and (2.30), we get

IT@)lIxc, o < l@lloo + 2Ly 8" ull, , + 8Ly

+C71 llllog + 827 CrLy ik, , +28CTLy
(1+2C7) (I@lloo + 8Ly ) + 8" 2Ly +mCrLy) ik,
R R

<—+4+—=<R.
_2+2_

IA
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Remark 2.4 1If ¢ € Cg (RV) the same arguments as in the proof of Theorem 2.2 and
Proposition 2.3 show that the operator I' in (2.28) admits a unique fixed point in the
space KCs defined by

heC;,([T—B,T]XRN)HCO'I([T—S,T]XRN):

sup |G(x)Vh(t, x)| < oco.
(1,x)e(T—8,T) xRN

Ks =

for some § > 0.

Now, we can construct the maximally defined solution of (2.1). Set

7(p) = inf{0 < a < T : problem (2.1) has a mild solution v, in /C,},
v(t,x) =v,(t,x), ift>T—a.

The function v is well defined, thanks to Theorem 2.2, in the interval
I(p) = U{[T —a,T]: problem (2.1) has a mild solution v, in K},

and we have 7(¢) = inf I (¢).

Proposition 2.4 If ¢ € C,(RN) is such that I1(¢) # [0, T], and F satisfies (2.27),
then the function

t> (T =D 1GVu(t, o

is unbounded in I (¢).

Proof Even if proof is rather classical, for the reader’s convenience we provide the
details. Let us suppose that the function

t = (T =D 1GVu(t, o

is bounded in / (¢), and let v be the maximally defined solution to (2.1). Moreover,
we set 7(¢) = 1. S(-)¢ is continuous in (0, o) x RV, and by Proposition 2.2 the
function

T
(t,x) — / S(r—t)F(r,v)(x)dr
t

is continuous and bounded in [z, T] x R, Hence, we can extend v uptotr = 1,
defining

T
v(t,x) =T (@)ex) —/ S(r —t)F(r,v)(x)dr.
T
Since v(t, -) € C,(RY), by Theorem 2.2 the Cauchy problem
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w(t, x) + Aw(t, x) = v (x, GVw(t, ))(x), t <71, xRN,
LU(T,X) ZU(T,)C), X ERN,

admits a unique mild solution in [t — §, t], for some § > 0. If we define

. %) w(t,x), t—8<t<t, xeRV,
I, X) =
v, x), 7<t<T, xeRVN,

then z is a mild solution of (2.1)in [t — 4§, T'] x RY which extends v, and it contradicts
the maximality of v. O

Proposition 2.5 If F satisfies (2.3), then the mild solution v of problem (2.1) exists
in[0, T] x RV,

Proof By Proposition 2.4, it is enough to show that the function
(t,x) = (T —H'2Gx)Vou(r, x)

is bounded in I (¢) x RV,
For sake of simplicity, we set

[@) = 1GVv(t, oo,

where v is the maximally defined solution of problem (2.1). Then for any r € I(¢)
and x € RV,

(T — ')

<Crll¢llos + Ly /T(T =" =72 A+ 1) dr
< Cr gl +2TLy

+Ly (T — t)l/z/T(r — 0~V =7V = ' 21Gr)ar
< Crlipla +2TLy

T
+Ly (T — t)1/2/ r— )" YT = )72 (Cr llgll + 2T Ly) dr
t

T T
+Lf/f(T—f>”2/ (r—n)~'/? (/ (s—r)”z(T—s)‘/Z(T—s)l/zl(s)ds) dr
t r
< (Cr @l +2TLy)(A +T27Ly)

T
+r Ly (T — r)“z/ (T — )" V2(T = ) 21(s)ds.
t

The generalized Gronwall Lemma guarantees that the function (¢,x) +— (T —
HY2G(x)Vu(t, x) is bounded in 7 (¢) x RY, and the thesis follows. o
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Remark 2.5 Since the problem (2.1) is autonomous, in Propositions 2.4 and 2.5 we
can replace [0, T'] with (—oo, T].

Remark 2.6 Under the Hypotheses of Proposition 2.5, if ¢ € C ,1 (RV) then the mild
solution v of problem (2.1) exists in (—oo, T]xRY , it belongs to CO1 (=00, T1xRM)
and it is bounded in (a, T'] x RN, for anya < T.

3 The Forward Backward Stochastic Differential Equation Associated
to the Semi-Linear PDE

Let (2, F, P) be a complete probability space, (W;);>0 a real Brownian motion and
N the family of elements of JF of probability 0. We define as ;" the natural filtration
with respect to W;, completed by the P-null set of F, i.e.

FV i=o{W;:0<s <1, N}
In this setting we study the Forward Backward Stochastic Differential Equation

dY: =Y (X¢, Zo)dt + Z:dWe, T € [1,T],
dX; = B(Xy)dt + G(X;)dW,, t € [t,T],
Yr = o(X7),

Xt =X, X € ]RN,

(FBSDE)

where
w:RNxRN—>R, (p:RN—>R,
are given Borel functions, and
B:RY — RY G:RY — RV,
are Borel measurable.
For any p € [1, 00), let H? be the space of progressively measurable with respect

to F¥ random processes X, such that

[Xllge :=E sup |X;|” < oo,
tel0,T]

and let K be the space of (]:tW)—progressively measurable processes Y, Z such that

T
1Y, Z)12 = E sup |Y,|2+E/ 1Zo P do < oo.
t€l0,T] 0

Moreover, we denote by Y (s, ¢, x) and Z(s, t, x) the solution to (FBSDE).
Throughout this section we assume the following additional assumptions on B
and G:
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Hypothesis 3.1 There exists C > 0 such that, for all x, x’, z, z/ € RY, we have
|B(x) — B(x)| +|G(x) — G| < C|x —x']. (3.1)
If Hypothesis 3.1 is satisfied and
lp)] + ¥ (x, 0 < C(1 + x]), Vx e RY.

then system (FBSDE) admits a unique solution (X, Y, Z), where X € HP”, for any
p € [1,00), and (Y, Z) € K (see [20]). Henceforth, X denotes the solution to the
forward equation in (FBSDE).

Remark 3.1 The hypotheses on the growth of B and G in 3.1 are compatible with the
growth conditions on the coefficients of the operator A in Hypothesis 2.2 (see Example
2.2).

The parabolic Cauchy problem studied in Sect. 2

Diu(t, x) + Av(t, x) = ¥ (x, G(x)Vyu(t, x)), x € RN, te[0,T),
U(T, -x) = (p(-x)v X € ]RN,

is strictly linked with (FBSDE). Indeed, if v € C L2(10, T1 x RY) is a solution to
(2.1), then v(z, x) = Y (¢, t, x). Conversely, if ¥, ¢, B, G, satisfy stronger conditions,
then, setting v(¢, x) = Y (¢, t, x), it turns out that v € C12(10, T1 x RV) and it is a
solution to (2.1) (see [20]).

We want to relax regularity conditions on v and ¢, and growth conditions on B and
G, and prove that V is still a solution to (FBSDE). For this purpose, we will use the
results in Sect. 2. Notice that since G may be unbounded a straightforward application
of Bismut-Elworthy formula as in [8] is not allowed.

Assume that G, B, i satisfy Hypotheses 2.3 and 2.2. Moreover, suppose that ¢ €
BUC(RY). Hence, by Theorem 2.2 and Proposition 2.5, there exists a unique solution
v to (2.1) in [0, T'] which belongs to K7 (see Definition 2.1).

To use the result of [20], we approximate the functions ¢, ¥ by convolution: let
(pn)nen be a standard sequence of mollifiers in RN and set

On =Q* Pn, Yu =1V *; P,

where *, denotes the convolution with respect only to the variable z.
Y, and @, are smooth functions and ¢,, are bounded. In particular, for any n € N
we have that [|¢, ]l < ll¢llo and by (2.3) we deduce that for any n,m € N and

X, 71, 22 € RV it holds that

L
W, 20) = ¥ (3, 22)| < Ly |21 — 22l + =7, (32)
11
[V (x, z1) — Y (x, 22)| < Ll/f lzn — zZm| + Lz// (Z + Z) . (3.3)
For any n € N, let us consider the approximated Cauchy problem
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Dyvn(t, x) + Av, (¢, x) = Y (x, G(xX)Vuu(t,x)), t€[0,T), x e RV, (3.4)
U (T, x) = @, (x), x e RN

whose mild solution is given by (see Theorem 2.2)

T
v (2, x) = S(T — 1)pp(x) —/ S(r — DY (x, Gx) Vv, (r, x))dr
t
T
= S(T —t)pn(x) —/ S(r —t)F,(r, v,)(x)dr, 3.5)
t

where
F,:0,T)x Ky — Cb(RN), F,(t,u)(x) := ¥, (x, G(x)Vu(t, x)).

Remarks 2.4 and 2.6 guarantee that v, € Cp([0, T] x RY) and |GV v, (t, ) |loo < Cp»
forany ¢ € (0,7T) and any n € N.
We recall that, since ¢ € C,(R") and the coefficients of B, Q belong to C 5 (RN,

loc

SO f(C) e C;OJ:S/Z’ZH((O, 00) x RY) (see Hypothesis 2.2). Hence the Hypotheses in

[20] are satisfied. It means that the function v, € C%1([0, T] x RY), and v, (¢, x) =
Y"(¢t,t, x), where Y" is the solution to

dY! = v,(X¢, Z0)dt + ZdW,, T € [1, T],
dX, =B(X)dt +G(X)dW,, te€lt,T],
Y;l‘ = gn(X71),

X, = x, x e RV,

(3.6)

Now we need to study how v,, and GVv,, converge to v and G Vv, respectively. We
claim that, for any fixed ¢ € [0, T), v, (¢, -) and GV, (¢, -) converge uniformly. Then,
we can define

Y(s,t,x) == v(s, X(s,t,x)), Z(s,t,x):=GX(s,t,x))Vvu(s, X(s,1,x)),3.7)

foranyt € [0, T],t <s <T,and x € RN, Finally, we will show that (X, Y, Z) is a
solution to (FBSDE).

To prove the above claim, we need an intermediate result, contained in the following
lemma.

Lemma 3.1 [v,]xc, is uniformly bounded.

Proof Lett € [0, T). Since |, (x, 0)| < Ly, the same computations of Proposition
2.3 yield to the thesis. O

Theorem 3.1 Suppose that Hypotheses 2.3, 2.2 and 3.1 hold. Moreover, let ¢ €
BUCRN). Then, for any t € [0, T), va(t,-) and GVv,(t,-) converge uniformly
tov(t, ) and G(-)Vu(t, -) respectively. Moreover, (X, Y, Z) is a solution to (FBSDE),
where Y and Z are defined by (3.7).

@ Springer



28 Appl Math Optim (2015) 72:1-36

Proof As usual, first we prove the convergence of GV, since it is involved in the
definition of v,. To simplify the notations, we set

hn(t) = ”van(t’ ) - GVU(I, )“oo ,
from which we deduce

ha(t) = |GV (va —v)(, )|

T
= IGVS(T — ) (¢n — @)l + HGV/ S(T — 1) (Fu(r,vp) — F(r,v))dr|l .
t

We have
(T — 0 2h, (1)

T
< Crllgn — @lloo + Cr (T — t>1/2/ r — )V Fy(r, va) — F(r, v) oo dr
t
T
< Cr llgw — ¢lloo + Cr(T — t)‘/z/ (=02 [ Fa(r, v) — F(r, v) oo dr
t

T
+OH(T - r)l/Z/ =0V F(r, v) = F(r, v)lloo ds
t
= I + I} (1)

+CrLy(T — t)l/z/T(r — )V =)V = Y2, (dr.
'
Now we use the estimate
L) < CT—/ (r—0)"dr =2Cr T1/2
which follows from (3.2) with z; = z, and holds for any ¢ € [0, T'). Hence
<1 +2C Tl/2
+Cr Ly (T — t)l/z/ (r—t)y V(T = r)~1/? (I"+2C T‘/2)d
+CFLy (T — )1/2/ r—1" W(/ (r—s) V2T —5)"1/2
«T — s)l/zh,,(r)ds)dr
< (11" +2CTL—“’T1/2) (1+7CrLyT"?)

+mCLY(T — )1/2/ (T — )" V2(T = ) %h, (r)ds.
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Since ¢ € BU C(RN ), 1 f’ tends to zero, as n — +-00. Clearly, also

L
20, =LT12
n

vanishes as n — oo.
Now we apply the generalized Gronwall Lemma to the function

(T —)'2hy = (T =D |GVuu(t, ) — GV(t, )lso -
‘We obtain
n

L
(T —)"/2h, < (1;1 N Yorui T1/2) (1 +7CrLyT?)exp (nC%szT),

and the right-hand side tends to zero, as n — +o00, which means that
GVu,(t,) = GVu(t, ")

as n — oo, uniformly with respect to x.

Using the fact that [v, —v]i, tends to zero, similar computations yield the uniformly
convergence of v, (¢, -) to v(t, -), for any ¢ € [0, T'].

Finally, we prove that the processes Y, Z defined in (3.7) are solutions to (FBSDE).
Since Yy, Z,, are solutions of (3.6), and the equalities hold P—a.s., there exists a family
of elements of F, {€2,}, such that each of them has zero measure. Moreover, if we set
Q = U,Q,, then P($2) = 0, and in Q¢ (3.6) holds, for any n € N.

Now we fix x € RN, 7 € [0, T, set X; := X(t,t, x), and define

Yr =v(r, X7), Y7 =0"(z, X1), Zr = G(X1)Vu(z, X7), Z7 = G(X)Vu(z, X),
for any 7 € [z, T]. The previous estimates guarantee that
Y} — Y, ¢.(X7) — 0(X7),

T

uniformly in €2, and

T T
/ Ipn(Xaa Zg)dﬂ — / W(Xa, Zo)da-
T T
Indeed, by (3.3) we deduce that

[V (Xo, Z1) = ¥ (Xo Zo)| < Ly |28 — Zo| + 22,
1V (Xos Zo)|, [¥n(Xo, Z2)| < Ly CA+ (T — o)~ 1/?2),
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forany x € RN and o € [z, T). ]Zf, — Zg] tends to zero uniformly in 2, as n —
+oosince, for any w € €2,

|1 Z5 (@) = Zs (@)] < |G(Xo (@) V (v = v)(0, Xo (@))]
= 1GV(v, —v)(o, )|

— 0, n— oo.

Moreover, |V (X, Zo)]|, | Yu(Xo, ZY) | can be estimated by an integrable function,
we can apply dominated convergence to the integral term.

It remains to prove the convergence of f IT ZldWs to |, rT ZsdW, . At first, we prove
that | TT Z,d W, makes sense, since this is not guaranteed by previous estimates, which
show only that the growth Z, can be estimated by (T — o)~ !/2, which is not square
integrable in 7.

We are going to show that {Z”} is a Cauchy sequence in the space L2(Q % (0, 7)),
the space of the square integrable processes V, endowed with the norm [E fOT |V, |2 do.
Since this is a Hilbert space, {Z7 } converges to a process Z. which is square integrable,
and so, up to a subsequence, {Z!} converges to Z. [0, TI®@P—a.s. But {Z7} converges
to Z; uniformly, hence pointwise, for any T € [0, T]. Therefore, Z : = Z; P—as.,
for almost every t € [0, T]. This means that Z, is a square integrable process.

For the reader’s convenience, we introduce some new notations:

—n,m

Y, =y Y,
—n,m
Zo" =zt —Z,

@g’m = n(Xo) — om(Xo),
Yo" = U (Xo, Z8) — Y (Xo, 2,

forany n,m € N, o € [0, T]. By the Itd formula, we get

=n,m 2

Z

T

—n,m 2 —n,m—n,m —n,m-—=n,m
a7 = =2V e = 2V 2 AW, +

dr,

and, recalling that Y7 = 7™, we obtain

—=n,m 2 r —n,m 2 —n,m|2 T—n,m—n,m T—n,m—n,m

v e =@ =2 | Ve =2 | V2w,
T T T

Let us estimate the terms in the right-hand side. Note that (Y, Z"), (Y™, Z™) € K,

since they are solutions of a backward stochastic differential equation. Hence, the
—n,m-—=n,m . . . .

process I; = for Y, Z, dW, is a martingale and, in particular, EI; = 0, for any

7. Computing the expectation, we get

—n,m2 r
E[7;"| +E
T

2 "y
Z2"| do =E gy - 2E/ Yo"y do.  (38)
T
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Moreover, by (3.3), the last term in the right-hand side of (3.8) can be estimated as

follows:
—n,m r —n.,m
Y ‘/ ‘%’ ‘do
T

T
=
T
T _ T T
§2L1/,sup||v,,||oo(E/ ‘z;”’"‘da+;+ )
T

neN n
T
_ T T
fc(IE/ ‘ZZ’m‘da—i-——i-—).
. m n

By the definitions of Z", Z™, Z""™ and the above estimates, it is easy to prove,
using dominated convergence, that, for any € > 0, there exists 7 € N such that

T |=5n,m -
Efo ‘ZJ ‘do <e, forany n,m > q.

YZ'mWZ’m‘do’ < E( sup
7€[0,7]

The same arguments can be applied to E';’m. Indeed, recalling that ¢ is uniformly

. . - — 2
continuous, for any € > 0 there exists n € N such that E I(p';m|

n,m>n.
Hence {Z!} is a Cauchy sequence in L2(Q x (0,T)), and this implies that

< ¢, for any

f TT Z-dW, makes sense. Moreover, since Z" converges to Z in L2(Q x (0, 7)),
we see that

2
— 0, n— oo.

T
IE/ (Z! — Z,)dW,
T

We can conclude that ftT ZdW, tends to frT ZsdW, P—a.s., and passing to the
limit (3.6), we obtain that the processes (X, Y, Z) are a solution to (FBSDE) P—a.s.

]
4 An Application to the Stochastic Optimal Control in Weak Formulation
In this section we consider the controlled equation
di: X: = B(X)dt + G(X)r (X, u)dt + G(X)dW, T € [t, T1],
4.1)
X[ =X € RN,
and the cost functional
T
B [ 10X udt + Eg(X7), 42)
0

where u is a progressive measurable stochastic process with values in some specified
setd C RN, r: RN xUU — RV, W is a RN —valued cylindrical Wiener process,
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and [ : RY x U/ — R. Our purpose is to minimize over all admissible controls the
cost functional.
We assume the following hypotheses on / and r:

Hypothesis 4.1 Thereexists C > Osuchthatforallx, x’ e RN, 7 € [0, T],u,u’ €U,
we have

|l(x, u) —1(x', u/)| + |r(x, u) —rx’, u')’ <C (|x — x/| + |u — u/D ,
L, u)| + |r(x,u)] < C. 4.3)

Definition 4.1 An admissible control system (acs) U is the set
= (@, F, (F)iz0, P, W, W, X),

where (Q .7-" P)i isa probab111ty space, the filtration (}"t) (>0 verifies the usual COIldl-
tions, the process W [0, T]x Q — R isa Wiener process with respect to (.7-',)[>0,
u is progressive measurable with respect to the filtration (.7-',) >0, and X is a solution
to

T T T
Xt=x+/ B(X,)do +/ G(Xg)r(xg,ﬁg)dwr/ G(Xy)dW,, telt, Tl
t t t

In this setting, the cost functional has the form
—~ T —~ —_ —~
J(t,x,U) = E/ Xy, Ug)do + Ep(X7). 4.4)
t

An acs is called optimal for the control problem starting from x at the time ¢, if
it minimizes J (¢, x, -), and the minimum value of the cost is called the optimal cost.
Finally, we introduce the value function V : [0, T'] x RN — R, defined by

V(t, x):= ig{}](r,x, u), tel0,T], xeRV. 4.5)
u

The Hamiltonian function of the problem, defined below, is crucial in the analysis
of the stochastic control problem.

Definition 4.2 The function ¢ : RN x RN — R, defined by

Y(x,z) = inf {l(x,u) + zr(x, u)}, 4.6)
ueld

is called Hamiltonian function.

Lemma 4.1 There exists a positive constant ¢ such that

Y (x,0) <c,
[V, 2) =y )| <clz—Z|+c|x =X (1 +zl + |

)

forany x,x',z,7 € RV,

@ Springer



Appl Math Optim (2015) 72:1-36 33

Proof The result is well known, we report the proof for the reader’s convenience. We
prove only the second inequality. For all # € U/ we have

Ioe,u) +zr(e,u) <1 u) +2r G w) + 1o, u) — 1, )|
+|zr(x,u) = 2'r (', w)|
<1 u) 4+ 2 ) + |1, u) — 1 w)
+lzr e, u) = 2rGe, w)| 4+ |2r e u) = 2r () w)|
<Ix',u)+7Zr(x',u)+clx —x| —|—c|z—z/| +c|x—x/| |z’|.

Taking the infimum over u and exchanging x, z with x’, 7’ we get the conclusion. O

To prove the main theorem of this section, we need the following hypothesis:

Hypothesis 4.2 For any x, z € RY, the minimum in (4.6) is attained.
Remark 4.1 The minimum in (4.6) is always attained if I/ is a compact set, see [2].

Remark 4.2 1f Hypothesis 4.2 is satisfied, then Filippov Theorem guarantees that there
exists a measurable function y : RV x RN — 1{ such that

Y(x,2) =1(x,y(x,2) +2r(x, y(x,2)), Vx,zeRV, 4.7)

Section 2 assures that the Hamilton Jacobi Bellman equation, associated to the
problem (4.1) and (4.2), admits a unique solution v in the space 7. We stress that
this solution has a good regularity, but not the optimal one; hence, we can not use
the Itd formula. However, the BSDE’s techniques enable us to prove that v is indeed
the value function of the problem, and has enough regularity to identify the optimal
feedback law.

Theorem 4.1 Let Hypotheses 2.3, 2.2, 3.1, 4.2 and 4.3 hold. Moreover, let ¢ €
BUC (RN). Then the following properties are satisfied:

(i) there exists a unique solution v of HJB such that v € Kr. Hence, G(x)Vv(t, x)
is defined for any t € [0,T),x € RN
(i) v(t,x) < V(t,x), foranyt € [0, T],x € RV;
(iii) v(t, x) = V (¢, x) if and only if there exists an acs U* such that

vxX, Z) = XY )+ Zor (XD, ud), (4.8)

where X}U* is the solution to (4.1), with u = u™;
(iv) there exists an acs U* such that (4.8) is satisfied.

Proof For the reader’s convenience we report the proof, which is closed to the one in
[12].
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(i) since the HIB equation associated to (4.1) and (4.2) is (2.1), the existence and
uniqueness of the mild solution follow from Sect. 2.
(i) wefixanacsU,t € [0, T], x € R and consider the equation

T T
xV :x+/ B(X},J)daJr/ GXDr(XY, uy)do
t t
T
+/ G(xYVydw,, telt Tl
t

Since r is bounded, by Girsanov Theorem there exists a probability measure P
such that

INT
W, =W, + / r(XY, uy)do
t
is a Wiener process with respect to f”, and XU is a solution to

T T
xU=x +/ B(XY)do +/ G(XDdW,, el Tl

t t

Notice that XU is measurable with respect to the o —field generated by W. Now
we introduce the backward equation

T T
Yr + / ZodW, = (X7) + / V(Xy. Zo)do.
t t

By the Theorem 3.1 there exists a unique solution (Y, Z) of this equation. Writing
the backward equation with respect to W, we get

T T T
Y, +/ ZodW, +/ Zor(XY, ug)do =<p(x“TJ)+/ (XY, Z,)do.
T T T
(4.9)

- 1/2
By easy computations, we have that E ( fOT |Z |l2 dt) < 0o. Hence, taking the
expectation in (4.9) with respect to P and 7 = ¢, we obtain

T
¥, = Ep(xY) + E/ I:llf(ng, Z,) — Zr(xY, ug)] do.
t

Adding and subtracting E ftTl(ng,ug)dU, and recalling that v(f,x) =
Y(t,t, x), we get

T
v(t, x)=J(t, x, U)HE/ I:I/I(ng, Zo)—Zor(XY, uy) — 1(XY ug)] do.
t
(4.10)
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From the definition of 1, the term in square brackets is non positive. Hence
v(t,x) < J(y, x, U) for any acs U, and taking the minimum we deduce that

v(t,x) < V(t,x), t€[0,T], xeR".

(iii) from (4.10), it is clear that v(¢, x) = J (¢, x, U*) if and only if the acs U* satisfies
(4.8). In this case, the integral term in (4.10) is zero; hence

v(t,x) < V(t,x) < J(t,x, U%) = v(r, x).
(iv) by Hypothesis 4.2 and (3.7), it is natural to define
y(x)=yx,Gx)Vu(t,x)), t €[0,T), x € RV,

Notice that ¥ is, a priori, not regular. Let W be an N —dimensional Brownian
Motion on (2, F, {F;};, P), and X* be the solution to

dx* = B(xHdr + G(X*HdW,, T € [t, T],
X()=xeRV.

For any t € [, T], we set

T

INT
WE=Wo- [ ds
t
then X* satisfies the close-loop equation

T T T
Xf=x+/ B(Xﬁ)daJr/ G(Xﬁ)r(xf,,f(xﬁ))do+/ G(XHaw,

t t t

forany 7 € [¢, T']. Clearly, U* = (2, F, {F:}:, P, )7(X#), X*, w#) is an acs with
u® = 7 (X*). Moreover, u* satisfies (4.8): indeed

y(X¥, zh = 1xt y(xt, Z8y) + 28 (xE y (xE zh)
=i1x*, 7xt) + 28 (xE v (xhy)
= [(X7.u}) + Zyr(XT, ),

where Z’f =GX f)Vv(t, Xf). Hence U* is an optimal control system for the
problem.

m}
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