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Let X be a separable Banach space endowed with a non-degenerate centered Gaussian
measure p. The associated Cameron—Martin space is denoted by H. Consider two suf-
ficiently regular convex functions U : X — R and G : X — R. We let v = e~Yp and
Q = G~ 1(—~00,0]. In this paper we study the domain of the the self-adjoint operator
associated with the quadratic form

() > /Q (Vo Vg gdv o € WH(Q,0), (0.1)

and we give sharp embedding results for it. In particular we obtain a characterization
of the domain of the Ornstein—Uhlenbeck operator in Hilbert space with 2 = X and on
half-spaces, namely if U = 0 and G is an affine function, then the domain of the operator
defined via (0.1) is the space

{ue wW22(Q, n) [(Vau(z), VeEG(z)) g =0 for p-a.e. x € G H0)},

where p is the Feyel-de La Pradelle Hausdorff-Gauss surface measure.

Keywords: Domain of operator, elliptic operator, Wiener space, weighted Gaussian mea-
sure, maximal regularity, divergence operator.

2010 AMS Subject Classification 2010: 28C20, 35J15, 46G12, 47A07, 47A30

1. Introduction

Let X be a separable Banach space with norm ||-|| y, endowed with a non-degenerate
centered Gaussian measure p. The associated Cameron—Martin space is denoted by
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H, its inner product by (-,-);; and its norm by |-|,;. The spaces W"P(X, u) for
p > 1 and k € N are the classical Sobolev spaces of the Malliavin calculus (see®
Chapter 5).

The aim of this paper is to study the domain of the self-adjoint operator L, o

associated with the quadratic form
(6,0) = [ (Vo Vuphgdy .0 € W)
Q

where ) is a convex subset of X, v := e Uy and U : X — R is a convex func-
tion, Vg is the gradient along H of ¢ and W12(2,v) is the Sobolev space on {2
associated to the measure v (see Section 2). These operators arise in Kolmogorov
equations in Hilbert spaces corresponding to stochastic variational inequalities with
reflection, such as

{dY(t, z) =Y (t,z)dt — VyU(Y (t,x))dt + No(Y (t,2))dt > dW (¢, z);
Y(0,z) ==z,

where Nq is the normal cone to Q and W (t,-) is a X-valued cylindrical Wiener
process (here X is a Hilbert space). This is because, at least formally, the transition
semigroup T'(t) f(z) := E[f (Y (¢,x))] is generated by L, q.

In the case of the standard Gaussian measure in a convex subset 2 C R™ with
sufficiently regular boundary, the operator L, o reads as

Lyqu(§) = Au(€) — (VU() + £, Vu(§))  ue L),

so that, if U is sufficiently regular, L, o is an elliptic operator with possibly un-
bounded coefficients, and its domain in L%(Q, v) is

DL, ) = { {1 EW22RY0) | (VU + & Vu) € LR v)}, Q=R
YT u e WR2(Q,0) | (VU + €, Vu) € LH(Q,v), du/dn =0 at 99}, Q £ R,

where 9/0n is the exterior normal derivative at the boundary of 99 (see!® and3?). In
the infinite dimensional case there is a characterization for the Ornstein—Uhlenbeck
operator, when €2 is the whole space and U = 0 (see® Section 5.6). In this case the
operator L, x is the infinitesimal generator of the Ornstein-Uhlenbeck semigroup

Tofta) = [ (e VI ey )dn),

in L?(X, p) and its domain is D(L,, x) = W?2(X, u1). Further results were obtained
in,!! assuming U has H-Lipschitz gradient, and € is the whole space. In this case
too the domain is D(L, x) = W?2?(X,v). We want to point out that in3* the
authors study in detail the case of non-symmetric Ornstein—Uhlenbeck operators
on the whole space.

This paper is a first attempt to give a characterization of the domain of L, o
in a more general setting. In order to state the main results of this paper we need
some hypotheses on the set 2 and on the weighted measure v.
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Throughout the paper we take ) = G~1(—o0, 0], where G satisfies the following
assumptions.

Hypothesis 1.1. Let G : X — R be a version of a function belonging to W24(X, )N
C?(X) for every ¢ > 1 such that

(1) G is convex;
(2) \VHG|I_{1 € LG~ (~00,0], u) for every g > 1;
(3) |[VuG(z)|; # 0 for p-a.e x € G71(0).

Hypotheses 1.1(1)-(2) are taken from!3 and!? in order to define traces of Sobolev
functions on level sets of G and to get maximal Sobolev regularity estimates for
elliptic equations associated to the operator L, . Hypotheses 1.1(3) allow us to
prove Lemma 4.2 which is generalization of a classical result in differential geometry
(see,306 and!?).

Remark 1.1. Our results also hold true if we consider weaker assumptions on
G. However, these weaker assumptions are quite technical, and since our examples
satisfy Hypothesis 1.1, we decided to provide these set of hypotheses.

Hypothesis 1.2. U : X — RU{+o0} is a proper, convex, lower semicontinuous and
twice continuously differentiable along H function belonging to W2!(X, i) for some
t > 3 (see Section 2 for the definition of differentiability along H). We set

vi=eVY .

The assumption ¢t > 3 may sound strange, but it is helpful to define the weighted
Sobolev spaces W12 (X, v). Indeed, let us observe that, by! Lemma 7.5, e~ belongs
to WLr (X, ) for every r < t. Thus if U satisfies Hypothesis 1.2, then it satisfies??
Hypothesis 1.1; namely e=Y € Wh*(X, u) for some s > 1 and U € WH7(X, i)
for some 7 > s’. Then following?? it is possible to define the space W2(X,v) as
the domain of the closure of the gradient operator along H (see Section 2 for an
in-depth discussion).

From here on, we will denote by Tr the trace operator acting on Sobolev func-
tions (see Section 2.6), by p the Feyel-de La Pradelle Hausdorff-Gauss surface
measure (see®?) and by .Z€3(Q2) the space of the restriction to Q of cylindrical
twice differentiable functions on X with bounded derivatives (see Section 2.2). We
remark that, by?® Theorem 3.1(2), (V% U (z)h,h)g > 0, for p-a.e. z € X and every
h € H. An important space in our investigation is

WoA(Q,v) = {u e W22(Q,v)

/ (VHUV gu,Vgu)dy < —1—00},
Q
endowed with the norm

”qu/Vf,’z(Q,u) = ||u||€V2,2(Qy,,) + /Q <V%{UVHU,VH’LL>H(ZI/. (1.1)
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We remark that WE’Q(Q, v) is a Hilbert space. We will also study the following
subspace of W5’2 (Q,v)

Wi (Q,v) = {u e W22(Q,v)

/ (VHUV gu, Vgu)dy < 400,
Q

(Tr(Vau), VaG) g =0 p-ae. in G_I(O)}

endowed with the norm (1.1).

Our main results are the following characterizations of the domain of the self-
adjoint operator L, o when €2 is the whole space or a half-space. We recall that by
||'||D(LV,Q) we denote the graph norm, i.e. for u € D(L, )

2 2 2
||u||D(LV,Q) = ||UHL2(X,V) + ||LV,QU||L2(X7,,)-

Theorem 1.3. Assume that Hypothesis 1.2 holds and that FE€;(X) is dense in
W5’2(X, v). Then D(L, x) = W5’2(X, v). Moreover, for every u € D(L, x), it
holds

Iz, o < Nullwzegeny < 2V20lp, .
and fized any orthornomal basis {h, |n € N} of H

L, xu= f (8nnu — Opu0, U — Onuﬁn),

n=1

where the series converges in L*(X,v) (See Section 2 for the definition of the ~
operator).

We remark that if the weight U is such that VU is Lipschitz continuous, or
more generally H-Lipschitz (see Section 2), then .Z€3(X) is dense in W5’2 (X,v),
so that the assumption of Theorem 1.3 is satisfied (see Corollary 6.2). When X is a
Hilbert space, in Section 7 we provide sufficient conditions on U which imply that
W5’2(X, v) = W22(X,v). Therefore, the assumptions of Theorem 1.3 are satisfied
and we deduce the characterization of Dy, x.

When G = z* — r where z* € X* \ {0} and r € R, i.e. if  is a half-space, we
want to remark that the Neumann boundary condition: (Tr(Vgu), Vi G); = 0 for
p-a.e. z € G71(0), read

2" (Te(Vau)(z)) = (Tr(Vau)(2), hev) g = 0
for p-a.e. z € G71(0), where h,~ is the unique vector of H such that
z*(h) = (hg~, h) for every h € H. (1.2)
Such an element exists since z* is a continuous linear functional on H.

Theorem 1.4. Assume that Hypothesis 1.2 holds and G is an affine function,
namely G = x* — r where x* € X* \ {0} and r € R. If the space

Z(Q) = {u IS 3%5(9) ‘x*(Tr(VHu)(x)) =0 for p-a.e. x € G_l(O)}7
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is dense in the space WE?V(Q, v), then D(L, q) = Wé?\,(Q, v). Moreover, for every
u € D(Lyq), it holds

el pz, o) < lellwz2q,) < 2V20ullp, o)

and fized any orthornomal basis {hy, |n € N} of H

Lygu = io (Onnte = Bpud,U — Duln),

n=1

where the series converges in L2(Q,v) (See Section 2 for the definition of the ~
operator).

We remark that showing the density of Z() in Wé?\,(Q) is not an easy task.
This difficulty can be overcome if €2 belongs to the class of Neumann extension
domains.

Definition 1.5. Let Z?]’Q(X, v) be the completion of the space .Z€5(X) with re-
spect to the norm defined in (1.1). We say that 2 is a Neumann extension domain
if there exists a linear operator EV from WE?V(Q, v) into Z,i’z(X, v) such that for

every ¢ € WE?V(Q, v)

(1) EN¢(z) = ¢(x)for v-a.e z € Q;
(2) there is K > 0, independent of ¢, such that ||EN¢||Z§;2(X,V) < K||¢>HW5‘2(QW).

The operator EV is called Neuwmann extension operator-

Theorem 1.6. Assume that Hypothesis 1.2 holds and that Q2 is a Neumann exten-
sion domain satisfying Hypothesis 1.1. Then D(L, q) = WE?V(Q, v). Moreover, for
every u € D(L, ), it holds

HUHD(LV_H) < H“”Wg?((z,u) < 2\/§||u||D(LU,Q)'

and fized any orthornomal basis {hy, |n € N} of H

Lyou= io (Onnte = Bpud,U — Duln),

n=1

where the series converges in L2(Q,v) (See Section 2 for the definition of the ~
operator).

The characterization of Neumann extension domains is an open problem in
Wiener space theory. The only known results are mainly negative (see”), but if € is
a half-space and U = 0, it is known that an extension operator can be constructed
(see”). Since we were unable to find explicit computations in the literature, we
made them in Lemma 8.1. Applying Theorems 1.4, 1.6 and Lemma 8.1 we get the
following characterization of the domain of the Ornstein—Uhlenbeck operator on
half-spaces, i.e. U = 0 and G is an affine function.
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Theorem 1.7. Assume that Hypothesis 1.2 holds and G is an affine function,
namely G(z) = x*(x) — r with 2* € X* \ {0} and r € R. Then

D(Ly0) = {ue W»*(Q,p) | #*(Tr(Vgu)(z)) =0 for p-a.e. x € G1(0)}.
Moreover, for every u € D(Ly.q), it holds

HU”D(LH,Q) < ||U‘HW2,2(Q7M) < 2\/§||U’HD(L“,Q)'
and fized any orthornomal basis {hy, |n € N} of H

L,ou= f (a,mu - 8nuﬁn)7

n=1
where the series converges in L*(Q, ) (See Section 2 for the definition of the ~
operator). In addition the space

Z(Q)={ue FEL(Q) | 2*(Tr(Vgu)(z)) =0 for p-a.e. x € G7'(0)}
is dense in D(L, o) with respect to the graph norm.

The paper is organized as follows: in Section 2 we recall some basic definitions
and we fix the notations. Section 3 is dedicated to the study of the second order
analysis of the Moreau—Yosida approximations along H, that are used to prove
Theorems 1.3. In section 4 we will introduce the divergence operator div, o as minus
the formal adjoint of the gradient operator along H and investigate its properties.
Namely, we consider the space

there exists n € N and {hy,...,h,} CH
such that ® =" | ¢;h; for some n € N,

ZH)=¢2:Q—H . (1.

(€2, H) - and @; € ZE€3(Q) fori=1,...,n. (1.3)
In addition (®, VgG) = 0 p-a.e. in G71(0).
For every ® € Z(Q2, H) put
191332 a0 =@ + [ (THUB,D) s

/ (V%G, D) M, (1.4)

+ ; ~ AP .

G—1(0) " H ‘VHG|H

Let Zg]’Q(Q, v; H) be the completion of the space Z(€2, H) with respect to the norm
defined in (1.4). As usual the elements of Z[1]’2(Q, v; H) can be identified as equiv-
alence classes of vector fields with respect to the v-a.e. equivalence relation. It is
easy to see that Z,lj’Q(Q, v; H) is a Hilbert space. In Proposition 4.2 we will prove
that the space Zé’z(ﬂ, v; H) is contained in the domain of the divergence operator
div, o in L% and div, o ® € Lz(Q, v) for every @ € Z,1J’2(X, v; H). Furthermore an
explicit formula for the calculation of div, g is given by (4.13).

We remark that without loss of generality we can assume that the sequence
{h1,..., hy} in (1.3) is a sequence of orthonormal elements of H (indeed, it is enough
to apply the Gram-Schmidt procedure). Moreover, we stress that the boundary
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integral in (1.4) in general cannot be estimated by the W12-norm of ®. This fact
depends not only from the presence of the second order derivatives of G, but also
from the trace theory in infinite dimensions. Indeed, as shown in?? the trace of
f € WLP(Q) belongs to LY(G~1(0),e"Yp) for any q € [1,p(t — 2)(t — 1)~], where
t is the number fixed in Hypothesis 1.2. In particular if p = 2 then we do not know
if the trace operator is continuous in L2(G=1(0),e~Yp).

In Section 5 we obtain maximal Sobolev regularity estimates for the weak solu-
tion of the problem

Au(z) — Ly qu(z) = f(z) p-a.e. T € (1.5)

where A > 0, and f € L*(Q,v). We say that u € WH2(Q,v) is a weak solution of
problem (1.5) if

)\/ ucpdu—i—/ <VHu,VHs0>HdVZ/f<de/ for every o € WH2(Q,v).
Q Q Q

Notice that the unique weak solution u of problem (1.5) satisfies u = R(\, L,.q)f,
where R(\, L, q) is the resolvent of L, o. We recall that results about existence,
uniqueness and regularity of the weak solution of problem (5.1), in domains with
sufficiently regular boundary, are known in the finite dimensional case (see the
classical books?® and?? for a bounded €2 and,®,'6 3317 and!'® for an unbounded ).
If X is infinite dimensional maximal Sobolev regularity results are known when X
is a separable Hilbert space. See for example? and® where U = 0 and?® where U is
bounded from below. When € = X more results are known, see for example,'®3°
and?! if X is finite dimensional,'® if X is a Hilbert space and!! if X is a separable
Banach space. If X is general separable Banach space and €2 & X, then the only
results regarding maximal Sobolev regularity are those contained in,'® where the
second named author studied problem (5.1) when U = 0, namely when L, o is the
Ornstein—Uhlenbeck operator on €, and in,'? where the second and third named
authors studied the general case.

In Section 6 we prove Theorems 1.3, 1.4 and 1.6 and some related corollaries.
Finally, in Section 8 we provide some examples to which our results can be applied.
In particular we study the case when (2 is the unit ball of a Hilbert space and we
prove Theorem 1.7.

2. Notation and preliminaries

We will denote by X* the topological dual of X. We recall that X* C L*(X, p).
The linear operator R, : X* — (X*)’

Rya™(y") = /X z*(x)y* (z)dp(x) (2.1)

is called the covariance operator of p. Since X is separable, then it is actually
possible to prove that R, : X* — X (see® Theorem 3.2.3). We denote by X
the closure of X* in L*(X,u). The covariance operator R,, can be extended by



17, 2020 16:37 WSPC/INSTRUCTION FILE

April
L.dd0n3180530 ‘domains on Wiener’ spaces-1

8 ADDONA Davide, CAPPA Gianluca, FERRARI Simone

continuity to the space X, still by formula (2.1). By® Lemma, 2.4.1,for every h € H
there exists a unique g € X} with h = R,,g, in this case we set

~

h:=g. (2.2)

Throughout the paper we fix an orthonormal basis {e;},.y of H such that €;
belongs to X*, for every i € N. Such basis exists by® Corollary 3.2.8(ii).

2.1. Differentiability along H
We say that a function f : X — R is differentiable along H at x if there exists
v € H such that

i T ) = £(a)
t—0 t

= (v, h) ,

uniformly with respect to h € H, with |h|,; = 1. In this case, the vector v € H is
unique and we set Vg f(z) := v. Moreover, for every k € N the derivative of f in
the direction of ey exists and it is given by

T +tex) — flx
0uf(a) 1=t LELIN IO (9 10) 0y,

We denote by Hs the space of the Hilbert—Schmidt operators in H, that is the
space of the bounded linear operators A : H — H such that ||A||3{2 =3, \Aeiﬁl is
finite (see®!). We say that a function f : X — R is twice differentiable along H at
x if it is differentiable along H at x and there exists A € Hy such that

H- lim Vuf(z+th) —Vuf(z)

t—0 t

= Ah,

uniformly with respect to h € H, with |h|,; = 1. In this case the operator A is
unique and we set V% f(z) := A. Moreover, for every i,j € N we set

0,1(x) = i BTELIN ZOTE) (3 paye i)

t—0 t

2.2. Special classes of functions

For k € N U {oo}, we denote by .Z€*(X) (F%€5(X) respectively) the space of
the cylindrical function of the type f(z) = @(z%(x), ..., z*(x)) where ¢ € €*(R")
(p € Cﬁf (R™), respectively) and z7,...,z} € X*, for some n € N. We remark that
FE;°(X) is dense in LP(X,v) for all p > 1 (see?? Proposition 3.6). We recall that
if f e Z€*(X), then 0 f(x) = 0;: f(z) for every ¢,j € Nand z € X.

If Y is a Banach space, a function F': X — Y is said to be H-Lipschitz if there
exists a positive constant C such that

[1F(z+h) = F)]ly < Clhly, (2:3)

for every h € H and p-a.e. € X (see® Section 4.5 and Section 5.11). We denote
with [F|g.1ip the best constant C' appearing in (2.3).

A function F': X — R is said to be H-continuous, if limy,| o F(z+h) = F(z),
for p-a.e. x € X.
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2.3. Sobolev spaces

The Gaussian Sobolev spaces W1P(X,u) and W2P(X,u), with p > 1, are the
completions of the smooth cylindrical functions #%;°(X) in the norms

W llwrwcen = 1l e + ( /. va<x>|zdu<x>) ",

||fHW2,p(X,u) = ||f||w1,p(x,u) + (/X ||V2Hf(x)||§[2d/u'(x)>

Such spaces can be identified with subspaces of L? (X, ) and the (generalized) gradi-
ent and Hessian along H, Vg f and V% f, are well defined and belong to LP(X, u; H)
and LP(X, u; Hso), respectively. The spaces WP (X, u; H) are defined in a similar
way, replacing smooth cylindrical functions with H-valued smooth cylindrical func-
tions (i.e. the linear span of the functions « — f(z)h, where f is a smooth cylindrical
function and h € H). For more details see® Section 5.2.

Now we consider the operators Vy : Z63°(X) — LP(X,v; H) and (Vy, V%) :
FE, (X) — LP(X,v; H) x LP(X, v; Ha). These operators are closable in LP(X,v)
and LP(X,v; H), respectively, for any p > % (see?? Definition 4.3 and'! Propo-
sition 2.1), where ¢ has been defined in Hypothesis 1.2. For such p we denote by
WLP(X,v) the domain of the closure of Vg in LP(X,v), and by W2P?(X,v) the
domain of the closure of (V, V%) in LP(X,v). The spaces W'?(X,v; H) are de-
fined in a similar way, replacing smooth cylindrical functions with H-valued smooth
cylindrical functions.

We want to point out that if Hypothesis 1.2 holds, then % < 2. In particular the
above arguments allow us to define the Sobolev spaces W12(X,v) and W22(X,v).

We shall use the integration by parts formula (see?? Lemma 4.1): for ¢ €
WP (X,v) with p > =5

/ Otpdv = / p(0xU + €x)dv for every k € N,
X X

where €}, is defined in formula (2.2). Finally, we recall that if U satisfies Hypothesis
1.2 then for every u € .Z€3(X)

“+o0
L,,7Xu = Z (&,u — (81[] + ’e})@lu), (24)

i=1

where the series converges in L?(X, v) (see?? Proposition 5.3).

2.4. Capacity

Let L, be the infinitesimal generator of the Ornstein—Uhlenbeck semigroup T'(t) in
LP(X, u), where

() f(2) ::/Xf(e—tmr(1—6—2t)%y)du(y>, £ 0.
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For k =1,2,3, we define the C}, ,-capacity of an open set A C X as

Crop(A) = inf {||f||L,,(XM ] (I—L,)"%f>1 pae. in A}.

For a general Borel set B C X we let Cj ,(B) = inf {Cy ,(A)| B C A open}. By
f € WFP(X, 1) we mean an equivalence class of functions and we call every element
“version”. For any f € W"P(X,pu) there exists a version f of f which is Borel
measurable and C}, ,-quasicontinuous, i.e. for every € > 0 there exists an open set
A C X such that Cy,(A) < € and ?‘X\A is continuous. Furthermore, for every
r>0

Crop({z € X|[F(@)] > r}) < %H(z - L) s

See® Theorem 5.9.6. Such a version is called a (k, p)-precise version of f. Two precise
versions of the same f coincide outside sets with null C}, ,-capacity. All our results
will be independent on our choice of a precise version of G in Hypothesis 1.1. With
obvious modifications the same definition can be adapted to functions belonging to
WFEP(X, s H) and WFP(X, p; Ha).

2.5. Sobolev spaces on sublevel sets

The proof of the results stated in this subsection can be found in'® and.?? Let G be
a function satisfying Hypothesis 1.1. We are interested in Sobolev spaces on sublevel
sets of G.

For k € NU {oo}, we denote by .Z€} () the space of the restriction to Q of
functions in .Z%€}(X). For any p > 1, the spaces WP(Q, u) and W2P(Q, 1) are
defined as the domain of the closure of the operators Vg : #%€,°(Q) — LP(Q, u; H)
and (Vy, V%) : FE€°(Q) — LP(Q, w; H) x LP (2, p; Ha), respectively. See!® Lemma
2.2, and'® Proposition 1.

We recall that Vg : FE€°(Q) — LP(Qv;H) and (Vy, V%) : FE€°(Q) —
LP(Q,v; H) x LP(Q,v; M) are closable operators in LP(,v), whenever p > =1
(see?? Proposition 6.1 and'? Proposition 2.2). For such values of p we denote by
WLP(Q,v) the domain of its closure in LP(£, ) and we will still denote by V the
closure operator. The space W2P(Q,v) is defined in the same way.

Finally we want to remark that if Hypotheses 1.1 and 1.2 hold, then % < 2.
In particular the Sobolev spaces W12(Q2, v) and W22(Q,v) are well defined.

2.6. Traces of Sobolev functions

By p we indicate the Feyel-de La Pradelle Hausdorff-Gauss surface measure. For a
comprehensive treatment of surface measures in infinite dimensional Banach spaces
with Gaussian measures we refer to,2423 and.!3

Traces of Sobolev functions in infinite dimensional Banach spaces have been
studied in'3 in the Gaussian case and in?? in the weighted Gaussian case. We stress
that in'3 the definition of Sobolev Spaces is different with respect to the our one,
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but these two definitions coincide in the case of Gaussian measure. Assume that
Hypotheses 1.1 and 1.2 hold and let p > ‘= If ¢ € WP(Q,v) we define the trace
of p on G71(0) as follows:

Tro= lim ¢, - in LY(GTH0),e7"p),
and it is possible to prove that Tro € LI(G71(0),e=Yp) for any ¢ € [1,p(t —
2)(t — 1)~1], where t is the number fixed in Hypothesis 1.2. Here, (¢, )nen is any
sequence in Lip,(£2), the space of bounded and Lipschitz functions on €, which
converges in WHP(,v) to ¢. The definition does not depend on the choice of the
sequence (¢, )nen in Lip, () approximating ¢ in W1P(£2, v) (see*? Proposition 7.1).
In addition the following result holds.

Proposition 2.1. Assume that Hypotheses 1.1 and 1.2 hold. Then the operator
Tr : WhP(Q,v) — LYG710),e7Yp) is continuous for every p > ‘=% and q €
[1,pi:—ﬂ . Moreover, if U = 0, then the trace operator is continuous from W1P(Q, )
to LY(G~1(0), p) for everyp > 1 and q € [1,p) (see’® Corollary 4.2 and** Corollary

7.3).
We will still denote by Tr ¥ = Z+°° (Tr by e, if U e WHP(Q,v; H), for p > =1

n=1 t—27
and ¢, = (V,en)y. The main result of?? is the following integration by parts

formula.

Theorem 2.2. Assume that Hypotheses 1.1 and 1.2 hold and let p > % For
every ¢ € WHP(Q,v) and k € N we have

s hG
/ (Orp — pORU — e )dv = / Ty(@)kie T (U)dp.
@ G=1(0) VuGly

Another important result, that we will use in this paper, is the following (see!?

Proposition 4.8 and?? Proposition 7.5).

Proposition 2.3. Assume that Hypotheses 1.1 and 1.2 hold and let p > % Then
for every o € WEP(Q,v), the trace of Tr(p) at G=1(0) coincides p-a.e. with the
restriction to G=1(0) of any precise version @ of .

2.7. The spaces lejf\, and lej’?\,

We recall the definition of the space W5’2 and Wf,?\,

W5A(Q,v) = {u e W22(Q,v)

/ (V3 UV g, Vygu)dy < +oo},
Q
endowed with the norm

”qu/Vf,’z(Q,u) = ||u||€V2,2(Qy,,) + /Q <V%{UVHU,VH’LL>H(ZI/. (2.5)



April 17, 2020 16:37 WSPC/INSTRUCTION FILE
ddonal80530'domains’on"Wiener spaces-1

12 ADDONA Davide, CAPPA Gianluca, FERRARI Simone

We consider the space Wé’z (Q,v)

Wik (Q,v) = {u e W22(Q,v)

/ <V%UVHU,VHu>dI/ < 400,
Q

(Tr(Vygu), VuG)y =0 p-ae. in Gl(O)}

endowed with the norm (2.5).
We denote by Z(2]’2(X, v) the completion of the space f%i(x) with respect to
the norm defined in (2.5) and by ZZ?V (Q,v) the completion of the space

Z(Q) = {f € FCo(Q) | (Vuf(z),VuG(x))y =0 for pae € G 0)},

with respect to the norm (2.5).

3. Second-order analysis of the Moreau—Yosida approximations
along H

We start this section by recalling the definition of the subdifferential of a con-
vex semicontinuous function. If f : X — R is a proper, convex and lower semi-
continuous function, we denote by dom(f) the domain of f, namely dom(f) :=
{r € X | f(x) < 400}, and by 0f(z) the subdifferential of f at the point z, i.e.

_ J{er e X" | fly) = f(x) + 2*(y — ) for every y € X} & € dom(f);
o) =1 z ¢ dom()

For a classical treatment of subdifferentials of convex functions we refer to®® and.*
We recall that for a > 0 the Moreau—Yosida approximation along H of a proper
convex and lower semicontinuous function f: X — RU {+oo} is

fa(w) = inf {f(x +h) + %Ihlif

heH}. (3.1)

See!! Section 3 and!? Section 4 for more details and® and® Section 12.4 for a
treatment of the classical Moreau—Yosida approximations in Hilbert spaces, which
are different from the ones defined in (3.1). Second-order analysis of the classical
Moreau-Yosida approximations have been studied in various papers, e.g.,3937 and.3¢
In the following proposition we recall some results contained in'! Section 3 and

in'? Section 4.

Proposition 3.1. Letx € X, a > 0 and let f : X — RU{+o00} be a proper convex
and lower semicontinuous function. The following properties hold:

(1) the function go o : H — R defined as go,»(h) == f(x—i—h)—l—%wi, has a unique
global minimum point P(x,«) € H. Moreover P(xz,a) — 0 in H as a goes to
zero;

(2) falz) & flx) as @ — 0F. In particular fo(x) < f(z) for every a > 0 and
x € X;
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(3) for p € H, we have p = P(z,) if, and only if, f(x +p) < f(z + h) +
é(p,h — D)y, for every h € H;

(4) the function P, : H — H defined as Py o(h) := P(x + h,a) is Lipschitz
continuous, with Lipschitz constant less than or equal to 1;

(5) fo is differentiable along H at every point x € X. In addition, for every x € X,
we have Vi fo(z) = —a 1 P(z,a);

(6) fa belongs to W2P(X, i), whenever f € LP(X, ) for some 1 < p < +00;

(7) let x € dom(f) and assume that f belongs to W P(X, u) for some p > 1.
If we define F : H — R as F(h) := f(x + h), then F is proper convex and
lower semicontinuous function. Moreover, Vg f(x) € OF(0) and Vg fo(zr) €
OF (P(z,));

(8) let x € dom(f) and assume that f belongs to WYP(X, u) for some p > 1. Then
Vi fa(x) converges to Vi f(x) as o goes to zero.

The last property we need is the convergence of the second-order derivative
along H.

Proposition 3.2. Let f € W2P(X,u) for some p > 1. Assume that f is twice
differentiable along H at every point x € dom f. Then for every x € dom(f) there
ezists V2 fo(z), and V% fo(x) converges to V2, f(z) as o goes to zero.

Proof. By Proposition 3.1(7) we get Vg fo(z) = Vuf(z + P(x,«)). We can dif-
ferentiate along H since P(z,«) admits a H-gradient (it is H-Lipschitz).

Vitfa(z) = Vi f(z + P(z,0))In + VaP(z,a)) = Vi f(z + Pz, 0))(In — aVi fal@)).

If we let o — 0 then, by 3.1(8), we get lim,_0 V% fo(z) = V% f(2). O

4. The divergence operator

We start this section by recalling the definition of divergence, see® Section 5.8 for
the case ! = X. For every measurable map ® : Q@ — X and for every f € F€;°(2)
we define

9o f(x) = lim L& F12@) = f(@)

lim ; , z €. (4.1)

Definition 4.1. Let ® € L'(Q,r; X) be a vector field. We say that ® admits
divergence if there exists a function g € L'(Q, v) such that

/Q Op fdv = — /Q Fqdv, (4.2)

for every f € F%;,°(Q), where O f has been defined in (4.1). If such a function g
exists, then we set div, o ® := g. Observe that, when div, o ® exists, it is unique
by the density of Z%;°(Q2) in LP(Q,v) (see??). We denote by D(div, ) the domain
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of div, o in L'(Q,v; X). Lastly, we observe that if ® € L'(Q,v; H), then ds f(2) =
(Vuf(x),®(x))y for z € Q. In this case (4.2) becomes

/ (Vuf, @) ydv = —/ fgdv, for every f € F€;°(Q). (4.3)
Q Q

We remark that in L2-setting, the divergence operator div, o is —V7%, the L2-
adjoint of the gradient along H operator. Indeed, for any ® € L? (Q,v; H) and any
feWhL2(Q,v) we get

/<VHf, Q)pdv = 7/ fdiv, o ®dv.
Q2 Q

The following two technical lemmata are crucial to show Theorems 1.3 and 1.4.
In particular, the second one is a generalization of a well known result in differential
geometry, see,306 and.10

Lemma 4.1. If Hypothesis 1.2 holds, then
/ (5hf — fonU — fﬁ) (3k9 — gOLU — gE)du =
X

:/ fg@hakUdu—i—(h,k:)H/ fgdu—i—/ Oy fOngdv.
X X X 4

IfQ) € X, let Hypotheses 1.1 and 1.2 hold true, and let f,g € ﬁ‘gz(Q) and h,k € H.
Then

[ (onf = 0,0 = 12) (019 - 90U - ) =
Q
N WG

= g — g Tr(0U) — gk ) ————e~ T dpt 4.5

/G_l(o)f( kg = 9 T(OU) = g )\VHG|H6 P (4.5)

—/ fahgakiGe_Tr(U)dpﬁ— 90,0, Udv+

G-1(0) IVuGly Q
k) [ fodv+ [ dufongan
Q Q

Proof. We will only prove (4.5), since the proof of (4.4) is essentially the same.
We will use Theorem 2.2 several times. We have

/Q(ahf — fOU — fﬁ) (akg—gakU—gE)du -
:/Qahf(akg—gakU—g%)du—/Q(fahU+fﬁ) (akg—gakU—g%)du:
:/(Zah(f(akg—gakU—g%))du—Afah(akg—gakU—g%)du+

—/Q (fahU + fﬁ) (akg —gokU — gE)dV =
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) on (1 (09 — 90U = 9) ) = 1 (99 — 90KU — k) U — £ (049 — 9Ok — gk hdu-+

—/ fOn (5kg — g U — g@)du =

8kg gTr(0xU) —

|
\

) |VHG|H U)dp / fon (3kg — gL U — gif\)dl/ _
) ahG

|VHG|H

G— 1

/ akg gTr(OkU) — g
~1(0)

e~ T Wgp — /fakahgdu+/f8hgakUdu+

+/fgah8kUd1/+/fahgkdz/+(h,k)H/fgd1/:
Q Q Q

oG

3kg —gTr(0xU) — gE) m@
H

~T (W) g, 4 / Fgon0xUdv + (h, k), / fodv+
G—1( ¢ N

/ O fOn gl / Ok(fOng) — [OngORU — [Onghdy =
Q Q

™ G —Tr(U oG —Tr(U
6g—gTr8 U)— gk) ———" e T )dp—/ fOhg——r e~ T )dp+
/ RN (0:U) >|VHG|H a0 " IVuGly
Jr/ fgahakUdl/Jr<h,/€>H/ fgdl/+/ Ok fOngdv. 0
Q Q Q

Lemma 4.2. Assume Hypothesis 1.1. Let ® € Z(Q), H) the space defined in (1.3).
Then for p-a.e. z € G=1(0)

(VHG)(2)®(2), 2(2)) ; = —(VaP(2))®(2), (VEG)(2)) - (4.6)

Proof. The proof is rather long and it will be split into various steps. Let {h;}ien
be the orthonormal basis of H associated with @ given by the definition of the space
Z(Q, H). By Hypothesis 1.1, Proposition 2.3 and the very definition of Z(, H) the
set

A={aeG0)| [VaGla)ly A0, (), VaGla))y =0}  (47)

has full p measure. We will prove that (4.6) holds for every point z¢ belonging to
A. By (4.7) we have VyG(xg) # 0, so there exists ng € N such that

anoG(ﬂfo) 7é 0.

Without loss of generality, we can assume that nyg = 1. By the very definition of
the space Z(f2, H) there exist K(®) > 0, k € N and (¢;)%_, C .F%37(Q) such that
for every k1, ko € H it holds

|®(z0 + k1) — P(x0 + k2)| g < K(P)|k1 — k2l (4.8)
and ®(x) = Zle wi(z)h;. For i > k we set ¢;(z) = 0.
Step 1: Let us consider the space
hi={he€H|(h hi), =0},
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endowed with the Hilbert space norm |E|h L= ;020 <E, hl>2 We denote its
inner product by (-, -), . and recall that {Rh;}i>2 is an orthonormal basis for hi-

and H = hi ®span {h;}. We want to apply the implicit function theorem to a
function defined on hi @ R. Let G, : hi ® R — R be the function defined as

Goo((h,@)) := G(zo + h + ahy).
Observe that G, ((0,0)) = G(xo) = 0 and
DG, ((0,0)) = 0:G(z0) # 0,

where Dy is the derivative with respect the second variable. Hypothesis 1.1
implies that G, is Fréchet differentiable at 0, applying the implicit function
theorem, see®® Theorem 5.9, we get an open neighborhood Uy C hf of the origin
and a continuously Fréchet differentiable function g,, : Up — R such that for
every h € Uy we have

920(0) =0, Gay(h, gay(h)) = 0. (4.9)

Moreover, the function g, : Uy — R satisfying (4.9) is uniquely determined.
Without loss of generality we may assume that Uy is an open ball centered at
the origin of radius R. We remark that (4.9) implies that for every h € Uy

G(zo + h+ 9zo (E)hl) = Gy, (E, Yo (E)) =0. (4.10)

Step 2: We denote by D)1 gz,(0) the Fréchet derivative of g, at the origin. For ¢ > 0
sufficiently small and by (4.10), for any i > 2 we get

0= Gaco (thia 9o (thl)) - GIO (03 Gz (O)) =
= G(x0 + th; + g, (thi)h1) — G(z0 + gz (0)1) =

- G(mo o thi + gag (OVh1 +8( Dy 9oy (0). i) b+ o(t)hl) — G20 + Gy (0)1) =

= <VHG(.’)30),thi + <Dh%gw0 (0)’thi>hl + O(t)h1>
1 H

Letting ¢ go to zero, for any i > 2 we get

0:G(x0)

<1)hligfco(0),hi>hlL = *m- (4.11)

Step 3: The vector field @, (h) = S..°% wi(20 + h)h; is defined from hi- to itself. Let
be a positive real number which satisfies
R

O S AR@R+ [3(0)],y)

where K(®) has been introduced in (4.8). We consider the complete metric
space €([—9,0],Up), i.e. the set

5([=6,0),Up) == {f : [-6,6] = Up | f is continuous},
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endowed with the complete metric d(f, g) := sup;e;_s 67 [f () — g(t)|hf. Let T':
€b([—6,6],Ug) — €([~9,9], hi) be the function defined as follows:

r(y)(t) = / By ((3))ds, (1.12)

for any t € [—4,d]. The integral in (4.12) should be understood in the Bochner
sense. We look for a fixed point of I' in ¢’ ([—6, 8], Uy). We want to use Banach
fixed-point theorem, so

d(T'(m), (1)) = tesit_lgé] IT(v)(t) = T(v2) ()] =
LS sup / | (71 (s

< s / (B0 +31(5) ~ @0 +72(5) s < K (@), sup / I (s
te[—4,0

= sup
te[—4,6]

/ (o (9)ds / @0 (ra(s))ds

1
SOK(®) sup [m(t) = ()], <5 sup [n(t) —y2(t)], = *d('71772)
te[—6,0] U7 2 4e(-6,6) 2

Therefore I' is a contraction in €3([—d,6],Up). We claim that I' maps
€b([—6,6],Up) into itself. The continuity of '(y)(¢t) is clear, and

sup [D(y)(t)],0 < sup [D(y)(t) — (0)(t)‘hi+ sup [L(0)()[,+ <
te[—4,] te[—5,0] te[—0,9]

¢ R R
/ o, (0)ds| <
0 hi

2t~
By the Banach fixed-point theorem there exists a unique fixed point v,, €
€v([—0,6),Up) of I'. We remark that ~,,(0) = 0 and that, up to replace § > 0
with a smaller one, we can assume that v, ([—d,d]) C Up.
We consider the function v, : Uy — H, defined as ¥, (h) = h + gy, (h)h1. We
now want to evaluate the function o, : (—0,9) — H defined as

T2 (1) = Yo (V2o (1)),

and its derivative at the origin. Observe that

Taa (8) = oy (g (1)) = oy ( / R (8))ds> _

R
< —+4 sup =R.

2 el

-/ s (o (5))d5 + g, (/ o, (10 (50 ) s,

S0 04,(0) = 0. Furthermore

o, (’72(5))‘h1id5 <

|hLd5 <

C iy g T —0(0) 1 ' _
Jzo (0> - }g% t - tlg% t 0 q)lo ('Ymo dS +g$0 0 q)lo ’7900 )ds hl -

L1 t
= 0, (0 0) + iy 7 (3 [ B2 051 ) =
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+oo +oo
= (I)wo (0) + <thgwo (O), (I)IO (0)>th1 = Zﬁpi(l‘o)hi + <Z (pi($0)<Dhngg;D (0), hi>hL> hq,

i=2 i=2 1

by (4.7) and (4.11) we get

+oo
Z% xo)h; — (Z wi(x 8 G x0§>h1 = Z%‘(l"o)hz’ = ®(xo).

We finally claim that for every ¢t € (—4,9) we have G(xg + 04, (t)) = 0. Indeed,
recalling that I'(v,,)(¢) € Up and (4.10), we get

G0 + 02, (1) = G20 + P (Vo (1)) = G0 + T (Vg ) () + Garg (T (Vo) () 1) = 0.

Step 5: Now We are able to prove (4.6). Indeed, from the smoothness of G, (4.1),
04,(0) = 0 and o, (0) = ®(x0) we deduce that

VHG($0 + 0z, (t)) — VHG(xO)

d
7VHG($0+UIO( ))‘t 0 =lim

d t—0 t
iy VG (0 + (20)t + (0)0(t)) — Vi G(o)
t—0 t

=08 (20) Vi1 G(20) = VG (0) (®(0))-
Then, we have
d
0=~ (820 + 04 (1)), VEG(20 + 026 () 1) =0 =
= <VH<I)(J}0)‘I)(.Z'0), VHG(.’EQ»H + <<I)($0), V%G(xo)@<xo)>H ]
In the next theorem we prove that the space Z,lj’z(ﬂ, v; H) is contained in the do-

main of the divergence, where lejz (Q,v; H) is the completion of the space Z(Q2, H)
with respect to the norm defined in (1.4).

Theorem 4.2. Assume that either Hypotheses 1.1 and 1.2 hold or Hypothesis 1.2
holds and §2 is the whole space. FEvery vector field ® € lej’Q(Q, v; H) has a divergence
div,.q® € L2(Q,v) and for every f € WH2(Q,v), the following equality holds:

/ (Vi £(2), B(a)) v (z / £() divy, 0 B(x)du(z).
Q

Furthermore, if @, = (®, hyn) gy for every n € N where (hp)nen ts an orthonormal
basis of H, then

+oo
divy0® = Y (Oun = 9u0ul = ouhn ) (4.13)

n=1

where the series converges in L*(Q,v). In addition ||div, Pl < H(I)Hzllﬁ(ﬂ,u;Hy

Proof. We prove the theorem assuming Hypotheses 1.1 and 1.2 hold, since the
case when Hypothesis 1.2 holds and €2 is the whole space can be proved in a similar
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way. We start with a preliminary computation. Let ® € Z(Q, H), so there exists
an orthonormal basis {h;},.y of H such that ® = Y7 | ¢;h; for some n € N and
@i € FE3(Q) for every i = 1,...,n. In addition (®(z), VHG( )y = 0 for p-a.e
x € G71(0). By the integration by parts formula if f € 9‘517 Q) we have

[ Varaan= [ Zaif%du _ ; [ o= ( [ g [ o) -
Z:L: (/ foi viaHe_Tr(U)dp - /Q f(@igpi — 0, 0;U — @ih)du) _

i=1
fe Tr(U)

/G . (@, VuG)y's—F— |v Gl dp — ; </ ( ioi — iU — <pzh)dy> —
S ; (/Q f(aiépi — p;0,U — @ihl)dy).

(4.14)

So we have
div, o ® = Z (31‘%‘ — iU — %E)
im1

We recall the definition of the trace operator for nuclear operators A. Let x €
Q and let {h,}neny be an orthonormal basis of H; we say that A is a trace
class operator if > o0 ((A*A)Y2h, h,)y is finite, and we set tracey(A) =
S ((A*A)Y2hy, hy) . In particular, (Vg®)? is a trace class operator and
tracey (Vy®(z)?) < ||VH<I>(9C)||§_L2 (see® Appendix A.2). By Lemmata 4.1 and 4.2

/(dwl,Q(I) du— /\¢Z| dy+ZZ/8japl 1cdeV+ZZ/solgaj38Udz/+

=1 j=1 i=1 j=1
+zn:zn:/ vi(05; — ¢; Tr(0;U) — A) %G efTr(U)dp_'_
i=1j=17G7'(0) [VuG|
%G 1w
- 2 290 e dp:
;;/ ~1(0) J\VHGl
= H‘I’”i?(sz,uﬁ/ <V%IU(I)’(I)>HCZV+/traceH((qu))Q)dV-F
Q Q
<q) VHG>H —Tr(U
+ / 0 — ;3 Te(O;U) — pshy) e T o= TeW) gy
Z 1(o>jj 1 T o;0) e
2
+/ mefﬂw)dl}g
a0 |VuGly

2 2
S [— /Q IV 1 ®|2,, dv + /Q (VRU®,®), dv+

(V3,G®, )
+/ A H =T WU, = |0 o 4.15
G-1(0) |VHG|H || ||21 2(QusH) ( )
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Let (™)pen € Z(2, H) be a sequence of vector fields which converges to ® in
Z72(Q,v; H). By (4.15), (div,.q®") is a Cauchy sequence in L?(€, ) and there-
fore it converges to an element of L?*(Q,r) which we denote by div, o ®. By for-
mula (4.14), it is easily seen that div, o ® satisfies (4.3). Finally, by a standard
approximation argument we can conclude that div, o @ fulfills (4.3) also for every
fewt3(Q,v). O

We say that a subspace S of W'2(Q, v; H), endowed with a Banach norm ||| 4,
is a Neumann extension subspace if any ® € S satisfies (&, VyG)g = 0 p-a.e. on
G~1(0) and it admits a continuous linear extension operator, i.e. if there exists a
linear operator Eg : S — Z;;*(X, v, H) such that for every ® € S

(1) Es®(z) = ®(x) for pa.e x €
(2) there is Kg > 0, independent of ®, such that ”ES(I)”le;z(X,p;H) < Kg||®| -

As a corollary of Theorem 4.2 we get the following result.

Corollary 4.3. Assume that Hypotheses 1.1 and 1.2 hold and let S be a Neumann
extension subspace with norm ||-||g. Every field ® € S has a divergence div, o ® €
L2(Q,v) and for every f € WH2(Q,v), the following equality holds:

/ (Vuf(z),®(z))ydv(z) = 7/ f(z) divy o ©(z)dv(x).
Q Q

Furthermore, if @, = (®,hy)y for every n € N, where (hy)nen is an orthonormal
basis of H, then

+oo N
div, o ® = Z (angpn — 0, U — @nhn),
n=1
where the series converges in L?(Q,v). In addition, ||div, P20, < Ksl[®]ls-

Proof. Let us consider the divergence div, x Es® (Theorem 4.2). For v-a.e. z €
let

Dy(z) == Z (angon(x) — n(2)0,U(z) — ‘Pn(m)ﬁn(x))

n=1

We have that

/ |Dy, — Dy |dv < /
Q X

where Esp, := (Es®, h,,) . Since the right hand side of (4.16) converges to zero
(the series converges to div, x Es®) we get that (Dy)ren is a Cauchy sequence in
L2(Q, v). We denote by D@ the limit of D,, in L?(Q,v) and we observe that for

2

" OnEsgn — EsndnU — Esuhy| dv,  (4.16)

n=k+1
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every f € W13(Q,v)
/Q (Vuf,®)ydv = ngrfm; /Q Oifpidv =

- ~ 0;G
= lim / flwi(O:U + hi) — 005 | dv +/ f@ilie_Udp .
n——+oo et ( Q ( ( ) ) G—1(0) |VHG|H

We remark that p-a.e we have

' . -U O VuG), —
wa |v G| — f(®, Vg >H|vHG|H

P 07
and

Ul < |fle V1@, € LH(GTH(0). p).

i |VHG‘H

Therefore, by the Lebesgue’s dominated convergence theorem and the continuity
of the trace operator (Proposition 2.1) we get [ (Vi f,®)ydv = — [, Do ®dv
for any f € WH2(Q,v). This means that div, o ® exists and div, o ® = D ®.
Moreover

[divy,0 (PHLZ(QJ/) < lklﬁigf ||DkHL2(Q,u) < 1kl§f£ HDk“L?(X,u) -
= [ldive,x Es®llyzcx ) < I1Bs®l 72 x pmr) < Ks®lls. O

We remark that the subspace of the vector fields ¢ € Z(1j2(Q, v; H) such that the
extension

= o [ P(x)x e
O(z) := {O v dQ

belongs to lej’Q (X, v; H) satisfies the hypotheses of Corollary 4.3.

5. Maximal Sobolev regularity

This Section is devoted to the study of maximal Sobolev regularity for the equation
Mu(z) — L, qu(z) = f(x), pa.e. x € €, (5.1)

where A > 0, and f € L? (Q,v), since a part of the proofs of Theorems 1.3, 1.4 and
1.6 relies on them. The results of this section are sharper than the results contained
in'! and.'?

Our main result is the following theorem.

Theorem 5.1. Assume that Hypotheses 1.1 and 1.2 hold. For every A > 0 and
f €L2(Q,v) problem (5.1) has a unique weak solution u € I/Vlzj’z(Q7 v). In addition
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the following hold

(Vau(z), VG (x))y =0 for p-a.e. x € G7(0); (5.2)
1 1
lulliz @) < S 1F 20,03 IVaullLzum) < ﬁ”fHLQ(Q,u); (5.3)
2
||v§1u||L2(Q,V;H2) +/Q<v§,UvHu, Vyu)dy < 2||fuiz(w. (5.4)

In particular u € WE?V(Q, v).

We split the proof of Theorem 5.1 into two parts: in the Section 5.1 we study the
case of 2 = X and U with H-Lipschitz gradient, in Section 5.2 we use the results
of Section 5.1 to prove Theorem 5.1.

5.1. Q is the whole space

We start this subsection assuming the following hypothesis on the weight:

Hypothesis 5.2. Let U : X — R be a function satisfying Hypothesis 1.2. Assume
that U is differentiable along H at every point x € X, and VgU is H-Lipschitz.

We remark that every convex function in .# ‘55 (X) and every continuous linear
functional z* € X* satisfy Hypothesis 5.2.

We will recall some results about maximal Sobolev regularity contained in.!!
Let us consider the problem

Au(z) — Lyu(z) = f(x) p-a.e. ¢ € X, (5.5)

where A > 0, f € L*(X,v), and L, := L, x. A function u € D(L,) is said to be
a strong solution of problem (5.5) if there exists a sequence {u, nen € .FE€5(X)
such that u,, converges to u in L?(X,v) and
2 : —
L*(X,v)- nEIqILloo Ay — Lyuy, = f.
Moreover a sequence {uy }, .y € F %3(X) satisfying the above conditions is called a

strong solution sequence for u. The following proposition is borrowed from'' Propo-
sition 5.8.

Theorem 5.3. Assume that Hypothesis 5.2 holds. For every A\ > 0 and f €
L?(X,v), there exists a unique strong solution of equation (5.5). Such strong so-
lution is also a weak solution of problem (5.5). In addition, if {u,}, oy € FE(X)
is a strong solution sequence for u, then (u,) converges to u in W22(X,v).

When U satisfies Hypothesis 5.2 we have the following regularity result.

Theorem 5.4. Let U be a function satisfying Hypothesis 5.2, let A > 0, f €
L2(X,v), and let u be the strong solution of equation (5.5). Then u € Wé’Q(X, v)
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and
1 1
||UHL2(X,V) < XHfHL?(X,u); ||VHU||L2(X,V;H) < \ﬁ”f”]ﬁ(x,u)? (5.6)
2
||v§1u||L2(X’V;H2) +/X (VHEUV yu, Vgu) dv < 2||f||iz(XyV). (5.7)

The difference between Theorem 5.4 and the results of!! is that estimate (5.7) is
sharper, since it contains the integral [y (VUVgu,Vgu), dv. We stress that,
even if VyU is H-Lipschitz, which means that V2, U is essentially bounded, we can
not use the second inequality in (5.6) to estimate (5.7). Indeed, (5.7) is independent
of A\, while (5.6) does not.

Proof. The proof of (5.6) can be found in!! Theorem 5.10. By Proposition 5.3
nen © FE(X) and a function u € WH2(X,v) such
that u,, converges to u in L?(X,v) and

there exists a sequence {uy,}

L2(X,v)- lim Au, — Lyu, = f.

n——+4oo

Let f, := Aup — Lyu,. Using formula (2.4), we differentiate the equality Au, —
L,u, = f, with respect to the e; direction, multiply the result by d;u, sum over j
and finally integrate over X with respect to v. Then we obtain

(1+)\)/ |vHun|iIdu+/ Hvzunﬂfﬁduju/ (VHEUV Hun, V g ydv =
X X X

:/ fﬁdu—/\/ frupdy.
X X

By Fatou’s Lemma and recalling that u,, and f, converge to u and f in L*(X,v),
respectively, we get

{|V§,u|yi2(x VH2)+/ (VLUV gru, V )y dv <
o X

< lim inf (HV%UHEQ(X .y )—l—/ <V%IUVHu, VHu>Hdl/> < lim inf (/ fsdu— )\/ fnundy) =
e X X X

n—-+o00 n—-+o0o
:/ fPdv — )\/ fudv.
X X

Using inequalities (5.6) we get
2 2
Hv?{uHLZ(X,D;’Hg) + /)( <V%UVHU,VHU>HCZV S 2||f||L2(Xy) O

We will not give the prove of the following theorem, since it can be easily deduced
using the results of'' and the arguments in the proof of Theorem 5.1.
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Theorem 5.5. Assume Hypothesis 1.2 holds. Let X\ > 0, f € L*(X,v), and let u
be the strong solution of equation (5.5). Then u € WIQJ’Q(X, v) and

1 1
||UHL2(X,U) < X”f”p(x,y)? ”vHUHL?(x,V;H) < ﬁ”f”]}(x,y);

||V§{u||i2(X,u;H2) + /X <V%{UVHu,VHU>dV = 2||fHI2—42(X7”)'

5.2. The general case

Assume that Hypotheses 1.1 and 1.2 hold. Let x € X and let C C X be a Borel set.
We define

inf {|h|,; |h € HN(z—C)} if HN(z—C) #0;
=0

dp(2,C) = {%0 if HN(z—C)

dp can be seen as a distance function from C along H. This function has been
already considered in,?8,4°8 Example 5.4.10,,%” and.'? For o € (0, 1] let U, be the
Moreau—Yosida approximation along H of the weight U defined in Section 3.

We approach the problem in € by penalized problems in the whole space X,
replacing U by

1
Va(x) :=Uq(x) + %d%(m, 0).
for o € (0,1]. Namely for « € (0, 1], we consider the problem
Mg — Ly g = f (5.8)

where A > 0, f € L2(X7 Vo), Vo = € Vep and L, = L, x. The first result we
need to recall is'? Proposition 5.2.

Proposition 5.6. Assume that Hypotheses 1.1 and 1.2 hold and let o € (0,1].
Then the following properties hold:

(1) Vi, is a convex and H-continuous function;
(2) V., is differentiable along H for p-a.e. © € X, and VgV, H-Lipschitz;
(3) eV € WHP(X, ), for every p > 1;
(4) Vo € WX, 1), where t is given by Hypothesis 1.2;

. U(z) x € O

1 = ’
(5) lim,_,o+ V() {—l—oo v Q.

By Proposition 5.6 we can apply Theorem 5.4 to problem (5.8) and get the
following maximal Sobolev regularity result (see also'? Theorem 5.3).

Theorem 5.7. Assume Hypotheses 1.1 and 1.2 hold and let « € (0,1], A > 0
and f € L2(X,v,). Problem (5.8) has a unique weak solution u,. Moreover u, €
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W?,f (X,va) and

1 1
”uOéHL2(X,ua) < XHfHLz(X,ya); ”vHU(XHL?(X,ua;H) < \f/\Hme(X,ya); (5.9)

Hvi,uauiz(ma%)+/X<V%IvavHua,vHua>dua g2||f|\iz(x7ua). (5.10)

In addition, for every o € (0,1], there exists a sequence {u&")}neN C .FE€(X) such

that u,(xn) converges to us in W22%(X,v,) and )\u,(xn) - L,,au((]n converges to f in
L%(X,vy).

We are now ready to prove Theorem 5.1.

Proof. [Proof of Theorem 5.1] The Neumann condition (5.2) and estimates (5.3)
have been proved in'? Theorems 1.3 and 1.4. Hence, it remains to prove (5.4).
Let f € .Z€,°(X). By Theorem 5.7, for every a € (0,1] the equation (5.8) has a
unique weak solution u, € W22(X,v,) such that inequalities (5.9) and (5.10) hold.
Moreover, for every ¢ € .F%€,°(X) we have

)\/ uagadlla—l—/ (VHua,VH@HdVa:/ fpdug.
X X X

By Proposition 5.6 and Proposition 3.1(2) we have

e U@ < e7lal@) = g=Val2), x €,
and so the inclusion W?22(Q,v,) C W22(Q,v) follows, for every « € (0,1].

Let {an}, oy be a sequence converging to zero such that 0 < a,, <1 for every
n € N. By inequalities (5.9) and (5.10) the sequence {uq, |7 € N} is bounded in
W?22(Q,v). By weak compactness there exists a subsequence, that we will still
denote by {ay},,cy, such that u,, weakly converges to an element u € W#2(Q,v).
Without loss of generality we can assume that u,,, Vguas, and V%u,, converge
pointwise p-a.e. respectively to u, Vyu and V% u. By Fatou’s lemma and inequality
(5.10) we get

IV s + [ (VUm0 Vi <
T Q

2 2
L2 H2) T /Q <VHUQ,,LVHua",VHu%L)dzxan)

IA

n——+00

< lim inf (Hvi,uan

IN

o 2 2 2
< lim inf (HVH%TL||L2(X,M;H2) t /X <VHVanVH“aanH“an>d’/an)
2 2
<20t (xpny < 2012000

Finally, if f € L2 (Q,v), a standard density argument gives us the assertions of our
theorem. O
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6. Proof of the main results

Theorems 1.3, 1.4 and 1.6 are consequence of the following result.

Theorem 6.1. Assume that either Hypotheses 1.1 and 1.2 hold or Hypothesis 1.2
holds and §2 is the whole space. Then Zé?\, (Q,v) CD(L,q) C Wé?\,(ﬂ, v). Further-
more if we denote with ||| p, ) the graph norm in D(Ly,q), i.e. for u € D(Lyq)
2 2 2
||u||D(LV,Q) = ||UHL2(Q,1/) + ”LV,QUHLQ(Q,V)v
then for u € Z5*(Q,v) and v € D(L,.q) it holds that
HUHD(LUYQ) < ||u||Z[2]”2N(Q,y) and ||”||W5:§V(Q,y) < 2\@||U||D(L,,,Q)-

Proof. We prove the theorem assuming Hypotheses 1.1 and 1.2 hold, since in the
case when Hypothesis 1.2 holds and €2 is the whole space the proof can be obtained
in a similar way using Theorem 5.5.

Let u € D(L,q). Hence, \u — L,u € L*(Q,v), for every A € (0,1), and by
Theorem 5.1 we get u € Wf,?\,(ﬁ v). Moreover

2 1 2
\|u||W5§V(Q y < (AQ +3 +2>||Au Luaulliag,) <

2 2
F i3 St 2) (2XullE2 o) + 21 Lvgullia,) <

1 1 1 1
< 2<A2 +5+ 2) (HUHiz(Q,y) + I\Lu,guHiQ(Q,y)) = 2(A2 +5F 2) ulBr, o)
(6.1)

Letting A — 1~ in inequality (6.1) we get ||uHW2 29, < 2fHu||D Lu.c):
Assume that u € ZU N(Q v). Proposition 4.2 implies that div, o Vyu € L*(Q,v)
and

/<va,VHu>HdI/:7/ fdiV%Q VHudl/,
Q Q

for every f € F€;° (). Then we have v € D(L, o) and L, gu = div, o Vyu. By
Proposition 4.2 we have

2
lullpz, ) = ||“||L2 aw) T Iy QU||L2(Q V) = ||U||L2 Q) +||d1VuQVHU||L2(Q v S
< ||UHL2(Q,1/) + ||VHUHZ[1]’2(Q,U;H) = ||U\|z§;,2N(Q,V)a

for every u € Z (Q v). O

We can actually simplify the statement of Theorem 1.3 when VyzU is H-
Lipschitz and € = X. Indeed, let us observe that if VyU is H-Lipschitz then
the function z — [|[V4U(z)||%, is essentially bounded (see® Theorem 5.11.2(ii)).
So W22(X,v) is isomorphic to 1/1/5’2()(7 v), with

Hu||w2=2(x,u) < ||u||W[2]’2(X7V) < max{1, esssup,cx HV%{U(@HHZ}HUHW?«?(X,V)'
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In particular if VU is H-Lipschitz, then Z%;(X) is dense in WE’Q(X, v).

Corollary 6.2. Assume Hypothesis 1.2 holds and VyU is H-Lipschitz. Then
D(L,x) = W?**X,v). Moreover, for every u € D(L, x), it holds L, xu =
div, x Vgu and
1
max{1, esssup,cx [V U ()|, }

lull oz, o) < Ml (x,) < 2V2lull o, -
The same holds true, with obvious modifications, when 2 is a Neumann extension
domain.

This result has been already proved in'' Theorem 6.2.

7. A characterization in the Hilbert case when Q2 = X

When X is a Hilbert space and 2 = X, then we characterize the domain of L,.
In particular, we show that, under suitable assumptions on U, it is possible to
show that D(L) = W2*(X,v) = W2(X,v). In this section, we denote by Q the
covariance operator of u (see®).

Hypothesis 7.1. In addition to Hypothesis 1.2, we assume that there exists a positive
constant C' such that

—(VuU(z),z)x < Clz|x, (7.1)
p-a.e. x € X.

The following proposition is an improvement of* Corollary 1. Let {ey}ren be
an orthonormal basis of X of eigenvectors of @) such that Qe = Agex for any k € N.
At first, we recall the following integration-by-parts formula in Hilbert spaces:

/ (D, Qer) x b + / (D, Qex) x iy = / POVl +aen)xdv,  (72)
X X X

for any ¢,% € C}(X) and any k € N, where Dy denotes the Fréchet derivative of
. We recall that, if we consider the orthonormal basis {h, = vAnen}tnen in H,
then the integration-by-parts formula (7.2) reads

/ O, b + / O, oy = / o + O, U
X X X

Proposition 7.2. For any ¢ € WH2(X,v) we get
x|z xp(z) € LA(X,v),
Moreover, if o € W22(X, ) then
r e |z x|Vae(x)|g € LA(X,v).

Finally, for any s € N, if ¢ € W%(X,v) then the function x
2[R Vie(@) ||z, () belongs to L*(X,v) for any m,r € N such that m +1r < s.
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Proof. In (7.2) we consider ¢ € FE€}(X) and ¥(z) := @(x){z,e)x. We have
2 [ (De(o), Qer) xola) o cadxvida) + i [ p(o)vide)
X X

- / ()2 ex) e v(de) + / D@ (VaU (), ex)x (z, ex) xv(de).
X X

Applying the Young’s inequality to the first integral in the left-hand side and sum-
ming up over k € N, we deduce that

3 [ elaPlafr(dn) < = [ o@HTU).)xr(dn) + trace@ [ pla)vida

+2 traceQ/ |Q'2Dp(z)|%v(dx), (7.3)
b'e

where trace Q := ) .y An. We want to estimate the first integral in the right-hand
side. From Hypothesis 7.1 we obtain

—p(a)(VaU(z),2)x < Co(2)*|zx.

Hence,

7/ o)X (VU (z),z) xv(dz) gC/
X

[ ptaflalxrtdn) < € [ ptaputdn) + 5 [ plaflafir(da),

b'e
where the last inequality has been obtained applying once again the Young’s in-

equality and C' is a positive constant. Therefore, replacing in (7.3) it follows that

: /X (@)l kv (de) <(traceQ + C) /

o(x)*v(dz) + 2 traceQ/ QY2 Dy (x) % v(dx).
X X

Since for smooth functions we have |Vgp|g = |QY/2Dy|x we get

/ o(2)?|z|%v(d) <A(trace Q + C) /
X

o(z)*v(dz) + 8 traceQ/ IV ro(z)|3v(dr).
X b

(7.4)

and applying Fatou’s Lemma and the dominated convergence theorem, the density
of FE€4(X) in WY2(X, 1) gives the thesis. Further, if we consider ¢ € .F%€3(X),
replacing ¢ with Jxp in (7.4) and summing up over k, we obtain

/ IV (@) e v (da) <A(trace Q + C) / IV () B (da) + § trace Q / V2,0 (x) v (da).
H X X

Again, an approximation argument implies that the function = +— |z|x |V (z)|g €
L23(X, p) for any ¢ € W22(X, p).

The general case s € N follows taking ¥ € F%;(H) and setting ¢(z) :=
Ohy..n, (@), with hy, ..., h, € {e : k € N}, and ¢ (z) := (@) (z, ex)x [[1—] (z, )%
Then, starting from r = s — 1 and m = 1 and concluding with » = 0 and m = s,
arguing as above we conclude. O
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Theorem 7.3. Assume that Hypothesis 7.1 holds true, and that there exists a posi-
tive constant C such that V34U (z)|g < C(1+|z[%), then WZ* (X, v) = W>2(X,v)
and Theorem 1.3 applies.

Proof. We recall that
||UHW[2]’2(X,I/) = ||u||W2,2(X’,,) + /X<V%{UVHU,VHU>HCZV.
From Proposition 7.2 and the assumptions on U we have

J Ui, Vawuldr < € [ (Vuulydv+C [ folVaut) v < Kljulws o,
X X X

for some positive constant K. This means that || - [|y22(x,) and || - ng,z(x ,) are
equivalent norms, and therefore Wé’Q(X ,v) = W22(X,v) and therefore .Z€%(X)
is dense in W% (X, v). |
8. Examples

We conclude the paper by presenting some examples. In Subsection 8.1 we study
in detail the case when €2 is the ball sphere of a Hilbert space and we show that, in
this case, the spaces Z(€2, H) is non-trivial, namely it is infinite dimensional, but
the space Z(2) contains only the constant functions. In Subsection 8.2 we prove
Theorem 1.7 giving a characterization of the domain of the Ornstein—Uhlenbeck
operator on half-spaces. Finally, in Subsection 8.3 we provide some examples of U
satisfying Hypothesis 7.1 and 2 = X.

8.1. The unit sphere of a Hilbert space

Let X be a separable Hilbert space, with norm ||-||, and inner product (-,-)x, and
let u be a centered non-degenerate Gaussian measure on X. Let {h,}nen be an
orthonormal basis of X which consists of eigenvector of the covariance operator @,
i.e. Qh, = A\hy,, it is known that an orthonormal basis of the Cameron—Martin
space H is {v/Anhn bnen (see®).

Consider G(z) = (z,x)x — 1, for any = € X, then

Q={reX||z|y <1} = SBx.

Clearly, G(z) = 0 if and only if € Sx the unit sphere of X. Moreover, easy
computations show that 9,G(z) = 2(z, h) x for any z € X and any h € H. Hence,
if , we have

VaG(x) =2Q" 2z =2/ An(2, ho) x (V Anhn),
n=1

for any z € X, and so |[VpG(z)4 = 4|Q2%z|% = 43°° M\, hy)%. So
VuG(z) = 0 if, and only if, z = 0. Finally G satisfies Hypothesis 1.1 (see'?)
and O, m G(x) = 2X,00,m.
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As an admissible weight we can take U(x) := ®(||z|%), where ® : R — R is a
C? convex function which satisfies

@ (1)],|@" ()| <t*,  teR,

for some positive integer k. It is easy to prove that U is convex and satisfies the
Hypothesis 1.2.
Observe that
there exists n € N and {k1,...,k,} CH
such that & = ZZ 1 pik; for some n € N,
and @; € FE€3(Q) fori=1,...,n.
In addition (®, Vg G), =0 p-a.e. in Sx.

Z(PBx,H) = :Bx - H

In particular all the vector fields

h; h
‘I%‘,j(ﬂf) — 7(1'7 )X ({E J)
Vi VA
belongs to Z(#x, H), so the space Z(1]’2(<%’X, v; H) is infinite dimensional and con-
tained in the domain of the divergence operator (see Theorem 4.2).

The domain of the operator L, &, contains the space Z?ﬁv(@x, v), i.e. the
completion of the space

Z(Bx) = {u c gﬁgi(@x) ’ (Vau,VaG)y =0 for p-ae. inx € SX};

Xp,

hy +

with respect to the norm

2 2
||u||Z12f2(=@X7V) = ||U||W2,2(‘@X’V)+ /Jg <V%JU, VHU7 VHU>HdV+

o—®(1)

+2 Z A 5nm/ o, uamuHQl/sz

n,m=1

We want to show that in this case the space Z(f, N(Q, v) only contains the constant
functions. Indeed let v € Z(%x), without loss of generality assume that u(x) =
o((z, h1)x, (z, ho)x) with ¢ € €7 (R?). The Neumann boundary condition

+oo
Z VAi(x, hi)x0u(x) = 0 for p-a.e. in z € Sx
implies
VAL, h)x010((2, ha) x, (2, h2) x ) + V/ A2(2, ho) x Oap((2, h1) x, (2, h2) x) =0
for p-a.e x € Sx. So the function ¢ satisfies the differential equation

VAMEOL(E) + V Aabadap(€) = 0 for every € € B . (8.1)

We want to remak that the condition £ € %p2 is a consequence of the fact that, if
r € Sx, then the vector (£1,&) = ((@, h1), (z, he)) belongs to the unit ball of R?.
All the solutions of (8.1) are functions of the form

o(&) =g (&6 V™),
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where ¢ is a sufficiently regular function in R. It is easy to see that if ¢ is non-
constant, then ¢ cannot be continuous at the origin.
So Theorem 6.1 only gives us

D(Lgy) S Wik (Bx,v).

We want to remark that a positive answer to the question “Is Zx a Neumann
extension domain?” would allow us to apply Theorem 1.6 and get a characterization
of the domain of Lg, ,.

8.2. The Ornstein—Uhlenbeck operator on half-spaces

In this section we give a characterization of the domain of the operator L, o, where
) is a half-space and p is a centered non-degenerate Gaussian measure on a sepa-
rable Banach space X. To do so we need some preliminary results, in particular a
lemma about extensions of Sobolev functions and a proposition about finite dimen-
sional approximations. We recall that Zg(X, p) = W22(X, 1) (seed).

Let z* € X* \ {0} and r € R, throughout this section we set G(z) := z*(z) — r
and Q := G~1(—00,0]. We recall that z* is a linear and continuous functional on
H, so there exists hy- € H such that for every h € H

x*(h) = (hg=, h) .
Finally we remind the reader that

WOQ”]%,(Q,M) ={ueW»?(Q,pn) | #*(Tr(Vgu)(z)) = 0 for p-ae. x € G71(0)}.

Lemma 8.1. There exists a Neumann extension operator from WOQ,’]%,(Q,M) to
W22(X, ).

Proof. We use a generalization of the reflection method, adapted to our Gaussian
measure. Let f € F€3(Q) and put

Bf(z) f(@), G(z) <0,
X)) .= . * Cj xT j 2 x .
Sioiaf (o - G+ 1DG@) g ) exp (- 295HHE), Ga) > 0;
(8.2)
where for every j =1,...,7,
1 2(5 + D)r 1

and
7

7 7
Sa=1,  YaG+n=0, YaG+1?=0 (8.4)
j=1 j=1 J=1

7

7 7 7
Zajcj(j —+ ].) = O, Zajc? = 0, Zajcj = 0, Z(Zjbj = O (85)
j=1 j=1 i=1 =1
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We start by proving that E f is well defined. Indeed for j = 1,...,7 and x € X such
that G(z) > 0 we have

|he- H a5

G<x— <j+1>G<w>’”‘*2> . (m— G+ 1)(e" (=) —>|h> —r=

|hx* i[

=z"(x) = (j+ (" (x) —7) —r=—jG(x) <0

We point out that (8.4) are the classical conditions to prove the continuity of Ef
and its derivatives. (8.3) and (8.5) arise from the exponential term in (8.2), which
is used to prove the continuity estimate for the extension operator.

The fact that Ef belongs to .Z%}5(X) is obvious. Fix an orthonormal basis

{hit}i

t51i|hw*

ha= | }, without loss of generality
. Let 29 € X such that G(zg) = 0, then G(zg + th;) =
- We have for ¢ # 1

0B f(x0) = 0if(x0),

while

Jim 1<E Flxo + thy) — Ef(x0)) = 01 f(wo);

t—0—

-3

Tim (B (o + thy) ~ Bf (o)) ;aj(alfxo (L= (G + 1) = F(@0)5) = S (ao).

|ho |3 2oy

Thus, letting T;(x) := z — (j + 1)G(z) 2= and A;(x) := exp (—M)

0. B Oif (), G(z) < 0;
IO =\ S a4, @) (- G+ D80SI ) — AT (@) 2E0545,,), Gla) > 0.

In the same way it holds

0;0;f(z), G(z) < 0;

0;0,Ef(x) = { Bij(z), Glz)> 0,
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where
! Ry (,w>
Z wdf |z — (I+1)G(z )| ) Mol ) (1= (L4 1)815)(1 — (I + 1)0y,)+
. _ e G@) b G2 (x) 9
—Zala < )|:w 2>e( el )(1_(1"‘1)511‘)[%513'—&—
_aG@)+b G2 (=)
—Zala f(ff— (+1)G )|:“"*2>e< T >(1—(l+1)51j)2blG(~”2”HCl(su+
. _aG@+bG2@) \ (9 2
Z f( —(+1)G ()ls’” 2>e< i ge e )MZG(Z)_FCZ)(;M(;U_F

.

- (_M)
H Zalblf r—(I+ 1)G($)T‘2 e 2[hgr S1i61,.

=1 | z*

So Ef belongs to Z€3(X) and Ef(z) = f(z), VuEf(z) = Vi f(z), V4 Ef(z) =
V2 f(x) for every x € . Without loss of generality we can assume that there exists
n € N and ¢ € €3(R") such that for every z € X

We remark that

By  { V@ Bal@)e Bu(o)), A * RO
S0 (—ja* @) + G+ D ha(@), . (o)) exp (- 2P nt) () > .

So we have
/ Ef (@) du(x) < / WO(Er, ar . 0) Pdpin (€)+
X &1 <r
! . _ b a2 |2
T3 /5 (=i + (G + D an ) oxp (—CJ“I g)}j;*fl ’")) djin €).
(8.6)

We remark that du, (&) = exp(f\§|2/2|hz*\H)dx. For every j = 1,...,7, consider
the change of variable:

m=—j&+ G+
{nlzfia 7/:27a7 (87)
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We use (8.7) in the second integral of (8.6), and we get

7 2
. . Ci —7r +b —r 2
Za?/ w(_ng + (-7 + 1)717 &, 7€n) exp (_ j(gl 2?}1 - |J (51 ) > dﬂn(g) =
j=1 &1>r | g
. . (& — 1)+ b€ — )2\ P -

:Za?/ w(_]gl+(]+1)Ta€27“~a€n)exp <_ J(gl 2)|h ](61 ) ) e 2haxly df:

j=1 §i>r z* | H

7 . =T ) =T 2\ |? (,771*({+1)r)2+2n7 2
2 C] - 3 +b] 77 _ J2h i=2 "
:Zaj/ 1/)(77157727'”777%)6)(1) - oM e [hoe Ty d§
j=1 Jmsr |har|

Using the definition of a;,b; and c; we get

>

j=1 §1>r

d/‘n(g) =

cj(6r —1) +bi(& — 7")2>
2|hac*|H

¢(_]§1 + (J + 1)T, 527 e 757’7,) €xXp (_

= C/ ‘w<§1a§27a§n)|2dun(€)
&1<r
for some constant C' > 0. So
JIEF@Pdu@) <K [ osban e & dnale) = K [ 7@ du(o),
X & <r Q

where the constant K > 0 depend only on r and a; for ¢ = 1,...,7. Using similar
arguments on Vy Ef and V4 Ef we get for every f € FE3(Q)

IEflw22(x,) < Ellfllwee(0,u

where K > 0 is an adequate constant independent of f. A standard density argu-
ment gives the thesis of our lemma. DO

Using Lemma 8.1 and Theorem 1.6 we get a characterization of the domain of
L, . In order to get Theorem 1.7 we need a further approximation argument.

Proposition 8.1. Let u € W22(Q, u) be such that (Vgu(z), hys)y =0 for p-a.e.
x € G7Y(0). There exists a sequence (un)nen belonging to FE3(Q) such that

(1) (Vgun(x),hy) gy =0 for every n € N and p-a.e. z € G~1(0);
(2) (up)nen converges to u in W22(, p).

Proof. Fix an orthonormal basis {h;};eny of H obtained by completing the set
{hy~/|he+| g}, without loss of generality we let hy = hys/|hg=| ;. Let u € W22(Q, u)
be such that

ou(z) = (Vgu(x), hy ) = 0 for p-a.e. z € G1(0) (8.8)
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Let Eu be the extension defined in Lemma 8.1. We denote with P,,S, : X — H
the functions defined as

n too
Pox =3 hi(x)hi and  Spy= Y hi(y)hi;
i=1 i=ntl

for every x,y € X. We recall that P,z converges pointwise p-a.e. € X to x (see®

Theorem 3.5.1). Let

vp(z) = /X Eu(P,z + Spy)du(y),

by® Corollary 3.5.2 and Proposition 5.4.5, u,, converges to Eu in W22(X, u) as n
goes to infinity and for every i,n € N

O; Eu(Pyx + S,y)d i <n
Dvn () = {gx ( y)du(y) =

Observe that if x € G71(0), then for every y € X and n € N

n +oo
G(Ppz+ Spy) = 2" (Paz + Spy) =1 =Y _hi(x)(haw hi)y + > hi(y)(hae hi)y — 7 =
=1 i=n-+1

= hy(2)|hq-

g—r=z"(z)—r=0.

By (8.8) we get
(Vaon(z), he) g = / O1Bu(Ppx + Spy)du(y) = / Ovu(Prx 4 Spy)du(y) = 0,
X X

for p-a.e. z € G1(0).

We are almost done, but we need smoother function satisfying Proposition
8.1(1)-(2). Let ¢ (&) = v, (31—, &hi). We remind the reader that i, belongs
to W22(R", o P;t) and

N, (€) =0 for £ € R™ such that & =r.

Let £ be the generator of the m-dimensional Ornstein—Uhlenbeck operator with
homogeneous Neumann condition in L*(O,,, po P, 1), where O,, = {£ € R" |& < r}.
By?! Theorem 12.4.9 we know that the domain of £ in L*(O,,, o Py 1) is

D(Ly) = {gp € W32(Op, uo PY) ’ (&, V) € L%(Op, o PY), 010(€) = 0 when & = 7“}
and

||D’“R()\, Ly) ||L(L2(On,uoP;1)) S 2k)‘§71’

where R(-, L}}) is the resolvent operator associate to L{ and k = 0,1,2. Let f,, :=
Y — LBy, where the equality is meant in L*(O,,p o P;'). Let (fnk)ken be a
sequence of bounded smooth function such that f,  converges in L*(O,,, o P, 1)

to f, as k goes to infinity. We let
1pn,k = R(]~7£(7)l)fn,k
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We recall that 1, 1, belongs to D(£2) and to €5 (R") (see?! Section 12). Let
Frpu(@) = Yo p(hi(z), ..., ho(z)).

We get that F, ju belongs to .F€5(2) and satisfy the Neumann condition at the
boundary. Let € > 0 and consider n., k. € N such that

€
l[vn. — Eu||W2~2(X,y) < 9 ¥ k. — wnusw(onE,MoPJ;) < by

So
[ Fre eou — U”Wz,z(g,m < P — EU||W2,2(X’M) <
[Ene ket = On oo gy + 1one = Bullypze x ) <
< Wno k. — 7/’n5||wz,2(on£ gopiy Tt [on. = Eully22(x ) < &

Thus the sequence uy, := Fy, _, x _,ufor m € Nis the sequence we were looking
for. D

As a consequence of Corollary 1.4 and Proposition 8.1, we get Theorem 1.7.

8.3. The case 2 = X when X is a Hilbert space
Let X = L?(0,1) endowed with the classical Wiener measure v"V. It is well known
that H = H}(0,1) := {f € W%(0,1) : f(0) = 0}. An orthonormal basis of X is
given by
t 4
€, = \/isin—7 A =—————, neN
VAn

Let us choose
1
Ui = [ ey

where ® : R — R is a smooth convex function such that |®”(t)| < C(1 + t?),
for some positive constant C. Then, arguing as in'? Example 7.3, it follows that U
satisfies Hypothesis 1.2 and

0U(f) = Vo / &' (f(2))en () de,

for any n € N. It remains to show that (7.1) holds true. To this aim we recall that,
since ® is convex, we have (®'(¢t) — ®'(0))t > 0. Hence, it follows that

(VD). Hizon =3 M [ ¥ @)@ > 3280 [ fwye

1
neN 0 neN
This implies
—(VaU(f), firz01) < Z An|® (0)[[1 £l 22 (0,1)5
neN

and therefore (7.1) holds with C' =} An|®'(0)].
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