
11 October 2022

University of Parma Research Repository

Domains of elliptic operators on sets in Wiener space / Addona, D.; Cappa, G.; Ferrari, S.. - In: INFINITE
DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS. - ISSN 0219-0257. - 23:1(2020),
p. 2050004. [10.1142/S0219025720500046]

Original

Domains of elliptic operators on sets in Wiener space

Publisher:

Published
DOI:10.1142/S0219025720500046

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2887637 since: 2021-12-29T13:23:46Z

World Scientific Publishing Co. Pte Ltd

This is the peer reviewd version of the followng article:



April 17, 2020 16:37 WSPC/INSTRUCTION FILE
Addona180530˙domains˙on˙Wiener˙spaces-1

Infinite Dimensional Analysis, Quantum Probability and Related Topics
c© World Scientific Publishing Company

Domains of elliptic operators on sets in Wiener space

ADDONA Davide

Dipartimento di Matematica e Applicazioni, Università degli studi di Milano Bicocca,
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Let X be a separable Banach space endowed with a non-degenerate centered Gaussian

measure µ. The associated Cameron–Martin space is denoted by H. Consider two suf-
ficiently regular convex functions U : X → R and G : X → R. We let ν = e−Uµ and

Ω = G−1(−∞, 0]. In this paper we study the domain of the the self-adjoint operator

associated with the quadratic form

(ψ,ϕ) 7→
∫

Ω
〈∇Hψ,∇Hϕ〉Hdν ψ, ϕ ∈W 1,2(Ω, ν), (0.1)

and we give sharp embedding results for it. In particular we obtain a characterization
of the domain of the Ornstein–Uhlenbeck operator in Hilbert space with Ω = X and on

half-spaces, namely if U ≡ 0 and G is an affine function, then the domain of the operator

defined via (0.1) is the space{
u ∈W 2,2(Ω, µ)

∣∣ 〈∇Hu(x),∇HG(x)〉H = 0 for ρ-a.e. x ∈ G−1(0)
}
,

where ρ is the Feyel–de La Pradelle Hausdorff–Gauss surface measure.

Keywords: Domain of operator, elliptic operator, Wiener space, weighted Gaussian mea-
sure, maximal regularity, divergence operator.

2010 AMS Subject Classification 2010: 28C20, 35J15, 46G12, 47A07, 47A30

1. Introduction

Let X be a separable Banach space with norm ‖·‖X , endowed with a non-degenerate

centered Gaussian measure µ. The associated Cameron–Martin space is denoted by

1
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H, its inner product by 〈·, ·〉H and its norm by |·|H . The spaces W k,p(X,µ) for

p ≥ 1 and k ∈ N are the classical Sobolev spaces of the Malliavin calculus (see8

Chapter 5).

The aim of this paper is to study the domain of the self-adjoint operator Lν,Ω
associated with the quadratic form

(ψ,ϕ) 7→
∫

Ω

〈∇Hψ,∇Hϕ〉Hdν ψ, ϕ ∈W 1,2(Ω, ν),

where Ω is a convex subset of X, ν := e−Uµ and U : X → R is a convex func-

tion, ∇Hψ is the gradient along H of ψ and W 1,2(Ω, ν) is the Sobolev space on Ω

associated to the measure ν (see Section 2). These operators arise in Kolmogorov

equations in Hilbert spaces corresponding to stochastic variational inequalities with

reflection, such as{
dY (t, x)− Y (t, x)dt−∇HU(Y (t, x))dt+NΩ(Y (t, x))dt 3 dW (t, x);

Y (0, x) = x,

where NΩ is the normal cone to Ω and W (t, ·) is a X-valued cylindrical Wiener

process (here X is a Hilbert space). This is because, at least formally, the transition

semigroup T (t)f(x) := E[f(Y (t, x))] is generated by Lν,Ω.

In the case of the standard Gaussian measure in a convex subset Ω ⊆ Rn with

sufficiently regular boundary, the operator Lν,Ω reads as

Lν,Ωu(ξ) = ∆u(ξ)− 〈∇U(ξ) + ξ,∇u(ξ)〉 u ∈ C 2
b(Ω),

so that, if U is sufficiently regular, Lν,Ω is an elliptic operator with possibly un-

bounded coefficients, and its domain in L2(Ω, ν) is

D(Lν,Ω) =

{{
u ∈W 2,2(Rn, ν)

∣∣ 〈∇U + ξ,∇u〉 ∈ L2(Rn, ν)
}
, Ω = Rn;{

u ∈W 2,2(Ω, ν)
∣∣ 〈∇U + ξ,∇u〉 ∈ L2(Ω, ν), ∂u/∂n = 0 at ∂Ω

}
, Ω 6= Rn,

where ∂/∂n is the exterior normal derivative at the boundary of ∂Ω (see16 and32). In

the infinite dimensional case there is a characterization for the Ornstein–Uhlenbeck

operator, when Ω is the whole space and U ≡ 0 (see8 Section 5.6). In this case the

operator Lµ,X is the infinitesimal generator of the Ornstein–Uhlenbeck semigroup

Ttf(x) =

∫
X

f
(
e−tx+

√
1− e−2ty

)
dµ(y),

in L2(X,µ) and its domain is D(Lµ,X) = W 2,2(X,µ). Further results were obtained

in,11 assuming U has H-Lipschitz gradient, and Ω is the whole space. In this case

too the domain is D(Lν,X) = W 2,2(X, ν). We want to point out that in34 the

authors study in detail the case of non-symmetric Ornstein–Uhlenbeck operators

on the whole space.

This paper is a first attempt to give a characterization of the domain of Lν,Ω
in a more general setting. In order to state the main results of this paper we need

some hypotheses on the set Ω and on the weighted measure ν.
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Throughout the paper we take Ω = G−1(−∞, 0], where G satisfies the following

assumptions.

Hypothesis 1.1. Let G : X → R be a version of a function belonging to W 2,q(X,µ)∩
C2(X) for every q > 1 such that

(1) G is convex;

(2) |∇HG|−1
H ∈ Lq(G−1(−∞, 0], µ) for every q > 1;

(3) |∇HG(x)|H 6= 0 for ρ-a.e x ∈ G−1(0).

Hypotheses 1.1(1)-(2) are taken from13 and12 in order to define traces of Sobolev

functions on level sets of G and to get maximal Sobolev regularity estimates for

elliptic equations associated to the operator Lν,Ω. Hypotheses 1.1(3) allow us to

prove Lemma 4.2 which is generalization of a classical result in differential geometry

(see,306 and10).

Remark 1.1. Our results also hold true if we consider weaker assumptions on

G. However, these weaker assumptions are quite technical, and since our examples

satisfy Hypothesis 1.1, we decided to provide these set of hypotheses.

Hypothesis 1.2. U : X → R∪ {+∞} is a proper, convex, lower semicontinuous and

twice continuously differentiable along H function belonging to W 2,t(X,µ) for some

t > 3 (see Section 2 for the definition of differentiability along H). We set

ν := e−Uµ.

The assumption t > 3 may sound strange, but it is helpful to define the weighted

Sobolev spaces W 1,2(X, ν). Indeed, let us observe that, by1 Lemma 7.5, e−U belongs

to W 1,r(X,µ) for every r < t. Thus if U satisfies Hypothesis 1.2, then it satisfies22

Hypothesis 1.1; namely e−U ∈ W 1,s(X,µ) for some s > 1 and U ∈ W 1,r(X,µ)

for some r > s′. Then following22 it is possible to define the space W 1,2(X, ν) as

the domain of the closure of the gradient operator along H (see Section 2 for an

in-depth discussion).

From here on, we will denote by Tr the trace operator acting on Sobolev func-

tions (see Section 2.6), by ρ the Feyel–de La Pradelle Hausdorff–Gauss surface

measure (see23) and by FC 2
b(Ω) the space of the restriction to Ω of cylindrical

twice differentiable functions on X with bounded derivatives (see Section 2.2). We

remark that, by25 Theorem 3.1(2), 〈∇2
HU(x)h, h〉H ≥ 0, for µ-a.e. x ∈ X and every

h ∈ H. An important space in our investigation is

W 2,2
U (Ω, ν) =

{
u ∈W 2,2(Ω, ν)

∣∣∣∣ ∫
Ω

〈
∇2
HU∇Hu,∇Hu

〉
dν < +∞

}
,

endowed with the norm

‖u‖2W 2,2
U (Ω,ν) = ‖u‖2W 2,2(Ω,ν) +

∫
Ω

〈
∇2
HU∇Hu,∇Hu

〉
H
dν. (1.1)
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We remark that W 2,2
U (Ω, ν) is a Hilbert space. We will also study the following

subspace of W 2,2
U (Ω, ν)

W 2,2
U,N (Ω, ν) =

{
u ∈W 2,2(Ω, ν)

∣∣∣∣ ∫
Ω

〈
∇2
HU∇Hu,∇Hu

〉
dν < +∞,

〈Tr(∇Hu),∇HG〉H = 0 ρ-a.e. in G−1(0)

}
endowed with the norm (1.1).

Our main results are the following characterizations of the domain of the self-

adjoint operator Lν,Ω when Ω is the whole space or a half-space. We recall that by

‖·‖D(Lν,Ω) we denote the graph norm, i.e. for u ∈ D(Lν,Ω)

‖u‖2D(Lν,Ω) := ‖u‖2L2(X,ν) + ‖Lν,Ωu‖2L2(X,ν).

Theorem 1.3. Assume that Hypothesis 1.2 holds and that FC 2
b(X) is dense in

W 2,2
U (X, ν). Then D(Lν,X) = W 2,2

U (X, ν). Moreover, for every u ∈ D(Lν,X), it

holds

‖u‖D(Lν,X) ≤ ‖u‖W 2,2
U (X,ν) ≤ 2

√
2‖u‖D(Lν,X).

and fixed any orthornomal basis {hn |n ∈ N} of H

Lν,Xu =

+∞∑
n=1

(
∂nnu− ∂nu∂nU − ∂nuĥn

)
,

where the series converges in L2(X, ν) (See Section 2 for the definition of the ·̂
operator).

We remark that if the weight U is such that ∇HU is Lipschitz continuous, or

more generally H-Lipschitz (see Section 2), then FC 2
b(X) is dense in W 2,2

U (X, ν),

so that the assumption of Theorem 1.3 is satisfied (see Corollary 6.2). When X is a

Hilbert space, in Section 7 we provide sufficient conditions on U which imply that

W 2,2
U (X, ν) = W 2,2(X, ν). Therefore, the assumptions of Theorem 1.3 are satisfied

and we deduce the characterization of DLν ,X .

When G = x∗ − r where x∗ ∈ X∗ r {0} and r ∈ R, i.e. if Ω is a half-space, we

want to remark that the Neumann boundary condition: 〈Tr(∇Hu),∇HG〉H = 0 for

ρ-a.e. x ∈ G−1(0), read

x∗(Tr(∇Hu)(x)) = 〈Tr(∇Hu)(x), hx∗〉H = 0

for ρ-a.e. x ∈ G−1(0), where hx∗ is the unique vector of H such that

x∗(h) = 〈hx∗ , h〉H for every h ∈ H. (1.2)

Such an element exists since x∗ is a continuous linear functional on H.

Theorem 1.4. Assume that Hypothesis 1.2 holds and G is an affine function,

namely G = x∗ − r where x∗ ∈ X∗ r {0} and r ∈ R. If the space

Z(Ω) =
{
u ∈ FC 2

b(Ω)
∣∣x∗(Tr(∇Hu)(x)) = 0 for ρ-a.e. x ∈ G−1(0)

}
,
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is dense in the space W 2,2
U,N (Ω, ν), then D(Lν,Ω) = W 2,2

U,N (Ω, ν). Moreover, for every

u ∈ D(Lν,Ω), it holds

‖u‖D(Lν,Ω) ≤ ‖u‖W 2,2
U (Ω,ν) ≤ 2

√
2‖u‖D(Lν,Ω).

and fixed any orthornomal basis {hn |n ∈ N} of H

Lν,Ωu =

+∞∑
n=1

(
∂nnu− ∂nu∂nU − ∂nuĥn

)
,

where the series converges in L2(Ω, ν) (See Section 2 for the definition of the ·̂
operator).

We remark that showing the density of Z(Ω) in W 2,2
U,N (Ω) is not an easy task.

This difficulty can be overcome if Ω belongs to the class of Neumann extension

domains.

Definition 1.5. Let Z2,2
U (X, ν) be the completion of the space FC 2

b(X) with re-

spect to the norm defined in (1.1). We say that Ω is a Neumann extension domain

if there exists a linear operator EN from W 2,2
U,N (Ω, ν) into Z2,2

U (X, ν) such that for

every φ ∈W 2,2
U,N (Ω, ν)

(1) ENφ(x) = φ(x)for ν-a.e x ∈ Ω;

(2) there is K > 0, independent of φ, such that ‖ENφ‖Z2,2
U (X,ν) ≤ K‖φ‖W 2,2

U (Ω,ν).

The operator EN is called Neumann extension operator.

Theorem 1.6. Assume that Hypothesis 1.2 holds and that Ω is a Neumann exten-

sion domain satisfying Hypothesis 1.1. Then D(Lν,Ω) = W 2,2
U,N (Ω, ν). Moreover, for

every u ∈ D(Lν,Ω), it holds

‖u‖D(Lν,Ω) ≤ ‖u‖W 2,2
U (Ω,ν) ≤ 2

√
2‖u‖D(Lν,Ω).

and fixed any orthornomal basis {hn |n ∈ N} of H

Lν,Ωu =

+∞∑
n=1

(
∂nnu− ∂nu∂nU − ∂nuĥn

)
,

where the series converges in L2(Ω, ν) (See Section 2 for the definition of the ·̂
operator).

The characterization of Neumann extension domains is an open problem in

Wiener space theory. The only known results are mainly negative (see7), but if Ω is

a half-space and U ≡ 0, it is known that an extension operator can be constructed

(see7). Since we were unable to find explicit computations in the literature, we

made them in Lemma 8.1. Applying Theorems 1.4, 1.6 and Lemma 8.1 we get the

following characterization of the domain of the Ornstein–Uhlenbeck operator on

half-spaces, i.e. U ≡ 0 and G is an affine function.
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Theorem 1.7. Assume that Hypothesis 1.2 holds and G is an affine function,

namely G(x) = x∗(x)− r with x∗ ∈ X∗ r {0} and r ∈ R. Then

D(Lµ,Ω) =
{
u ∈W 2,2(Ω, µ)

∣∣x∗(Tr(∇Hu)(x)) = 0 for ρ-a.e. x ∈ G−1(0)
}
.

Moreover, for every u ∈ D(Lµ,Ω), it holds

‖u‖D(Lµ,Ω) ≤ ‖u‖W 2,2(Ω,µ) ≤ 2
√

2‖u‖D(Lµ,Ω).

and fixed any orthornomal basis {hn |n ∈ N} of H

Lµ,Ωu =

+∞∑
n=1

(
∂nnu− ∂nuĥn

)
,

where the series converges in L2(Ω, µ) (See Section 2 for the definition of the ·̂
operator). In addition the space

Z(Ω) =
{
u ∈ FC 2

b(Ω)
∣∣x∗(Tr(∇Hu)(x)) = 0 for ρ-a.e. x ∈ G−1(0)

}
is dense in D(Lµ,Ω) with respect to the graph norm.

The paper is organized as follows: in Section 2 we recall some basic definitions

and we fix the notations. Section 3 is dedicated to the study of the second order

analysis of the Moreau–Yosida approximations along H, that are used to prove

Theorems 1.3. In section 4 we will introduce the divergence operator divν,Ω as minus

the formal adjoint of the gradient operator along H and investigate its properties.

Namely, we consider the space

Z(Ω, H) :=

Φ : Ω→ H

∣∣∣∣∣∣∣∣
there exists n ∈ N and {h1, . . . , hn} ⊆ H
such that Φ =

∑n
i=1 ϕihi for some n ∈ N,

and ϕi ∈ FC 2
b(Ω) for i = 1, . . . , n.

In addition 〈Φ,∇HG〉H = 0 ρ-a.e. in G−1(0).

. (1.3)

For every Φ ∈ Z(Ω, H) put

‖Φ‖2Z1,2
U (Ω,ν;H) :=‖Φ‖2W 1,2(Ω,ν;H) +

∫
Ω

〈
∇2
HUΦ,Φ

〉
H
dν+

+

∫
G−1(0)

〈
∇2
HGΦ,Φ

〉
H

e−Tr(U)

|∇HG|H
dρ. (1.4)

Let Z1,2
U (Ω, ν;H) be the completion of the space Z(Ω, H) with respect to the norm

defined in (1.4). As usual the elements of Z1,2
U (Ω, ν;H) can be identified as equiv-

alence classes of vector fields with respect to the ν-a.e. equivalence relation. It is

easy to see that Z1,2
U (Ω, ν;H) is a Hilbert space. In Proposition 4.2 we will prove

that the space Z1,2
U (Ω, ν;H) is contained in the domain of the divergence operator

divν,Ω in L2 and divν,Ω Φ ∈ L2(Ω, ν) for every Φ ∈ Z1,2
U (X, ν;H). Furthermore an

explicit formula for the calculation of divν,Ω is given by (4.13).

We remark that without loss of generality we can assume that the sequence

{h1, . . . , hn} in (1.3) is a sequence of orthonormal elements ofH (indeed, it is enough

to apply the Gram-Schmidt procedure). Moreover, we stress that the boundary
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integral in (1.4) in general cannot be estimated by the W 1,2-norm of Φ. This fact

depends not only from the presence of the second order derivatives of G, but also

from the trace theory in infinite dimensions. Indeed, as shown in22 the trace of

f ∈ W 1,p(Ω) belongs to Lq(G−1(0), e−Uρ) for any q ∈ [1, p(t − 2)(t − 1)−1], where

t is the number fixed in Hypothesis 1.2. In particular if p = 2 then we do not know

if the trace operator is continuous in L2(G−1(0), e−Uρ).

In Section 5 we obtain maximal Sobolev regularity estimates for the weak solu-

tion of the problem

λu(x)− Lν,Ωu(x) = f(x) µ-a.e. x ∈ Ω, (1.5)

where λ > 0, and f ∈ L2(Ω, ν). We say that u ∈ W 1,2(Ω, ν) is a weak solution of

problem (1.5) if

λ

∫
Ω

uϕdν +

∫
Ω

〈∇Hu,∇Hϕ〉Hdν =

∫
Ω

fϕdν for every ϕ ∈W 1,2(Ω, ν).

Notice that the unique weak solution u of problem (1.5) satisfies u = R(λ, Lν,Ω)f ,

where R(λ, Lν,Ω) is the resolvent of Lν,Ω. We recall that results about existence,

uniqueness and regularity of the weak solution of problem (5.1), in domains with

sufficiently regular boundary, are known in the finite dimensional case (see the

classical books26 and29 for a bounded Ω and,6,16,3317 and18 for an unbounded Ω).

If X is infinite dimensional maximal Sobolev regularity results are known when X

is a separable Hilbert space. See for example2 and3 where U ≡ 0 and20 where U is

bounded from below. When Ω = X more results are known, see for example,1535

and31 if X is finite dimensional,19 if X is a Hilbert space and11 if X is a separable

Banach space. If X is general separable Banach space and Ω  X, then the only

results regarding maximal Sobolev regularity are those contained in,10 where the

second named author studied problem (5.1) when U ≡ 0, namely when Lν,Ω is the

Ornstein–Uhlenbeck operator on Ω, and in,12 where the second and third named

authors studied the general case.

In Section 6 we prove Theorems 1.3, 1.4 and 1.6 and some related corollaries.

Finally, in Section 8 we provide some examples to which our results can be applied.

In particular we study the case when Ω is the unit ball of a Hilbert space and we

prove Theorem 1.7.

2. Notation and preliminaries

We will denote by X∗ the topological dual of X. We recall that X∗ ⊆ L2(X,µ).

The linear operator Rµ : X∗ → (X∗)′

Rµx
∗(y∗) =

∫
X

x∗(x)y∗(x)dµ(x) (2.1)

is called the covariance operator of µ. Since X is separable, then it is actually

possible to prove that Rµ : X∗ → X (see8 Theorem 3.2.3). We denote by X∗µ
the closure of X∗ in L2(X,µ). The covariance operator Rµ can be extended by
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continuity to the space X∗µ, still by formula (2.1). By8 Lemma 2.4.1,for every h ∈ H
there exists a unique g ∈ X∗µ with h = Rµg, in this case we set

ĥ := g. (2.2)

Throughout the paper we fix an orthonormal basis {ei}i∈N of H such that êi
belongs to X∗, for every i ∈ N. Such basis exists by8 Corollary 3.2.8(ii).

2.1. Differentiability along H

We say that a function f : X → R is differentiable along H at x if there exists

v ∈ H such that

lim
t→0

f(x+ th)− f(x)

t
= 〈v, h〉H ,

uniformly with respect to h ∈ H, with |h|H = 1. In this case, the vector v ∈ H is

unique and we set ∇Hf(x) := v. Moreover, for every k ∈ N the derivative of f in

the direction of ek exists and it is given by

∂kf(x) := lim
t→0

f(x+ tek)− f(x)

t
= 〈∇Hf(x), ek〉H .

We denote by H2 the space of the Hilbert–Schmidt operators in H, that is the

space of the bounded linear operators A : H → H such that ‖A‖2H2
=
∑
i |Aei|

2
H is

finite (see21). We say that a function f : X → R is twice differentiable along H at

x if it is differentiable along H at x and there exists A ∈ H2 such that

H- lim
t→0

∇Hf(x+ th)−∇Hf(x)

t
= Ah,

uniformly with respect to h ∈ H, with |h|H = 1. In this case the operator A is

unique and we set ∇2
Hf(x) := A. Moreover, for every i, j ∈ N we set

∂ijf(x) := lim
t→0

∂jf(x+ tei)− ∂jf(x)

t
= 〈∇2

Hf(x)ej , ei〉H .

2.2. Special classes of functions

For k ∈ N ∪ {∞}, we denote by FC k(X) (FC k
b (X) respectively) the space of

the cylindrical function of the type f(x) = ϕ(x∗1(x), . . . , x∗n(x)) where ϕ ∈ C k(Rn)

(ϕ ∈ C k
b (Rn), respectively) and x∗1, . . . , x

∗
n ∈ X∗, for some n ∈ N. We remark that

FC∞b (X) is dense in Lp(X, ν) for all p ≥ 1 (see22 Proposition 3.6). We recall that

if f ∈ FC 2(X), then ∂ijf(x) = ∂jif(x) for every i, j ∈ N and x ∈ X.

If Y is a Banach space, a function F : X → Y is said to be H-Lipschitz if there

exists a positive constant C such that

‖F (x+ h)− F (x)‖Y ≤ C|h|H , (2.3)

for every h ∈ H and µ-a.e. x ∈ X (see8 Section 4.5 and Section 5.11). We denote

with [F ]H-Lip the best constant C appearing in (2.3).

A function F : X → R is said to be H-continuous, if lim|h|H→0 F (x+h) = F (x),

for µ-a.e. x ∈ X.
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2.3. Sobolev spaces

The Gaussian Sobolev spaces W 1,p(X,µ) and W 2,p(X,µ), with p ≥ 1, are the

completions of the smooth cylindrical functions FC∞b (X) in the norms

‖f‖W 1,p(X,µ) := ‖f‖Lp(X,µ) +

(∫
X

|∇Hf(x)|pHdµ(x)

) 1
p

;

‖f‖W 2,p(X,µ) := ‖f‖W 1,p(X,µ) +

(∫
X

∥∥∇2
Hf(x)

∥∥p
H2
dµ(x)

) 1
p

.

Such spaces can be identified with subspaces of Lp(X,µ) and the (generalized) gradi-

ent and Hessian along H,∇Hf and∇2
Hf , are well defined and belong to Lp(X,µ;H)

and Lp(X,µ;H2), respectively. The spaces W 1,p(X,µ;H) are defined in a similar

way, replacing smooth cylindrical functions with H-valued smooth cylindrical func-

tions (i.e. the linear span of the functions x 7→ f(x)h, where f is a smooth cylindrical

function and h ∈ H). For more details see8 Section 5.2.

Now we consider the operators ∇H : FC∞b (X)→ Lp(X, ν;H) and (∇H ,∇2
H) :

FC∞b (X) → Lp(X, ν;H)× Lp(X, ν;H2). These operators are closable in Lp(X, ν)

and Lp(X, ν;H), respectively, for any p > t−1
t−2 (see22 Definition 4.3 and11 Propo-

sition 2.1), where t has been defined in Hypothesis 1.2. For such p we denote by

W 1,p(X, ν) the domain of the closure of ∇H in Lp(X, ν), and by W 2,p(X, ν) the

domain of the closure of (∇H ,∇2
H) in Lp(X, ν). The spaces W 1,p(X, ν;H) are de-

fined in a similar way, replacing smooth cylindrical functions with H-valued smooth

cylindrical functions.

We want to point out that if Hypothesis 1.2 holds, then t−1
t−2 < 2. In particular the

above arguments allow us to define the Sobolev spaces W 1,2(X, ν) and W 2,2(X, ν).

We shall use the integration by parts formula (see22 Lemma 4.1): for ϕ ∈
W 1,p(X, ν) with p > t−1

t−2 :∫
X

∂kϕdν =

∫
X

ϕ(∂kU + êk)dν for every k ∈ N,

where êk is defined in formula (2.2). Finally, we recall that if U satisfies Hypothesis

1.2 then for every u ∈ FC 2
b(X)

Lν,Xu =

+∞∑
i=1

(∂iiu− (∂iU + êi)∂iu), (2.4)

where the series converges in L2(X, ν) (see22 Proposition 5.3).

2.4. Capacity

Let Lp be the infinitesimal generator of the Ornstein–Uhlenbeck semigroup T (t) in

Lp(X,µ), where

T (t)f(x) :=

∫
X

f
(
e−tx+ (1− e−2t)

1
2 y
)
dµ(y), t > 0.
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For k = 1, 2, 3, we define the Ck,p-capacity of an open set A ⊆ X as

Ck,p(A) := inf
{
‖f‖Lp(X,µ)

∣∣∣ (I − Lp)− k2 f ≥ 1 µ-a.e. in A
}
.

For a general Borel set B ⊆ X we let Ck,p(B) = inf {Ck,p(A) |B ⊆ A open}. By

f ∈W k,p(X,µ) we mean an equivalence class of functions and we call every element

“version”. For any f ∈ W k,p(X,µ) there exists a version f of f which is Borel

measurable and Ck,p-quasicontinuous, i.e. for every ε > 0 there exists an open set

A ⊆ X such that Ck,p(A) ≤ ε and f |XrA
is continuous. Furthermore, for every

r > 0

Ck,p
({
x ∈ X

∣∣ ∣∣f(x)
∣∣ > r

})
≤ 1

r

∥∥∥(I − Lp)−
k
2 f
∥∥∥

Lp(X,µ)
.

See8 Theorem 5.9.6. Such a version is called a (k, p)-precise version of f . Two precise

versions of the same f coincide outside sets with null Ck,p-capacity. All our results

will be independent on our choice of a precise version of G in Hypothesis 1.1. With

obvious modifications the same definition can be adapted to functions belonging to

W k,p(X,µ;H) and W k,p(X,µ;H2).

2.5. Sobolev spaces on sublevel sets

The proof of the results stated in this subsection can be found in13 and.22 Let G be

a function satisfying Hypothesis 1.1. We are interested in Sobolev spaces on sublevel

sets of G.

For k ∈ N ∪ {∞}, we denote by FC k
b (Ω) the space of the restriction to Ω of

functions in FC k
b (X). For any p ≥ 1, the spaces W 1,p(Ω, µ) and W 2,p(Ω, µ) are

defined as the domain of the closure of the operators ∇H : FC∞b (Ω)→ Lp(Ω, µ;H)

and (∇H ,∇2
H) : FC∞b (Ω)→ Lp(Ω, µ;H)×Lp(Ω, µ;H2), respectively. See13 Lemma

2.2, and10 Proposition 1.

We recall that ∇H : FC∞b (Ω) → Lp(Ω, ν;H) and (∇H ,∇2
H) : FC∞b (Ω) →

Lp(Ω, ν;H) × Lp(Ω, ν;H2) are closable operators in Lp(Ω, ν), whenever p > t−1
t−2

(see22 Proposition 6.1 and12 Proposition 2.2). For such values of p we denote by

W 1,p(Ω, ν) the domain of its closure in Lp(Ω, ν) and we will still denote by ∇H the

closure operator. The space W 2,p(Ω, ν) is defined in the same way.

Finally we want to remark that if Hypotheses 1.1 and 1.2 hold, then t−1
t−2 < 2.

In particular the Sobolev spaces W 1,2(Ω, ν) and W 2,2(Ω, ν) are well defined.

2.6. Traces of Sobolev functions

By ρ we indicate the Feyel–de La Pradelle Hausdorff–Gauss surface measure. For a

comprehensive treatment of surface measures in infinite dimensional Banach spaces

with Gaussian measures we refer to,2423 and.13

Traces of Sobolev functions in infinite dimensional Banach spaces have been

studied in13 in the Gaussian case and in22 in the weighted Gaussian case. We stress

that in13 the definition of Sobolev Spaces is different with respect to the our one,
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but these two definitions coincide in the case of Gaussian measure. Assume that

Hypotheses 1.1 and 1.2 hold and let p > t−1
t−2 . If ϕ ∈W 1,p(Ω, ν) we define the trace

of ϕ on G−1(0) as follows:

Trϕ = lim
n→+∞

ϕn|
G−1(0)

in L1(G−1(0), e−Uρ),

and it is possible to prove that Trϕ ∈ Lq(G−1(0), e−Uρ) for any q ∈ [1, p(t −
2)(t − 1)−1], where t is the number fixed in Hypothesis 1.2. Here, (ϕn)n∈N is any

sequence in Lipb(Ω), the space of bounded and Lipschitz functions on Ω, which

converges in W 1,p(Ω, ν) to ϕ. The definition does not depend on the choice of the

sequence (ϕn)n∈N in Lipb(Ω) approximating ϕ in W 1,p(Ω, ν) (see22 Proposition 7.1).

In addition the following result holds.

Proposition 2.1. Assume that Hypotheses 1.1 and 1.2 hold. Then the operator

Tr : W 1,p(Ω, ν) → Lq(G−1(0), e−Uρ) is continuous for every p > t−1
t−2 and q ∈[

1, p t−2
t−1

]
. Moreover, if U ≡ 0, then the trace operator is continuous from W 1,p(Ω, µ)

to Lq(G−1(0), ρ) for every p > 1 and q ∈ [1, p) (see13 Corollary 4.2 and22 Corollary

7.3).

We will still denote by Tr Ψ =
∑+∞
n=1(Trψn)en if Ψ ∈W 1,p(Ω, ν;H), for p > t−1

t−2 ,

and ψn = 〈Ψ, en〉H . The main result of22 is the following integration by parts

formula.

Theorem 2.2. Assume that Hypotheses 1.1 and 1.2 hold and let p > t−1
t−2 . For

every ϕ ∈W 1,p(Ω, ν) and k ∈ N we have∫
Ω

(∂kϕ− ϕ∂kU − ϕêk)dν =

∫
G−1(0)

Tr(ϕ)
∂kG

|∇HG|H
e−Tr(U)dρ.

Another important result, that we will use in this paper, is the following (see13

Proposition 4.8 and22 Proposition 7.5).

Proposition 2.3. Assume that Hypotheses 1.1 and 1.2 hold and let p > t−1
t−2 . Then

for every ϕ ∈ W 1,p(Ω, ν), the trace of Tr(ϕ) at G−1(0) coincides ρ-a.e. with the

restriction to G−1(0) of any precise version ϕ̃ of ϕ.

2.7. The spaces W 2,2
U,N and Z2,2

U,N

We recall the definition of the space W 2,2
U and W 2,2

U,N .

W 2,2
U (Ω, ν) =

{
u ∈W 2,2(Ω, ν)

∣∣∣∣ ∫
Ω

〈
∇2
HU∇Hu,∇Hu

〉
dν < +∞

}
,

endowed with the norm

‖u‖2W 2,2
U (Ω,ν) = ‖u‖2W 2,2(Ω,ν) +

∫
Ω

〈
∇2
HU∇Hu,∇Hu

〉
H
dν. (2.5)
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We consider the space W 2,2
U (Ω, ν)

W 2,2
U,N (Ω, ν) =

{
u ∈W 2,2(Ω, ν)

∣∣∣∣ ∫
Ω

〈
∇2
HU∇Hu,∇Hu

〉
dν < +∞,

〈Tr(∇Hu),∇HG〉H = 0 ρ-a.e. in G−1(0)

}
endowed with the norm (2.5).

We denote by Z2,2
U (X, ν) the completion of the space FC 2

b(X) with respect to

the norm defined in (2.5) and by Z2,2
U,N (Ω, ν) the completion of the space

Z(Ω) :=
{
f ∈ FC 2

b(Ω)
∣∣ 〈∇Hf(x),∇HG(x)〉H = 0 for ρ-a.e. x ∈ G−1(0)

}
,

with respect to the norm (2.5).

3. Second-order analysis of the Moreau–Yosida approximations

along H

We start this section by recalling the definition of the subdifferential of a con-

vex semicontinuous function. If f : X → R is a proper, convex and lower semi-

continuous function, we denote by dom(f) the domain of f , namely dom(f) :=

{x ∈ X | f(x) < +∞}, and by ∂f(x) the subdifferential of f at the point x, i.e.

∂f(x) :=

{
{x∗ ∈ X∗ | f(y) ≥ f(x) + x∗(y − x) for every y ∈ X} x ∈ dom(f);

∅ x /∈ dom(f).

For a classical treatment of subdifferentials of convex functions we refer to38 and.4

We recall that for α > 0 the Moreau–Yosida approximation along H of a proper

convex and lower semicontinuous function f : X → R ∪ {+∞} is

fα(x) := inf

{
f(x+ h) +

1

2α
|h|2H

∣∣∣∣h ∈ H}. (3.1)

See11 Section 3 and12 Section 4 for more details and9 and5 Section 12.4 for a

treatment of the classical Moreau–Yosida approximations in Hilbert spaces, which

are different from the ones defined in (3.1). Second-order analysis of the classical

Moreau–Yosida approximations have been studied in various papers, e.g.,3937 and.36

In the following proposition we recall some results contained in11 Section 3 and

in12 Section 4.

Proposition 3.1. Let x ∈ X, α > 0 and let f : X → R∪{+∞} be a proper convex

and lower semicontinuous function. The following properties hold:

(1) the function gα,x : H → R defined as gα,x(h) := f(x+h)+ 1
2α |h|

2
H , has a unique

global minimum point P (x, α) ∈ H. Moreover P (x, α) → 0 in H as α goes to

zero;

(2) fα(x) ↗ f(x) as α → 0+. In particular fα(x) ≤ f(x) for every α > 0 and

x ∈ X;
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(3) for p ∈ H, we have p = P (x, α) if, and only if, f(x + p) ≤ f(x + h) +
1
α 〈p, h− p〉H , for every h ∈ H;

(4) the function Px,α : H → H defined as Px,α(h) := P (x + h, α) is Lipschitz

continuous, with Lipschitz constant less than or equal to 1;

(5) fα is differentiable along H at every point x ∈ X. In addition, for every x ∈ X,

we have ∇Hfα(x) = −α−1P (x, α);

(6) fα belongs to W 2,p(X,µ), whenever f ∈ Lp(X,µ) for some 1 ≤ p < +∞;

(7) let x ∈ dom(f) and assume that f belongs to W 1,p(X,µ) for some p > 1.

If we define F : H → R as F (h) := f(x + h), then F is proper convex and

lower semicontinuous function. Moreover, ∇Hf(x) ∈ ∂F (0) and ∇Hfα(x) ∈
∂F (P (x, α));

(8) let x ∈ dom(f) and assume that f belongs to W 1,p(X,µ) for some p > 1. Then

∇Hfα(x) converges to ∇Hf(x) as α goes to zero.

The last property we need is the convergence of the second-order derivative

along H.

Proposition 3.2. Let f ∈ W 2,p(X,µ) for some p > 1. Assume that f is twice

differentiable along H at every point x ∈ dom f . Then for every x ∈ dom(f) there

exists ∇2
Hfα(x), and ∇2

Hfα(x) converges to ∇2
Hf(x) as α goes to zero.

Proof. By Proposition 3.1(7) we get ∇Hfα(x) = ∇Hf(x + P (x, α)). We can dif-

ferentiate along H since P (x, α) admits a H-gradient (it is H-Lipschitz).

∇2
Hfα(x) = ∇2

Hf(x+ P (x, α))(IH +∇HP (x, α)) = ∇2
Hf(x+ P (x, α))(IH − α∇2

Hfα(x)).

If we let α→ 0 then, by 3.1(8), we get limα→0∇2
Hfα(x) = ∇2

Hf(x).

4. The divergence operator

We start this section by recalling the definition of divergence, see8 Section 5.8 for

the case Ω = X. For every measurable map Φ : Ω→ X and for every f ∈ FC∞b (Ω)

we define

∂Φf(x) = lim
t→0

f(x+ tΦ(x))− f(x)

t
, x ∈ Ω. (4.1)

Definition 4.1. Let Φ ∈ L1(Ω, ν;X) be a vector field. We say that Φ admits

divergence if there exists a function g ∈ L1(Ω, ν) such that∫
Ω

∂Φfdν = −
∫

Ω

fgdν, (4.2)

for every f ∈ FC∞b (Ω), where ∂Φf has been defined in (4.1). If such a function g

exists, then we set divν,Ω Φ := g. Observe that, when divν,Ω Φ exists, it is unique

by the density of FC∞b (Ω) in Lp(Ω, ν) (see22). We denote by D(divν,Ω) the domain
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of divν,Ω in L1(Ω, ν;X). Lastly, we observe that if Φ ∈ L1(Ω, ν;H), then ∂Φf(x) =

〈∇Hf(x),Φ(x)〉H for x ∈ Ω. In this case (4.2) becomes∫
Ω

〈∇Hf,Φ〉Hdν = −
∫

Ω

fgdν, for every f ∈ FC∞b (Ω). (4.3)

We remark that in L2-setting, the divergence operator divν,Ω is −∇∗H , the L2-

adjoint of the gradient along H operator. Indeed, for any Φ ∈ L2(Ω, ν;H) and any

f ∈W 1,2(Ω, ν) we get ∫
Ω

〈∇Hf,Φ〉Hdν = −
∫

Ω

f divν,Ω Φdν.

The following two technical lemmata are crucial to show Theorems 1.3 and 1.4.

In particular, the second one is a generalization of a well known result in differential

geometry, see,306 and.10

Lemma 4.1. If Hypothesis 1.2 holds, then∫
X

(
∂hf − f∂hU − fĥ

)(
∂kg − g∂kU − gk̂

)
dν =

=

∫
X

fg∂h∂kUdν + 〈h, k〉H
∫
X

fgdν +

∫
X

∂kf∂hgdν.

(4.4)

If Ω ( X, let Hypotheses 1.1 and 1.2 hold true, and let f, g ∈ FC 2
b(Ω) and h, k ∈ H.

Then ∫
Ω

(
∂hf − f∂hU − fĥ

)(
∂kg − g∂kU − gk̂

)
dν =

=

∫
G−1(0)

f
(
∂kg − gTr(∂kU)− gk̂

) ∂hG

|∇HG|H
e−Tr(U)dρ+ (4.5)

−
∫
G−1(0)

f∂hg
∂kG

|∇HG|H
e−Tr(U)dρ+

∫
Ω

fg∂h∂kUdν+

+〈h, k〉H
∫

Ω

fgdν +

∫
Ω

∂kf∂hgdν.

Proof. We will only prove (4.5), since the proof of (4.4) is essentially the same.

We will use Theorem 2.2 several times. We have∫
Ω

(
∂hf − f∂hU − fĥ

)(
∂kg − g∂kU − gk̂

)
dν =

=

∫
Ω

∂hf
(
∂kg − g∂kU − gk̂

)
dν −

∫
Ω

(
f∂hU + fĥ

)(
∂kg − g∂kU − gk̂

)
dν =

=

∫
Ω

∂h

(
f
(
∂kg − g∂kU − gk̂

))
dν −

∫
Ω

f∂h

(
∂kg − g∂kU − gk̂

)
dν+

−
∫

Ω

(
f∂hU + fĥ

)(
∂kg − g∂kU − gk̂

)
dν =
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=

∫
Ω

∂h

(
f
(
∂kg − g∂kU − gk̂

))
− f

(
∂kg − g∂kU − gk̂

)
∂hU − f

(
∂kg − g∂kU − gk̂

)
ĥdν+

−
∫

Ω

f∂h

(
∂kg − g∂kU − gk̂

)
dν =

=

∫
G−1(0)

f
(
∂kg − gTr(∂kU)− gk̂

) ∂hG

|∇HG|H
e−Tr(U)dρ−

∫
Ω

f∂h

(
∂kg − g∂kU − gk̂

)
dν =

=

∫
G−1(0)

f
(
∂kg − gTr(∂kU)− gk̂

) ∂hG

|∇HG|H
e−Tr(U)dρ−

∫
Ω

f∂k∂hgdν +

∫
Ω

f∂hg∂kUdν+

+

∫
Ω

fg∂h∂kUdν +

∫
Ω

f∂hgk̂dν + 〈h, k〉H
∫

Ω

fgdν =

=

∫
G−1(0)

f
(
∂kg − gTr(∂kU)− gk̂

) ∂hG

|∇HG|H
e−Tr(U)dρ+

∫
Ω

fg∂h∂kUdν + 〈h, k〉H
∫

Ω

fgdν+

+

∫
Ω

∂kf∂hgdν −
∫

Ω

∂k(f∂hg)− f∂hg∂kU − f∂hgk̂dν =

=

∫
G−1(0)

f
(
∂kg − gTr(∂kU)− gk̂

) ∂hG

|∇HG|H
e−Tr(U)dρ−

∫
G−1(0)

f∂hg
∂kG

|∇HG|H
e−Tr(U)dρ+

+

∫
Ω

fg∂h∂kUdν + 〈h, k〉H
∫

Ω

fgdν +

∫
Ω

∂kf∂hgdν.

Lemma 4.2. Assume Hypothesis 1.1. Let Φ ∈ Z(Ω, H) the space defined in (1.3).

Then for ρ-a.e. x ∈ G−1(0)〈
(∇2

HG)(x)Φ(x),Φ(x)
〉
H

= −〈(∇HΦ(x))Φ(x), (∇HG)(x)〉H . (4.6)

Proof. The proof is rather long and it will be split into various steps. Let {hi}i∈N
be the orthonormal basis of H associated with Φ given by the definition of the space

Z(Ω, H). By Hypothesis 1.1, Proposition 2.3 and the very definition of Z(Ω, H) the

set

A =
{
x ∈ G−1(0)

∣∣ |∇HG(x)|H 6= 0, 〈Φ(x),∇HG(x)〉H = 0.
}

(4.7)

has full ρ measure. We will prove that (4.6) holds for every point x0 belonging to

A. By (4.7) we have ∇HG(x0) 6= 0, so there exists n0 ∈ N such that

∂n0
G(x0) 6= 0.

Without loss of generality, we can assume that n0 = 1. By the very definition of

the space Z(Ω, H) there exist K(Φ) > 0, k ∈ N and (ϕi)
k
i=1 ⊆ FC 2

b(Ω) such that

for every k1, k2 ∈ H it holds

|Φ(x0 + k1)− Φ(x0 + k2)|H ≤ K(Φ)|k1 − k2|H , (4.8)

and Φ(x) =
∑k
i=1 ϕi(x)hi. For i > k we set ϕi(x) ≡ 0.

Step 1: Let us consider the space

h⊥1 =
{
h ∈ H

∣∣ 〈h, h1

〉
H

= 0
}
,
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endowed with the Hilbert space norm
∣∣h∣∣

h⊥1
=
∑+∞
i=2

〈
h, hi

〉2
H

. We denote its

inner product by 〈·, ·〉h⊥1 and recall that {hi}i≥2 is an orthonormal basis for h⊥1
and H = h⊥1 ⊕ span {h1}. We want to apply the implicit function theorem to a

function defined on h⊥1 ⊕ R. Let Gx0
: h⊥1 ⊕ R→ R be the function defined as

Gx0
((h, α)) := G(x0 + h+ αh1).

Observe that Gx0
((0, 0)) = G(x0) = 0 and

D2Gx0
((0, 0)) = ∂1G(x0) 6= 0,

where D2 is the derivative with respect the second variable. Hypothesis 1.1

implies that Gx0
is Fréchet differentiable at 0, applying the implicit function

theorem, see30 Theorem 5.9, we get an open neighborhood U0 ⊆ h⊥1 of the origin

and a continuously Fréchet differentiable function gx0
: U0 → R such that for

every h ∈ U0 we have

gx0
(0) = 0, Gx0

(h, gx0
(h)) = 0. (4.9)

Moreover, the function gx0 : U0 → R satisfying (4.9) is uniquely determined.

Without loss of generality we may assume that U0 is an open ball centered at

the origin of radius R. We remark that (4.9) implies that for every h ∈ U0

G(x0 + h+ gx0
(h)h1) = Gx0

(h, gx0
(h)) = 0. (4.10)

Step 2: We denote by Dh⊥1
gx0

(0) the Fréchet derivative of gx0
at the origin. For t > 0

sufficiently small and by (4.10), for any i ≥ 2 we get

0 = Gx0
(thi, gx0

(thi))−Gx0
(0, gx0

(0)) =

= G(x0 + thi + gx0(thi)h1)−G(x0 + gx0(0)h1) =

= G

(
x0 + thi + gx0

(0)h1 + t
〈
Dh⊥1

gx0
(0), hi

〉
h⊥1

h1 + o(t)h1

)
−G(x0 + gx0

(0)h1) =

=

〈
∇HG(x0), thi +

〈
Dh⊥1

gx0(0), thi

〉
h⊥1

+ o(t)h1

〉
H

.

Letting t go to zero, for any i ≥ 2 we get〈
Dh⊥1

gx0
(0), hi

〉
h⊥1

= − ∂iG(x0)

∂1G(x0)
. (4.11)

Step 3: The vector field Φx0(h) =
∑+∞
i=2 ϕi(x0 + h)hi is defined from h⊥1 to itself. Let δ

be a positive real number which satisfies

δ ≤ R

2(K(Φ)R+ |Φ(x0)|H)
,

where K(Φ) has been introduced in (4.8). We consider the complete metric

space C b([−δ, δ], U0), i.e. the set

C b([−δ, δ], U0) :=
{
f : [−δ, δ]→ U0

∣∣ f is continuous
}
,
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endowed with the complete metric d(f, g) := supt∈[−δ,δ] |f(t)− g(t)|h⊥1 . Let Γ :

C b([−δ, δ], U0)→ C b([−δ, δ], h⊥1 ) be the function defined as follows:

Γ(γ)(t) =

∫ t

0

Φx0
(γ(s))ds, (4.12)

for any t ∈ [−δ, δ]. The integral in (4.12) should be understood in the Bochner

sense. We look for a fixed point of Γ in C b([−δ, δ], U0). We want to use Banach

fixed-point theorem, so

d(Γ(γ1),Γ(γ2)) = sup
t∈[−δ,δ]

|Γ(γ1)(t)− Γ(γ2)(t)|h⊥1 =

= sup
t∈[−δ,δ]

∣∣∣∣∫ t

0

Φx0(γ1(s))ds−
∫ t

0

Φx0(γ2(s))ds

∣∣∣∣
h⊥1

≤ sup
t∈[−δ,δ]

∫ t

0

|Φx0(γ1(s))− Φx0(γ2(s))|h⊥1 ds ≤

≤ sup
t∈[−δ,δ]

∫ t

0

|Φ(x0 + γ1(s))− Φ(x0 + γ2(s))|Hds ≤ K(Φ) sup
t∈[−δ,δ]

∫ t

0

|γ1(s)− γ2(s)|h⊥1 ds ≤

≤ δK(Φ) sup
t∈[−δ,δ]

|γ1(t)− γ2(t)|h⊥1 ≤
1

2
sup

t∈[−δ,δ]
|γ1(t)− γ2(t)|h⊥1 =

1

2
d(γ1, γ2).

Therefore Γ is a contraction in C b([−δ, δ], U0). We claim that Γ maps

C b([−δ, δ], U0) into itself. The continuity of Γ(γ)(t) is clear, and

sup
t∈[−δ,δ]

|Γ(γ)(t)|h⊥1 ≤ sup
t∈[−δ,δ]

|Γ(γ)(t)− Γ(0)(t)|h⊥1 + sup
t∈[−δ,δ]

|Γ(0)(t)|h⊥1 ≤

≤ R

2
+ sup
t∈[−δ,δ]

∣∣∣∣∫ t

0

Φx0
(0)ds

∣∣∣∣
h⊥1

≤ R

2
+
R

2
= R.

By the Banach fixed-point theorem there exists a unique fixed point γx0
∈

C b([−δ, δ], U0) of Γ. We remark that γx0(0) = 0 and that, up to replace δ > 0

with a smaller one, we can assume that γxo([−δ, δ]) ⊆ U0.

Step 4: We consider the function ψx0 : U0 → H, defined as ψx0(h) = h+ gx0(h)h1. We

now want to evaluate the function σx0
: (−δ, δ)→ H defined as

σx0
(t) = ψx0

(γx0
(t)),

and its derivative at the origin. Observe that

σx0
(t) = ψx0

(γx0
(t)) = ψx0

(∫ t

0

Φx0
(γx0

(s))ds

)
=

=

∫ t

0

Φx0
(γx0

(s))ds+ gx0

(∫ t

0

Φx0
(γx0

(s))ds

)
h1,

so σx0(0) = 0. Furthermore

σ′x0
(0) = lim

t→0

σ(t)− σ(0)

t
= lim
t→0

1

t

(∫ t

0

Φx0
(γx0

(s))ds+ gx0

(∫ t

0

Φx0
(γx0

(s))ds

)
h1

)
=

= Φx0(γx0(0)) + lim
t→0

1

t

(
gx0

(∫ t

0

Φx0
(γx0

(s))ds

)
h1

)
=
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= Φx0
(0) +

〈
Dh⊥1

gx0
(0),Φx0

(0)
〉
h⊥1

h1 =

+∞∑
i=2

ϕi(x0)hi +

(
+∞∑
i=2

ϕi(x0)
〈
Dh⊥1

gx0
(0), hi

〉
h⊥1

)
h1,

by (4.7) and (4.11) we get

σ′x0
(0) =

+∞∑
i=2

ϕi(x0)hi −

(
+∞∑
i=2

ϕi(x0)
∂iG(x0)

∂1G(x0)

)
h1 =

+∞∑
i=1

ϕi(x0)hi = Φ(x0).

We finally claim that for every t ∈ (−δ, δ) we have G(x0 + σx0(t)) = 0. Indeed,

recalling that Γ(γx0
)(t) ∈ U0 and (4.10), we get

G(x0 + σx0(t)) = G(x0 + ψx0(γx0(t))) = G(x0 + Γ(γx0)(t) + gx0(Γ(γx0)(t))h1) = 0.

Step 5: Now We are able to prove (4.6). Indeed, from the smoothness of G, (4.1),

σx0
(0) = 0 and σ′x0

(0) = Φ(x0) we deduce that

d

dt
∇HG(x0 + σx0

(t))|t=0 = lim
t→0

∇HG(x0 + σx0(t))−∇HG(x0)

t

= lim
t→0

∇HG(x0 + Φ(x0)t+ Φ(x0)o(t))−∇HG(x0)

t

=∂Φ(x0)∇2
HG(x0) = ∇2

HG(x0)(Φ(x0)).

Then, we have

0 =
d

dt
(〈Φ(x0 + σx0

(t)),∇HG(x0 + σx0
(t))〉H)|t=0

=

= 〈∇HΦ(x0)Φ(x0),∇HG(x0)〉H +
〈
Φ(x0),∇2

HG(x0)Φ(x0)
〉
H
.

In the next theorem we prove that the space Z1,2
U (Ω, ν;H) is contained in the do-

main of the divergence, where Z1,2
U (Ω, ν;H) is the completion of the space Z(Ω, H)

with respect to the norm defined in (1.4).

Theorem 4.2. Assume that either Hypotheses 1.1 and 1.2 hold or Hypothesis 1.2

holds and Ω is the whole space. Every vector field Φ ∈ Z1,2
U (Ω, ν;H) has a divergence

divν,Ω Φ ∈ L2(Ω, ν) and for every f ∈W 1,2(Ω, ν), the following equality holds:∫
Ω

〈∇Hf(x),Φ(x)〉Hdν(x) = −
∫

Ω

f(x) divν,Ω Φ(x)dν(x).

Furthermore, if ϕn = 〈Φ, hn〉H for every n ∈ N where (hn)n∈N is an orthonormal

basis of H, then

divν,Ω Φ =

+∞∑
n=1

(
∂nϕn − ϕn∂nU − ϕnĥn

)
, (4.13)

where the series converges in L2(Ω, ν). In addition ‖divν Φ‖L2(Ω,ν) ≤ ‖Φ‖Z1,2
U (Ω,ν;H).

Proof. We prove the theorem assuming Hypotheses 1.1 and 1.2 hold, since the

case when Hypothesis 1.2 holds and Ω is the whole space can be proved in a similar
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way. We start with a preliminary computation. Let Φ ∈ Z(Ω, H), so there exists

an orthonormal basis {hi}i∈N of H such that Φ =
∑n
i=1 ϕihi for some n ∈ N and

ϕi ∈ FC 2
b(Ω) for every i = 1, . . . , n. In addition 〈Φ(x),∇HG(x)〉H = 0 for ρ-a.e

x ∈ G−1(0). By the integration by parts formula if f ∈ FC∞b (Ω) we have∫
Ω

〈∇Hf,Φ〉Hdν =

∫
Ω

n∑
i=1

∂ifϕidν =

n∑
i=1

∫
Ω

∂ifϕidν =

n∑
i=1

(∫
Ω

∂i(fϕi)dν −
∫

Ω

f∂iϕidν

)
=

=

n∑
i=1

(∫
G−1(0)

fϕi
∂iG

|∇HG|H
e−Tr(U)dρ−

∫
Ω

f
(
∂iϕi − ϕi∂iU − ϕiĥi

)
dν

)
=

=

∫
G−1(0)

〈Φ,∇HG〉H
fe−Tr(U)

|∇HG|H
dρ−

n∑
i=1

(∫
Ω

f
(
∂iϕi − ϕi∂iU − ϕiĥi

)
dν

)
=

= −
n∑
i=1

(∫
Ω

f
(
∂iϕi − ϕi∂iU − ϕiĥi

)
dν

)
.

(4.14)

So we have

divν,Ω Φ =

n∑
i=1

(
∂iϕi − ϕi∂iU − ϕiĥi

)
.

We recall the definition of the trace operator for nuclear operators A. Let x ∈
Ω and let {hn}n∈N be an orthonormal basis of H; we say that A is a trace

class operator if
∑∞
n=1〈(A∗A)1/2hn, hn〉H is finite, and we set traceH(A) :=∑∞

n=1〈(A∗A)1/2hn, hn〉H . In particular, (∇HΦ)2 is a trace class operator and

traceH(∇HΦ(x)2) ≤ ‖∇HΦ(x)‖2H2
(see8 Appendix A.2). By Lemmata 4.1 and 4.2∫

Ω

(divν,Ω Φ)
2
dν =

n∑
i=1

∫
Ω

|ϕi|2dν +

n∑
i=1

n∑
j=1

∫
Ω

∂jϕi∂iϕjdν +

n∑
i=1

n∑
j=1

∫
Ω

ϕiϕj∂i∂jUdν+

+

n∑
i=1

n∑
j=1

∫
G−1(0)

ϕi(∂jϕj − ϕj Tr(∂jU)− ϕj ĥj)
∂iG

|∇HG|
e−Tr(U)dρ+

−
n∑
i=1

n∑
j=1

∫
G−1(0)

ϕi∂iϕj
∂jG

|∇HG|H
e−Tr(U)dρ =

= ‖Φ‖2L2(Ω,ν) +

∫
Ω

〈
∇2
HUΦ,Φ

〉
H
dν +

∫
Ω

traceH((∇HΦ)2)dν+

+

n∑
j=1

∫
G−1(0)

(∂jϕj − ϕj Tr(∂jU)− ϕj ĥj)
〈Φ,∇HG〉H
|∇HG|

e−Tr(U)dρ+

+

∫
G−1(0)

〈
∇2
HGΦ,Φ

〉
H

|∇HG|H
e−Tr(U)dρ ≤

≤ ‖Φ‖2L2(Ω,ν;H) +

∫
Ω

‖∇HΦ‖2H2
dν +

∫
Ω

〈
∇2
HUΦ,Φ

〉
H
dν+

+

∫
G−1(0)

〈
∇2
HGΦ,Φ

〉
H

|∇HG|H
e−Tr(U)dρ = ‖Φ‖2Z1,2(Ω,ν;H). (4.15)
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Let (Φn)n∈N ⊆ Z(Ω, H) be a sequence of vector fields which converges to Φ in

Z1,2
U (Ω, ν;H). By (4.15), (divν,Ω Φn) is a Cauchy sequence in L2(Ω, ν) and there-

fore it converges to an element of L2(Ω, ν) which we denote by divν,Ω Φ. By for-

mula (4.14), it is easily seen that divν,Ω Φ satisfies (4.3). Finally, by a standard

approximation argument we can conclude that divν,Ω Φ fulfills (4.3) also for every

f ∈W 1,2(Ω, ν).

We say that a subspace S of W 1,2(Ω, ν;H), endowed with a Banach norm ‖·‖S ,

is a Neumann extension subspace if any Φ ∈ S satisfies 〈Φ,∇HG〉H = 0 ρ-a.e. on

G−1(0) and it admits a continuous linear extension operator, i.e. if there exists a

linear operator ES : S → Z1,2
U (X, ν,H) such that for every Φ ∈ S

(1) ESΦ(x) = Φ(x) for µ-a.e x ∈ Ω;

(2) there is KS > 0, independent of Φ, such that ‖ESΦ‖Z1,2
U (X,µ;H) ≤ KS‖Φ‖S .

As a corollary of Theorem 4.2 we get the following result.

Corollary 4.3. Assume that Hypotheses 1.1 and 1.2 hold and let S be a Neumann

extension subspace with norm ‖·‖S. Every field Φ ∈ S has a divergence divν,Ω Φ ∈
L2(Ω, ν) and for every f ∈W 1,2(Ω, ν), the following equality holds:∫

Ω

〈∇Hf(x),Φ(x)〉Hdν(x) = −
∫

Ω

f(x) divν,Ω Φ(x)dν(x).

Furthermore, if ϕn = 〈Φ, hn〉H for every n ∈ N, where (hn)n∈N is an orthonormal

basis of H, then

divν,Ω Φ =

+∞∑
n=1

(
∂nϕn − ϕn∂nU − ϕnĥn

)
,

where the series converges in L2(Ω, ν). In addition, ‖divν Φ‖L2(Ω,ν) ≤ KS‖Φ‖S.

Proof. Let us consider the divergence divν,X ESΦ (Theorem 4.2). For ν-a.e. x ∈ Ω

let

Dk(x) :=

k∑
n=1

(
∂nϕn(x)− ϕn(x)∂nU(x)− ϕn(x)ĥn(x)

)
.

We have that∫
Ω

|Dk −Dm|2dν ≤
∫
X

∣∣∣∣∣
m∑

n=k+1

∂nESϕn − ESϕn∂nU − ESϕnĥn

∣∣∣∣∣
2

dν, (4.16)

where ESϕn := 〈ESΦ, hn〉H . Since the right hand side of (4.16) converges to zero

(the series converges to divν,X ESΦ) we get that (Dk)k∈N is a Cauchy sequence in

L2(Ω, ν). We denote by D∞Φ the limit of Dn in L2(Ω, ν) and we observe that for
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every f ∈W 1,2(Ω, ν)∫
Ω

〈∇Hf,Φ〉Hdν = lim
n→+∞

n∑
i=1

∫
Ω

∂ifϕidν =

= lim
n→+∞

n∑
i=1

(∫
Ω

f
(
ϕi(∂iU + ĥi)− ∂iϕi

)
dν +

∫
G−1(0)

fϕi
∂iG

|∇HG|H
e−Udρ

)
.

We remark that ρ-a.e we have

n∑
i=1

fϕi
∂iG

|∇HG|H
e−U −→ f〈Φ,∇HG〉H

e−U

|∇HG|H
= 0,

and ∣∣∣∣∣
n∑
i=1

fϕi
∂iG

|∇HG|H
e−U

∣∣∣∣∣ ≤ |f |e−U |Φ|H ∈ L1(G−1(0), ρ).

Therefore, by the Lebesgue’s dominated convergence theorem and the continuity

of the trace operator (Proposition 2.1) we get
∫

Ω
〈∇Hf,Φ〉Hdν = −

∫
Ω
fD∞Φdν

for any f ∈ W 1,2(Ω, ν). This means that divν,Ω Φ exists and divν,Ω Φ = D∞Φ.

Moreover

‖divν,Ω Φ‖L2(Ω,ν) ≤ lim inf
k→+∞

‖Dk‖L2(Ω,ν) ≤ lim inf
k→+∞

‖Dk‖L2(X,ν) =

= ‖divν,X ESΦ‖L2(X,ν) ≤ ‖ESΦ‖Z1,2
U (X,ν;H) ≤ KS‖Φ‖S .

We remark that the subspace of the vector fields Φ ∈ Z1,2
U (Ω, ν;H) such that the

extension

Φ̃(x) :=

{
Φ(x) x ∈ Ω;

0 x /∈ Ω,

belongs to Z1,2
U (X, ν;H) satisfies the hypotheses of Corollary 4.3.

5. Maximal Sobolev regularity

This Section is devoted to the study of maximal Sobolev regularity for the equation

λu(x)− Lν,Ωu(x) = f(x), µ-a.e. x ∈ Ω, (5.1)

where λ > 0, and f ∈ L2(Ω, ν), since a part of the proofs of Theorems 1.3, 1.4 and

1.6 relies on them. The results of this section are sharper than the results contained

in11 and.12

Our main result is the following theorem.

Theorem 5.1. Assume that Hypotheses 1.1 and 1.2 hold. For every λ > 0 and

f ∈ L2(Ω, ν) problem (5.1) has a unique weak solution u ∈W 2,2
U (Ω, ν). In addition
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the following hold

〈∇Hu(x),∇HG(x)〉H = 0 for ρ-a.e. x ∈ G−1(0); (5.2)

‖u‖L2(Ω,ν) ≤
1

λ
‖f‖L2(Ω,ν); ‖∇Hu‖L2(Ω,ν;H) ≤

1√
λ
‖f‖L2(Ω,ν); (5.3)∥∥∇2

Hu
∥∥2

L2(Ω,ν;H2)
+

∫
Ω

〈
∇2
HU∇Hu,∇Hu

〉
dν ≤ 2‖f‖2L2(Ω,ν). (5.4)

In particular u ∈W 2,2
U,N (Ω, ν).

We split the proof of Theorem 5.1 into two parts: in the Section 5.1 we study the

case of Ω = X and U with H-Lipschitz gradient, in Section 5.2 we use the results

of Section 5.1 to prove Theorem 5.1.

5.1. Ω is the whole space

We start this subsection assuming the following hypothesis on the weight:

Hypothesis 5.2. Let U : X → R be a function satisfying Hypothesis 1.2. Assume

that U is differentiable along H at every point x ∈ X, and ∇HU is H-Lipschitz.

We remark that every convex function in FC 2
b(X) and every continuous linear

functional x∗ ∈ X∗ satisfy Hypothesis 5.2.

We will recall some results about maximal Sobolev regularity contained in.11

Let us consider the problem

λu(x)− Lνu(x) = f(x) µ-a.e. x ∈ X, (5.5)

where λ > 0, f ∈ L2(X, ν), and Lν := Lν,X . A function u ∈ D(Lν) is said to be

a strong solution of problem (5.5) if there exists a sequence {un}n∈N ⊆ FC 3
b(X)

such that un converges to u in L2(X, ν) and

L2(X, ν)- lim
n→+∞

λun − Lνun = f.

Moreover a sequence {un}n∈N ⊆ FC 3
b(X) satisfying the above conditions is called a

strong solution sequence for u. The following proposition is borrowed from11 Propo-

sition 5.8.

Theorem 5.3. Assume that Hypothesis 5.2 holds. For every λ > 0 and f ∈
L2(X, ν), there exists a unique strong solution of equation (5.5). Such strong so-

lution is also a weak solution of problem (5.5). In addition, if {un}n∈N ⊆ FC 3
b(X)

is a strong solution sequence for u, then (un) converges to u in W 2,2(X, ν).

When U satisfies Hypothesis 5.2 we have the following regularity result.

Theorem 5.4. Let U be a function satisfying Hypothesis 5.2, let λ > 0, f ∈
L2(X, ν), and let u be the strong solution of equation (5.5). Then u ∈ W 2,2

U (X, ν)
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and

‖u‖L2(X,ν) ≤
1

λ
‖f‖L2(X,ν); ‖∇Hu‖L2(X,ν;H) ≤

1√
λ
‖f‖L2(X,ν); (5.6)∥∥∇2

Hu
∥∥2

L2(X,ν;H2)
+

∫
X

〈
∇2
HU∇Hu,∇Hu

〉
H
dν ≤ 2‖f‖2L2(X,ν). (5.7)

The difference between Theorem 5.4 and the results of11 is that estimate (5.7) is

sharper, since it contains the integral
∫
X

〈
∇2
HU∇Hu,∇Hu

〉
H
dν. We stress that,

even if ∇HU is H-Lipschitz, which means that ∇2
HU is essentially bounded, we can

not use the second inequality in (5.6) to estimate (5.7). Indeed, (5.7) is independent

of λ, while (5.6) does not.

Proof. The proof of (5.6) can be found in11 Theorem 5.10. By Proposition 5.3

there exists a sequence {un}n∈N ⊆ FC 3
b(X) and a function u ∈ W 1,2(X, ν) such

that un converges to u in L2(X, ν) and

L2(X, ν)- lim
n→+∞

λun − Lνun = f.

Let fn := λun − Lνun. Using formula (2.4), we differentiate the equality λun −
Lνun = fn with respect to the ej direction, multiply the result by ∂ju, sum over j

and finally integrate over X with respect to ν. Then we obtain

(1 + λ)

∫
X

|∇Hun|2Hdν +

∫
X

∥∥∇2
Hun

∥∥2

H2
dν +

∫
X

〈
∇2
HU∇Hun,∇Hun

〉
H
dν =

=

∫
X

f2
ndν − λ

∫
X

fnundν.

By Fatou’s Lemma and recalling that un and fn converge to u and f in L2(X, ν),

respectively, we get

∥∥∇2
Hu
∥∥2

L2(X,ν;H2)
+

∫
X

〈
∇2
HU∇Hu,∇Hu

〉
H
dν ≤

≤ lim inf
n→+∞

(∥∥∇2
Hu
∥∥2

L2(X,ν;H2)
+

∫
X

〈
∇2
HU∇Hu,∇Hu

〉
H
dν

)
≤ lim inf

n→+∞

(∫
X

f2
ndν − λ

∫
X

fnundν

)
=

=

∫
X

f2dν − λ
∫
X

fudν.

Using inequalities (5.6) we get

∥∥∇2
Hu
∥∥2

L2(X,ν;H2)
+

∫
X

〈
∇2
HU∇Hu,∇Hu

〉
H
dν ≤ 2‖f‖2L2(X,ν).

We will not give the prove of the following theorem, since it can be easily deduced

using the results of11 and the arguments in the proof of Theorem 5.1.
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Theorem 5.5. Assume Hypothesis 1.2 holds. Let λ > 0, f ∈ L2(X, ν), and let u

be the strong solution of equation (5.5). Then u ∈W 2,2
U (X, ν) and

‖u‖L2(X,ν) ≤
1

λ
‖f‖L2(X,ν); ‖∇Hu‖L2(X,ν;H) ≤

1√
λ
‖f‖L2(X,ν);∥∥∇2

Hu
∥∥2

L2(X,ν;H2)
+

∫
X

〈
∇2
HU∇Hu,∇Hu

〉
dν ≤ 2‖f‖2L2(X,ν).

5.2. The general case

Assume that Hypotheses 1.1 and 1.2 hold. Let x ∈ X and let C ⊆ X be a Borel set.

We define

dH(x, C) :=

{
inf {|h|H |h ∈ H ∩ (x− C)} if H ∩ (x− C) 6= ∅;
+∞ if H ∩ (x− C) = ∅.

dH can be seen as a distance function from C along H. This function has been

already considered in,28,408 Example 5.4.10,,27 and.12 For α ∈ (0, 1] let Uα be the

Moreau–Yosida approximation along H of the weight U defined in Section 3.

We approach the problem in Ω by penalized problems in the whole space X,

replacing U by

Vα(x) := Uα(x) +
1

2α
d2
H(x,Ω).

for α ∈ (0, 1]. Namely for α ∈ (0, 1], we consider the problem

λuα − Lναuα = f (5.8)

where λ > 0, f ∈ L2(X, να), να = e−Vαµ and Lνα := Lνα,X . The first result we

need to recall is12 Proposition 5.2.

Proposition 5.6. Assume that Hypotheses 1.1 and 1.2 hold and let α ∈ (0, 1].

Then the following properties hold:

(1) Vα is a convex and H-continuous function;

(2) Vα is differentiable along H for µ-a.e. x ∈ X, and ∇HVα H-Lipschitz;

(3) e−Vα ∈W 1,p(X,µ), for every p ≥ 1;

(4) Vα ∈W 2,t(X,µ), where t is given by Hypothesis 1.2;

(5) limα→0+ Vα(x) =

{
U(x) x ∈ Ω;

+∞ x /∈ Ω.

By Proposition 5.6 we can apply Theorem 5.4 to problem (5.8) and get the

following maximal Sobolev regularity result (see also12 Theorem 5.3).

Theorem 5.7. Assume Hypotheses 1.1 and 1.2 hold and let α ∈ (0, 1], λ > 0

and f ∈ L2(X, να). Problem (5.8) has a unique weak solution uα. Moreover uα ∈
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W 2,2
Vα

(X, να) and

‖uα‖L2(X,να) ≤
1

λ
‖f‖L2(X,να); ‖∇Huα‖L2(X,να;H) ≤

1√
λ
‖f‖L2(X,να); (5.9)∥∥∇2

Huα
∥∥2

L2(X,να;H2)
+

∫
X

〈
∇2
HVα∇Huα,∇Huα

〉
dνα ≤ 2‖f‖2L2(X,να). (5.10)

In addition, for every α ∈ (0, 1], there exists a sequence {u(n)
α }n∈N ⊆ FC 3

b(X) such

that u
(n)
α converges to uα in W 2,2(X, να) and λu

(n)
α − Lναu

(n)
α converges to f in

L2(X, να).

We are now ready to prove Theorem 5.1.

Proof. [Proof of Theorem 5.1] The Neumann condition (5.2) and estimates (5.3)

have been proved in12 Theorems 1.3 and 1.4. Hence, it remains to prove (5.4).

Let f ∈ FC∞b (X). By Theorem 5.7, for every α ∈ (0, 1] the equation (5.8) has a

unique weak solution uα ∈W 2,2(X, να) such that inequalities (5.9) and (5.10) hold.

Moreover, for every ϕ ∈ FC∞b (X) we have

λ

∫
X

uαϕdνα +

∫
X

〈∇Huα,∇Hϕ〉Hdνα =

∫
X

fϕdνα.

By Proposition 5.6 and Proposition 3.1(2) we have

e−U(x) ≤ e−Uα(x) = e−Vα(x), x ∈ Ω,

and so the inclusion W 2,2(Ω, να) ⊆W 2,2(Ω, ν) follows, for every α ∈ (0, 1].

Let {αn}n∈N be a sequence converging to zero such that 0 < αn ≤ 1 for every

n ∈ N. By inequalities (5.9) and (5.10) the sequence {uαn |n ∈ N} is bounded in

W 2,2(Ω, ν). By weak compactness there exists a subsequence, that we will still

denote by {αn}n∈N, such that uαn weakly converges to an element u ∈W 2,2(Ω, ν).

Without loss of generality we can assume that uαn , ∇Huαn and ∇2
Huαn converge

pointwise µ-a.e. respectively to u, ∇Hu and ∇2
Hu. By Fatou’s lemma and inequality

(5.10) we get ∥∥∇2
Hu
∥∥2

L2(Ω,ν;H2)
+

∫
Ω

〈
∇2
HU∇Hu,∇Hu

〉
dν ≤

≤ lim inf
n→+∞

(∥∥∇2
Huαn

∥∥2

L2(Ω,ναn ;H2)
+

∫
Ω

〈
∇2
HUαn∇Huαn ,∇Huαn

〉
dναn

)
≤

≤ lim inf
n→+∞

(∥∥∇2
Huαn

∥∥2

L2(X,ναn ;H2)
+

∫
X

〈
∇2
HVαn∇Huαn ,∇Huαn

〉
dναn

)
≤

≤ 2‖f‖2L2(X,ναn ) ≤ 2‖f‖2L2(Ω,ν).

Finally, if f ∈ L2(Ω, ν), a standard density argument gives us the assertions of our

theorem.
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6. Proof of the main results

Theorems 1.3, 1.4 and 1.6 are consequence of the following result.

Theorem 6.1. Assume that either Hypotheses 1.1 and 1.2 hold or Hypothesis 1.2

holds and Ω is the whole space. Then Z2,2
U,N (Ω, ν) ⊆ D(Lν,Ω) ⊆W 2,2

U,N (Ω, ν). Further-

more if we denote with ‖·‖D(Lν,Ω) the graph norm in D(Lν,Ω), i.e. for u ∈ D(Lν,Ω)

‖u‖2D(Lν,Ω) := ‖u‖2L2(Ω,ν) + ‖Lν,Ωu‖2L2(Ω,ν),

then for u ∈ Z2,2
U (Ω, ν) and v ∈ D(Lν,Ω) it holds that

‖u‖D(Lν,Ω) ≤ ‖u‖Z2,2
U,N (Ω,ν) and ‖v‖W 2,2

U,N (Ω,ν) ≤ 2
√

2‖v‖D(Lν,Ω).

Proof. We prove the theorem assuming Hypotheses 1.1 and 1.2 hold, since in the

case when Hypothesis 1.2 holds and Ω is the whole space the proof can be obtained

in a similar way using Theorem 5.5.

Let u ∈ D(Lν,Ω). Hence, λu − Lνu ∈ L2(Ω, ν), for every λ ∈ (0, 1), and by

Theorem 5.1 we get u ∈W 2,2
U,N (Ω, ν). Moreover

‖u‖2W 2,2
U,N (Ω,ν) ≤

(
1

λ2
+

1

λ
+ 2

)
‖λu− Lν,Ωu‖2L2(Ω,ν) ≤

≤
(

1

λ2
+

1

λ
+ 2

)(
2λ2‖u‖2L2(Ω,ν) + 2‖Lν,Ωu‖2L2(Ω,ν)

)
≤

≤ 2

(
1

λ2
+

1

λ
+ 2

)(
‖u‖2L2(Ω,ν) + ‖Lν,Ωu‖2L2(Ω,ν)

)
= 2

(
1

λ2
+

1

λ
+ 2

)
‖u‖2D(Lν,Ω).

(6.1)

Letting λ→ 1− in inequality (6.1) we get ‖u‖W 2,2
U (Ω,ν) ≤ 2

√
2‖u‖D(Lν,Ω).

Assume that u ∈ Z2,2
U,N (Ω, ν). Proposition 4.2 implies that divν,Ω∇Hu ∈ L2(Ω, ν)

and ∫
Ω

〈∇Hf,∇Hu〉Hdν = −
∫

Ω

f divν,Ω∇Hudν,

for every f ∈ FC∞b (Ω). Then we have u ∈ D(Lν,Ω) and Lν,Ωu = divν,Ω∇Hu. By

Proposition 4.2 we have

‖u‖2D(Lν,Ω) = ‖u‖2L2(Ω,ν) + ‖Lν,Ωu‖2L2(Ω,ν) = ‖u‖2L2(Ω,ν) + ‖divν,Ω∇Hu‖2L2(Ω,ν) ≤

≤ ‖u‖2L2(Ω,ν) + ‖∇Hu‖2Z1,2
U (Ω,ν;H) = ‖u‖2Z2,2

U,N (Ω,ν),

for every u ∈ Z2,2
U,N (Ω, ν).

We can actually simplify the statement of Theorem 1.3 when ∇HU is H-

Lipschitz and Ω = X. Indeed, let us observe that if ∇HU is H-Lipschitz then

the function x 7→ ‖∇2
HU(x)‖H2 is essentially bounded (see8 Theorem 5.11.2(ii)).

So W 2,2(X, ν) is isomorphic to W 2,2
U (X, ν), with

‖u‖W 2,2(X,ν) ≤ ‖u‖W 2,2
U (X,ν) ≤ max{1, ess supx∈X

∥∥∇2
HU(x)

∥∥
H2
}‖u‖W 2,2(X,ν).
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In particular if ∇HU is H-Lipschitz, then FC 2
b(X) is dense in W 2,2

U (X, ν).

Corollary 6.2. Assume Hypothesis 1.2 holds and ∇HU is H-Lipschitz. Then

D(Lν,X) = W 2,2(X, ν). Moreover, for every u ∈ D(Lν,X), it holds Lν,Xu =

divν,X ∇Hu and

1

max{1, ess supx∈X ‖∇2
HU(x)‖H2

}
‖u‖D(Lν,X) ≤ ‖u‖W 2,2(X,ν) ≤ 2

√
2‖u‖D(Lν,X).

The same holds true, with obvious modifications, when Ω is a Neumann extension

domain.

This result has been already proved in11 Theorem 6.2.

7. A characterization in the Hilbert case when Ω = X

When X is a Hilbert space and Ω = X, then we characterize the domain of Lν .

In particular, we show that, under suitable assumptions on U , it is possible to

show that D(L) = W 2,2
U (X, ν) = W 2,2(X, ν). In this section, we denote by Q the

covariance operator of µ (see8).

Hypothesis 7.1. In addition to Hypothesis 1.2, we assume that there exists a positive

constant C such that

−〈∇HU(x), x〉X ≤ C|x|X , (7.1)

µ-a.e. x ∈ X.

The following proposition is an improvement of14 Corollary 1. Let {ek}k∈N be

an orthonormal basis of X of eigenvectors of Q such that Qek = λkek for any k ∈ N.

At first, we recall the following integration-by-parts formula in Hilbert spaces:∫
X

〈Dϕ,Qek〉Xψdν +

∫
X

〈Dψ,Qek〉Xϕdν =

∫
X

ϕψ〈∇HU + x, ek〉Xdν, (7.2)

for any ϕ,ψ ∈ C1
b (X) and any k ∈ N, where Dϕ denotes the Fréchet derivative of

ϕ. We recall that, if we consider the orthonormal basis {hn :=
√
λnen}n∈N in H,

then the integration-by-parts formula (7.2) reads∫
X

∂hkϕψdν +

∫
X

∂hkψϕdν =

∫
X

ϕψ(ĥk + ∂hkU)dν.

Proposition 7.2. For any ϕ ∈W 1,2(X, ν) we get

x 7→ |x|Xϕ(x) ∈ L2(X, ν),

Moreover, if ϕ ∈W 2,2(X,µ) then

x 7→ |x|X |∇Hϕ(x)|H ∈ L2(X, ν).

Finally, for any s ∈ N, if ϕ ∈ W s,2(X, ν) then the function x 7→
|x|mX‖∇rHϕ(x)‖Lr(H) belongs to L2(X, ν) for any m, r ∈ N such that m+ r ≤ s.
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Proof. In (7.2) we consider ϕ ∈ FC 1
b(X) and ψ(x) := ϕ(x)〈x, ek〉X . We have

2

∫
X

〈Dϕ(x), Qek〉Xϕ(x)〈x, ek〉Xν(dx) + λk

∫
X

ϕ(x)2ν(dx)

=

∫
X

ϕ(x)2〈x, ek〉2Xν(dx) +

∫
X

ϕ(x)2〈∇HU(x), ek〉X〈x, ek〉Xν(dx).

Applying the Young’s inequality to the first integral in the left-hand side and sum-

ming up over k ∈ N, we deduce that

1

2

∫
X

ϕ(x)2|x|2Xν(dx) ≤−
∫
X

ϕ(x)2〈∇HU(x), x〉Xν(dx) + traceQ

∫
X

ϕ(x)2ν(dx)

+ 2 traceQ

∫
X

|Q1/2Dϕ(x)|2Xν(dx), (7.3)

where traceQ :=
∑
n∈N λn. We want to estimate the first integral in the right-hand

side. From Hypothesis 7.1 we obtain

−ϕ(x)2〈∇HU(x), x〉X ≤ Cϕ(x)2|x|X .

Hence,

−
∫
X

ϕ(x)2〈∇HU(x), x〉Xν(dx) ≤C
∫
X

ϕ(x)2|x|Xν(dx) ≤ C̃
∫
X

ϕ(x)2ν(dx) +
1

4

∫
X

ϕ(x)2|x|2Xν(dx),

where the last inequality has been obtained applying once again the Young’s in-

equality and C̃ is a positive constant. Therefore, replacing in (7.3) it follows that

1

4

∫
X

ϕ(x)2|x|2Xν(dx) ≤(traceQ+ C̃)

∫
X

ϕ(x)2ν(dx) + 2 traceQ

∫
X

|Q1/2Dϕ(x)|2Xν(dx).

Since for smooth functions we have |∇Hϕ|H = |Q1/2Dϕ|X we get∫
X

ϕ(x)2|x|2Xν(dx) ≤4(traceQ+ C̃)

∫
X

ϕ(x)2ν(dx) + 8 traceQ

∫
X

|∇Hϕ(x)|2Hν(dx).

(7.4)

and applying Fatou’s Lemma and the dominated convergence theorem, the density

of FC 1
b(X) in W 1,2(X,µ) gives the thesis. Further, if we consider ϕ ∈ FC 2

b(X),

replacing ϕ with ∂kϕ in (7.4) and summing up over k, we obtain∫
H

|∇Hϕ(x)|2H |x|2Xν(dx) ≤4(traceQ+ C̃)

∫
X

|∇Hϕ(x)|2Hν(dx) + 8 traceQ

∫
X

|∇2
Hϕ(x)|2Hν(dx).

Again, an approximation argument implies that the function x 7→ |x|X |∇Hϕ(x)|H ∈
L2(X,µ) for any ϕ ∈W 2,2(X,µ).

The general case s ∈ N follows taking ϑ ∈ FC s
b(H) and setting ϕ(x) :=

∂h1...hrϑ(x), with h1, . . . , hr ∈ {ek : k ∈ N}, and ψ(x) := ϕ(x)〈x, ek〉X
∏s−r
i=1 〈x, ei〉2X .

Then, starting from r = s − 1 and m = 1 and concluding with r = 0 and m = s,

arguing as above we conclude.
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Theorem 7.3. Assume that Hypothesis 7.1 holds true, and that there exists a posi-

tive constant C such that |∇2
HU(x)|H ≤ C(1+ |x|2X), then W 2,2

U (X, ν) = W 2,2(X, ν)

and Theorem 1.3 applies.

Proof. We recall that

‖u‖W 2,2
U (X,ν) = ‖u‖W 2,2(X,ν) +

∫
X

〈∇2
HU∇Hu,∇Hu〉Hdν.

From Proposition 7.2 and the assumptions on U we have∫
X

|〈∇2
HU∇Hu,∇Hu〉H |dν ≤ C

∫
X

|∇Hu|2Hdν + C

∫
X

|x|2X |∇Hu(x)|2Hdν ≤ K‖u‖W 1,2(X,ν),

for some positive constant K. This means that ‖ · ‖W 2,2(X,ν) and ‖ · ‖W 2,2
U (X,ν) are

equivalent norms, and therefore W 2,2
U (X, ν) = W 2,2(X, ν) and therefore FC 2

b(X)

is dense in W 2,2
U (X, ν).

8. Examples

We conclude the paper by presenting some examples. In Subsection 8.1 we study

in detail the case when Ω is the ball sphere of a Hilbert space and we show that, in

this case, the spaces Z(Ω, H) is non-trivial, namely it is infinite dimensional, but

the space Z(Ω) contains only the constant functions. In Subsection 8.2 we prove

Theorem 1.7 giving a characterization of the domain of the Ornstein–Uhlenbeck

operator on half-spaces. Finally, in Subsection 8.3 we provide some examples of U

satisfying Hypothesis 7.1 and Ω = X.

8.1. The unit sphere of a Hilbert space

Let X be a separable Hilbert space, with norm ‖·‖X and inner product (·, ·)X , and

let µ be a centered non-degenerate Gaussian measure on X. Let {hn}n∈N be an

orthonormal basis of X which consists of eigenvector of the covariance operator Q,

i.e. Qhn = λihn, it is known that an orthonormal basis of the Cameron–Martin

space H is {
√
λnhn}n∈N (see8).

Consider G(x) = (x, x)X − 1, for any x ∈ X, then

Ω = {x ∈ X | ‖x‖X ≤ 1} =: BX .

Clearly, G(x) = 0 if and only if x ∈ SX the unit sphere of X. Moreover, easy

computations show that ∂hG(x) = 2(x, h)X for any x ∈ X and any h ∈ H. Hence,

if , we have

∇HG(x) = 2Q1/2x = 2

∞∑
n=1

√
λn(x, hn)X(

√
λnhn),

for any x ∈ X, and so |∇HG(x)|2H = 4‖Q1/2x‖2X = 4
∑∞
n=1 λn(x, hn)2

X . So

∇HG(x) = 0 if, and only if, x = 0. Finally G satisfies Hypothesis 1.1 (see12)

and ∂n,mG(x) = 2λnδn,m.
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As an admissible weight we can take U(x) := Φ(‖x‖2X), where Φ : R −→ R is a

C2 convex function which satisfies

|Φ′(t)|, |Φ′′(t)| ≤ tk, t ∈ R,

for some positive integer k. It is easy to prove that U is convex and satisfies the

Hypothesis 1.2.

Observe that

Z(BX , H) :=

Φ : BX → H

∣∣∣∣∣∣∣∣
there exists n ∈ N and {k1, . . . , kn} ⊆ H
such that Φ =

∑n
i=1 ϕiki for some n ∈ N,

and ϕi ∈ FC 2
b(Ω) for i = 1, . . . , n.

In addition 〈Φ,∇HG〉H = 0 ρ-a.e. in SX .

.
In particular all the vector fields

Φi,j(x) = − (x, hi)X√
λi

hj +
(x, hj)X√

λj
hi

belongs to Z(BX , H), so the space Z1,2
U (BX , ν;H) is infinite dimensional and con-

tained in the domain of the divergence operator (see Theorem 4.2).

The domain of the operator Lν,BX
contains the space Z2,2

U,N (BX , ν), i.e. the

completion of the space

Z(BX) =
{
u ∈ FC 2

b(BX)
∣∣ 〈∇Hu,∇HG〉H = 0 for ρ-a.e. in x ∈ SX

}
;

with respect to the norm

‖u‖2Z2,2
U (BX ,ν) = ‖u‖2W 2,2(BX ,ν)+

∫
BX

〈
∇2
HU,∇Hu,∇Hu

〉
H
dν+

+ 2

+∞∑
n,m=1

λnδn,m

∫
SX

∂nu∂mu
e−Φ(1)∥∥Q1/2x

∥∥dρ.
We want to show that in this case the space Z2,2

U,N (Ω, ν) only contains the constant

functions. Indeed let u ∈ Z(BX), without loss of generality assume that u(x) =

ϕ((x, h1)X , (x, h2)X) with ϕ ∈ C 2
b(R2). The Neumann boundary condition

+∞∑
n=1

√
λi(x, hi)X∂iu(x) = 0 for ρ-a.e. in x ∈ SX

implies√
λ1(x, h1)X∂1ϕ((x, h1)X , (x, h2)X) +

√
λ2(x, h2)X∂2ϕ((x, h1)X , (x, h2)X) = 0

for ρ-a.e x ∈ SX . So the function ϕ satisfies the differential equation√
λ1ξ1∂1ϕ(ξ) +

√
λ2ξ2∂2ϕ(ξ) = 0 for every ξ ∈ BR2 . (8.1)

We want to remak that the condition ξ ∈ BR2 is a consequence of the fact that, if

x ∈ SX , then the vector (ξ1, ξ2) = ((x, h1), (x, h2)) belongs to the unit ball of R2.

All the solutions of (8.1) are functions of the form

ϕ(ξ) = g
(
ξ
√
λ2

1 ξ−
√
λ1

2

)
,
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where g is a sufficiently regular function in R. It is easy to see that if ϕ is non-

constant, then ϕ cannot be continuous at the origin.

So Theorem 6.1 only gives us

D(LBX ,ν) ⊆W 2,2
U,N (BX , ν).

We want to remark that a positive answer to the question “Is BX a Neumann

extension domain?” would allow us to apply Theorem 1.6 and get a characterization

of the domain of LBX ,ν .

8.2. The Ornstein–Uhlenbeck operator on half-spaces

In this section we give a characterization of the domain of the operator Lµ,Ω, where

Ω is a half-space and µ is a centered non-degenerate Gaussian measure on a sepa-

rable Banach space X. To do so we need some preliminary results, in particular a

lemma about extensions of Sobolev functions and a proposition about finite dimen-

sional approximations. We recall that Z2,2
0 (X,µ) = W 2,2(X,µ) (see8).

Let x∗ ∈ X∗ r {0} and r ∈ R, throughout this section we set G(x) := x∗(x)− r
and Ω := G−1(−∞, 0]. We recall that x∗ is a linear and continuous functional on

H, so there exists hx∗ ∈ H such that for every h ∈ H

x∗(h) = 〈hx∗ , h〉H .

Finally we remind the reader that

W 2,2
0,N (Ω, µ) =

{
u ∈W 2,2(Ω, µ)

∣∣x∗(Tr(∇Hu)(x)) = 0 for ρ-a.e. x ∈ G−1(0)
}
.

Lemma 8.1. There exists a Neumann extension operator from W 2,2
0,N (Ω, µ) to

W 2,2(X,µ).

Proof. We use a generalization of the reflection method, adapted to our Gaussian

measure. Let f ∈ FC 2
b(Ω) and put

Ef(x) :=

{
f(x), G(x) ≤ 0,∑7
j=1 ajf

(
x− (j + 1)G(x) hx∗

|hx∗ |2H

)
exp

(
− cjG(x)+bjG

2(x)
2|hx∗ |H

)
, G(x) > 0;

(8.2)

where for every j = 1, . . . , 7,

bj = 1− 1

j2
, cj =

2(j + 1)r

j2

(
2− 1

j2

)
; (8.3)

and
7∑
j=1

aj = 1,

7∑
j=1

aj(j + 1) = 0,

7∑
j=1

aj(j + 1)2 = 0, (8.4)

7∑
j=1

ajcj(j + 1) = 0,

7∑
j=1

ajc
2
j = 0,

7∑
j=1

ajcj = 0,

7∑
j=1

ajbj = 0. (8.5)
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We start by proving that Ef is well defined. Indeed for j = 1, . . . , 7 and x ∈ X such

that G(x) > 0 we have

G

(
x− (j + 1)G(x)

hx∗

|hx∗ |2H

)
= x∗

(
x− (j + 1)(x∗(x)− r) hx∗

|hx∗ |2H

)
− r =

= x∗(x)− (j + 1)(x∗(x)− r)x
∗(hx∗)

|hx∗ |2H
− r = −jG(x) ≤ 0.

We point out that (8.4) are the classical conditions to prove the continuity of Ef

and its derivatives. (8.3) and (8.5) arise from the exponential term in (8.2), which

is used to prove the continuity estimate for the extension operator.

The fact that Ef belongs to FC 0
b(X) is obvious. Fix an orthonormal basis

{hi}i∈N ofH obtained by completing the set {hx∗/|hx∗ |H}, without loss of generality

we let h1 = hx∗/|hx∗ |. Let x0 ∈ X such that G(x0) = 0, then G(x0 + thi) =

tδ1i|hx∗ |H . We have for i 6= 1

∂iEf(x0) = ∂if(x0),

while

lim
t→0−

1

t
(Ef(x0 + th1)− Ef(x0)) = ∂1f(x0);

lim
t→0+

1

t
(Ef(x0 + th1)− Ef(x0)) =

7∑
j=1

aj

(
∂1f(x0)(1− (j + 1))− f(x0)

cj
2

)
= ∂1f(x0).

Thus, letting Tj(x) := x− (j + 1)G(x) hx∗
|hx∗ |2H

and Aj(x) := exp
(
− cjG(x)+bjG

2(x)
2|hx∗ |H

)

∂iEf(x) =

{
∂if(x), G(x) ≤ 0;∑7
j=1 ajAj(x)

(
(1− (j + 1)δ1i)∂if(Tj(x))− f(Tj(x))

2bjG(x)+cj
2 δ1i

)
, G(x) > 0.

In the same way it holds

∂j∂iEf(x) =

{
∂j∂if(x), G(x) ≤ 0;

Bij(x), G(x) > 0,
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where

Bij(x) :=

7∑
l=1

al∂ijf

(
x− (l + 1)G(x)

hx∗

|hx∗ |2

)
e

(
− clG(x)+blG

2(x)

2|hx∗ |H

)
(1− (l + 1)δ1i)(1− (l + 1)δ1j)+

−
7∑
l=1

al∂if

(
x− (l + 1)G(x)

hx∗

|hx∗ |2

)
e

(
− clG(x)+blG

2(x)

2|hx∗ |H

)
(1− (l + 1)δ1i)

2blG(x) + cl
2

δ1j+

−
7∑
l=1

al∂jf

(
x− (l + 1)G(x)

hx∗

|hx∗ |2

)
e

(
− clG(x)+blG

2(x)

2|hx∗ |H

)
(1− (l + 1)δ1j)

2blG(x) + cl
2

δ1i+

+

7∑
l=1

alf

(
x− (l + 1)G(x)

hx∗

|hx∗ |2

)
e

(
− clG(x)+blG

2(x)

2|hx∗ |H

)
(2blG(x) + cl)

2

4
δ1iδ1j+

+|hx∗ |H
7∑
l=1

alblf

(
x− (l + 1)G(x)

hx∗

|hx∗ |2

)
e

(
− clG(x)+blG

2(x)

2|hx∗ |H

)
δ1iδ1j .

So Ef belongs to FC 2
b(X) and Ef(x) = f(x), ∇HEf(x) = ∇Hf(x), ∇2

HEf(x) =

∇2
Hf(x) for every x ∈ Ω. Without loss of generality we can assume that there exists

n ∈ N and ψ ∈ C 2
b(Rn) such that for every x ∈ X

f(x) = ψ(x∗(x), ĥ2(x), . . . , ĥn(x)).

We remark that

Ef(x) =

{
ψ(x∗(x), ĥ2(x), . . . , ĥn(x)), x∗(x) ≤ r,∑7
j=1 ajψ

(
−jx∗(x) + (j + 1)r, ĥ2(x), . . . , ĥn(x)

)
exp

(
− cj(x

∗(x)−r)+bj(x∗(x)−r)2

2|hx∗ |H

)
, x∗(x) > r.

So we have ∫
X

|Ef(x)|2dµ(x) ≤
∫
ξ1≤r
|ψ(ξ1, ξ2, . . . , ξn)|2dµn(ξ)+

+7

7∑
j=1

a2
j

∫
ξ1>r

∣∣∣∣ψ(−jξ1 + (j + 1)r, ξ2, . . . , ξn) exp

(
−cj(ξ1 − r) + bj(ξ1 − r)2

2|hx∗ |H

)∣∣∣∣2dµn(ξ).

(8.6)

We remark that dµn(ξ) = exp(−|ξ|2/2|hx∗ |H)dx. For every j = 1, . . . , 7, consider

the change of variable:

{
η1 = −jξ1 + (j + 1)r;

ηi = ξi, i = 2, . . . , 7.
(8.7)
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We use (8.7) in the second integral of (8.6), and we get

7∑
j=1

a2
j

∫
ξ1>r

∣∣∣∣ψ(−jξ1 + (j + 1)r, ξ2, . . . , ξn) exp

(
−cj(ξ1 − r) + bj(ξ1 − r)2

2|hx∗ |H

)∣∣∣∣2dµn(ξ) =

=

7∑
j=1

a2
j

∫
ξ1>r

∣∣∣∣∣ψ(−jξ1 + (j + 1)r, ξ2, . . . , ξn) exp

(
−cj(ξ1 − r) + bj(ξ1 − r)2

2|hx∗ |H

)2
∣∣∣∣∣e− |ξ|2

2|hx∗ |H dξ =

=

7∑
j=1

a2
j

∫
η1≤r

∣∣∣∣∣∣∣ψ(η1, η2, . . . , ηn) exp

−cj
(
−η1−r

j

)
+ bj

(
−η1−r

j

)2

2|hx∗ |H


∣∣∣∣∣∣∣
2

e
−

(
− η1−(j+1)r

j

)2
+
∑n
i=2 η

2
i

2|hx∗ |H dξ.

Using the definition of aj , bj and cj we get

7∑
j=1

a2
j

∫
ξ1>r

∣∣∣∣ψ(−jξ1 + (j + 1)r, ξ2, . . . , ξn) exp

(
−cj(ξ1 − r) + bj(ξ1 − r)2

2|hx∗ |H

)∣∣∣∣2dµn(ξ) =

= C

∫
ξ1≤r
|ψ(ξ1, ξ2, . . . , ξn)|2dµn(ξ)

for some constant C > 0. So∫
X

|Ef(x)|2dµ(x) ≤ K
∫
ξ1≤r
|ψ(ξ1, ξ2, . . . , ξn)|2dµn(ξ) = K

∫
Ω

|f(x)|2dµ(x),

where the constant K > 0 depend only on r and ai for i = 1, . . . , 7. Using similar

arguments on ∇HEf and ∇2
HEf we get for every f ∈ FC 2

b(Ω)

‖Ef‖W 2,2(X,µ) ≤ K̃‖f‖W 2,2(Ω,µ),

where K̃ > 0 is an adequate constant independent of f . A standard density argu-

ment gives the thesis of our lemma.

Using Lemma 8.1 and Theorem 1.6 we get a characterization of the domain of

Lµ,Ω. In order to get Theorem 1.7 we need a further approximation argument.

Proposition 8.1. Let u ∈ W 2,2(Ω, µ) be such that 〈∇Hu(x), hx∗〉H = 0 for ρ-a.e.

x ∈ G−1(0). There exists a sequence (un)n∈N belonging to FC 2
b(Ω) such that

(1) 〈∇Hun(x), hx∗〉H = 0 for every n ∈ N and ρ-a.e. x ∈ G−1(0);

(2) (un)n∈N converges to u in W 2,2(Ω, µ).

Proof. Fix an orthonormal basis {hi}i∈N of H obtained by completing the set

{hx∗/|hx∗ |H}, without loss of generality we let h1 = hx∗/|hx∗ |H . Let u ∈W 2,2(Ω, µ)

be such that

∂1u(x) = 〈∇Hu(x), hx∗〉H = 0 for ρ-a.e. x ∈ G−1(0) (8.8)
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Let Eu be the extension defined in Lemma 8.1. We denote with Pn, Sn : X → H

the functions defined as

Pnx =

n∑
i=1

ĥi(x)hi and Sny =

+∞∑
i=n+1

ĥi(y)hi;

for every x, y ∈ X. We recall that Pnx converges pointwise µ-a.e. x ∈ X to x (see8

Theorem 3.5.1). Let

vn(x) =

∫
X

Eu(Pnx+ Sny)dµ(y),

by8 Corollary 3.5.2 and Proposition 5.4.5, un converges to Eu in W 2,2(X,µ) as n

goes to infinity and for every i, n ∈ N

∂ivn(x) =

{∫
X
∂iEu(Pnx+ Sny)dµ(y) i ≤ n

0 i > n

Observe that if x ∈ G−1(0), then for every y ∈ X and n ∈ N

G(Pnx+ Sny) = x∗(Pnx+ Sny)− r =

n∑
i=1

ĥi(x)〈hx∗ , hi〉H +

+∞∑
i=n+1

ĥi(y)〈hx∗ , hi〉H − r =

= ĥ1(x)|hx∗ |H − r = x∗(x)− r = 0.

By (8.8) we get

〈∇Hvn(x), hx∗〉H =

∫
X

∂1Eu(Pnx+ Sny)dµ(y) =

∫
X

∂1u(Pnx+ Sny)dµ(y) = 0,

for ρ-a.e. x ∈ G−1(0).

We are almost done, but we need smoother function satisfying Proposition

8.1(1)-(2). Let ψn(ξ) := vn(
∑n
i=1 ξihi). We remind the reader that ψn belongs

to W 2,2(Rn, µ ◦ P−1
n ) and

∂1ψn(ξ) = 0 for ξ ∈ Rn such that ξ1 = r.

Let Ln0 be the generator of the m-dimensional Ornstein–Uhlenbeck operator with

homogeneous Neumann condition in L2(On, µ◦P−1
n ), where On = {ξ ∈ Rn | ξ1 ≤ r}.

By31 Theorem 12.4.9 we know that the domain of Ln0 in L2(On, µ ◦ P−1
n ) is

D(Ln0 ) =
{
ϕ ∈W 2,2(On, µ ◦ P−1

n )
∣∣ 〈ξ,∇ϕ〉 ∈ L2(On, µ ◦ P−1

n ), ∂1ϕ(ξ) = 0 when ξ1 = r
}

and ∥∥DkR(λ,Ln0 )
∥∥
L(L2(On,µ◦P−1

n ))
≤ 2kλ

k
2−1,

where R(·,Ln0 ) is the resolvent operator associate to Ln0 and k = 0, 1, 2. Let fn :=

ψn − Ln0ψn, where the equality is meant in L2(On, µ ◦ P−1
n ). Let (fn,k)k∈N be a

sequence of bounded smooth function such that fn,k converges in L2(On, µ ◦ P−1
n )

to fn as k goes to infinity. We let

ψn,k = R(1,Ln0 )fn,k.
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We recall that ψn,k belongs to D(L0
n) and to C 2

b(Rn) (see31 Section 12). Let

Fn,ku(x) := ψn,k(ĥ1(x), . . . , ĥn(x)).

We get that Fn,ku belongs to FC 2
b(Ω) and satisfy the Neumann condition at the

boundary. Let ε > 0 and consider nε, kε ∈ N such that

‖vnε − Eu‖W 2,2(X,µ) ≤
ε

2
; ‖ψnε,kε − ψnε‖W 2,2(Onε ,µ◦P

−1
nε ) ≤

ε

2

So

‖Fnε,kεu− u‖W 2,2(Ω,µ) ≤ ‖Fnε,kεu− Eu‖W 2,2(X,µ) ≤

‖Fnε,kεu− vnε‖W 2,2(X,µ) + ‖vnε − Eu‖W 2,2(X,µ) ≤

≤ ‖ψnε,kε − ψnε‖W 2,2(Onε ,µ◦P
−1
nε ) + ‖vnε − Eu‖W 2,2(X,µ) ≤ ε.

Thus the sequence um := Fnm−1 ,km−1u for m ∈ N is the sequence we were looking

for.

As a consequence of Corollary 1.4 and Proposition 8.1, we get Theorem 1.7.

8.3. The case Ω = X when X is a Hilbert space

Let X = L2(0, 1) endowed with the classical Wiener measure γW . It is well known

that H = H1
0 (0, 1) := {f ∈ W 1,2(0, 1) : f(0) = 0}. An orthonormal basis of X is

given by

en :=
√

2 sin
t√
λn
, λn :=

4

π2(2n− 1)2
, n ∈ N.

Let us choose

U(f) :=

∫ 1

0

Φ(f(x))dx,

where Φ : R −→ R is a smooth convex function such that |Φ′′(t)| ≤ C(1 + t2),

for some positive constant C. Then, arguing as in12 Example 7.3, it follows that U

satisfies Hypothesis 1.2 and

∂nU(f) =
√
λn

∫ 1

0

Φ′(f(x))en(x)dx,

for any n ∈ N. It remains to show that (7.1) holds true. To this aim we recall that,

since Φ is convex, we have (Φ′(t)− Φ′(0))t ≥ 0. Hence, it follows that

〈∇HU(f), f〉L2(0,1) =
∑
n∈N

λn

∫ 1

0

Φ′(f(x))f(x)dx ≥
∑
n∈N

λnΦ′(0)

∫ 1

0

f(x)dx.

This implies

−〈∇HU(f), f〉L2(0,1) ≤
∑
n∈N

λn|Φ′(0)|‖f‖L2(0,1),

and therefore (7.1) holds with C =
∑
n∈N λn|Φ′(0)|.
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sadasi, 1998), Progr. Probab. 48 (Birkhäuser Boston, Boston, MA, 2001), pp. 59–76.

24. D. Feyel and A. de La Pradelle, Capacités gaussiennes, Ann. Inst. Fourier (Grenoble)
41(1) (1991) 49–76.
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