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ON COUPLED SYSTEMS OF PDES

WITH UNBOUNDED COEFFICIENTS

LUCIANA ANGIULI, LUCA LORENZI

Abstract. We study the Cauchy problem associated with parabolic systems of the form
Dtu = A(t)u in Cb(Rd;Rm), the space of continuous and bounded functions f : Rd → Rm.
Here A(t) is a coupled nonautonomous elliptic operator acting on vector-valued functions, hav-
ing diffusion and drift coefficients which change from equation to equation. We prove existence

and uniqueness of the evolution operator G(t, s) which governs the problem in Cb(Rd;Rm) and
its positivity. The compactness of G(t, s) in Cb(Rd;Rm) and some of its consequences are also
studied. Finally, we extend the evolution operator G(t, s) to the Lp- spaces related to the

so called ”evolution system of measures” and we provide conditions for the compactness of
G(t, s) in this setting.

1. Introduction

In the study of the diffusion processes, second-order elliptic operators with unbounded co-
efficients appear naturally and the associated parabolic equation represents the Kolmogorov
equation of the process. The theory of such equations is now well developed in the scalar case
as the systematic treatise of [17] and the reference therein show. On the contrary, the literature
on systems of parabolic equations with unbounded coefficients is at a first stage and only some
partial results are available. The interest in the study of systems is on one hand motivated by
the natural sake of extending the known results of the scalar case. On the other hand, systems
of parabolic equations with unbounded coefficients arise in many applications. Among them we
quote the study of backward-forward stochastic differential systems, the study of Nash equilibria
to stochastic differential games, the analysis of the weighted ∂- problem in Cd, in the time-
dependent Born-Openheimer theory and also in the study of Navier-Stokes equations. We refer
the reader to [2, Section 6] and [7, 9, 12, 13, 15, 16].

One of the first papers concerning parabolic systems with unbounded coefficients is [14]
where the authors prove that the realization Ap of the weakly coupled elliptic operator Au =
div(Q∇u) + F · ∇u + Cu in Lp(Rm;Rm) generates a strongly continuous semigroup and they
characterize its domain under suitable assumptions on its coefficients. More precisely, they as-
sume that the diffusion coefficients Q = (qij) are uniformly elliptic and bounded together with
their first-order derivatives, the drift coefficient F and the potential V are sufficiently smooth
and allow to grow as |x| log |x| and log |x|, respectively, as |x| → +∞.

Next, first in [10] (in the weakly coupled case) and then in [2] (also in the nonautonomous
case), systems of parabolic equations with unbounded coefficients coupled up to the first order
have been studied in the space of bounded and continuous functions over Rd, and existence
and uniqueness results for a classical solution to the associated Cauchy problem are established.
This allows to introduce a vector-valued semigroup T (t) (an evolution operator G(t, s) in the
nonautonomous case) in L(Cb(Rd;Rm)) associated with the operator A(t).

Taking advantage of the results in [2], the authors of [6] provide sufficient conditions for the
semigroup T (t) to admit a bounded extension to Lp(Rd;Rm). Also some summability improving

2000 Mathematics Subject Classification. 35K40, 35K45, 37L40, 46B50, 47A15.
Key words and phrases. Nonautonomous parabolic systems, unbounded coefficients, evolution operators, com-

pactness, invariant subspaces, evolution systems of invariant measures.
The authors are members of G.N.A.M.P.A. of the Italian Istituto Nazionale di Alta Matematica (INdAM).

Work partially supported by the INdAM-GNAMPA Project 2017 “Equazioni e sistemi di equazioni di Kolmogorov
in dimensione finita e non”.

1



2 L. ANGIULI AND L. LORENZI

properties of the semigroup are studied. More precisely, hypercontractivity estimates of the form
∥T (t)∥L(Lp(Rd;Rm),Lq(Rd;Rm)) ≤ cp,q(t) for any 1 ≤ p ≤ q ≤ +∞ and some positive function
cp,q : (0,+∞) → (0,+∞) are established. We stress that also the nonautonomous case is
considered in [6].

All the above papers have a common feature: the elliptic operators therein considered have
all the diffusion coefficients that do not change from equation to equation, i.e.,

(A0u)k = Tr(QD2uk) +
d∑

i=1

(BiDiu)k + (Cu)k, k = 1, . . . ,m.

This form of the equations allows to extend easily the classical maximum principle for systems
with bounded coefficients, which in turn allows to prove the uniqueness of the classical solution
of the Cauchy problem associated with the operator A0 and provides a comparison between the
vector-valued semigroup T (t) associated with A0 and the scalar semigroup T (t) associated with
the operator A = Tr(QD2) + ⟨b,∇⟩ for a suitable drift term b, i.e., it can be shown that there
exists K ∈ R such that

|T (t)f |2 ≤ eKtT (t)|f |2, f ∈ Cb(Rd;Rm), t > 0.

This is also the case considered in [4] where the matrices Bi split in two terms: the leading one
which is of diagonal type (like in the weakly coupled case) and the other one whose growth at
infinity is controlled by a power of the minimum eigenvalue of the diffusion matrix.

In this paper, differently from the cases so far considered, we deal with nonautonomous weakly
coupled operators with diffusion and drift coefficients which may vary from equation to equation,
acting on a smooth function ψ as follows

(A(t)ψ)k(t, x) = Tr(Qk(t, x)D2ψk(x)) + ⟨bk(t, x),∇ψk(x)⟩+ (C(t, x)ψ(x))k,

for any (t, x) ∈ I × R and k = 1, . . . ,m, I being a right halfline (possibly I = R). The form of
the operator A(t) makes the associated Cauchy problem{

Dtu = A(t)u, in (s,+∞)× Rd,

u(s, ·) = f ∈ Cb(Rd;Rm), in Rd,
(1.1)

quite involved. In particular, in this case we are not able to control the solution of problem (1.1)
in terms of a scalar semigroup. To overcome this difficulty we extend to our situation a maximum
principle for systems having bounded coefficients to the case of unbounded coefficients assuming
that the off-diagonal entries of the matrix C are bounded from below and the sum of each row
of the matrix C is bounded from above. This yields the uniqueness of the classical solution to
problem (1.1).

Once uniqueness is guaranteed, the existence of a classical solution of the problem (1.1) is then
proved by some compactness and localization argument based on interior Schauder estimates
recalled in the Appendix. As a byproduct, we can associate an evolution operator G(t, s) to
A(t) in Cb(Rd;Rm), in the natural way.

The evolution operator G(t, s) is positive if the off-diagonal entries of C are nonnegative and
the system does not contain any subsystem which decouple, then each component of G(·, s)f
is strictly positive in (s,+∞) × Rd whenever f is a nonnegative function which has at least a
component that does not identically vanish in Rd.

In [2] the authors study the compactness of the evolution operator G0(t, s) (t > s ∈ I) in
L(Cb(Rd;Rm)) showing that it is equivalent to the tightness of the measures {|pij(t, s, x, ·)| :
x ∈ Rd} for any i, j = 1, . . . ,m, where pij(t, s, x, ·) are the transition kernels associated with the
problem, i.e., for any f ∈ Cb(Rd;Rm), s ∈ I and k = 1, . . . ,m

(G(t, s)f)k(x) =
m∑
i=1

∫
Rd

fi(y)pki(t, s, x, dy), (t, x) ∈ (s,+∞)× Rd.

This fact together with the pointwise estimate of |G(t, s)f |2 in terms of the scalar evolution
operator associated with the operator A, guarantees that the compactness of the scalar evolution
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operator is a sufficient condition for the compactness of G(t, s), hence the problem reduces to
find conditions that ensure compactness in the scalar case. We prove that, also in our case, the
compactness of G(t, s) is equivalent to the tightness of the transition kernels associated with the
problem (which are nonnegative measures if the off-diagonal entries of C are nonnegative). On
the other hand, the lack of a scalar evolution operator which “dominates”G(t, s) prevents us from
applying the results of the scalar case. However, it is possible to provide sufficient conditions for
the compactness of G(t, s) in Cb(Rd;Rm) in terms of the existence of some Lyapunov functions,
see Theorem 3.11. In this case G(t, s) preserves neither C0(Rd;Rm) nor Lp(Rd;Rm) for p ∈
[1,+∞). Further, assumptions on the coefficients of A are provided in order that these spaces
together with the space C1

b (Rd;Rm) are preserved by the action of G(t, s).
Finally, we prove the existence of an evolution system of measures associated with the evolution

operatorG(t, s) consisting of positive measures (which are equivalent to the Lebesgue one), where,
according to the definition introduced in [3, 4], a family {µi,t : t ∈ I, i = 1, . . . ,m} is an evolution
system of measures if

m∑
j=1

∫
Rd

(G(t, s)f)jdµj,t =

m∑
j=1

∫
Rd

fjdµi,s, I ∋ s < t,

for any f = (f1, . . . , fm) ∈ Cb(Rd;Rm), where (G(t, s)f)j denotes the j-th component of the
vector-valued function G(t, s)f . We prove that the evolution operator G(t, s) can be extended
with a bounded operator mapping Lp

µs
(Rd;Rm) into Lp

µt
(Rd;Rm) for any p ∈ [1,+∞) and provide

sufficient conditions to be compact from Lp
µs
(Rd;Rm) into Lp

µt
(Rd;Rm) for any p ∈ (1,+∞).

Notation. Vector-valued functions are displayed in bold style. Given a function f (resp. a
sequence (fn)) as above, we denote by fi (resp. fn,i) its i-th component (resp. the i-th component
of the function fn). By Bb(Rd;Rm) we denote the set of all the bounded Borel measurable
functions f : Rd → Rm, where ∥f∥2∞ =

∑m
k=1 supx∈Rd |fk(x)|2. For any k ≥ 0, Ck

b (Rd;Rm) is
the space of all f : Rd → Rm whose components belong to Ck

b (Rd), where the notation Ck(Rd)
(k ≥ 0) is standard and we use the subscripts “c”, “0” and “b”, respectively, for spaces of
functions with compact support, vanishing at infinity and bounded. Similarly, when k ∈ (0, 1),
we use the subscript “loc” to denote the space of all f ∈ C(Rd) which are Hölder continuous
in any compact set of Rd. We assume that the reader is familiar also with the parabolic spaces
Cα/2,α(I × Rd) (α ∈ (0, 1)) and C1,2(I × Rd), and we use the subscript “loc” with the same
meaning as above.

The symbols Dtf , Dif and Dijf , respectively, denote the time derivative, the first-order
spatial derivative with respect to the i-th variable and the second-order spatial derivative with
respect to the i-th and j-th variables. We write Jxu for the Jacobian matrix of u with respect
to the spatial variables, omitting the subscript x when no confusion may arise. By ej we denote
the j-th vector of the Euclidean basis of Rm. 1l (resp. 0) denotes the m-valued function with
entries all equal to 1l (resp. 0) where 1l is the function which is identically equal to 1 in Rd. For
any function f : Rd → Rm, we set f+ = f ∨ 0 and f− = f ∧ 0. Throughout the paper we
denote by c a positive constant, which may vary from line to line and, if not otherwise specified,
may depend on d and m. We write cδ when we want to stress that the constant depends on δ.
For any interval I ⊂ R, we set ΛI := {(t, s) ∈ I × I : t > s}. Finally, we point out that all the
inequalities which involve vector-valued functions are intended componentwise.

2. Preliminary results

Let I be either an open right-interval or I = R and (A(t))t∈I be a family of second order
uniformly elliptic operators defined on smooth vector-valued functions ψ : Rd → Rm by

(A(t)ψ)k(t, x) =Tr(Qk(t, x)D2ψk(x)) + ⟨bk(t, x),∇ψk(x)⟩+ (C(t, x)ψ(x))k,

=(Ak(t)ψk)(t, x) + (C(t, x)ψ(x))k (2.1)
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for any t ∈ I and k = 1, . . . ,m. Fixed s ∈ I, we study the Cauchy problem{
Dtu = A(t)u, in (s,+∞)× Rd,

u(s, ·) = f , in Rd.
(2.2)

for initial data which are vector-valued bounded and continuous functions f : Rd → Rm. The
standing hypotheses considered in the whole paper are the following.

Hypotheses 2.1.

(i) The coefficients qkij = qkji, b
k
j and the entries chk of the not identically vanishing matrix-

valued function C belong to C
α/2,α
loc (I ×Rd) for some α ∈ (0, 1) and each i, j = 1, . . . , d and

h, k = 1, . . . ,m;
(ii) the infimum µ0

k over I × Rd of the minimum eigenvalue µk(t, x) of the matrix Qk(t, x) =
(qkij(t, x)) is positive for any k = 1, . . . ,m;

(iii) there does not exist a nontrivial set K ⊂ {1, . . . ,m} such that the coefficients cij identically
vanish on I × Rd for any i ∈ K and j /∈ K;

(iv) for any J ⊂ I bounded, there exists a positive function φJ ∈ C2(Rd;Rm), blowing up
componentwise as |x| tends to +∞ such that (A(t)φJ )(x) ≤ λJφJ (x) for any t ∈ J ,
x ∈ Rd and some positive constant λJ ;

(v) the off-diagonal entries of the matrix-valued function C are bounded from below on Rd and
the sum of the elements on each row of C is a bounded from above function on Rd.

Remark 2.2. Some comments on the set of our assumptions are in order.
Hypotheses 2.1(i) and (ii) are a standard regularity assumption on the coefficients of the operator
(2.1) and a standard uniform ellipticity hypothesis on the diffusion matrices Qk, k = 1, . . . ,m.
We consider weakly-coupled systems of parabolic equations and Hypothesis 2.1(iii) is a condition
on the entries of the matrix-valued function C which guarantees that the differential system in
(2.2) does not contain subsystems with less than m unknowns.
Hypothesis 2.1(iv) is the vector-valued version of the scalar one which requires the existence
of a Lyapunov function for the scalar elliptic operator associated with the problem. This is a
typical request when dealing with parabolic problems with unbounded coefficients since it allows
to prove a variant of the classical maximum principle.
Also Hypothesis 2.1(v) is finalized to prove a maximum principle when, as in our case, the
diffusion coefficients and the drift terms can change from line to line. We point out that the
assumptions considered here do not imply that the quadratic form associated with the matrix-
valued function C is bounded from above in Rd. Indeed, if

C(x) = (|x|+ 1)


−4 1 2 1
1 −3 1 0
0 1 −1 0
0 2 0 −2

 , x ∈ Rd,

then condition (v) in Hypothesis 2.1 is satisfied. However, the matrix C(0)+C(0)∗ has a positive
eigenvalue γ. Thus, if ξ denotes a unit eigenvector associated with γ, then ⟨C(x)ξ, ξ⟩ = γ(|x|+1)
for any x ∈ Rd.

On the other hand we can find out matrices whose associated quadratic form is non positive
definite on Rd which do not satisfy Hypothesis 2.1(v). Consider for instance the matrix-valued
function C defined by

C(x) = (|x|+ 1)


−4 0 2 1
0 −3 1 0
0 1 −1 0
1 2 0 −2

 , x ∈ Rd,

and notice that the sum of the terms on the last row is positive.
We point out that if C is symmetric, the off-diagonal entries of the matrix-valued function C
are nonnegative and the sum of each row of C is nonpositive then the quadratic form associated
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with the matrix-valued function C is nonpositive. This is an immediate consequence of the
Gershgorin’s theorem related to the localization of the spectrum of C.

In order to deduce uniqueness of a classical solution to problem (2.2) we prove a variant of
the classical maximum principle which holds under more restrictive assumptions on the entries of
the matrix-valued function C and whose proof is deeply based on the existence of the Lyapunov
function in Hypothesis 2.1(iv).

Theorem 2.3. Let us assume that Hypotheses 2.1(i)-(iv) hold true. Further suppose that the
off-diagonal entries of the matrix-valued function C are nonnegative and the sum of each row of
C is nonpositive. Then, for any T > s ∈ I, if u ∈ Cb([s, T ] × Rd;Rm) ∩ C1,2((s, T ] × Rd;Rm)
satisfies {

Dtu−A(t)u ≤ 0, in (s, T ]× Rd,

u(s, ·) ≤ 0, in Rd,

then u ≤ 0 in [s, T ]× Rd.

Proof. For each n ∈ N we introduce the vector valued function vn defined by

vn(t, x) := u(t, x)−
1

n
eλ0(t−s)φ(x), (t, x) ∈ [s, T ]× Rd,

where λ0 is a constant larger than λ[s,T ] and φ = φ[s,T ]. Note that, for any t ∈ (s, T ] and
k = 1, . . . ,m,

Dtvn,k(t, ·)− (A(t)vn)k(t, ·) =Dtuk(t, ·)− (A(t)u)k(t, ·)

+
1

n
eλ(t−s)

(
(A(t)φ)k − λφk

)
< 0, (2.3)

due to Hypotheses 2.1(iii),(v).
Let us prove that vn(t, x) < 0 for every (t, x) ∈ [s, T ] × Rd and n ∈ N, or equivalently, that

En =
{
t ∈ [s, T ]

∣∣vn(t, x) < 0 for every x ∈ Rd
}
= [s, T ]. Note that En ̸= ∅ since vn(s, x) < 0

for any x ∈ Rd. Moreover, En contains a right-neighborhood of t = s. Indeed, by continuity,
for any R > 0 there exists δR > 0 such that vn < 0 in [s, s+ δR]× BR. Since vn tends to −∞,
uniformly with respect to t ∈ [s, T ] as |x| → +∞, there exists R0 > 0 such that vn is negative
in [s, T ] × (Rd \ BR0). Thus, En contains the interval [s, s + δR0 ]. The previous argument also
shows that En is an interval.

Denote by tn the supremum of En and assume by contradiction that t̄n < T . By continuity
vn(t̄n, ·) ≤ 0 in Rd, and by definition of t̄n there exist kn ∈ {1, . . . ,m} and x̄n ∈ Rd such that
vn,kn(t̄n, x̄n) = 0. Since vn(t, x) ≤ 0 for every t ≤ t̄n and x ∈ Rd it follows that x̄n is a maximum
point for vn,kn(t̄n, ·) and Dtvn,kn(tn, xn) ≥ 0. Hence,

Dtvn,kn(t̄n, x̄n)−
d∑

i,j=1

qkn
ij Dijvn,kn(t̄n, x̄n)−

d∑
i=1

bkn
i Divn,kn(t̄n, x̄n) ≥ 0, (2.4)

and, since ckn,i ≥ 0 for every i ̸= kn (see Hypothesis 2.1(iii)),

m∑
i=1

ckn,ivn,i(t̄n, x̄n) =

m∑
i=1
i ̸=kn

ckn,ivn,i(t̄n, x̄n) ≤ 0. (2.5)

Estimates (2.4) and (2.5) contradict (2.3). Thus we get vn(t, x) < 0 for any (t, x) ∈ [s, T ]×Rd and
n ∈ N. Consequently, letting n→ +∞, we infer that u(t, x) ≤ 0 for every (t, x) ∈ [s, T ]×Rd. �

Theorem 2.4. Under Hypotheses 2.1, for any f ∈ Cb(Rd;Rm) and s ∈ I, the Cauchy problem

(2.2) admits a unique solution u which belongs to Cb([s, T ] × Rd;Rm) ∩ C1+α/2,2+α
loc ((s,+∞) ×

Rd;Rm) for any T > s and it satisfies the estimate

∥u(t, ·)∥∞ ≤ eK(t−s)∥f∥∞, t > s, (2.6)
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for some positive constant K (explicitely determined in the proof ).

Proof. We split the proof into two steps. In the first one we consider the case when the off-
diagonal elements of the matrix C are nonnegative and the sum of the elements of each row of
C is nonpositive. In the second step we address the general case.

S tep 1. To begin with, we prove that, if u in Cb([s, T ]× Rd) ∩ C1,2((s, T )× Rd) is a solution
to problem (2.2), then it is unique and satisfies the estimate

|ui(t, x)| ≤ max
k=1,...,m

∥fk∥∞ (2.7)

for every (t, x) ∈ [s, T ]×Rd and i = 1, . . . ,m. For this purpose, it suffices to apply Theorem 2.3
to the function

v := u− max
k=1,...,m

∥fk∥∞1l.

Indeed, clearly v ∈ Cb([s, T ]× Rd;Rm) ∩ C1,2((s, T ]× Rd;Rm) and

v(s, x) = u(s, x)− max
k=1,...,m

∥fk∥∞1l = f(x)− max
k=1,...,m

∥fk∥∞1l ≤ 0,

for any x ∈ Rd. Moreover, for any k = 1, . . . ,m,

Dtvk − (A(t)v)k =Dtuk − (A(t)u)k + max
j=1,...,m

∥fj∥∞
m∑
i=1

cki

= max
j=1,...,m

∥fj∥∞
m∑
i=1

cki ≤ 0,

due to the fact that
∑m

i=1 cki ≤ 0 in (s, T ] × Rd for any k = 1, . . . ,m. Hence, Theorem 2.3
implies that v ≤ 0 in [s, T ] × Rd and the claim is so proved. By the arbitrariness of T > s we
get uniqueness in [s,+∞)× Rd.

To prove the existence part let us consider the unique classical solution un to the Dirichlet
problem 

Dtun(t, x) = (A(t)un)(t, x) t > s, x ∈ Bn

un(t, x) = 0 t > s, x ∈ ∂Bn

un(0, x) = f(x) x ∈ Bn,

(see [11]). By [19, Theorem 8.15], un satisfies (2.7) for any n ∈ N, i.e.,

∥un,i∥∞ ≤ max
k=1,...,m

∥fk∥∞ (2.8)

holds true for any n ∈ N and i = 1, . . . ,m. The interior Schauder estimates in Theorem 7.2
together with estimate (2.8) guarantee that the sequence (un) is bounded in C1+α/2,2+α(E;Rm)
where E is any compact subset of (s,+∞)×Rd. Classical arguments involving the Ascoli–Arzelà
theorem and a diagonal procedure allow us to determine a sequence (unj ) ⊂ (un) converging in

C1,2(E;Rm) to a function u belonging to Cb((s,+∞)×Rd;Rm)∩C1+α/2,2+α
loc ((s,+∞)×Rd;Rm).

Clearly u solves the differential equation in (2.2) and estimate (2.7). To prove the claim we need
to show that u is continuous at t = s where equals f . For this purpose, we fix R ∈ N and let θR
be any smooth function such that χBR−1

≤ θR ≤ χBR
. For any j ∈ N such that nj ≥ R we set

vj = θRunj . Note that vj belongs to C([s, T ] × BR;Rm) ∩ C1,2((s, T ] × BR;Rm) and satisfies
the problem 

Dtvj(t, x)−A(t)vj(t, x) = gj(t, x), (t, x) ∈ (s, T ]×BR,

vj(t, x) = 0, (t, x) ∈ (s, T ]× ∂BR,

vj(s, x) = θR(x)f(x), x ∈ BR,
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where gj,k = −2⟨Qk∇unj ,k,∇θR⟩ − unj ,kAkθR. Since all the hypotheses in Proposition 7.1 are
satisfied, by using (7.1) and (2.8) we get

|gj(t, x)| ≤ KR

(
1 +

1√
t− s

)
max

k=1,...,m
∥fk∥∞

for every (t, x) ∈ (s, s+ 1)× BR and any nj > R, where KR is a positive constant independent
of j. We can write vj by means of the variation-of-constants formula

vj(t, x) = (GD
R (t, s)(θRf))(x) +

∫ t

s

(GD
R (t, r)gj(r, ·))(x)dr t ∈ [s, T ], x ∈ BR,

where GD
R (t, s) denotes the evolution operator associated with A(t) in Cb(BR;Rm) with homo-

geneous Dirichlet boundary conditions. Recalling that vj = unj in BR−1, we get∣∣unj (t, ·)− f
∣∣ ≤ ∣∣GD

R (t, s)(θRf)− f
∣∣+K ′

R

√
t− s∥f∥∞

in BR−1 for any t ∈ (s, s+ 1), where K ′
R is a positive constant independent of j. Now, letting j

tend to +∞ and, then, t to s+, we conclude that u is continuous on {s}×BR−1. The arbitrariness
of R yields the claim.

Step 2. Now, we consider the general case and prove the claim by using a perturbation
argument. We introduce the m × m matrix C with entries cij = infI×Rd cij , if i ̸= j, and
cii = supI×Rd

∑m
k=1 cik −

∑
k ̸=i cik, and note that the Cauchy problem (2.2) can be written as

follows: {
Dtu = A0(t)u+ Cu, in (s,+∞)× Rd,

u(s, ·) = f , in Rd,

where A0 := A − C and the off-diagonal elements of the potential of A0 are nonnegative,
whereas the sum of each row is nonpositive. The existence part can be obtained arguing as in
Step 1. Indeed, observing that for any n ∈ N, the function un satisfies the uniform estimate

∥un(t, ·)∥∞ ≤ e∥C∥(t−s)∥f∥∞ for any t > s, we can prove that problem (2.2) admits a solution u

which belongs to Cb([s, T ]×Rd;Rm) ∩C1+α/2,2+α
loc ((s,+∞)×Rd;Rm) for any T > s. Moreover,

(2.6) holds true with K = ∥C∥.
To prove the uniqueness of the solution, it suffices to point out that any solution u to the

problem (2.2) which belongs to Cb([s, T ] × Rd;Rm) ∩ C
1+α/2,2+α
loc ((s,+∞) × Rd;Rm) for each

T > s can be written as follows

u(t, ·) = G0(t, s)f +

∫ t

s

G0(t, r)(Cu(r, ·)))dr, (2.9)

where {G0(t, s) : t ≥ s ∈ I} denotes the contractive evolution operator associated with A0

in Cb(Rd;Rm). Formula (2.9) and the Gronwall Lemma yield immediately that ∥u(t, ·)∥∞ ≤
e∥C∥(t−s)∥f∥∞ for every t > s, whence uniqueness follows. �

As a consequence of Theorem 2.4 we can define a family of bounded operators {G(t, s)}t≥s∈I

on Cb(Rd;Rm) by setting G(t, s)f = u(t, ·) for any t > s ∈ I, where u is the unique solution to
the Cauchy problem (2.2) with f ∈ Cb(Rd;Rm).

Remark 2.5. We stress that the solution u of the problem (2.2) could be also approximated by
the solution to the Neumann-Cauchy problem

Dtun(t, x) = (A(t)un)(t, x) t > s, x ∈ Bn

⟨∇xun(t, x), ν(x)⟩ = 0 t > s, x ∈ ∂Bn

un(0, x) = f(x) x ∈ Bn

where ν is the unit normal exterior vector to ∂Bn which is governed by the Neumann evolution
operator GN

n (t, s). Also in this case the sequence (GN
n (·, s)f) converges to u in C1,2(E,Rm) for

any compact set E ⊂ (s,+∞)× Rd.
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Here, we list some continuity properties of the evolution operator G(t, s) together with an
integral representation formula. The proof of these results can be obtained arguing as in [2,
Proposition 3.2 & Theorem 3.3].

Theorem 2.6. If (fn) is a bounded sequence of functions in Cb(Rd;Rm) then the following
properties hold true:

(i) if fn converges pointwise to f ∈ Cb(Rd;Rm), then G(·, s)fn converges to G(·, s)f in
C1,2(E) for any compact set E ⊂ (s,+∞)× Rd;

(ii) if fn converges to f locally uniformly in Rd, then G(·, s)fn converges to G(·, s)f locally
uniformly in [s,+∞)× Rd.

Moreover, there exists a family of finite Borel measures {pij(t, s, x, dy) : t > s ∈ I, x ∈ Rd, i, j =
1, . . . ,m} such that

(G(t, s)f(x))k =

m∑
i=1

∫
Rd

fi(y)pki(t, s, x, dy), f ∈ Cb(Rd;Rm). (2.10)

Finally, through formula (2.10) G(t, s) can be extended to Bb(Rd;Rm) with a strong Feller evo-
lution operator.

Now we are interested in finding conditions which ensure the positivity of the evolution oper-
ator G(t, s) in Cb(Rd;Rm) in the sense that, if f ∈ Cb(Rd;Rm) has all nonnegative components,
then the function G(t, s)f has nonnegative components as well, for any t > s. Weakly coupled
operators with the same principal part have been considered in [3] extending the result proved
in [18] for operators with bounded coefficients. Similar results can be proved also in the case
considered here, where, an additional assumption on the matrix-valued function C guarantees
also the strict positivity (with the obvious meaning) of the evolution operator G(t, s). In what
follows, in order to simplify the notation we set Îi := {j ∈ N, 1 ≤ j ≤ m, j ̸= i}.

Hypotheses 2.7. The off-diagonal entries of the matrix-valued function C are nonnegative.

Proposition 2.8. Under Hypotheses 2.1 and 2.7, if f ∈ Cb(Rd;Rm) has all nonnegative compo-
nents and it has at least a component which does not identically vanish in Rd then (G(t, s)f)j > 0
in Rd for any t > s and j = 1, . . . ,m. Consequently, for any i, j = 1, . . . ,m, t > s ∈ I and
x ∈ Rd, each measure pij(t, s, x, ·) is positive and equivalent to the Lebesgue measure.

Proof. We split the proof into three steps.
Step 1. Here, for each k = 1, . . . ,m and i ∈ N, we introduce the sets Hi

k, defined by{
H0

k = {j ∈ {1, . . . ,m} \ {k} : cjk ̸≡ 0 in I × Rd},

Hi
k = {j ∈ {1, . . . ,m} \ {k} ∪

∪i−1
r=0H

r
k : ∃l ∈ Hi−1

k s.t. cjl ̸≡ 0 in I × Rd},

and prove that, for each k, there existsmk < m such thatHi
k ̸= ∅ (i = 1, . . . ,mk) and {1, . . . ,m}\

{k} =
∪mk

i=0H
i
k.

Let us fix k ∈ {1, . . . ,m} and suppose, by contradiction, that H0
k = ∅. This would imply that

cjk = 0 for any j ̸= k. Clearly this condition contradicts Hypothesis 2.1(iii), taking K = {k}.
Let us now fix r > 0 such that

∪r
j=0H

j
k is properly contained in the set {1, . . . ,m} \ {k} and

prove that Hr+1
k ̸= ∅. On the contrary, let us assume that Hr+1

k = ∅. This means that, for any

i /∈ H0
k ∪· · ·Hr

k ∪{k} and ℓ ∈ Hr
k , ciℓ identically vanishes in I×Rd. By the definitions of Hi

k, i =

0, . . . , r, it follows that cij identically vanishes in I×Rd for any j ∈ {k}∪H0
k∪· · ·H

r−1
k . Summing

up we conclude that cij ≡ 0 in I × Rd for any j ∈ {k} ∪H0
k ∪ · · ·Hr

k and i /∈ {k} ∪H0
k ∪ · · ·Hr

k

contradicting again Hypothesis 2.1(iii), taking K = {k} ∪ H0
k ∪ · · ·Hr

k . The second statement
now follows immediately.

Step 2. Here, we prove the first part of the claim. Let f ∈ Cb(Rd;Rm) be such that fk does
not identically vanish in Rd and let us show that (GD

n (t, s)f)j is positive in Rd for any t > s ∈ I
and j ∈ {1, . . . ,m}. Then, letting n tends to infinity we get the claim by monotonicity. Let
us consider first the case j = k and let GD

n,k(t, s) be the evolution operator associated with the
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operator Ak + ckk in C(Bn) with homogeneous Dirichlet boundary conditions. Since GD
n,k(t, s)

is irreducible, it is known that GD
n,k(t, s)fk > 0 in Rd for any t > s. Taking into account that

(GD
n (·, s)f)j is nonnegative in (s,+∞)×Bn for any j ∈ {1, . . . ,m} (see [3, Proposition 2.8] with

the obvious changes) and that the off-diagonal entries of C are nonnegative functions, using a
scalar maximum principle we deduce that

(GD
n (t, s)f)k)(x) ≥ (GD

n,k(t, s)fk)(x) > 0, (t, x) ∈ (s,+∞)×Bn. (2.11)

Now, we fix j ∈ {1, . . . ,m} \ {k}. Clearly, if fj does not identically vanish the claim follows
immediately arguing as above. Hence, let us assume that fj ≡ 0 in Rd. Since j belongs to∪m

r=0H
r
k and Hi

k ∩Hj
k = ∅ for i ̸= j, there exists a unique r ∈ {0, . . . ,mk} such that j ∈ Hr

k .

Now, if r = 0 then cjk does not identically vanish in I×Rd and, since unj := (GD
n (·, s)f)j satisfies

the equation Dtu
n
j = Aju

n
j + cjju

n
j +

∑
h̸=j cjhu

n
h in (s,+∞)×Bn, we get

unj (t, ·) = GD
n,j(t, s)fj +

∑
i ̸=j

∫ t

s

GD
n,j(t, r)(cji(r, ·)uni (r, ·))dr

=
∑
i ̸=j

∫ t

s

GD
n,j(t, r)(cji(r, ·)uni (r, ·))dr

≥
∫ t

s

GD
n,k(t, r)(cjk(r, ·)unk (r, ·))dr (2.12)

and the last side of (2.12) is strictly positive in Rd for any t > s ∈ I. Otherwise if r > 0, then by
definition of Hr

k , we deduce that there exists ℓ1 ∈ Hr−1
k such that cjℓ1 does not identically vanish

in I × Rd. Iterating this argument we conclude that for any h ≤ r there exist ℓh ∈ Hr−h
k such

that cℓh−1ℓh does not identically vanish in I × Rd. In particular, since ℓr ∈ H0
k , cℓr−1ℓr ̸≡ 0 in

I×Rd and, consequently cℓrk, does not identically vanish in I×Rd. The above arguments imply
that (GD

n (·, s)f)ℓr is positive in (s,+∞) × Rd. But, again, since cℓr−1ℓr ̸≡ 0 in I × Rd we get

that (GD
n (·, s)f)ℓr−1 is positive in (s,+∞)×Rd. Iterating this procedure we finally conclude that

(GD
n (·, s)f)j is positive in (s,+∞)×Rd. As a byproduct we deduce that for any t > s, x ∈ Rd and

i, j = 1, . . . ,m the measure pij(t, s, x, dy) is positive. Indeed, pij(t, s, x,Rd) = (G(t, s)ej)i(x) > 0.
Step 3. Here we prove that the measures {pij(t, s, x, dy) : t > s, x ∈ Rd, i, j = 1, . . . ,m} are
equivalent to the Lebesgue measure. Arguing as in [2, Theorem 3.3] it can be proved that if A
is a Borel set with null Lebesgue measure then G(t, s)(χAej)(x) = 0 for any t > s, x ∈ Rd and
j = 1, . . . ,m. Consequently, since

pij(t, s, x,A) = (G(t, s)(χAej))i(x), (2.13)

each pij(t, s, x, dy) is absolutely continuous with respect to the Lebesgue measure. On the other
hand, let us assume that pij(t, s, x,A) = 0 for any i, j, t, s and x as above and prove that the
Lebesgue measure of A is zero. Suppose, by contradiction, that this measure is positive. Then, the
strong Feller property of GD

n (t, s) and GD
n,k(t, s) allows to extend estimate (2.11) to any bounded

Borel function. In particular (GD
n (t, s)χAej)j ≥ GD

n,j(t, s)χA for any t > s and j = 1, . . . ,m.
Letting n→ +∞ we infer that (G(t, s)χAej)j ≥ Gj(t, s)χA > 0 for any t > s. The vector-valued
function G(t, s)(χAej) is the unique solution to the Cauchy problem{

Dtu = A(t)u, (s+ ε,+∞)× Rd,
u(s+ ε, ·) = G(s+ ε, s)(χAej), Rd

for any ε > 0. Thus, since G(s + ε, s)(χAej) is a bounded, continuous, nonnegative and not
identically vanishing function, by the first part of the proof we conclude that (G(t, s)(χAej))i is
positive for any t > s and i = 1, . . . ,m contradicting formula (2.13). �

3. Compactness of G(t, s) in the space of continuous functions

In this section we prove some compactness results for the evolution operator G(t, s) in the
space of continuous and bounded functions. The main results are stated in Theorems 3.8 and
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3.11. More precisely, the first theorem provides us with sufficient conditions for the evolution
operator G(t, s) to be locally compact in Cb(Rd;Rm) uniformly with respect to t > s ∈ I, in the
sense that for any s ∈ I and (fn)n ⊂ Cb(Rd;Rm), the sequence (G(·, s)fn)n admits a subsequence
which converges uniformly in (t0,+∞) × Bk for any k > 0 and some t0 ≥ s ∈ I. The second
result is concerned with the compactness of the evolution operator G(t, s) in Cb(Rd;Rm) for
(t, s) ∈ ΛJ and bounded J ⊂ I. To prove these results we need to straighten the hypotheses on
the coefficients of the operator (2.1).

Hypotheses 3.1. (i) For any bounded interval J ⊂ I there exist m-nonnegative functions
ψJ
k ∈ C2(Rd) (k = 1, . . . ,m), blowing up as |x| → +∞, a real constant δJ > 0 such that

(Ak(t)ψ
J
k )(x) ≤ δJψ

J
k (x), t ∈ J, x ∈ Rd, k = 1, . . . ,m;

(ii) the sum of the elements of each row of the matrix-valued function C is nonpositive in Rd.

Lemma 3.2. Under Hypotheses 2.1(i)-(iii), 2.7 and 3.1, for any x ∈ Rd and f ∈ C2
b (Rd;Rm)

constant and nonnegative outside a ball, the function (G(t, ·)A(·)f)(x) is locally integrable in
I ∩ (−∞, t] and

(G(t, s1)f)(x)− (G(t, s0)f)(x) ≥ −
∫ s1

s0

(G(t, σ)A(σ)f)(x)dσ (3.1)

for any s0 ≤ s1 ≤ t and x ∈ Rd.

Proof. First of all, we show that

(G(t, s1)f)(x)− (G(t, s2)f)(x) = −
∫ s2

s1

(G(t, σ)A(σ)f)(x)dσ (3.2)

for any f ∈ C2
c (Rd;Rm). To this aim, let us consider the evolution operator GD

n (t, s) associated
with A in Cb(Bn;Rm) with homogeneous Dirichlet boundary conditions. It is well known that,
for any f ∈ C2

c (Rd;Rm) and n sufficiently large such that supp(fi) ⊂ Bn for any i = 1, . . . ,m, it
holds that

(GD
n (t, s1)f)(x)− (GD

n (t, s2)f)(x) = −
∫ s2

s1

(GD
n (t, σ)A(σ)f)(x)dσ

for any s0 ≤ s1 ≤ t and x ∈ Rd. Since the function A(σ)f ∈ Cb(Rd;Rm) for any σ ∈ [s1, s2],
using the approximation arguments in the proof of Theorem 2.4, we can let n tend to +∞ and
deduce (3.2), by the dominated convergence theorem.

Now, let f be as in the statement. Thanks to (3.2) and to the linearity of G(t, s), we can
limit ourselves to proving (3.1) for f = 1l. First, assume that all the entries of the matrix-valued
function C are bounded in J × Rd for any bounded J ⊂ I. In this case, since 1l belongs to the
domain of the generator of the evolution operator GN

n (t, s) associated with A in Cb(Bn;Rm)
with homogeneous Neumann boundary conditions, it follows that

(GN
n (t, s1)1l)(x)− (GN

n (t, s2)1l)(x) = −
∫ s2

s1

(GN
n (t, σ)(C(σ, ·)1l))(x)dσ.

By Remark 2.5, estimate (2.7) and the dominated convergence theorem we get

(G(t, s1)1l)(x)− (G(t, s2)1l)(x) = −
∫ s2

s1

(G(t, σ)(C(σ, ·)1l))(x)dσ.

Finally, if the matrix-valued function C is unbounded, we can consider a sequence of functions
ϑn ∈ Cc(Rd) such that χBn ≤ ϑn ≤ χBn+1 for any n ∈ N, and set Cn = ϑnC for any n ∈ N.
Clearly, thanks to Hypothesis 3.1, for any n ∈ N the operator An(t) = A(t) − C(t, ·) + Cn(t, ·)
satisfies Hypotheses 2.1. Thus, we can consider the positive evolution operatorGn(t, s) associated
with An in Cb(Rd;Rm). Since Cm ∈ C(I;Cc(Rd;Rm)) and, by Hypothesis 3.1(ii), Cm1l ≤ Cn1l
for any m > n we can estimate

(Gm(t, s1)1l)(x)− (Gm(t, s2)1l)(x) =−
∫ s2

s1

(Gm(t, σ)(Cm(σ, ·)1l))(x)dσ
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≥−
∫ s2

s1

(Gm(t, σ)(Cn(σ, ·)1l))(x)dσ (3.3)

for any m > n, m ∈ N. We now observe that Gm(t, s)f converges to G(t, s)f pointwise in
Rd, for any I ∈ s < t, as m → +∞ for any f ∈ Cb(Rd,Rm). Indeed, the Schauder estimates
in Theorem 7.2 show that there exists a subsequence (mk) such that Gmk

(·, s)f converges to a
function v ∈ C1,2((s,+∞)×Rd;Rm). Function v is bounded since each Gm(·, s)f is bounded in
(s,+∞)×Rd. To identify v with G(·, s)f , we need to show that v can be extended by continuity
on {s}×Rd, where it equals f . For this purpose, we start considering f ∈ C2

c (Rd;Rm) and note
that formula (3.2) holds true with the evolution operator G(t, s) being replaced by Gm(t, s).
From that formula it is clear that

∥Gmk
(t, s)f − f∥∞ ≤ c(t− s)∥f∥∞, t > s.

Letting k tend to +∞, the continuity of v at t = s follows at once. The above arguments also show
that from any subsequence of (Gm(·, s)f) we can extract a subsequence which converges (locally
uniformly on (s,+∞)×Rd) to G(·, s)f . Thus, all the sequence (Gm(·, s)f) converges to G(·, s)f
as m → +∞. A density argument shows that v is continuous on {s} × Rd, where it equals f ,
also when f is continuous in Rd with compact support. Moreover, all the sequence (Gm(·, s)f)
converges to G(·, s)f as m → +∞. For a general f ∈ Cb(Rd), we fix M > 0 and a smooth
function ϑ such that χBM

≤ ϑ ≤ χB2M
. We split Gm(t, s)f = Gm(t, s)(ϑf)+Gm(t, s)((1−ϑ)f).

Since Gm(t, s) is a positive evolution operator and −(1− ϑ)∥f∥∞1 ≤ (1− ϑ)f ≤ (1− ϑ)∥f∥∞1

componentwise, we can estimate

|Gm(t, s)((1− ϑ)f)| ≤∥f∥∞Gm(t, s)((1− ϑ)1) = ∥f∥∞[Gm(t, s)1−Gm(t, s)(ϑ1)]

≤∥f∥∞[1−Gm(t, s)(ϑ1)],

where we have used Theorem 2.3 to derive the last inequality. Thus,

|Gmk
(t, s)f − f | ≤ |Gmk

(t, s)(ϑf)− f |+ ∥f∥∞[1−Gmk
(t, s)(ϑ1)].

Letting k tend to +∞, we obtain

|v(t, ·)− f | ≤ |Gmk
(t, s)(ϑf)− f |+ ∥f∥∞[1−G(t, s)(ϑ1)].

From this inequality, it follows that v tends to f as t→ s+, uniformly with respect to x ∈ BM .
The arbitrariness of M > 0 allows us to conclude that v = G(·, s)f as claimed.

Now, we can let m tend to +∞ in (3.3) and get

(G(t, s1)1l)(x)− (G(t, s2)1l)(x) ≥−
∫ s2

s1

(G(t, σ)(Cn(σ, ·)1l))(x)dσ.

Since G(t, s) is a positive operator and the sequence (Cn1l) is decreasing componentwise, we can
apply twice the monotone convergence theorem to pass to the limit as n→ +∞ and get

(G(t, s1)1l)(x)− (G(t, s2)1l)(x) ≥−
∫ s2

s1

(G(t, σ)(C(σ, ·)1l))(x)dσ.

The proof is complete. �

Hypotheses 3.3. There exist a nonnegative function φ ∈ C2(Rd), blowing up as |x| → +∞,
constants a, c > 0 and t0 ∈ I such that

(A(t)(φ1l))(x) ≤ (a− cφ(x))1l, t ≥ t0, x ∈ Rd.

Remark 3.4. Note that under Hypothesis 3.1(ii), Hypotheses 3.1(i) and 3.3 are both satisfied if
there exists a nonnegative function φ ∈ C2(Rd), blowing up as |x| → +∞ and constants a, c > 0,
t0 ∈ I such that (Ai(t)φ)(x) ≤ a− cφ(x) for any t ≥ t0 ∈ I, x ∈ Rd and i = 1, . . . ,m.

Lemma 3.5. Let the assumptions of Lemma 3.2 and Hypothesis 3.3 be satisfied. Then, the
function G(t, s)(φ1l) is well defined for any t0 ≤ s ≤ t ∈ I. Moreover, for any fixed x ∈ Rd, the
function (t, s) 7→ (G(t, s)(φ1l))(x) is bounded in Λ0 = {(t, s) ∈ I × I : t0 ≤ s ≤ t} and satisfies
the inequality (G(t, s)(φ1l))(x) ≤ ((φ+ ac−1)1l)(x) for any x ∈ Rd and (t, s) ∈ Λ0.
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Proof. First we prove that the function G(t, s)(φ1l) is well defined in Rd for any t > s ≥ t0. To
this aim, for any n ∈ N choose ψn ∈ C2([0,+∞)) such that

(i) ψn(x) = x for x ∈ [0, n];
(ii) ψn(x) = n+ 1/2 for x ≥ n+ 1;
(iii) 0 ≤ ψ′

n ≤ 1 and ψ′′
n ≤ 0.

Note that the previous conditions imply that ψ′
n(x)x ≤ ψn(x) for any x ∈ [0,+∞). Moreover,

since the functions φn = ψn◦φ belong to C2
b (Rd) and are constant outside a compact set, Lemma

3.2 and the nonnegativity of G(t, s) yield

φn(x) ≥ φn(x)− (G(t, s)φn1l)i(x)

≥ −
∫ t

s

(G(t, σ)A(σ)φn1l)i(x)dσ

= −
m∑
j=1

∫ t

s

∫
Rd

(A(σ)φn1l)j(y)pij(t, σ, x, dy)dσ

= −
m∑
j=1

∫ t

s

∫
Rd

ψ′
n(φ(y))(Aj(σ)φ)(y)pij(t, σ, x, dy)dσ

−
m∑
j=1

∫ t

s

∫
Rd

ψ′′
n(φ(y))⟨Qj(σ, y)∇φ(y),∇φ(y)⟩pij(t, σ, x, dy)dσ

−
m∑

j,k=1

∫ t

s

∫
Rd

ψn(φ(y))cjk(σ, y)pij(t, σ, x, dy)dσ

for any i = 1, . . . ,m, t > s ∈ I and x ∈ Rd, where Aj(σ) is defined in (2.1).
Using Hypothesis 2.1(ii) and recalling that Aj(σ)φ = (A(σ)(φ1l))j − (C(σ, ·)φ1l)j for any j =
1, . . . ,m, we estimate

φn(x)− (G(t, s)φn1l)i(x)

≥−
m∑
j=1

∫ t

s

∫
Rd

ψ′
n(φ(y))(A(σ)φ1l)j(y)pij(t, σ, x, dy)dσ

−
m∑
j=1

∫ t

s

∫
Rd

[ψn(φ(y))− ψ′
n(φ(y))φ(y)]

m∑
k=1

cjk(σ, y)pij(t, σ, x, dy)dσ

≥−
m∑
j=1

∫ t

s

∫
Rd

ψ′
n(φ(y))(A(σ)φ1l)j(y)pij(t, σ, x, dy)dσ, (3.4)

where in the last line we have used Hypothesis 3.1(ii). Now, we can split

−
m∑
j=1

∫ t

s

∫
Rd

ψ′
n(φ(y))(A(σ)φ1l)j(y)pij(t, σ, x, dy)dσ

=

m∑
j=1

∫ t

s

∫
Rd

ψ′
n(φ(y)) [a− (A(σ)φ1l)j(y)] pij(t, σ, x, dy)dσ

− a
m∑
j=1

∫ t

s

∫
Rd

ψ′
n(φ(y))pij(t, σ, x, dy)dσ,

where a is the constant in Hypothesis 3.3. The monotonicity of the sequence (ψ′
n(x)) for any

x ∈ Rd and the monotone convergence theorem yield immediately that both integrals in the right-
hand side of the previous formula converge. Thus, since φn(x) converges to φ(x) as n→ +∞ for
any x ∈ Rd, taking the limit as n → +∞ in (3.4), it follows that (G(t, s)φ1l)(x) is well defined



ON COUPLED SYSTEMS OF PDES WITH UNBOUNDED COEFFICIENTS 13

for any t ≥ s ∈ Λ, x ∈ Rd and

(G(t, s)φ1l)i(x) ≤ φ(x) +

∫ t

s

(G(t, σ)(A(σ)φ1l))i(x)dσ

≤ φ(x) +

∫ t

s

(a− c(G(t, σ)(φ1l))i(x))dσ

≤ φ(x) + a(t− s)

for any i = 1, . . . ,m and (t, s) ∈ Λ0, where we used the fact that G(t, σ)1 ≤ 1.
To complete the proof, for any i = 1, . . . ,m, t > s ≥ t0 and x ∈ Rd we define gi(s) =

(G(t, s)φ1l)i(x). Arguing as above it can be proved that

gi(s)− gi(r) ≤
∫ s

r

(a− cgi(σ))dσ, t0 ≤ r ≤ s ≤ t.

From this inequality it follows easily that the function ζ : [s, t] → R, defined by

ζ(r) =

(
gi(s)−

a

c
+

∫ r

s

(cgi(σ)− a)dσ

)
e−cr, r ∈ [s, t],

is weakly differentiable and its derivative is almost everywhere nonnegative in [s, t]. This implies
that ζ(s) ≤ ζ(t), which is the claim. �
Remark 3.6. In the proof of the previous lemma, Hypothesis 3.1(ii) has played a crucial role.
It is for this reason that we needed to consider a vector-valued Lyapunov function with all the
components equal each other.

Corollary 3.7. Under the hypotheses of Lemma 3.5, supt>s pij(t, s, x,Rd \ Br) converges to 0,
for any i, j = 1, . . . ,m and s ≥ t0 (where t0 is defined in Hypothesis 3.3), as r → +∞, locally
uniformly with respect to x ∈ Rd.

Proof. The proof of this result is quite standard. However for the sake of completeness we provide
a sketch of it. Taking into account the positivity of the transition kernels, it holds that

pij(t, s, x,Rd \Br) =

∫
Rd\Br

pij(t, s, x, dy) ≤
1

infRd\Br
φ

∫
Rd\Br

φpij(t, s, x, dy)

≤ 1

infRd\Br
φ
(G(t, s)φ1l)i(x) ≤

1

infRd\Br
φ
(φ(x) + ac−1) (3.5)

for any i, j = 1, . . . ,m. The claim follows since φ blows up as |x| → +∞. �
Now we prove the first compactness result for the evolution operator G(t, s). Note that this

result improves that in Theorem 2.6(ii). Indeed here we gain an uniform convergence in time of
G(·, s)fn to G(·, s)f as n → +∞ when (fn) is a sequence approaching f locally uniformly in
Rd.

Theorem 3.8. Assume that Hypotheses 2.1(i)-(iii), 2.7, 3.1 and 3.3 hold true and let (fn) ⊂
Cb(Rd;Rm) be a bounded sequence converging locally uniformly in Rd to f , as n → +∞. Then,
for any s ≥ t0 (where t0 is defined in Hypothesis 3.3) G(·, s)fn converges uniformly to G(·, s)f
in (s,+∞) × Br for any r > 0, as n → +∞. In general, for any sequence (fn) ⊂ Cb(Rd;Rm),
there exists a subsequence (fnk

) such that G(·, s)fnk
converges uniformly in (t0,+∞) × Br for

every r > 0.

Proof. Let (fn) be a sequence as in the first part of the statement and assume that supn∈N ∥fn∥∞ ≤
M . Let t > s ≥ t0 and x ∈ Bk for some k ∈ N. Then, for any i = 1, . . . ,m we can estimate

|(G(t, s)(fn − f))i(x)| ≤
m∑
j=1

∫
Br

|fn,j(y)− fj(y)|pij(t, s, x, dy)

+
m∑
j=1

∫
Rd\Br

|fn,j(y)− fj(y)|pij(t, s, x, dy)



14 L. ANGIULI AND L. LORENZI

≤ ∥fn − f∥Cb(Br;Rd)

m∑
j=1

pij(t, s, x,Br)

+ 2M
m∑
j=1

sup
t>s

sup
x∈Bk

pij(t, s, x,Rd \Br) (3.6)

for every r > 0 and n ∈ N. Since
∑m

j=1 pij(t, s, ·, Br) = (G(t, s)χBr1l)i, by estimate (2.7) it

follows that supx∈Rd

∑m
j=1 pij(t, s, x,Br) ≤ 1 for any t > s and r > 0. Thus, letting n tend to

+∞ in (3.6) we obtain that

lim sup
n→+∞

∥(G(·, s)(fn − f))i∥Cb((s,+∞)×Bk;Rm) ≤ 2M

m∑
j=1

sup
t>s

sup
x∈Bk

pij(t, s, x,Rd \Br)

for every r > 0. Finally, letting r tend to +∞ and using Corollary 3.7 we conclude that

lim sup
n→+∞

∥(G(·, s)(fn − f))i∥Cb((s,+∞)×Bk;Rm) ≤ 0

and the first part of the claim is so proved.
To conclude, let us consider a sequence (fn) ⊂ Cb(Rd;Rm) for any n ∈ N and r ∈ I.

The Schauder estimates (7.2) and estimate (2.7) yield that, for any fixed t0 > s, the sequence
(G(t0, s)fn) is bounded in C2+α(Br;Rm) for any r > 0. Then, up to subsequences, it converges
locally uniformly in Rd to some function g ∈ Cb(Rd;Rm). Thus, since |G(t, s)fnk

−G(t, t0)g| =
|G(t, t0) (G(t0, s)fnk

− g) | in Rd for every t > t0 > s and k ∈ N, applying the first part of the
claim to the sequence (G(t0, s)fnk

− g)k we conclude the proof. �

Now, we are interested in finding conditions that ensure that, for any bounded interval J ⊂ I
and any fixed (t, s) ∈ ΛJ the operator G(t, s) is compact in Cb(Rd;Rm). First of all, let observe
that the compactness of G(t, s) in Cb(Rd;Rm) is equivalent to the tightness of the measures
{pij(t, s, x, ·) : x ∈ Rd}, i, j = 1, . . . ,m (see formula (2.10)), as the next proposition states.

Proposition 3.9. Let J ⊂ I be a bounded interval and (t, s) ∈ ΛJ . The evolution operator
G(t, s) is compact in Cb(Rd;Rm) if and only if the measures {pij(t, s, x, ·) : x ∈ Rd} are tight for
any i, j = 1, . . . ,m, i.e., for any ε > 0 there exists r > 0 such that supx∈Rd pij(t, s, x,Rd \Br) < ε
for any i, j = 1, . . . ,m.

Proof. The proof follows adapting the arguments in [2, Theorem 4.1 ], recalling that the measures
pij(t, s, x, ·) are nonnegative for any t > s ∈ I, x ∈ Rd and i, j = 1, . . . ,m. �

Differently from the case considered in [2] where a domination of G(t, s) in terms of a scalar
semigroup reduces the problem of finding conditions that ensure the tightness of the measures
pij(t, s, x, ·) to the same problem for the kernel associated with the scalar semigroup in Cb(Rd),
here we argue directly with the vector valued operator G(t, s). To this aim we need to strengthen
Hypothesis 3.3 as follows.

Hypotheses 3.10. There exist R > 0, I ∋ d1 < d2 and

(i) a positive function φ ∈ C2(Rd), blowing up as |x| → +∞, and m-convex functions hi :
[0,+∞) → R, i = 1, . . . ,m, with 1/hi ∈ L1((M,+∞)) for some positive M such that
(A(t)φ1l)i(x) ≤ −hi(φ(x)) for any t ∈ [d1, d2], x ∈ Rd \BR and i = 1, . . . ,m;

(ii) bounded functions wk ∈ C2(Rd \ BR) (k = 1, . . . ,m), with infx∈Rd\BR
wk(x) > 0 such that

((Ak(t) + ckk(t, ·))wk)(x) − µwk(x) ≥ 0 for any (t, x) ∈ [d1, d2] × (Rd \ BR), k = 1, . . . ,m
and some µ ∈ R.

Theorem 3.11. Assume that Hypotheses 2.1(i)-(iii) and (v), 2.7 and 3.10 hold true. Then
G(t, s) is compact in Cb(Rd;Rm) for any (t, s) ∈ ΛI with s ≤ d2 and t ≥ d1.
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Proof. Due to its length we divide the proof into three steps.
Step 1. Here, we prove that for any s0, t0 ∈ [d1, d2] with s0 < t0, there exists a positive constant
c0 such that

(G(t, s)1l)k(x) ≥ c0, s0 ≤ s ≤ t ≤ t0, x ∈ Rd, k = 1, . . . ,m. (3.7)

Let us fix s0, t0 as above and observe that, under our assumptions, [5, Proposition 4.3] can be
applied and implies that there exists a positive constant c0 such that (Gk(t, s)1l)(x) ≥ c0 for any
s0 ≤ s ≤ t ≤ t0, x ∈ Rd and k = 1, . . . ,m. Here, Gk(t, s) denotes the positive evolution operator
associated with Ak(t) + ckk(t, ·) in Cb(Rd;Rm). In order to prove (3.7) it suffices to prove that
(G(t, s)1l)k ≥ Gk(t, s)1l for any k = 1, . . . ,m and t ≥ s ∈ I. For this purpose we observe that, for
any non positive initial datum f ∈ Cb(Rd;Rm), the function wk(t, x) = (G(t, s)f)k −Gk(t, s)fk
vanishes at t = s and satisfies the inequality

Dtwk(t, ·)− (Ak(t) + ckk(t, ·))wk(t, ·) =
∑
i ̸=k

cki(G(t, s)f)i ≤ 0

for any t > s ∈ I, where in the last inequality we have used the positivity ofG(t, s) and Hypothesis
2.7. Thanks to Hypothesis 2.1(v), the functions ckk are bounded from above in I × Rd, hence a
variant of the classical maximum principle (see [5, Proposition 2.2]) yields that wk is non positive
in I × Rd. As a by product, taking f = −1l in the definition of wk, the claim follows.

Step 2. Here, we prove that for any δ ∈ (0, d2 − d1) there exists a positive constant Kδ such
that (G(t, s)(φ1l)) ≤ Kδ1l in Rd for any (t, s) ∈ Λ[d1,d2] with t ≥ s+ δ.
Clearly, it suffices to prove the claim for x outside a large enough ball. In view of this, we
observe that since h(x) ≥ c̃x− ã outside a suitable ball, for some positive constants ã and c̃, the
arguments in Lemma 3.5 can be applied to the function φ and imply that (G(t, s)φ1l)(x) is well
defined and

(G(t, s)φ(1l))(x)− (G(t, r)(φ1l))(x) ≥ −
∫ t

s

(G(t, σ)(A(σ)φ1l))(x)dσ (3.8)

for any r ≤ s ≤ t and x ∈ Rd. Now, let us fix i ∈ {1, . . . ,m} and set µi(t, s, x, dy) =∑m
j=1 pij(t, s, x, dy). Jensen inequality for Borel finite measures and Step 1 yield that

hi ((G(t, s)(φ1l))i(x)) = hi

(∫
Rd

φ(y)µi(t, s, x, dy)

)
≤ 1

µi(t, s, x,Rd)

∫
Rd

hi(φ(y))µi(t, s, x, dy)

=
1

µi(t, s, x,Rd)
(G(t, s)(hi(φ)1l))i(x)

≤ c−1
0 (G(t, s)(hi(φ)1l))i(x) (3.9)

for any d1 ≤ s ≤ t ≤ d2 and x ∈ Rd, where in the last line we used equality µi(t, s, x,Rd) =
(G(t, s)1l)i(x) and estimate (3.7). Now, let us fix x ∈ Rd, t ∈ [d1, d2] and consider the functions
βi : [0, t − inf I) → [0,+∞) defined by βi(σ) = (G(t, t − σ)(φ1l))i(x), for any σ ∈ [0, t − inf I).
Then, from (3.8), using also Hypothesis 3.3 and (3.9), we deduce that

βi(b)− βi(0) ≤ −
∫ t

t−b

(G(t, σ)(hi ◦ φ))i(x)dσ

≤ −c0
∫ t

t−b

hi((G(t, σ)(φ))i(x))dσ = −c0
∫ b

0

hi(βi(σ))dσ, (3.10)

where b := t− d1. From the previous chain of inequalities we can conclude that βi(r) ≤ yi(r) for
every r ∈ [0, b], where yi is the solution to the Cauchy problem{

y′(r) = −c0h(y(r)), r ≥ 0,

y(0) = φ(x).
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Indeed, if this were not the case, we could determine s0 ∈ (0, b) and an interval J containing s0
such that βi > yi in J . From (3.10), written with the interval (0, b) being replaced by (s1, s2),
we can infer that the function s 7→ β(s) + c0Ms is decreasing, where M denotes the minimum
of h in R. Therefore, lims→s−0

(β(s) + c0Ms) > lims→s−0
(y(s) + c0Ms) and this implies that β

is greater than y in a left neighborhood of s0. Denoting by τ the infimum of J , then clearly,
β(τ) = y(τ). Writing (3.10) with [0, b] being replaced by [a, s], s ∈ J , and observing that

y′(s)− y′(a) = −c0
∫ s

a

h(y(r))dr

we get

β(s)− y(s) ≤ c0

∫ s

a

[h(y(r))− h(β(r))]dr, s ∈ J,

which is clearly a contradiction since the left-hand side of the previous inequality is positive while
its right-hand side is negative.

To conclude this step, it suffices to observe that y is bounded from above in [δ,+∞) for every
δ > 0 as it can be easily checked writing∫ y(t)

φ(x)

dr

h(r)
= −c0t

and using the integrability of 1/h in a neighborhood of +∞. Now, arguing as in the proof of
[5, Theorem 4.4] we can prove that the functions βi are bounded from above in [δ, b] for every
0 < δ < b, uniformly with respect to x ∈ Rd and this proves the claim.

Step 3. Here, we show that the measures {pij(t, s, x, ·) : x ∈ Rd} are tight for any (t, s) ∈
Λ[d1,d2] and i, j = 1, . . . ,m. Let us fix ε > 0. Then, arguing as in (3.5), we can prove that there
exists R0 > 0 such that

0 < pij(t, s, x,Rd \Br) =

(
inf

Rd\Br

φ

)−1

(G(t, s)φ1l)i(x) ≤ Kδ

(
inf

Rd\Br

φ

)−1

< Kδε,

for any s, t ∈ Λ[d1,d2] with t ≥ s+δ and r > R0, where we have taken into account that the family

{pij(t, s, x, ·) : x ∈ Rd, (t, s) ∈ λI} are equivalent to the Lebesgue measure for any i, j = 1, . . . ,m.
This implies that the family {pij(t, s, x, ·) : x ∈ Rd} is tight for any (t, s) ∈ Λ[d1,d2], with t ≥ s+δ
and i, j = 1, . . . ,m. The arbitrariness of δ allows to deduce the tightness of pij(t, s, x, ·) for any
(t, s) ∈ Λ[d1,d2] and i, j = 1, . . . ,m and, consequently, from Proposition 3.9, the compactness of

G(t, s) in Cb(Rd;Rm) for any (t, s) ∈ Λ[d1,d2]. For the other values of s, t the compactness of
G(t, s) can be proved by using the evolution law and the continuity of the operators G(t, s) in
L(Cb(Rd;Rm)). This completes the proof.

�

4. The action of the evolution operator G(t, s) over some functional spaces

Here, we study how the evolution operator G(t, s) acts over the spaces C0(Rd;Rm) of the
continuous functions f : Rd → Rm vanishing at infinity componentwise (i.e., lim|x|→+∞ fi(x) = 0

for any i = 1, . . . ,m), Lp(Rd;Rm) and C1
b (Rd;Rm).

It is well known in the scalar case that the compactness property in the space of bounded and
continuous functions is a sufficient condition which implies that the spaces C0(Rd) and Lp(Rd)
are not preserved by action of the semigroup. Actually this is the case also for the vector-valued
evolution operator G(t, s) as we prove in the following.

Theorem 4.1. Under the assumptions of Theorem 3.11, the space C0(Rd;Rm) is not preserved
by G(t, s) for any (t, s) ∈ ΛI with s ≤ d2 and t ≥ d1. On the other hand, if Hypotheses 2.1(i)-(iv)
and 2.7 hold true and there exist λ0 > 0, [a, b] ⊂ I and a function v ∈ C2(Rd;Rm)∩C0(Rd;Rm),
whose entries are all strictly positive and such that λ0v −A(t)v ≥ 0 for any (t, x) ∈ [a, b]× Rd,
then G(t, s)(C0(Rd;Rm)) ⊂ C0(Rd;Rm) for any (t, s) ∈ Λ[a,b].
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Proof. Let us fix (t, s) ∈ ΛI with s ≤ d2 and t ≥ d1 and consider a sequence (fn) ⊂ C0(Rd;Rm)
such that χBn1l ≤ fn ≤ χBn+11l for any n ∈ N. Formula (2.10), estimate (2.7) and the com-

pactness of G(t, s) in Cb(Rd;Rm) yield that G(t, s)fn converges uniformly in Rd to G(t, s)1l as
n → +∞. Since G(t, s)1l is bounded from below by a positive constant (see Step 1 in the proof
of Theorem 3.11), it follows immediately that G(t, s) does not preserve C0(Rd;Rm).

Now, we prove the second part of the claim. Let a, b and v be as in statement and without
loss of generality we can assume that λ0 ≥ maxi=1,...,m

∑m
j=1 cij in order to apply Theorem 2.3

to A(t) − λ0I. We begin by proving that G(t, s) preserves the subset of C0(Rd;Rm) consisting
of nonnegative functions which belong to Cc(Rd;Rm). Let f ∈ Cc(Rd;Rm) be a nonnega-
tive function and let r > 0 be such that suppfk ⊂ Br for any k = 1, . . . ,m. The function
z(t, ·) = e−λ0(t−s)u(t, ·) − δ−1∥f∥∞v where u is the classical solution of the problem (2.2),
δ = maxk∈{1,...,m} infBr vk being v = (v1, . . . , vm), belongs to Cb([s, T ]× Rd) ∩ C1,2((s, T ]× Rd)
and solves the problem{

Dtz(t, x) ≤ (A(t)− λ0I)z(t, x), (t, x) ∈ (s,+∞)× Rd,
z(s, x) ≤ 0, x ∈ Rd.

Hence, Theorem 2.3 can be applied to A(t) − λ0I to deduce that z(t, x) ≤ 0 in [s,+∞) × Rd

or equivalently that 0 ≤ u ≤ eλ0(t−s)δ−1∥f∥∞v, which implies that u belongs to C0(Rd;Rm).
Now, if f is not nonnegative then we can split f = f+−f− and, arguing as above separately for
f+ and f−, we deduce that the solutions u± of (2.2) with f being replaced by f± respectively,
belong to C0(Rd;Rm) as well as the solution u = u+ − u− of (2.2). In the general case, we
can argue by approximation. Indeed, let f ∈ C0(Rd;Rm) and (fn) be a sequence of Cc(Rd;Rm)
functions converging uniformly to f in Rd. Then, sinceG(t, s)fn converges toG(t, s)f uniformly
as n→ +∞ for any t ≥ s we conclude also in this case. �

Theorem 4.2. The following statements hold true.

(i) Under the assumptions of Theorem 3.11, the space Lp(Rd;Rm), 1 ≤ p < +∞, is not
preserved by G(t, s) for any (t, s) ∈ ΛI with s ≤ d2 and t ≥ d1.

(ii) Let qkij ∈ C0,2([a, b]× Rd) and bki ∈ C0,1([a, b]× Rd), for any i, j, l = 1, . . . , d, k = 1, . . . ,m

and some [a, b] ⊂ I, and let κC : [a, b]×Rd → R be any smooth function which bounds from
above the quadratic form associated with the matrix C. Further, suppose that

Γ[a,b] := sup
[a,b]×Rd

(
2κC − min

k=1,...,m
divxγ

k
)
< +∞, (4.1)

where γk := (bk1 −
∑d

j=1Djq
k
1j , . . . , b

k
m −

∑d
j=1Djq

k
mj), k = 1, . . . ,m. Then, for any p ≥ 2

and (t, s) ∈ Λ[a,b], L
p(Rd;Rm) is invariant under G(t, s) and

∥G(t, s)f∥Lp(Rd;Rm) ≤ cp(t− s)∥f∥Lp(Rd;Rm), (4.2)

where cp(r) = e[K(1−2/p)+Γ[a,b]/p]r and K is defined in (2.6).

(iii) Besides the assumptions in (ii), assume that qkij ∈ C
α/2,2+α
loc ([a, b]×Rd), bki ∈ C

α/2,1+α
loc ([a, b]×

Rd), for any i, j = 1 . . . , d and k = 1, . . . ,m, and

sup
[a,b]×Rd

( m∑
j=1

cjk +
d∑

i,j=1

Dijq
k
ij −

d∑
i=1

Dib
k
i

)
< +∞, k = 1, . . . ,m. (4.3)

Then, estimate (4.2) can be extended to the case p ∈ [1, 2) taking cp(r) = e[K
∗(2/p−1)+Γ[a,b](1−1/p)]r

where K∗ ∈ R is such that ∥G∗(t, s)∥L(Cb(Rd;Rm)) ≤ eK
∗(t−s) and G∗(t, s) is the adjoint op-

erator of G(t, s).

Proof. (i) Let us fix (t, s) ∈ ΛI with s ≤ d2 and t ≥ d1. To prove that Lp(Rd;Rm) (p ∈ [1,+∞))
is not preserved by G(t, s), it suffices to consider the characteristic function χBR where R is such
that

∑m
j=1 pij(t, s, x,Rd \ BR) ≤ c0/2, for any i = 1, . . . ,m, and c0 is defined in (3.7) (such a

radius R exists thanks to the compactness of G(t, s) and Proposition 3.7). Indeed, in this case,
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G(t, s)χBR1l = G(t, s)1l−G(t, s)(χRd\BR
1l) ≥ c0/2 in Rd and consequently it does not belong to

Lp(Rd;Rm) for any 1 ≤ p <∞.
(ii) To begin with, we notice that it suffices to prove the claim for nonnegative functions f

belonging to Cc(Rd;Rm). Indeed, for a general f ∈ Cc(Rd;Rm) we get the result simply writing
f = f+ − f− and observing that |f±| ≤ |f |. The case of an Lp(Rd;Rm)-function can be
obtained by density. Moreover, we observe that, if we prove (4.2) with p = 2, then, thanks to the
estimate (2.6), the Riesz-Thorin interpolation theorem yields estimate (4.2) for any p ≥ 2 with
cp(t − s) = [c2(t − s)]2/peK(t−s)(1−2/p) for any (t, s) ∈ Λ[a,b]. So, let us consider a nonnegative

function f ∈ Cc(Rd;Rm) and prove that

∥GD
R (t, s)f∥L2(BR;Rm) ≤ eΓ[a,b](t−s)∥f∥L2(Rd;Rm), (t, s) ∈ Λ[a,b], (4.4)

where GD
R (t, s) denotes the evolution operator associated with A(t) in C(BR;Rm) with homo-

geneous Dirichlet boundary conditions. Once (4.4) is proved, noticing that GD
R (t, s)f converges

pointwise to G(t, s)f as R→ +∞, the Fatou lemma yields (4.2) with p = 2.
So, let us prove (4.4). To simplify the notation we set uR(t, x) := (GD

R (t, s)f)(x) for any
(t, s) ∈ Λ[a,b] and x ∈ Rd. Using Hypothesis 2.1 (ii) and the integration by parts formula we get

d

dt
∥uR(t, ·)∥2L2(BR;Rm)

=2

m∑
k=1

∫
BR

uR,k(t, ·)(A(t)uR)k(t, ·)dx

=2
m∑

k=1

d∑
i,j=1

∫
BR

qkij(t, ·)uR,k(t, ·)DijuR,k(t, ·)dx

+ 2

m∑
k=1

d∑
i=1

∫
BR

bki (t, ·)uR,k(t, ·)DiuR,k(t, ·)dx+ 2

∫
BR

⟨C(t, ·)uR(t, ·),uR(t, ·)⟩dx

≤−
m∑

k=1

d∑
i,j=1

∫
BR

(Djq
k
ij(t, ·)− bki (t, ·))Di(uR,k(t, ·))2dx+ 2

∫
BR

κC(t, ·)|uR(t, ·)|2dx

=−
m∑

k=1

∫
BR

divxγ
k(t, ·)(uR,k(t, ·))2dx+ 2

∫
BR

κC(t, ·)|uR(t, ·)|2dx

≤Γ[a,b]

∫
BR

|uR(t, ·)|2dx.

Consequently, ∥uR(t, ·)∥2L2(BR;Rm) ≤ eΓ[a,b](t−s)∥f∥2L2(BR;Rm), which gives the claim.

(iii) The additional assumptions in the statement allows us to apply Theorem 2.4 to the adjoint
operator A∗(t). This implies that the adjoint evolution operator {G∗(t, s)}t≥s∈I is well defined

in Cb(Rd;Rm) and satisfies the estimate ∥G∗(t, s)∥L(Cb(Rd;Rm)) ≤ eK
∗(t−s) for any t ≥ s ∈ I and

some positive constant K∗. Moreover, the arguments in the proof of property (ii) show that

∥G∗(t, s)∥L(Lq(Rd;Rm)) ≤ e[K
∗(1−2/q)+Γ[a,b]/q](t−s), (t, s) ∈ Λ[a,b], q ≥ 2. (4.5)

To complete the proof, it suffices to recall that

∥G(t, s)f∥Lp(Rd;Rm)

=sup

{∫
Rd

⟨f ,G∗(t, s)g⟩dx : g ∈ Cc(Rd;Rm) and ∥g∥Lp′ (Rd;Rm) ≤ 1

}
for any f ∈ Lp(Rd;Rm) (p ∈ [1, 2)) and use (4.5). �

Finally, we conclude this section investigating on the action ofG(t, s) over the space C1
b (Rd;Rm).

Theorem 2.4 states that the evolution operator maps the space Cb(Rd;Rm) into Cb(Rd;Rm) ∩
C1(Rd;Rm), but in general, JxG(t, s)f is not bounded whenever f belongs to C1

b (Rd;Rm). In
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the following Theorem 4.4 we prove an uniform gradient estimate which answers to the question
above.

Hypotheses 4.3. (i) The coefficients qkij, b
k
i and cij belong to C

α/2,1+α
loc (I×Rd) for any i, j =

1, . . . , d and k = 1, . . . ,m;
(ii) there exist a positive constant c, (m + 2)-functions rk : I × Rd → R (k = 1, . . . ,m) and

ρi : I × Rd → (0,+∞), (i = 0, 1) such that

|∇xq
k
ij | ≤ cµk, ⟨Jxbkξ, ξ⟩ ≤ rk|ξ|2, |chk| ≤ ω0ρ0, |∇xch′k′ | ≤ ω1ρ1 (4.6)

in I × Rd for any i, j = 1, . . . , d, h, h′, k, k′ = 1, . . . ,m, with h ̸= k. In addition there exist
two positive constants αk,J and γk,J such that

σk,J := sup
J×Rd

{(
d2c2

4
− αk,J

)
µk + rk + ckk + γk,J(ω0ρ

2
0 + ω1ρ

2
1)

}
< +∞ (4.7)

for any bounded interval J ⊂ I.

Theorem 4.4. Assume that Hypotheses 4.3 are satisfied. Then, for any f ∈ C1
b (Rd;Rm) and

T > s, the map (s, T )× Rd ∋ (t, x) → |Jx(G(t, s)f)(x)| is bounded and satisfies the estimate

∥|JxG(t, s)f |∥∞ ≤ c̃s,T ∥f∥C1
b (Rd;Rm), t ∈ (s, T ), (4.8)

for some positive constant c̃ depending on s, T,m, µk (see Hypothesis 2.1(ii)) and σk,(s,T ) (k =
1, . . . ,m).

Proof. Let f and T be as in the statement and set J = (s, T ). We prove (4.8) with G(t, s) being
replaced by GN

n (t, s), i.e., the evolution operator associated with A in Cb(Bn;Rm) with homo-
geneous Neumann boundary conditions. Then the claim will follow letting n → +∞ according
to Remark 2.5.

For every k = 1, . . . ,m, t ∈ J , x ∈ Bn, we set vn,k(t, x) := αk,J |un(t, x)|2 + |∇xun,k(t, x)|2,
where un,k denotes the k-th component of GN

n (·, s)f . A straightforward computation reveals
that ⟨∇xvn,k, ν⟩ ≤ 0 on ∂Bn. Indeed, taking into account the convexity of Bn and the fact that
un,k satisfies homogeneous Neumann boundary conditions on J × ∂Bn we deduce that

⟨∇xvn,k, ν⟩ =2⟨∇xun,k, ν⟩un,k + 2⟨D2
xun,k∇xun,k, ν⟩

=2 [⟨∇x⟨∇xun,k, ν⟩,∇xun,k⟩ − ⟨Jν∇xun,k,∇xun,k⟩] ≤ 0

on J×∂Bn. In addition, vn,k is a classical solution to the differential equation Dtvn,k−Akvn,k =

2
∑6

i=1 ψi in J ×Bn where Ak is defined in (2.1) and

6∑
i=1

ψi :=
d∑

i,j=1

⟨∇xq
k
ij ,∇xun,k⟩Dijun,k + ⟨Jxbk∇xun,k,∇xun,k⟩

+

m∑
j=1

⟨∇xckj ,∇xun,k⟩un,j +
m∑
j=1

ckj⟨∇xun,k,∇xun,j⟩

− αk,J ⟨Qk∇xun,k,∇xun,k⟩ −
d∑

i,j=1

qkij⟨∇xDiun,k,∇xDjun,k⟩

in (s, T )× Rd. Using the Cauchy-Schwartz inequality, estimates (4.6) and Hypothesis 2.1(ii) we
can estimate the terms in ψi (i = 1, . . . , 6) as follows:

ψ1 ≤ dcµk|∇xun,k||D2
xun,k| ≤ dcµk

(
ε|D2

xun,k|2 +
1

4ε
|∇xun,k|2

)
,

ψ2 ≤ rk|∇xun,k|2,

ψ3 ≤
√
mω1ρ1|∇xun,k||un| ≤ ε1ρ

2
1|∇xun,k|2 +

m

4ε1
ω2
1 |un|2,
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ψ4 ≤ ckk|∇xun,k|2 + ω0ρ0|∇xun,k||Jxun| ≤ (ckk + ε2ρ
2
0)|∇xun,k|2 +

m

4ε2
ω2
0 |Jxun|,

ψ5 + ψ6 ≤ −µk(αk,J |∇xun,k|2 + |D2
xun,k|2).

Hence, we deduce that

6∑
i=1

ψi ≤µk(dCε− 1)|D2
xun,k|2 +

(
dc

4ε
µk+rk+ε1ρ

2
1+ε2ρ

2
0+ckk−αk,Jµk

)
|∇xun,k|2

+
m

4ε1
ω2
1 |un|2 +

m

4ε2
ω2
0 |Jxun|2.

Choosing ε = (dC)−1, ε1 = ε2 = γk and using (4.7) we conclude that

6∑
i=1

ψi ≤ σk,Jvn,k +
m

4γk
(ω2

0 ∨ ω2
1)(|un|2 + |Jxun|2).

A variant of the classical maximum principle shows that

vn,k(t, ·) ≤G̃N
n,k(t, s)(αk,J |fk|2 + |∇fk|2)

+
m

4γk
(ω2

0 ∨ ω2
1)

∫ t

s

G̃N
n,k(t, r)(|un(r, ·)|2 + |Jxun(r, ·)|2)dr

for any t ∈ J , where G̃N
n,k(t, s) denotes the evolution operator associated with the operator

Ak+σk,J in C(Bn) with homogeneous Neumann boundary conditions. Taking into account that

∥G̃N
n,k(t, s)∥L(C(Bn))

≤ eσk,J (t−s) for any t > s ∈ I, we can estimate

∥∇xun,k(t, ·)∥2∞ ≤eσk,J (t−s)(αk,J∥fk∥2∞ + ∥∇fk∥2∞)

+
m

4γk
(ω2

0 ∨ ω2
1)

∫ t

s

eσk,J (t−r)(∥un(r, ·)∥2∞ + ∥Jxun(r, ·)∥2∞)dr

≤ec
+
0,J (t−s)

(
∥∇fk∥2∞+c1,J(t− s)∥f∥2∞+c1,J

∫ t

s

∥Jxun(r, ·)∥2∞dr
)
,

for any t ∈ J , where c0,J = max
k=1,...,m

σk,J and c1 =
(
4 min
k=1,...,m

γk,J

)−1

(ω2
1 ∨ ω2

2). Summing over k

from 1 to m we deduce that

∥Jxun(t, ·)∥2∞ ≤ c

(
∥Jf∥2∞ + ∥f∥2∞ +

∫ t

s

∥Jxun(r, ·)∥2∞dr
)
, t ∈ J,

and c is a positive constant depending on s, T , m, ω0, ω1, γk (k = 1, . . . , d) and c0. Applying
Gronwall lemma, we conclude the proof. �

5. Invariant measures

In this section we prove the existence of evolution systems of invariant measures associated
withG(t, s), i.e., families of positive and finite Borel measures over Rd, {µi,r : r ∈ I, i = 1, . . . ,m}
such that

m∑
i=1

∫
Rd

(G(t, s)f)idµi,t =
m∑
i=1

∫
Rd

fidµi,s (5.1)

for any f ∈ Cb(Rd;Rm) and any I ∋ s < t. To this aim, the results in Section 3 and in particular
Theorem 3.8 are crucial. Here we assume that Hypotheses 2.1(i)-(iii) and 2.7 are satisfied.

Proposition 5.1. Let {µi,r : r ∈ I, i = 1, . . . ,m} be a family of nonnegative and finite Borel
measures which satisfy condition (5.1). Then, all the measures of the family are either trivial or
equivalent to the Lebesgue measure. As a byproduct, formula (5.1) can be extended to the set of
all the bounded Borel measurable functions.
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Proof. We assume that the measures of the family are not all the trivial measure. Thus, we can
fix i ∈ {1, . . . ,m} and r ∈ I such that µi,r(Rd) > 0. To improve the readability, we split the
proof into two steps.

Step 1. Here, we prove that the measures of the family are all positive. We begin by fixing
j ∈ {1, . . . ,m}, s ∈ I smaller than r. Writing formula (5.1) with f = ej gives

µj,s(Rd) =

∫
Rd

dµj,s =
m∑

k=1

∫
Rd

(G(r, s)ej)kdµk,r ≥
∫
Rd

(G(r, s)ej)idµi,r. (5.2)

Since the function G(r, s)ej is strictly positive in Rd, thanks to Proposition 2.8, and µi,r is a
positive measure, it follows immediately that the last side of (5.2) is positive as well. Hence,
µj,s(Rd) is positive as it has been claimed.

Next, we fix s1 < r and use again formula (5.1) to write
m∑

k=1

∫
Rd

(G(2r, s1)ej)kdµk,2r = µj,s1(Rd) > 0.

Since (G(2r, s1)ej)k > 0 in Rd for any k ∈ {1, . . . ,m}, there should exist an index k0 such that
µk0,2r(Rd) > 0. Hence, the same argument used above with (k0, 2r) replacing (i, r) shows that
µj,s is a positive measure for any s < 2r. Iterating this argument, we can prove that all the
measures of the family are positive.

Step 2. To prove that the measures µj,t (j = 1, . . . ,m, t ∈ I) are equivalent to the Lebesgue
measure, we need to extend the validity of (5.1) to the case when f = χAej (j = 1, . . . ,m) and
A is a Borel subset of Rd. For this purpose, we begin by assuming that A is an open set and
denote by (θn) a sequence of continuous functions converging to χA pointwise in Rd and such
that 0 ≤ θn ≤ 1 for any n ∈ N (see Lemma 7.3). By the last part of Theorem 2.6, we know that
G(t, s)(ϑnej) converges to G(t, s)ej as n → +∞, for any I ∋ s < t, and ∥G(t, s)(ϑnej)∥∞ ≤ 1.
Therefore, writing (5.1) with f = ϑnej and letting n tend to +∞, we conclude that

m∑
k=1

∫
Rd

(G(t, s)(χAej))kdµk,t = µj,s(A).

We now observe that the function νt, defined by

νt(A) =
m∑

k=1

∫
Rd

(G(t, s)(χAej))kdµk,t

for any Borel set A, is a nonnegative measure since G(t, s)(χAej) ≥ 0 for any Borel set A.
Moreover, it agrees with µj,s on the open sets of Rd, which generate the σ-algebra of all the
Borel subsets of Rd. Hence, µj,s and νt are actually the same measure and it follows that

m∑
k=1

∫
Rd

(G(t, s)(χAej))kdµk,t = µj,s(A), I ∋ s < t, j = 1, . . . ,m,

for any Borel set A, as it has been claimed. From this formula the equivalence of the Lebsegue
measure and each measure µj,s follows. Indeed, since the measures µk,t and µj,s are positive
and the function G(t, s)(χAej) is nonnegative, it easy to infer that µj,s(A) = 0 if and only if
(G(t, s)(χAej))k = 0 in Rd for any k = 1, . . . ,m. But, since each measure pkh(s + 1, s, x, dy) is
positive and equivalent to the Lebesgue measure (see again Proposition 2.8), this is the case if
and only if A has zero Lebesgue measure.

To complete the proof, it suffices to observe that for any bounded Borel measurable function
f there exists a sequence (fn) of bounded and continuous functions converging to f almost
everywhere (with respect to the Lebesgue measure and, hence, with respect to each measure µj,t

of the family) as n tends to +∞. Clearly,

lim
n→+∞

m∑
k=1

∫
Rd

fn,kdµk,s =
m∑

k=1

∫
Rd

fkdµk,s
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and the sequence (G(t, s)fn) is bounded in Cb(Rd) and converges to G(t, s)f pointwise in Rd.
Thus, writing (5.1) with f being replaced by fn and letting n tend to +∞, we extend the validity
of such a formula to f ∈ Bb(Rd;Rm). �

Lemma 5.2. The following properties hold true:

(i) Under Hypotheses 2.1 and 3.1, if there exist j ∈ {1, . . . ,m} and a positive function g ∈
Cb(Rd) ∩ C2(Rd) such that (Aj(t)g)(x) + cjj(t, x)g(x) ≥ 0 for any t ∈ I and x ∈ Rd, then
(G(·, s)gej)j ≥ gj in (s,+∞)× Rd;

(ii) Under Hypotheses 2.1, assume further that
∑m

j=1 cij ≤ 0 on Rd for every i = 1, . . . ,m and

that there exist a positive function g ∈ Cb(Rd;Rm) ∩ C2(Rd;Rm) such that A(t)g ≥ 0 in
Rd for any t ∈ I. Then, G(t, s)g ≥ g in Rd for any t > s ∈ I.

Proof. (i) A direct computation reveals that the function vj := (G(·, s)gej)j − g belongs to
C1,2((s,+∞)× Rd) ∩ C([s,+∞)× Rd) and solves the problem{

Dtvj(t, x) ≥ (Aj(t)vj)(x) + cjj(t, x)vj(t, x), (t, x) ∈ (s,+∞)× Rd,
vj(s, x) = 0, x ∈ Rd.

Observing that Hypothesis 3.1 yields the existence of a Lyapunov function for the operator Aj

(hence for Aj + cjj) and invoking a generalization of the classical maximum principle (see [5,
Proposition 2.2]) we deduce that vj ≥ 0 in (s,+∞)× Rd and we are done.
(ii) The claim can be obtained immediately just applying the maximum principle in Proposition
2.3 to the function v = G(·, s)g − g. �

Theorem 5.3. Under Hypotheses 3.1, 3.3, if cij ≥ 0 for every i, j ∈ {1, . . . ,m}, with i ̸= j
and the hypotheses of Lemma 5.2(i) or (ii) hold true, then there exists an evolution system of
measures associated with the evolution operator G(t, s). Each measure of this system is positive
and equivalent to the Lebesgue one.

Proof. We fix j ∈ {1, . . . ,m}, x0 ∈ Rd, n ∈ N and, for any r ∈ N with r > n, we consider the
family of measures {pr,ni : r > n, i = 1, . . . ,m} defined by

pr,ji,n(A) =
1

r − n

∫ r

n

pji(τ, n, x0, A)dτ, A ∈ B(Rd).

By Corollary 3.7, each family {pr,ji,n : r > n} is tight. Therefore, we can invoke a generalization

of Prokhorov’s theorem (see e.g., [8, Theorem 8.6.2]) to infer that, up to a subsequence, {pr,ji,n :

r > n} weakly∗ converges to some measure µj
i,n as r → +∞, i.e.,

lim
r→+∞

1

r − n

∫ r

n

(G(τ, n)(fei))j(x0)dτ = lim
r→+∞

∫
Rd

fdpr,ji,n =

∫
Rd

fdµj
i,n

for any f ∈ Cb(Rd).

By a diagonal argument, we can extract an increasing sequence (rk) of integers such that prk,ji,n

weakly∗ converges to µj
i,n as k tends to +∞, for each n ∈ N. As a byproduct, we can infer that

lim
k→+∞

1

rk − n

∫ rk

n

(G(τ, n)f)j(x0)dτ =
m∑
i=1

∫
Rd

fidµ
j
i,n, f ∈ Cb(Rd;Rm). (5.3)

Writing formula (5.3) with f being replaced by gel (resp. g), if the assumptions of Lemma

5.2(i) (resp. (ii)) are satisfied, yields immediately that µj
l,n is not the trivial measure. Indeed

in the first case lim infk→+∞(rk − n)−1
∫ rk
n

(G(τ, n)(gel))j(x0)dτ > 0 and in the second one

lim infk→+∞(rk − n)−1
∫ rk
n

(G(τ, n)g)j(x0)dτ > 0 for any l = 1, . . . ,m. Moreover, for any f ∈
Cb(Rd;Rm) and h, n ∈ N with h > n we can write

m∑
i=1

∫
Rd

(G(h, n)f)idµ
j
i,h = lim

k→+∞

1

rk − h

∫ rk

h

(G(τ, h)G(h, n)f)j(x0)dτ
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= lim
k→+∞

1

rk − h

∫ rk

h

(G(τ, n)f)j(x0)dτ

= lim
k→+∞

1

rk − n

∫ rk

n

(G(τ, n)f)j(x0)dτ

− lim
k→+∞

1

rk − n

∫ h

n

(G(τ, n)f)j(x0)dτ

+ lim
k→+∞

h− n

(rk − h)(rk − n)

∫ rk

h

(G(τ, n)f)j(x0)dτ

=
m∑
i=1

∫
Rd

fidµ
j
i,n. (5.4)

Now, we define the measures µj
i,s also for non integer values of s. For this, purpose, we set

µj
i,s(A) =

m∑
k=1

∫
Rd

(G(n, s)(χAei))kdµ
j
k,n, A ∈ B(Rd),

where n is any integer larger than s. It is straightforward to check that µj
i,s is a nonnegative

measure and that ∫
Rd

fdµj
i,s =

m∑
k=1

∫
Rd

(G(n, s)(fei))kdµ
j
k,n

for any f ∈ Cb(Rd), so that

m∑
i=1

∫
Rd

fidµ
j
i,s =

m∑
k=1

∫
Rd

(G(n, s)f)kdµ
j
k,n, f ∈ Cb(Rd;Rm).

Note that the above definition is independent of the choice of n > s. Indeed, if p is another
integer larger than s (to fix the ideas we suppose that p > n) then splitting G(p, s)(χAei) =
G(p, n)G(n, s)(χAei) and using (5.4), we conclude that

m∑
k=1

∫
Rd

(G(p, s)(χAei))kdµ
j
k,p =

m∑
k=1

∫
Rd

(G(n, s)(χAei))kdµ
j
k,n,

which shows that the measure µj
i,s is well defined.

To prove the invariance of the system {µj
i,s : s ∈ I, i = 1, . . . ,m}, we fix t > s ∈ I, n > t and

observe that
m∑

k=1

∫
Rd

fkdµ
j
k,s =

m∑
k=1

∫
Rd

(G(n, s)f)kdµ
j
k,n =

m∑
k=1

∫
Rd

(G(n, t)G(t, s)f)kdµ
j
k,n

=
m∑

k=1

∫
Rd

(G(t, s)f)kdµ
j
k,t

for any f ∈ Cb(Rd;Rm).

The equivalence of each measure µj
i,s with respect to the Lebesgue measure and its positivity

are immediate consequence of Proposition 5.1. Indeed it suffices to observe that the evolution
system of measures {µj

i,s : i = 1, . . . ,m, s ∈ I} contains at least a non trivial measure. �

5.1. The evolution operator G(t, s) in Lp-spaces. In this subsection, we prove that the
evolution operatorG(t, s) can be extended, with a bounded semigroup in the Lp-spaces related to
evolution system of measures and, in the autonomous case, assuming compactness in Cb(Rd;Rm)
we prove compactness in these Lp-spaces too.

Here, we consider {µi,t : t ∈ I, i = 1, . . . ,m} which is any evolution system of measures
associated with G(t, s). Moreover, for any p ∈ [1,+∞), we write Lp

µt
(Rd;Rm) to denote the set
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i=1 L

p
µi,t

(Rd), which we endow with the natural norm f 7→
(∑m

i=1

∫
Rd |fi|pdµi,t

)1/p
=: ∥f∥Lp

µt
.

For p = ∞, the space L∞
µt
(Rd;Rm) denotes the set of all µt-essentially bounded functions f with

norm ∥f∥L∞
µt

(Rd;Rm) = maxk=1,...,m esssupx∈Rd |fk(x)|. Note that, in view of Proposition 5.1, the

measures µi,t (t ∈ I and i = 1, . . . ,m) are all equivalent to the Lebesgue measure. Thus, the
Lebesgue space L∞(Rd;Rm) equals to L∞

µt
(Rd;Rm) for any t ∈ I.

Proposition 5.4. Each G(t, s) can be extended with a bounded operator mapping Lp
µs
(Rd;Rm)

into Lp
µt
(Rd;Rm) for any 1 ≤ p < +∞ which satisfies the estimate

∥G(t, s)∥L(Lp
µs (Rd;Rm),Lp

µt
(Rd;Rm)) ≤ (2eK(t−s))

p−1
p , t > s, (5.5)

for any p ∈ [1,+∞), where K is defined in (2.6).

Proof. Since ∥G(t, s)ek∥∞ ≤ eK(t−s), it follows that pik(t, s, x,Rd) ≤ eK(t−s) for any i, k =
1, . . . ,m, t > s ∈ I and x ∈ Rd. Thus, the Jensen inequality and formula (2.10) yield

|(G(t, s)f)i(x)|p ≤2p−1
m∑

k=1

∣∣∣∣∫
Rd

fk(y)pik(t, s, x, dy)

∣∣∣∣p
≤2p−1

m∑
k=1

[pik(t, s, x,Rd)]p−1

∫
Rd

|fk(y)|p pik(t, s, x, dy)

≤2p−1eK(p−1)(t−s)(G(t, s)(|f1|p, . . . , |fm|p))i(x)

for any t > s, x ∈ Rd, i = 1, . . . ,m, f ∈ Cb(Rd;Rm) and p ∈ [1,+∞). Moreover, from the
invariance property (5.1), we deduce that

m∑
i=1

∫
Rd

|(G(t, s)f)i|pdµi,t ≤2p−1eK(p−1)(t−s)
m∑
i=1

∫
Rd

(G(t, s)(|f1|p, . . . , |fm|p))idµi,t

=2p−1eK(p−1)(t−s)
m∑
i=1

∫
Rd

|fi|pdµi,s

for any t > s and f ∈ Cb(Rd;Rm). Since the measures µi,t (i = 1, . . . ,m, t ∈ I) are finite Borel
measures, the space Cb(Rd;Rm) is dense in Lp

µt
(Rd;Rm) for any p ∈ [1,+∞) and t ∈ I (see

[1, Remark 1.46]), hence, from the previous chain of inequalities we easily deduce that G(t, s)
extends to a linear bounded operator from Lp

µs
(Rd;Rm) into Lp

µt
(Rd;Rm) and formula (5.5)

follows. The evolution property easily follows. Hence, G(t, s) is an evolution operator from
Lp
µs
(Rd;Rm) into Lp

µt
(Rd;Rm). �

Remark 5.5. In the autonomous case, the evolution operator G(t, s) is replaced by a semigroup
T (t) and the evolution system of measures {µi,t : i = 1, . . . ,m, t ∈ I} is replaced by a family
of measures not depending on the parameter t denoted by {µi : i = 1, . . . ,m}. In this case

the semigroup T (t) maps Lp
µ(Rd;Rm) into itself and ∥T (t)∥L(Lp

µ(Rd;Rm)) ≤ (2eKt)
p−1
p , for any

t > 0 and p ∈ [1,+∞). In addition, T (t) turns out to be a strongly continuous semigroup
in Lp

µ(Rd;Rm). Indeed, for any f ∈ Cb(Rd;Rm), T (t)f converges locally uniformly to f as

t→ 0+. Hence, estimate (2.6), Proposition 5.1 and the dominated convergence theorem allow us
to conclude that ∥T (t)f − f∥Lp

µ(Rd;Rm) vanishes as t→ 0+. For f ∈ Lp
µ(Rd;Rm) we can get the

same result using the density of Cb(Rd;Rm) in Lp
µ(Rd;Rm) and the boundedness of the function

t 7→ ∥T (t)∥L(Lp
µ(Rd;Rm)) in (0, 1).

Now, we give a sufficient condition in order that the evolution operator G(t, s) is compact
from Lp

µs
(Rd;Rm) into Lp

µt
(Rd;Rm).

Theorem 5.6. Assume that G(t0, s) is compact in Cb(Rd;Rm) for some I ∋ s < t0. Then,
G(t0, s)) is compact from Lp

µs
(Rd;Rm) into Lp

µt
(Rd;Rm) for any p > 1.
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Proof. Let us fix t0 > s ∈ I and assume that G(t0, s) is compact in Cb(Rd;Rm). First of all,
we show that G(t0, s) is compact in L∞(Rd;Rm) = L∞

µs
(Rd;Rm) for any s ∈ I, where the

equality follows from Proposition 5.1. Since the evolution operator is strong Feller, G(t0, s)
maps L∞(Rd;Rm) into Cb(Rd;Rm). Moreover, by the semigroup law and the compactness in
Cb(Rd;Rm), G(t0, s) turns out to be compact from L∞(Rd;Rm) into Cb(Rd;Rm) hence from
L∞(Rd;Rm) into itself.

Now, let U be the unit ball in L∞(Rd;Rm), set Kt0,s := G(t0, s)(U) and fix ε > 0. Thanks to
the compactness of G(t0, s) we can determine simple vector-valued functions {ζj}j=1,...,k, with

ζj =
∑n

i=1 c
j
iχAi for some cji ∈ Rm, n ∈ N, where ∪n

i=1Ai = Rd, such that the family {ζ1, . . . , ζk}
is an ε-net for Kt0,s, i.e., Kt0,s ⊂

∪k
i=1Bε(ζi). Moreover, P t

εζi = ζi for any i = 1, . . . , k and
t ∈ I, where

(P t
εf)ℓ =

n∑
i=1

(
1

µℓ,t(Ai)

∫
Ai

fℓdµℓ,t

)
χAi , ℓ = 1, . . . ,m, t ∈ I.

Note that

∥P t0
ε G(t0, s)−G(t0, s)∥L(L∞(Rd;Rm)) ≤ 2ε. (5.6)

Indeed, fix f ∈ L∞(Rd;Rm) with ∥f∥∞ ≤ 1. Then, there exists j ∈ {1, . . . , k} such that
G(t0, s)f ∈ Bε(ζj). Hence,

∥P t0
ε G(t0, s)f −G(t0, s)f∥∞ ≤ ∥P t0

ε (G(t0, s)f − ζj)∥∞ + ∥ζj −G(t0, s)f∥∞ ≤ 2ε.

On the other hand, since P t0
ε is a contraction in Bb(Rd;Rm), it follows that

∥P t0
ε G(t0, s)−G(t0, s)∥L(L1

µs
(Rd;Rm);L1

µt0
(Rd;Rm))

≤2∥G(t0, s)∥L(L1
µs

(Rd;Rm);L1
µt0

(Rd;Rm)) ≤ 2. (5.7)

Thus, estimates (5.6), (5.7) and the Riesz-Thorin interpolation theorem yield that

∥P t0
ε G(t0, s)−G(t0, s)∥L(Lp

µs (Rd;Rm);Lp
µt0

(Rd;Rm)) ≤ 2ε1−1/p, (5.8)

for any 1 < p < +∞. Letting ε → 0 in estimate (5.8) yields the claim since G(t0, s) can be
approximated by the operator P t0

ε G(t0, s) which has range finite. �

6. Examples

In this section we provide some examples of operators which satisfy our assumptions and to
which our results can be applied.

Example 6.1. Let A be as in (2.1) with

qkij(t, x) := ωk
ij(t)(1 + |x|2)h

k
ij , bki (t, x) := −γki (t)xi(1 + |x|2)ℓ

k
i

and

chk(t, x) := dhk(t)(1 + |x|2)σhk

for any i, j = 1, . . . , d and h, k = 1, . . . ,m. Let us assume that

Hypotheses 6.2. (i) for any i, j = 1, . . . , d and h, k = 1, . . . ,m, the functions ωk
ij , γ

k
i and dhk

belong to C
α/2
loc (I), ωk

ij = ωk
ji, h

k
ij = hkji, the coefficients hkij , ℓ

k
i , σhk are nonnegative and

infI γ
k
i > 0;

(ii) the functions dij are positive for i ̸= j, negative for i = j and σij < σii for any i ̸= j;
(iii) for any k = 1, . . . ,m, mini=1,...,d h

k
ii ≥ maxj ̸=i h

k
ij and

νk := inf
I

(
min

i=1,...,d
ωk
ii(t)− max

i=1,...,d

(∑
j ̸=i

(ωk
ij(t))

2
) 1

2

)
> 0;

(iv) 1 + maxi=1,...,d{σkk, ℓki } > maxi=1,...,d h
k
ii, for any k = 1, . . . ,m.
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Under Hypotheses 6.2, all the assumptions in Theorem 2.4 are satisfied hence it can be applied.
To check Hypothesis 2.1(ii) we can write

⟨Qk(t, x)ζ, ζ⟩ =
d∑

i=1

ωk
ii(t)(1 + |x|2)h

k
iiζ2i +

∑
j ̸=i

ωk
ij(t)(1 + |x|2)h

k
ijζiζj

≥
(
min
i
(ωk

ii)(1 + |x|2)mini h
k
ii−max

i

(∑
j ̸=i

(ωk
ij)

2

) 1
2

(1 + |x|2)maxi̸=j hk
ij

)
|ζ|2

≥(1 + |x|2)maxi ̸=j hk
ij

(
min

i=1,...,d
ωk
ii(t)− max

i=1,...,d

(∑
j ̸=i

(ωk
ij(t))

2
) 1

2

)
|ζ|2

for every ζ ∈ Rd, and Hypothesis 6.2(iii) guarantees that the infimum of µk in I×Rd is positive for
any k = 1, . . . ,m. Clearly Hypotheses 2.1(iii) and (iv) are immediate consequences of Hypothesis
6.2(ii). Choosing φ(x) = φ(x)1l := (1 + |x|2)1l, for every x ∈ Rd, we get

(A(t)φ1l)k(x) = 2
d∑

i=1

ωk
ii(t)(1 + |x|2)h

k
ii − 2

d∑
i=1

γki (t)x
2
i (1 + |x|2)ℓ

k
i

+
m∑
j=1

dkj(t)(1 + |x|2)σkj+1

for every x ∈ Rd and from Hypothesis 6.2(iv) we can prove that there exists two positive constant
ak, ck such that (A(t)φ1l)k ≤ ak−ckφ, thus Hypothesis 3.3 (hence Hypothesis 2.1(iv)) is satisfied
too. In addition, since for any h ̸= k the functions chk are nonnegative, the evolution operator
G(t, s) associated with A(t) is well-defined in L(Cb(Rd;Rm)) and it is positive as stated in
Proposition 2.8.

Now, we are interested in finding conditions on the coefficients of A(t) which ensures com-
pactness of G(t, s) in Cb(Rd;Rm) as obtained in Theorems 3.8 and 3.11. To this aim, besides
Hypotheses 6.2(i)-(iii) we assume that maxi=1,...,d h

k
ii < 1 + maxi=1,...,d ℓ

k
i for any k = 1, . . . ,m

and that
∑m

i=1 dki(t) ≤ 0 for any k = 1, . . . ,m. In this case Hypothesis 3.1(i) is satisfied with
ψk = φ for any k = 1, . . . ,m. In addition, being

∑m
i=1 cki(t, x) ≤ (1 + |x|2)σkk

∑m
i=1 dki(t) ≤ 0,

Theorem 3.8 can be applied.
On the other hand, if we assume that τk := maxi=1,...,d{σkk, ℓki } > 0 then Hypothesis 3.10(i) is
satisfied with φ(x) = 1+ |x|2 and hk(x) = ck1x

1+τk − ck2 for some positive constants cki (i = 1, 2).
Now we claim that if

max
i=1,...,d

ℓki > 1 + max
i,j=1,...,d

{σkk, hkij − 2}, k = 1, . . . ,m, (6.1)

then the functions wk(x) = 1+ 1
1+|x|2 , (k = 1, . . . ,m) are such that Hypothesis 3.10(ii) is satisfied

for any µ ∈ R, hence Theorem 3.11 can be applied. Indeed we can write

(Ak(t)wk)(x) + ckk(t, x)wk(x) =− 2

d∑
i=1

ωk
ii(t)(1 + |x|2)h

k
ii−2

+ 2

d∑
i=1

γki (t)x
2
i (1 + |x|2)ℓ

k
i −2

+ 8
∑
j ̸=i

ωk
ij(t)xixj(1 + |x|2)h

k
ij−3

+ dkk(t)(1 + |x|2)σkk

(
1 +

1

1 + |x|2

)
. (6.2)

Now, if (6.1) is satisfied, the leading part in the right-hand side of (6.2) is given by the term
containing the drift coefficients which, as it is easily seen, blows up at infinity. Thus it is clear
that we can find R > 0 such that Akwk + ckkwk − µwk is positive in I × (Rd \ BR) for any
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µ ∈ R. Consequently, the assumption (6.1) is also a sufficient condition in order that neither
C0(Rd;Rm), nor Lp(Rd;Rm) (1 ≤ p < +∞) are preserved by the action of G(t, s) (see Theorems
4.1 and 4.2(i)).

Now, we are interested in finding conditions in order that the space C0(Rd;Rm) is preserved
by G(t, s). To this aim, we prove that assuming

max
i=1,...,d

{hkii − 1, σkk} > max
i=1,...,d

{ max
j=1,...,d

hkij − 1, ℓki ,max
j ̸=k

σkj}, (6.3)

for any k = 1, . . . ,m, then we can find λ0 > 0 and [a, b] ⊂ I such that the function v(x) = 1
1+|x|21l

satisfies λ0v −A(t)v ≥ 0 in [a, b]× Rd. Indeed, a straightforward computation shows that

λ0vk(x)−((A(t)v)(x))k = λ0
1

1 + |x|2
+ 2

d∑
i=1

ωk
ii(t)(1 + |x|2)h

k
ii−2

− 8
d∑

i,j=1

ωk
ij(t)xixj(1 + |x|2)h

k
ii−3−2

d∑
i=1

γki x
2
i (1 + |x|2)ℓ

k
i −2

−
m∑
j=1

dkj(t)(1 + |x|2)σkj−1

for any k = 1, . . . ,m and (t, x) ∈ I ×Rd. Now, arguing as before, if (6.3) is satisfied the function
λ0vk(x)− ((A(t)v)(x))k tends to +∞ as |x| → +∞ uniformly with respect to t ∈ [a, b], for any
[a, b] ⊂ I. Hence we can find λ0 > 0 such that λ0v −A(t)v ≥ 0 in [a, b]× Rd.

In order to deduce the invariance of Lp(Rd;Rm), let us compute κC which is a function which
bounds from above the quadratic form associated with C in [a, b]× Rd. We can write

⟨C(t, x)ζ, ζ⟩ =⟨diagC(t, x)ζ, ζ⟩+ ⟨(C(t, x)− diagC(t, x))ζ, ζ⟩
≤ − min

i=1,...,m
|cii(t, x)||ζ|2 + ΛD(t)(1 + |x|2)maxi ̸=j σij

≤− min
i=1,...,m

|dii(t)|(1 + |x|2)mini=1,...,m σii + ΛD(t)(1 + |x|2)maxi ̸=j σij

where ΛD(t) is any positive function which bounds from above the quadratic form associated
with the matrix ((1 − δhk)dhk(t))h,k. Hence, we deduce that ⟨C(t, x)ζ, ζ⟩ ≤ κC(t, x)|ζ|2 for any
(t, x) ∈ [a, b]× Rd where

κC(t, x) = −( min
i=1,...,m

|dii(t))|(1 + |x|2)mini=1,...,m σii + ΛD(t)(1 + |x|2)maxi ̸=j σij ,

for any t ∈ [a, b] and x ∈ Rd. Moreover, since

divγk(t, x) = −
d∑

i=1

(
γki (t)(1 + |x|2)ℓ

k
i + 2ℓki γ

k
i (t)x

2
i (1 + |x|2)ℓ

k
i −1

+ 2hkiiω
k
ii(t)(1 + |x|2)h

k
ii−1

+ 4
d∑

j=1

hkij(h
k
ij − 1)ωk

ij(t)xjxi(1 + |x|2)h
k
ij−2

)
,

we deduce that Γ[a,b] is finite (see (4.1)) if, for example, σii > maxs,j,k{ℓks , hksj − 1} for any
i = 1, . . . ,m. In this case also estimate (4.3) is satisfied, hence Theorem 4.2(ii) and (iii) can be
applied. Consequently the space Lp(Rd;Rm), p ≥ 1 turns out to be invariant under G(t, s).

It is quite easy to see that the functions µk, rk, ρ0 and ρ1 defined in Hypotheses 4.3 are such
that

µk(t, x) ≃ |x|2mini hii , rk(t, x) ≃ |x|2mini ℓ
k
i , ckk(t, x) ≃ |x|2σkk

and

ρ0(t, x) ≃ |x|2maxh̸=k σhk , ρ1(t, x) ≃ |x|2maxh,k σhk−1
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as |x| → +∞ for any t ∈ J , J ⊂ I bounded. Thus, taking account of the sign of each term in
the definition of σk,J in (4.7) we conclude that σk,J is bounded in J × Rd if, for instance

max
{

min
i=1,...,d

ℓki , σkk

}
> max

{
2max

i ̸=k
σki, 2σkk − 1, min

i=1,...,d
hkii

}
, k = 1, . . . ,m. (6.4)

Assumption (6.4) allows to apply Theorem 4.4 to conclude that C1
b (Rd;Rm) is invariant under

G(t, s).
To conclude, we provide some conditions in order that the results in Section 5 can be applied.

Besides Hypotheses 6.2(i)-(iii) we assume that maxi=1,...,d h
k
ii < 1 + maxi=1,...,d ℓ

k
i for any k =

1, . . . ,m and that
∑m

i=1 dki(t) ≤ 0 for any k = 1, . . . ,m. In this case Hypotheses 2.1, 3.1 and 3.3
are satisfied. If, in addition there exists j ∈ {1, . . . ,m} such that

max
i=1,...,d

ℓji > max
i ̸=k

{σjj , hjik − 1},

then we can find K > 0 such that the function g : Rd → R, defined by g(x) = 1
1+|x|2 − K for

any x ∈ Rd, is such that all the hypotheses in Lemma 5.2(i) are satisfied and Theorem 5.3 can
be applied.

On the other hand, under Hypotheses 6.2(i), (iii), if σij = σ for any i, j = 1, . . . ,m, dij > 0 for
any i ̸= j,

∑m
j=1 dij(t) = 0 for any t ∈ I, i = 1, . . . ,m, and maxi=1,...,d h

k
ii < 1+maxi=1,...,d ℓ

k
i for

any k = 1, . . . ,m then Hypotheses 2.1, 3.1 and 3.3 are satisfied as well as that in Lemma 5.2(ii)
are satisfied. Indeed in this case the function g = 1l is such that A(t)g ≡ 0 in Rd for any t ∈ I
and consequently Theorem 5.3 holds true also in this latter case.

7. Appendix

Here, we recall some apriori estimates used in the paper, whose proofs can be obtained arguing
exactly as in [2], and a classical approximation result.

Proposition 7.1. Let Ω ⊂ Rd be an open set, T > s ∈ I and u ∈ Cb([s, T ]×Ω;Rm)∩C1,2((s, T )×
Ω;Rm) satisfy the equation Dtu = Au + g in (s, T ) × Ω for some g ∈ Cα/2,α((s, T ) × Ω;Rm).
Further, assume that the function t 7→ (t−s)∥u(t, ·)∥C2

b (Ω;Rm) is bounded in (s, T ). Then, for any

R1 > 0 and x0 ∈ Ω, such that DR1(x0) b Ω, there exists a positive constant K0 = K0(R1, λ0, s, T )
such that, for any t ∈ (s, T ),

(t− s)∥D2
xu(t, ·)∥L∞(DR1

(x0);Rm) +
√
t− s ∥Jxu(t, ·)∥L∞(DR1

(x0);Rm)

≤K0(∥u∥Cb([s,T ]×Ω;Rm) + ∥g∥Cα/2,α((s,T )×Ω;Rm)). (7.1)

Theorem 7.2 (Interior estimates). Let T > s ∈ I and let u ∈ C1+α/2,2+α((s, T ] × Rd;Rm)

satisfy, in (s, T ]×Rd the equation Dtu = Au+g for some g belonging to C
α/2,α
loc ((s, T ]×Rd;Rm).

Then for every r1, r2 ∈ (s, T ), with r1 < r2, and any pair of bounded sets Ω1 and Ω2 such that
Ω1 b Ω2, there exists a positive constant c, depending on Ω1, Ω2, r1, r2, T and s, such that

∥u∥C1+α/2,2+α((r2,T )×Ω1;Rm) ≤ c(∥u∥Cb((r1,T )×Ω2;Rm) + ∥g∥Cα/2,α((r1,T )×Ω2;Rm)). (7.2)

Lemma 7.3. The characteristic function of any open subset of Rd is the pointwise limit in Rd

of a sequence (ϑn) ⊂ Cb(Rd) such that 0 ≤ ϑn ≤ 1 in Rd for any n ∈ N.

Proof. We fix an open set Ω and, for any n ∈ N, we denote by ϕn ∈ Cb([0,+∞)) any function
such that ϕn(s) = 1, if s ≥ 1/n, ϕn(s) = 0, if s ∈ [0, (2n)−1] and 0 ≤ ϕn(s) ≤ 1 otherwise. Next,
we set

ϑn(x) = ϕn(d(x,Rd \ Ω)), x ∈ Rd,

where d(x,Rd \Ω) denotes the distance of x from Rd \Ω. As it is immediately seen, each function
ϑn vanishes on Rd \Ω. On the other hand, if x ∈ Ω, then d(x,Rd \Ω) > 0. Therefore, if n ∈ N is
such that nd(x,Rd \Ω) ≥ 1, then ϑn(x) = 1. As a byproduct, limn→+∞ ϑn(x) = 1. Since, by the
choice of the sequence (ϕn) it holds that 0 ≤ ϑn ≤ 1 in Rd, (ϑn) is the sequence we are looking
for. �
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