
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-020-01532-4
Arch. Rational Mech. Anal. 237 (2020) 1325–1382

The Surface Diffusion Flow with Elasticity in
Three Dimensions

Nicola Fusco , Vesa Julin & Massimiliano Morini

Communicated by C. De Lellis

Abstract

We establish the short-time existence of a smooth solution to the surface diffu-
sion equationwith an elastic term andwithout an additional curvature regularization
in three space dimensions. We also prove the asymptotic stability of strictly stable
stationary sets.
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1. Introduction

Morphological evolution of strained elastic solids, driven by stress and sur-
face mass transport occurs in many physical systems. One instance is the hetero-
epitaxial growth of elastic films when a lattice mismatch between film and substrate
is present. Another example is given by the phase separation in several small con-
nected phases within a common elastic body, which takes place in certain alloys
under specific temperature conditions. A third situation is represented by the nu-
cleation and evolution of material voids inside a stressed elastic solid. From the
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mathematical point of view, such phenomena are related to a free energy functional,
which is typically given by the sum of the stored elastic energy and the surface en-
ergy accounting for the surface tension along the interface between the phases. In
this context the equilibria are identified with the local or global minimizers under
a volume constraint of the aforementioned energy.

All these variational problems can be regarded as non-local isoperimetric prob-
lems, where the non-locality is given by the elastic term. They are very well studied
in the physical and numerical literature, see for instance [26,29,40–42]. Concerning
rigorous mathematical analysis, we refer to [6,8,10,17,21,25,28] for some exis-
tence, regularity and stability results related to a variational model describing the
equilibrium configurations of two-dimensional epitaxially strained elastic films,
and to [9,16] for results in three-dimensions. A hierarchy of variational principles
to describe equilibrium shapes in the aforementioned contexts has been introduced
in [30].

In what follows we consider the following prototypical energy:

J (F) := 1

2

∫
�\F

CE(uF ) : E(uF ) dx + H2(∂F). (1.1)

The associatedminimumproblemunder a volume constraint can be used to describe
the equilibrium shapes of voids in elastically stressed solids (see for instance [41]).
Here, the set F ⊂⊂ � represents the shape of the void that has formed within
the elastic body � (an open subset of R3), uF stands for the equilibrium elastic
displacement in �\F subject to a prescribed boundary conditions uF = w0 on
∂� (see (2.12) below), C is the elasticity tensor of the (linearly) elastic material,
E(uF ) := (DuF + DT uF )/2 denotes the elastic strain of uF , and H2 stands for
the surface measure. The presence of a nontrivial Dirichlet boundary condition
uF = w0 on ∂� is what causes the solid �\F to be elastically stressed. We refer
to [15,20] for related existence, regularity and stability results in two dimensions.
See also [11] for a relaxation result valid in all dimensions for a variant of (1.1).

In this paper we study the morphological evolution of shapes towards equilib-
ria of the functional (1.1), driven by stress and surface diffusion. Assuming that
relaxation to equilibrium in the bulk occurs at a much faster time scale, see [38],
we have, according to the Einstein–Nernst equation, that the evolution is governed
by the following volume preserving law:

Vt = �∂Ftμt on ∂Ft , (1.2)

where Vt denotes the outer normal velocity of the evolving surface ∂Ft at time t and
�∂Ftμt stands for the Laplace–Beltrami operator acting on the chemical potential
μt along ∂Ft . In turn, since μt is given by the first variation of the free-energy
functional J evaluated at Ft and taking into account (2.14) below, (1.2) reads as

Vt = �∂Ft

(
HFt − Q(E(uFt ))

)
, (1.3)

where HFt is the sum of the principal curvatures of ∂Ft , with the orientation given
by the outer normal, uFt is the elastic equilibrium in �\Ft subject to uFt = w0 on
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∂� and Q(E(uFt )) := 1
2CE(uFt ) : E(uFt ). Note that the last quantitity involves

the traces of the gradient of the elastic equilibrium on the evolving boundary.
From themathematical point of view, (1.3) is a fourth order geometric parabolic

equation coupled with the elliptic Lamé system, which is solved time by time in
the (evolving) bulk. Note also that when w0 = 0 the elastic term vanishes and thus
(1.3) reduces to the pure surface diffusion flow

Vt = �∂Ft HFt (1.4)

for evolving surfaces, studied in [19] (in the general n-dimensional case). Thus, we
may also regard (1.3) as a sort of canonical nonlocal perturbation of (1.4) by an
additive elastic contribution.

As observed already by Cahn and Taylor [14] for (1.4), the Equation (1.3)
can be seen formally as the gradient flow of the energy functional J with respect
to a suitable Riemannian metric of H−1-type, see for instance [24, Remark 3.1].

Let us mention that in the physical literature a variant of the energy (1.1) with
a curvature regularization term has also been considered, see [3,12,18,31,40,41].
This in turn leads to a variant of (1.3) with a sixth order regularization term. In
particular, in [23] the regularized energy

Jε(F) := 1

2

∫
�\F

CE(uF ) : E(uF ) dx +
∫

∂F

(
1 + ε

p
|HF |p

)
dH2

and the associated evolution equation

Vt = �∂Ft

[
HFt − Q(E(uFt )) − ε

(
�∂Ft (|HFt |p−2HFt )

−|HFt |p−2HFt

(
p−1
p H2

Ft − 2K∂Ft

))]
(1.5)

are considered in the context of periodic graphs modeling the evolutions of epi-
taxially strained elastic films (see also [22] for the two-dimensional version of the
same equation). Here K∂Ft stands for the Gaussian curvature of ∂Ft , ε > 0 is a
small parameter, and p > 2. The local-in-time existence and the asymptotic sta-
bility results proven in [23] (see also [22,39]) rely heavily on the presence of the
curvature regularization, which makes the elastic contribution a lower order term
easily controlled by the sixth order leading terms of the equation. In fact, all the
estimates provided there are ε-dependent and degenerate as ε → 0+. This is not
surprising as the nonlocal elastic term in (1.1) cannot be treated simply as a lower
order perturbation of the perimeter, as shown by the fact that its presence may lead
to formation of singularities in the static case (see [25] and references therein), and
the numerical analysis in [41] suggests that in the evolutionary case the flow may
form cusp-like singularities. Thus the case ε = 0 requires completely different
methods.

A first breakthrough in this direction has been obtained in [24], where short
time existence result for (1.3) was proved in the two-dimensional case. In [24]
we also proved the asymptotic stability of strictly stable stationary sets. However,
the techniques developed there cannot be applied to higher dimensions, as some
of the crucial estimates rely on the fact that an L2-bound of the curvature of the
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evolving curves provides uniform C1,α-bounds. This is of course no longer true in
higher dimensions. Moreover, the higher dimensional case is of course much more
involved from the geometric point of view.

In this paper we are able to address Equation (1.3) in the physical three-
dimensional case andwe establish short time existence and uniqueness of a solution
starting from sufficiently regular initial sets, see Theorem 4.4. We highlight that
Theorem 4.4 provides also quantitative estimates of the k-th order derivatives of
the solution depending only on the H3-norm of the initial datum, somewhat in the
spirit of those proved in [32]. We also remark that in general one cannot expect
global-in-time existence. Indeed, even when no elasticity is present, singularities
such as pinching may develop in finite time, see for instance [27].

In the second main result of the paper we establish global-in-time existence and
study the long-time behavior for a class of initial data: we show that strictly stable
stationary sets, that is, sets G that are stationary for the energy functional J and
with positive second variation ∂2J (G) are exponentially stable for the flow (1.3).
More precisely, if the initial set F0 is sufficiently close in H3 to the strictly stable
set G and has the same volume, then the flow (1.3) starting from F0 exists for all
times and converges to G exponentially fast in Ck for every k as t → +∞, see
Theorem 5.1 for the precise statement.

A few comments on the proofs are in order. Concerning short-time existence, as
in [24] our strategy is based on the natural idea of thinking of the elastic contribution
Q as a forcing term. More precisely, we set up a fixed point argument on the map
f �→ Q(E(u

F f
t
)), where F f

t is the solution to the forced flow

Vt = �∂Ft

(
HFt − f

)
. (1.6)

Major technical difficulties originate from the already mentioned fact that the non-
local elastic term is not in general lower order with respect to the perimeter. One
of the main technical breakthroughs obtained in the present paper is a new deli-
cate elliptic estimate on the higher order derivatives of Q(E(uFt )) in terms of the
higher order norms of the evolving boundaries ∂Ft , see Theorem 4.1. The crucial
and somewhat surprising point of this result is the linear structure of the estimate,
which allows us to show that the map f �→ Q(E(u

F f
t
)) is a contraction.

Concerning the asymptotic stability analysis, we adapt to the present situation
the methods developed in [1] for the surface diffusion flow without elasticity (see
also [24]). The rough idea is to look at the asymptotic behavior of the map

t �→
∫

∂Ft

∣∣∇∂Ft

(
HFt − Q(E(uFt )

)∣∣2 dH2,

where∇∂Ft stands for the tangential gradient on ∂Ft , and to show that it is decreasing
and that in fact it vanishes with exponential rate as t → +∞. A crucial role in this
analysis is played by the energy identity proven in Proposition 5.3 and by the
estimates on the flow provided by Theorem 4.4. Let us remark that such estimates
allow us also to considerably simplify the arguments of [1] and to obtain stronger
asymptotic convergence results.
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This paper is organized as follows. In Section 2we set up the problem, introduce
the main notation and present some differential geometry preliminaries that will be
useful in the subsequent analysis. We also collect several auxiliary results concern-
ing the energy functional J in (1.1). In particular, we describe some properties of
strictly stable stationary sets that are crucial for the asymptotic stability analysis
carried out in Section 5. Section 3 is devoted to the study of (1.6), while the short-
time existence theory for the flow (1.3) is addressed in Section 4. In Section 6 we
briefly illustrate how to apply our main existence and asymptotic stability results in
the case of evolving periodic graphs, that is in the geometric setting considered in
[23]. In particular, in Theorem 6.1 we address the exponential asymptotic stability
of flat configurations, thus extending to the evolutionary setting the results of [9].
In the final “Appendix” we collect the proofs of two technical lemmas and provide
the derivation of the energy identity stated in Proposition 5.3.

From a technical point of view the three dimensions enter in a crucial way via
the Sobolev embedding and affect the regularity of the space where the fixed point
argument is set. It would be probably possible to extend the methods to higher
dimensions at the expense of setting the problem in more regular spaces which in
turn would require to differentiate the equation more and more as the dimension
increases.

We conclude this introduction by mentioning that it would be interesting to
investigate whether the flow (1.5) studied in [23] converge to (1.3) as ε → 0+. This
issue could be probably addressed by adapting the methods developed in [7].

2. Preliminaries

2.1. Geometric Preliminaries

In this section we introduce notation related to Riemannian geometry. As an
introduction to the topic we refer to [4,34]. Let � ⊂ R

n be a smooth (n − 1)-
dimensional compact hypersurface without boundary. Since � is embedded in Rn

it has a natural metric, denoted by g, induced by the Euclidean metric.We thus have
a Riemannian manifold (�, g) and we denote the inner product for vector fields
X,Y as 〈X,Y 〉

〈X,Y 〉 = g(X,Y ) = gi j X
iY j ,

where the last expression is in local coordinates. Throughout the paper we adopt the
Einstein summation convention. Similarly we define the inner product of covector
fields ω, η, which in local coordinates can be written as

〈ω, η〉 = gi jωiη j ,

where gi j is the inverse matrix of gi j . The inner product extends to
(k
0

)
-tensor fields

T = Ti1···ik and S = S j1··· jk as

〈T, S〉 = gi1 j1 · · · gik jk Ti1···ik S j1··· jk .
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The norm of a tensor T is then |T | = √〈T, T 〉 and we have the inequality 〈T, S〉 �
|T ||S|. Given a

(k
0

)
-tensor field T we raise the first index by T i1

i2···ik = gi1l Tl i2···ik
and thus we obtain a

(k−1
1

)
-tensor field. We may thus write the above inner product

as

〈T, S〉 = T j1··· jk S j1··· jk .

The trace of a
(k
0

)
-tensor field T , with k � 2, on the first two indeces is tr T =

g jlTjl i3···ik .
We denote the Riemannian connection on (�, g) by∇ and∇kT = ∇i1 · · · ∇ik T

means the k-th covariant derivative of a tensor field T . There is a slight danger of
confusion, since∇k f also denotes the k-th component of the gradient of a function
f defined by raising the index of ∇ f as ∇k f = gki∇i f . However, the meaning of
∇k f will be clear from the context. We also recall that ∇ is compatible with the
metric g which means that ∇g = 0.

In local coordinates the components of the covariant derivative of a vector field
X = Xi and of a covector field ω = ωk are

∇ j X
i = ∂Xi

∂x j
+ 
i

jk X
k and ∇ jωk = ∂ωk

∂x j
− 
l

jkωl ,

where 
k
i j are the Christoffel symbols given in local coordinates by


k
i j = 1

2
gkl

(
∂g jl

∂xi
+ ∂gil

∂x j
− ∂gi j

∂xl

)
.

The covariant derivative of a
(k
l

)
-tensor field T = T j1··· jl

i1···ik is thus a
(k+1

l

)
-tensor field

which in local coordinates can be written as

∇mT
j1··· jl
i1···ik = ∂T j1··· jl

i1···ik
∂xm

+
l∑

s=1

T j1···p··· jl
i1···ik 


js
mp −

k∑
s=1

T j1··· jl
i1···p···ik


p
mis

.

The divergence of a vector field Xi is div X = ∇i X i = ∂Xi

∂xi
+ 
i

ik X
k and the

Laplace–Beltrami of a function f is

� f = div∇ f = ∇i∇ i f.

This can be written as the trace of the covariant Hessian ∇2 f as

� f = tr∇2 f = gi j∇i∇ j f.

We recall the divergence theorem for compactmanifolds (without boundary), which
states that for a vector field X on � it holds that∫

�

div X dHn−1 = 0.

This yields the integration by parts formula for a function f and a vector field X∫
�

Xi∇i f dHn−1 = −
∫

�

f div X dHn−1.



Surface Elastic Flow in 3D 1331

The integration by parts formula generalizes to any
(k
0

)
-tensor field T and

(k+1
0

)
-

tensor field S as
∫

�

〈∇T, S〉 dHn−1 = −
∫

�

〈T, tr∇S〉 dHn−1, (2.1)

where the trace is on the first two indeces of ∇S.
The Riemann curvature endomorhpism is a

(3
1

)
-tensor field Rl

i jk defined such
that for vector fields X,Y, Z we have

R(X,Y )Z = ∇X∇Y Z − ∇Y∇X Z − ∇[X,Y ]Z ,

where∇X is the covariant derivative in direction of X and∇[X,Y ] is the Lie bracket,
see [4, Definition 2.15]. We adopt the convention to define the Riemann curvature
tensor by lowering the index to the end, that is, Ri jkl = glm Rm

i jk . The commutation

formula of the covariant derivatives for a vector field Xk thus becomes

∇i∇ j X
k − ∇ j∇i X

k = gkm Ri jlm X
l , (2.2)

and for a covector field ωk ,

∇i∇ jωk − ∇ j∇iωk = −gml Ri jkmωl .

Similar formulas hold for the commutation of higher order covariant derivatives.
In particular, throughout the paper we will make repeated use of the fact that for
any integer k � 3 there exists a constant C > 0 such that

|∇i1 . . . ∇ik f − ∇iσ(1) . . . ∇iσ(k) f | � C
k−2∑
l=1

|∇l f | (2.3)

for any choice of the indices i1, . . . , ik and for any permutation σ of {1, . . . , k}.
We recall also that ∇i∇ j f = ∇ j∇i f for any i, j .

Given a positive integer k and p ∈ [1,∞] we denote by Wk,p(�) the Sobolev
space endowed with the norm

‖ f ‖Wk,p(�) :=
k∑

m=0

(∫
�

|∇m f |p dHn−1
) 1

p

,

when p ∈ [1,∞) and the obvious one when p = ∞. Here ∇m f stands for the
m-th covariant derivative of f . As customary, when p = 2 we shall always write
Hk instead of Wk,2. We further define the norms ‖ f ‖Ck,α(�), ‖ f ‖Hk+1/2(�) and
‖ f ‖H−1/2(�) with k ∈ N and α ∈ (0, 1), in a standard way using the partition of
unity. Then the standard embedding theorems for smooth domains hold also in these
spaces. Moreover, we recall the following well known interpolation inequalities,
see [35, Proposition 6.5] and [5, Theorem 3.70].
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Lemma 2.1. Let � ⊂ R
n be a smooth (n − 1)-dimensional compact manifold

without boundary. Let l,m, k be integers such that 0 � l < m, k � 0, 1 �
q, r � ∞. There exists a constant C with the following property: for every smooth
covariant tensor T of order k, one has

‖∇l T ‖L p(�) � C‖T ‖ϑ
Wm,r (�)‖T ‖1−ϑ

Lq (�), (2.4)

where

1

p
= l

n − 1
+ ϑ

(1
r

− m

n − 1

)
+ (1 − ϑ)

1

q

for all ϑ ∈ [l/m, 1) for which p is nonnegative. Moreover, if f is a smooth function
then

‖∇l f ‖L p(�) � C‖∇m f ‖ϑ
Lr (�)‖ f ‖1−ϑ

Lq (�)

for all ϑ ∈ [l/m, 1) for which p is nonnegative, provided l � 1.

Remark 2.2. Note that (2.4) implies also that

‖∇l T ‖L p(�) � C‖∇mT ‖ϑ
Lr (�)‖T ‖1−ϑ

Lq (�) + C‖T ‖Lmax{q,r}(�).

To see this it is enough to observe that ‖T ‖Wm,r (�) = ‖T ‖Wm−1,r (�)+‖∇mT ‖Lr (�)

and that, in turn, for every l = 1, . . . ,m − 1 using (2.4) and Young’s Inequality
one gets

‖∇l T ‖Lr (�) � ε‖T ‖Wm,r (�) + Cε‖T ‖Lr (�).

We also recall that the Morrey’s inequality implies

‖ f ‖C1,α(�) � C‖ f ‖W 2,p(�)

for p > n − 1 and α = 1 − (n − 1)/p.
We will also need the following result, (see the proof of [5, Theorem 4.19]).

Lemma 2.3. Let f be a smooth function on � and let k be a positive integer. There
is a constant C, which depends on k and �, such that

‖∇2k f ‖2L2(�)
�

∫
�

(�k f )2 dHn−1 + C‖ f ‖2H2k−1(�)
(2.5)

and

‖∇2k+1 f ‖2L2(�)
�

∫
�

|∇(�k f )|2 dHn−1 + C‖ f ‖2H2k (�)
. (2.6)
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Proof. We only proof (2.5) in the cases k = 1, 2, since the higher order cases and
(2.6) are analogous. Recall that Ricci tensor is given by R jm = gik Ri jmk . Thus
from (2.2), with X equal to the covariant gradient of f and taking k = i , we get

∇i∇ j∇ i f − ∇ j� f = R jl∇l f.

We multiply the above equality by ∇ j f and use the integration by parts formula
(2.1) to obtain

−
∫

�

∇i∇ j f ∇ j∇ i f dHn−1 +
∫

�

(� f )2 dHn−1 =
∫

�

Ri j∇ i f ∇ j f dHn−1.

This yields the claim since (recall that for any given function f ,∇i∇ j f = ∇ j∇i f )

∇i∇ j f ∇ j∇ i f = ∇ i∇ j f ∇i∇ j f = |∇2 f |2.
The argument in the case k = 2 is similar but more technical. We have by the
previous statement that∫

�

|�2 f |2 dHn−1 �
∫

�

|∇2� f |2 dHn−1 − C‖ f ‖2H3(�)
.

Hence, we need to prove that∫
�

|∇2� f |2 dHn−1 �
∫

�

|∇4 f |2 dHn−1 − C‖ f ‖2H3(�)
. (2.7)

First, by the integration by parts formula (2.1) we have∫
�

|∇2� f |2 dHn−1 =
∫

�

(∇ i∇ j∇k∇k f ) (∇i∇ j∇l∇l f ) dHn−1

= −
∫

�

(∇i∇ i∇ j∇k∇k f ) (∇ j∇l∇l f ) dHn−1.

Then, using (2.3), we obtain∫
�

|∇2� f |2 dHn−1 � −
∫

�

(∇k∇i∇ i∇ j∇k f ) (∇ j∇l∇l f ) dHn−1 − C‖ f ‖2H3(�)

= −
∫

�

(∇ i∇ j∇k f ) (∇i∇k∇ j∇l∇l f ) dHn−1 − C‖ f ‖2H3(�)
,

where the last equality follows by integration by parts. We proceed using formula
(2.3) again and integration by parts to deduce∫

�

|∇2� f |2 dHn−1 � −
∫

�

(∇ i∇ j∇k f ) (∇l∇i∇ j∇k∇l f ) dHn−1 − C‖ f ‖2H3(�)

= −
∫

�

(∇i∇l∇ i∇ j∇k f ) (∇ j∇k∇l f ) dHn−1 − C‖ f ‖2H3(�)

� −
∫

�

(∇i∇ i∇ j∇k∇l f ) (∇ j∇k∇l f ) dHn−1 − C‖ f ‖2H3(�)

=
∫

�

(∇ i∇ j∇k∇l f ) (∇i∇ j∇k∇l f ) dHn−1 − C‖ f ‖2H3(�)
.

Thus we have (2.7), since (∇ i∇ j∇k∇l f ) (∇i∇ j∇k∇l f ) = |∇4 f |2. �
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Remark 2.4. In the case k = 1 we have a more precise version of Lemma 2.3 for
hypersurfaces. It is clear that the proof of Lemma 2.3 implies that
∫

�

|∇2 f |2 dHn−1 �
∫

�

(� f )2 dHn−1 + (
√
n − 1 + 1)

∫
�

|B|2|∇ f |2 dHn−1,

where B denotes the (scalar) second fundamental form (see [34] for definition).
This follows from the fact that we may estimate the Ricci curvature by |Ric| �
(
√
n − 1 + 1)|B|2.

Remark 2.5. Using Lemma 2.1 we may write the statement of Lemma 2.3 in the
following way: for every ε > 0 there exists Cε > 0 such that

‖ f ‖2H2k (�)
� (1 + ε)

∫
�

(�k f )2 dHn−1 + Cε‖ f ‖2L2(�)

and

‖ f ‖2H2k+1(�)
� (1 + ε)

∫
�

|∇(�k f )|2 dHn−1 + Cε‖ f ‖2L2(�)
.

Indeed, this follows by the interpolation inequality together with standard Young’s
inequality

‖∇l f ‖L2(�) � C‖∇h f ‖θ
L2(�)

‖ f ‖1−θ

L2(�)

� ε‖∇h f ‖L2(�) + C(ε)‖ f ‖L2(�)

for every 1 � l � h − 1 and θ = θ(h, l) is given by Lemma 2.1.

For clarity we denote the standard inner product between two vectors x, y in
R
n as x · y and the differential of the map F : Rn → R

m by DF to distinguish
them from the inner product on manifold and from the covariant derivative. There
is, however, a possibility of confusion when we denote the divergence of a vector
field X : Rn → R

n by div X , since “div” also denotes the divergence of a vector
field on manifold. We will denote the divergence of a vector field on the manifold
(�, g) by divg and in Rn by divRn if this is not clear from the context.

When the manifold � is given by a boundary of a smooth bounded set F ⊂ R
n

it has a natural orientation and we denote by νF the unit outer normal. In this case
we may extend the definition of divergence on� to vector fields which have values
inRn . Let X : U → R

n be a smooth vector field, whereU is an open neighborhood
of �. We define the tangential divergence of X on ∂F by

divτ X := div X − 〈DXνF , νF 〉.
The divergence theorem states that

∫
∂F

divτ X dHn−1 =
∫

∂F
HF (X · νF ) dHn−1,

where HF denotes the sum of the principal curvatures of ∂F . We denote the second
fundamental form of ∂F by BF , which in our case is a symmetric

(2
0

)
-tensor (or
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equivalently a symmetric matrix). Finally we may project a vector field X : U →
R
n to the tangent space of ∂F by

Xτ := X − (X · νF )νF . (2.8)

Then Xτ canonically defines a vector field on (∂F, g) and we denote by divg Xτ

its divergence. For a given function u : U → R we define the tangential gradient
on � = ∂F as the projection of its gradient Du

Dτu := (Du)τ . (2.9)

The tangential gradient and the covariant gradient are canonically isomorphic. In
particular, it holds

|∇u(x)|g = |Dτu(x)| for x ∈ �, (2.10)

where | · |g denotes the norm given by the metric tensor g, and | · | is the length of
a vector in Rn .

2.2. The Energy Functional

In this sectionwe introduce the energy functional that underlies theflow.Wealso
introduce the proper notions of stationary points and stability that will be needed
in the study of the long-time behavior of the flow. As explained in the introduction,
the free energy functional is the sum of the perimeter and of a bulk elastic term.
Throughout the paper � will denote a fixed bounded open set of R3 with Lipschitz
boundary.

Concerning the elastic part, for F ⊂⊂ � and for an elastic displacement u :
�\F → R

3 we denote by E(u) the symmetric part of Du, that is, E(u) :=
Du+(Du)T

2 . In what follows, C stands for the elasticity tensor acting on 3 × 3-
matrices, such thatCA = 1

2C(A+ AT ) andCA is symmetric for all 3×3-matrices
A. Moreover, CA : A > 0 if A is symmetric and A �= 0. Finally we shall denote
by Q(A) := 1

2CA : A the elastic energy density.
We are now ready to write the energy functional. For a fixed boundary displace-

ment w0 ∈ H
1
2 (∂�), we set

J (F) :=
∫

�\F
Q(E(uF )) dx + H2(∂F), (2.11)

where uF is the elastic equilibrium satisfying the Dirichlet boundary condition w0
on a fixed relatively open subset ∂D� ⊆ ∂�. More precisely, uF is the unique
solution in H1(�\F;R3) of the following elliptic system:

⎧⎪⎨
⎪⎩
divCE(uF ) = 0 in �\F,

CE(uF )[νF ] = 0 on ∂F ∪ (∂�\∂D�),

uF = w0 on ∂D�.

(2.12)

Note that by the second condition for every x ∈ ∂F the vector CE(uF )(x)[e]
belongs to the tangent space of ∂F at x for every vector e.



1336 N. Fusco et al.

Next, we provide the first and the second variation formulas for (2.11). To this
aim, for any vector field X ∈ C1

c (R
3;R3), let (�t )t∈(−1,1) be the associated flow,

that is the solution of ⎧⎨
⎩

∂�t

∂t
= X (�t ),

�0 = I d.
(2.13)

The first and the second variation of the functional (2.11) are stated in the following
theorem. Recall that HF denotes the sum of the principal curvatures and BF the
second fundamental form of ∂F . Sometimes, with a slight abuse of terminology,
we will refer to HF as the mean curvature of ∂F .

Theorem 2.6. Let F ⊂⊂ � be a smooth set, X ∈ C1
c (�;R2) and let (�t )t∈(−1,1)

be the associated flow as in (2.13). Set ψ := X · νF on ∂F and let Xτ be as in
(2.8). Then,

d

dt
J (�t (F))∣∣

t=0

=
∫

∂F
(HF − Q(E(uF )))ψ dH2. (2.14)

If in addition divRn X = 0 in a neighborhood of ∂F we have

d2

dt2
J (�t (F))∣∣

t=0

=
∫

∂F
|∇ψ |2 − |BF |2ψ2 dH2 − 2

∫
�\F

Q(E(uψ)) dx

−
∫

∂F
∂νF (Q(E(uF )))ψ2 dH2

−
∫

∂F
(HF − Q(E(uF ))) divg(ψXτ ) dH2, (2.15)

where the function uψ is the unique solution in H1(�\F;R3), with uψ = 0 on
∂D�, of ∫

�\F
CE(uψ) : E(ϕ) dx = −

∫
∂F

divg(ψ CE(uF )) · ϕ dH2 (2.16)

for all ϕ ∈ H1(�\F;R2) such that ϕ = 0 on ∂D�.

Formulas (2.14) and (2.15) have been derived in [9] when F is the subgraph of a
periodic function. The very same calculations apply to the more general situation
considered here.

Throughout the paper we fix a smooth reference set G ⊂⊂ � and define the
reference manifold as (�, g), where � = ∂G and g is the metric induced by the
Euclidean metric in R

3. We denote the outer normal of G simply by ν. For every
η > 0 we denote

Nη(�) := {x ∈ R
3 : |dG(x)| < η},

where dG denotes the signed distance function of G. Denote also π the orthogonal
projection on the boundary of G. Since G is smooth,

there exists η0 > 0 such that dG and π are smooth in N2η0(�). (2.17)
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We denote by hkM (�) the following class of sets, whose boundary is a suitable
normal graph over �. Precisely, for any integer k � 1 and M > 0 we say

F ∈ hkM (�) if ∂F = {x + hF (x)ν(x) : x ∈ �} ⊂ Nη0(�)

with ‖hF‖Hk (�) � M. (2.18)

In particular, by Morrey embedding any set in h3M (�) is C1,α-diffeomorphic to the

reference set G for every α ∈ (0, 1). The space hk,αM (�), α ∈ (0, 1), is defined
similarly in terms of the Ck,α-norm of the function hF .

Let G1,…, Gm be the bounded open sets enclosed by the connected compo-
nents 
G,1,…, 
G,m of the boundary ∂G. Note that the Gi ’s are not in general the
connected components of G and it may happen that Gi ⊂ G j for some i �= j . If
F ∈ h3M (�), then F is C1-diffeomorphic to G and thus ∂F has the same number
m of connected components 
F,1,…, 
F,m , which can be numbered in such a way
that


F,i = {x + hF (x)ν(x) : x ∈ 
G,i }, (2.19)

for a suitable hF ∈ H3(�). The boundaries 
F,i then enclose the sets Fi , which in
turn are diffeomorpic to Gi .

We are interested in area preserving variations, in the following sense:

Definition 2.7. Let F ⊂⊂ � be a smooth set. Given a vector field X ∈ C∞
c (�;R3),

we say that the associated flow (�t )t∈(−1,1) is admissible for F if there exists
ε0 ∈ (0, 1) such that

|�t (Fi )| = |Fi | for t ∈ (−ε0, ε0) and i = 1, . . . ,m.

Remark 2.8. Note that if the flow associated with X is admissible in the sense of
the previous definition, then for i = 1, . . . ,m we have∫


F,i

X · νF dH1 = 0.

In view of this remark it is convenient to introduce the space H̃1(∂F) consisting of
all functions ψ ∈ H1(∂F) with zero average on each component of ∂F , that is,∫


F,i

ψ dH1 = 0 for every i = 1, . . . ,m.

Any admissible vector field X thus defines a function ψ ∈ H̃1(∂F). Conversely,
given ψ ∈ H̃1(∂F) ∩ C∞(∂F) it is possible to construct a sequence of vector
fields Xn ∈ C∞

c (�;R2), with divRn Xn = 0 in a neighborhood of F , such that
Xn · νF → ψ in C1(∂F), see [2, Proof of Corollary 3.4] for the details. Note that
in particular the flows associated with Xn are admissible.

Definition 2.9. Let F ⊂⊂ � be a set of class C2. We say that F is stationary if

d

dt
J (�t (F))∣∣

t=0

= 0

for all admissible flows in the sense of Definition 2.7.
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Remark 2.10. By Remark 2.8 and in view of (2.14) it follows that a set F ⊂⊂ �

of class C2 is stationary if and only if there exist constants λ1, . . . , λm such that

HF − Q(E(uF )) = λi on 
F,i

for every i = 1, . . . ,m. Note that if F is a sufficiently regular (local) minimizer of
(2.11) under the constraint |F | = const., then there exists a constant λ such that

HF − Q(E(uF )) = λ on ∂F.

Thus, our notion of stationarity differs from the usual notion of criticality just
recalled. Note that by a bootstrap argument it can be proved that a stationary set is
smooth. In fact, it can be shown that it is even analytic, see [33]. Note that if F is
stationary, then the second variation formula (2.15) reduces to

d2

dt2
J (�t (F))∣∣

t=0

=
∫

∂F
|∇ψ |2 − |BF |2ψ2 dH2

− 2
∫

�\F
Q(E(uψ)) dx −

∫
∂F

∂νF (Q(E(uF )))ψ2 dH2,

(2.20)

where we recall that ψ = X · νF and uψ is the function satisfying (2.16).

In view of (2.20), for any set F ⊂⊂ � of class C2 it is convenient to introduce
the quadratic form ∂2J (F) defined on H̃1(∂F) as

∂2J (F)[ψ] :=
∫

∂F
|∇ψ |2 − |BF |2ψ2 dH2

− 2
∫

�\F
Q(E(uψ)) dx −

∫
∂F

∂νF (Q(E(uF )))ψ2 dH2,

(2.21)

where uψ is the unique solution of (2.16) under the Dirichlet condition uψ = 0 on
∂D�. We may finally give the definition of stability for a stationary point.

Definition 2.11. Let F ⊂⊂ � be a stationary set in the sense of Definition 2.9. We
say that F is strictly stable if

∂2J (F)[ψ] > 0 for all ψ ∈ H̃1(∂F)\{0}. (2.22)

It is not difficult to see that (2.22) is equivalent to the coercivity of ∂2J (F) on
H̃1(∂F). More precisely, (2.22) holds if and only if there exists c0 > 0 such that

∂2J (F)[ψ] � c0‖ψ‖2
H̃1(∂F)

for all ψ ∈ H̃1(∂F); (2.23)

see [9]. In turn the latter coercivity property is stable with respect to small H3-
perturbations. More precisely, we have
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Lemma 2.12. Assume that the reference set G ⊂⊂ � is a (smooth) strictly stable
stationary set in the sense of Definition 2.11. Then, there exists σ0 > 0 such that
for all F ∈ h3σ0(�), defined in (2.18), we have

∂2J (F)[ψ] � c0
2

‖ψ‖2
H̃1(∂F)

for all ψ ∈ H̃1(∂F),

where c0 is the constant in (2.23).

Proof. Theproof follows the argument in [9, Proof ofTheorem5.2 andLemma5.3],
where the case of F being the subgraph of a periodic function is considered. Al-
though the geometric framework here is more general, we may follow exactly the
same line of argument up to the obvious changes due to the different setting. We
note that in our case we may even simplify the aforementioned proof by taking ad-
vantage of the fact that F ∈ h3σ0(�) (while in [9] onlyW 2,p-bounds were assumed).
Indeed, under this assumption we have that uF is of class H3 in a neighborhood
of �, with the norm estimated by a constant depending on σ0 (see the proof of

Theorem 4.1). In turn, ∂νF (Q(E(uF ))) ∈ H
1
2 (∂F) with a bound depending on σ0,

which is a much stronger information than the boundedness in H− 1
2 (∂F) proven

in [9]. �


Weconclude this sectionby showing that in a sufficiently small H3-neighborhood
ofG the stationary sets are isolated, once we fix the areas enclosed by the connected
components of the boundary.

Proposition 2.13. Assume that the reference set G ⊂⊂ � is a smooth strictly stable
stationary set in the sense of Definition 2.11 and let σ0 be the constant provided
by Lemma 2.12. There exists σ1 ∈ (0, σ0) with the following property: Let F1,
F2 ∈ h3σ1(�), defined in (2.18), be stationary sets in the sense of Definition 2.9 and
(with the same notation as in (2.19)) assume that |F1,i | = |F2,i | for i = 1, . . . ,m.
Then F1 = F2.

Proof. Let F1 and F2 be in h3σ1(�), with σ1 ∈ (0, σ0) to be chosen, and denote the
components defined in (2.19) by Fi,1, . . . , Fi,m for i = 1, 2.We begin by construct-
ing a vector field X : Nη0(�) → R

3 such that the associated flow (�t )t∈([0,1]) is
admissible is sense of Definition 2.8 and takes the set F1 to F2. More precisely, it
holds �0(F1) = F1, �1(F1) = F2 and |�t (F1,i )| = |F1,i | for every t ∈ [0, 1] and
i = 1, . . . ,m. The construction can be done as in [37, Proposition 3.4] (see also
[24, Lemma 2.8]) in such a way that |X (x)| � 2|X (x) · νFt (x)| for x ∈ ∂Ft and
for all t ∈ [0, 1], and that

∂Ft = {x + hFt (x)ν(x) : x ∈ �} with ‖hFt ‖H3(�) � Cσ1 < σ0,
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where the last inequality holds provided that σ1 is small enough with a constant
C depending only on G. Recalling (2.15), (2.21), using the Lemma 2.12 and by
integrating by parts we get

d2

dt2
J (�t (F1)) = ∂2J (Ft )[X · νFt ]

−
∫

∂Ft
(HFt − Q(E(uFt ))) divg((X · νFt )Xτ ) dH2

� c0
2

‖X · νFt ‖2H1(∂Ft )

+
∫

∂Ft
〈∇(HFt − Q(E(uFt ))), (X · νFt )Xτ 〉 dH2.

We denote Rt := HFt − Q(E(uFt )) and estimate the last term by (5.3), which we
will show later in the proof of Theorem 5.1, to get that there exists θ ∈ (0, 1) such
that

∫
∂Ft

〈∇Rt , (X · νFt )Xτ 〉 dH2 �
(∫

∂Ft
|∇Rt |2 dH2

)1/2

×
(∫

∂Ft
|(X · νFt )Xτ |2 dH2

)1/2

� C‖hFt ‖θ/2
H3(�)

(∫
∂Ft

|X · νFt |4 dH2
)1/2

� Cσ
θ/2
1 ‖X · νFt ‖2L4(∂Ft )

.

Therefore we have, by the Sobolev embedding, that

d2

dt2
J (�t (F1)) � c0

2
‖X · νFt ‖2H1(∂Ft )

− Cσ
θ/2
1 ‖X · νFt ‖2L4(∂Ft )

� c0
2

‖X · νFt ‖2H1(∂Ft )
− Cσ

θ/2
1 ‖X · νFt ‖2H1(∂Ft )

� c0
4

‖X · νFt ‖2H1(∂Ft )
,

provided that σ1 is small enough.
On the other hand by the stationarity of F1 and F2 we have

d

dt
J (�t (F1))∣∣

t=0

= d

dt
J (�t (F1))∣∣

t=1

= 0.

This means that d2

dt2
J (�t (F1)) = 0 and therefore X · νFt = 0 on ∂Ft for all

t ∈ (0, 1). Therefore t �→ �t (F1) is constant and F1 = F2. �




Surface Elastic Flow in 3D 1341

3. Short Time Existence for the Surface Diffusion with a Forcing Term

In the following we shall assume n = 3. Given a smooth function f : � ×
[0,+∞) → R we shall consider the following forced surface diffusion equation

Vt = �∂Ft (HFt + f (·, t) ◦ π) (3.1)

where Vt denotes the outer normal velocity of ∂Ft and�∂Ft is the Laplace–Beltrami
operator on ∂Ft endowed with the metric induced by the Euclidean metric. Note
that we consider a forcing term which time by time is constant along the normal
directions to �. Although this class of forcing terms is not general, this choice is
natural to obtain the existence of (1.3), where the nonlocal term is defined only on
the evolving boundary (or, in fact, on �\Ft ).

The goal in this section is to prove short time existence of a unique smooth
solution of (3.1) starting from F0 which is close to the reference set G. This will
be done in Theorem 3.1.

3.1. The Flow in Coordinates

Given a sufficiently smooth function h : � → (−η0, η0), where η0 is intro-
duced in (2.17), we denote by Fh the bounded open set whose boundary is given
by

∂Fh = {x + h(x)ν(x) : x ∈ �},
where ν is the outer unit normal to ∂G. Note that the projection π |∂Fh : ∂Fh → �

is invertible and we denote by π−1
Fh

its inverse. In this case we have π−1
Fh

(x) =
x + h(x)ν(x).

We denote by ν the normal and by k1, k2 the principle curvatures of �, while
τ1, τ2 denote the corresponding eigenvectors on the tangent plane. The exterior
normal to Fh at any point π−1

Fh
(x) is

νFh ◦ π−1
Fh

= 1

J

(
(1 + hk1)(1 + hk2)ν

−(1 + hk2)∂τ1h τ1 − (1 + hk1)∂τ2h τ2
)
, (3.2)

where J 2 = (1 + hk1)2(1 + hk2)2 + (1 + hk1)2(∂τ1h)2 + (1 + hk2)2(∂τ2h)2. We
recall (see [36, p. 21]) that the mean curvature HFh of ∂Fh can be written as

HFh ◦ π−1
Fh

= −(νFh ◦ π−1
Fh

· ν)�h + P(x, h,∇h),

where P is a smooth function such that P(·, 0, 0) = HG , the mean curvature of the
boundary of G. We rewrite the above formula as

HFh ◦ π−1
Fh

= −�h + 〈A(x, h,∇h),∇2h〉 + HG + a(x, h,∇h), (3.3)

where the tensor A and the function a are smooth and vanish when both h and ∇h
are 0.
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Let us denote by gh the pull-back metric on � induced by the diffeomorphism
π−1
Fh

: � → ∂Fh . Since the manifold (∂Fh, g) endowed with the Euclidean metric
g is isometric to (�, gh) then for every smooth function f defined on � we have

(
�∂Fh ( f ◦ π)

) ◦ π−1
Fh

= �gh f

where �gh is the Laplace–Beltrami operator on � with respect to the metric gh .
One can also check that (see [36, p. 21])

(gh)i j = gi j + ai j (·, h,∇h),

where the functions ai j are smooth and vanish when both h and ∇h vanish, and
that we have the following expansion of the Christoffel symbols:

(
gh )
i
jk = (
g)

i
jk + aijk(x, h,∇h) + bilmjk (x, h,∇h)

∂2h

∂xl∂xm
.

Above bilmjk is a smooth function and aijk is a smooth function which vanish when
h and ∇h vanish. We recall that the we may write the Laplace–Beltrami operator
�gh as

�gh f := (gh)
i j ∇̃i ∇̃ j f,

where ∇̃i ∇̃ j stands for the second order covariant derivatives with respect to gh .
Hence we get by the above formulas and after some straightforward calculations
that

�gh f = � f + 〈A1(x, h,∇h),∇2 f 〉 + 〈A2(x, h,∇h),∇ f 〉
+〈B(x, h,∇h), (∇2h ⊗ ∇ f )〉. (3.4)

Concerning the equation of interest, assume that a smooth flow (Ft )t∈(0,T ) is a
solution of (3.1) and that ∂Ft can be written as

∂Ft = {x + h(x, t)ν(x) : x ∈ �}. (3.5)

Then the normal velocity is given by Vt = ∂t h(νFt · ν). Therefore, combining
(3.3) and (3.4) and after long but straightforward calculations, we may rewrite the
Equation (3.1) as

∂h

∂t
= −�2h + 〈A(x, h,∇h),∇4h〉

+ J1(x, h,∇h,∇2h,∇3h) + J2(x, h,∇h,∇2h,∇ f,∇2 f ),
(3.6)

where as usual A is a smooth 4th-order tensor depending on (x, h,∇h) vanishing
when both h and ∇h vanish, J1 is given by

J1 = 〈B1, (∇3h ⊗ ∇2h)〉 + 〈B2,∇3h〉 + 〈B3, (∇2h ⊗ ∇2h ⊗ ∇2h)〉
+ 〈B4, (∇2h ⊗ ∇2h)〉 + 〈B5,∇2h〉 + b6,

(3.7)
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and J2 is of the form

J2 = � f + 〈A1,∇2 f 〉 + 〈A2,∇ f 〉 + 〈B, (∇2h ⊗ ∇ f )〉. (3.8)

Here and throughout the paper we denote by A (possibly with a subscript) a smooth
tensor-valued function depending on (x, h,∇h) and vanishing at (x, 0, 0), while B
(possibly with a subscript) stands for a smooth tensor-valued function depending
on (x, h,∇h). We replace capital letters A and B with a and b, respectively, in case
of scalar valued functions.

3.2. Short Time Existence and Uniqueness

Let us fix an initial set F0 ∈ h3K0
(�) which is close to G. Finding a solution

of (3.1) for a short time with intial set F0 is equivalent to finding a solution h of
(3.6) with initial datum h(·, 0) = hF0 =: h0. This is the goal of this section and the
result is stated in the following theorem:

Theorem 3.1. Let f : � ×[0,+∞) → R be a smooth function. Given δ0 > 0 and
K0 > 1, there exist ε0, T0 ∈ (0, 1) with the following property: if F0 ∈ h3K0

(�),
defined in (2.18), if

sup
0�t�T0

‖ f (·, t)‖L∞(�) +
∫ T0

0
‖ f (·, t)‖2H3(�)

dt � K0, (3.9)

and ‖h0‖L2(�) < ε0, where h0 := hF0 , then the Equation (3.1) has a unique smooth
solution (Ft ) of the form (3.5) with h ∈ C∞(0, T0;C∞(�)) ∩ H1(0, T0; H1(�))

and

sup
0�t�T0

‖h(·, t)‖L2(�) � δ0. (3.10)

Moreover, for every integer k � 0 there exist constants Ck, qk > 0, independent of
δ0 and K0, such that

sup
0�t�T

tk‖h(·, t)‖2H2k+3(�)
+

∫ T

0
tk‖h(·, t)‖2H2k+5(�)

dt

� Ck

(
‖h0‖2H3(�)

+
∫ T

0

(
1 + ‖ f ‖qkL∞(�) +

k∑
i=0

t i‖ f (·, t)‖2H2i+3(�)

)
dt

)
,

(3.11)

for every T � T0.

The proof of Theorem 3.1 is based on a fixed point argument in a carefully
chosen function space and to this aim we need two lemmas. In the first one we
estimate the derivatives of the nonlinear terms in (3.6).
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Proposition 3.2. Let h and f be of class C∞(�). For every integer k � 1 there
exist C̃k > 0 and pk � 2 such that given M0 > 0 there is σ0 > 0 with the property
that if

‖h‖2H3(�)
� M0 and ‖h‖L2(�) � σ0

then ∫
�

|∇k(〈A,∇4h〉)|2 + |∇k J1|2 + |∇k J2|2 dH2 � 1

4

∫
�

|∇k+4h|2 dH2

+C̃k

(
1 + ‖ f ‖pk

L∞(�) +
∫

�

|∇k+2 f |2 dH2
)

,

where A, J1, and J2 are as in (3.6)–(3.8).

Proof. Recall that A(x, h,∇h) vanishes at (x, 0, 0) and thus given ε > 0 there
exists δ ∈ (0, 1) such that if ‖h‖C1(�) � δ, then by Leibniz formula

|∇k(〈A,∇4h〉)|2 � ε|∇k+4h|2 + C
k∑

i=1

|∇ i (A(x, h,∇h))|2|∇k+4−i h|2.

On the other hand, the assumptions on h together with standard interpolation imply
that ‖h‖C1 � δ and ‖h‖W 2,4 � 1 when σ0 is chosen small (depending on M0). It
turns out to be convenient to set w := ∇h. Since ‖w‖∞ � δ < 1, one may check
that

k∑
i=1

|∇ i (A(x, h,∇h)|2|∇k+4−i h|2

� C
k∑

i=1

|∇k+3−iw|2

+ C
k∑

i=1

∑
1� j1�...� jm−1�i
j1+···+ jm−1�i

m�2

|∇ j1w|2 · · · |∇ jm−1w|2|∇k+3−iw|2

� C
k∑

i=1

|∇k+3−iw|2 + C
∑

1� j1�...� jm�k+2
j1+···+ jm�k+3

m�2

|∇ j1w|2 · · · |∇ jmw|2.

Then, by Hölder’s inequality, we obtain
∫

�

|∇k(〈A,∇4h〉)|2 dH2 �
∫

�

(
ε|∇k+3w|2 + C

k∑
i=1

|∇k+3−iw|2) dH2

+ C
∑

1� j1�...� jm�k+2
j1+···+ jm�k+3

m�2

‖∇ j1w‖22(k+3)
jl

· · · ‖∇ jmw‖22(k+3)
jm

.
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Observe that for every l = 1, . . . ,m − 1, it holds by the interpolation Lemma 2.1

‖∇ jlw‖ 2(k+3)
jl

� C‖w‖θl
Hk+3‖w‖1−θl∞ ,

where θl = jl
k+3 . To treat the last derivative we use a different interpolation:

‖∇ jmw‖ 2(k+3)
jm

� C‖w‖θm
Hk+3‖∇w‖1−θm

4 ,

where θm = 2 jm (k+2)
(2k+3)(k+3) − 1

2k+3 <
jm

k+3 (recall that 3 � jm < k + 3). Therefore,
recalling that ‖w‖∞, ‖∇w‖4 � 1, we get

∫
�

|∇k(〈A,∇4h〉)|2 dH2 �
∫

�

(
ε|∇k+4h|2 + C

k∑
i=1

|∇k+4−i h|2) dH2

+ C
∑

1� j1�...� jm�k+2
j1+···+ jm�k+3

m�2

m∏
l=1

‖w‖2θl
Hk+3 .

Observe that for every choice of j1, . . . , jm the sumof the corresponding θl satisfies

m∑
l=1

θl <

m∑
l=1

jl
k + 3

� 1.

Therefore by Young’s inequality, by Remark 2.2, and recalling that ‖w‖∞ � 1, we
conclude from the above inequality that

∫
�

|∇k(〈A,∇4h〉)|2 dH2 � 1

20

∫
�

|∇k+4h|2 dH2 + C̃k . (3.12)

Using again ‖w‖∞ � 1, we have that

|∇k J1| � C
k∑

i=1

|∇k+3−iw| + C
∑

1� j1�...� jm�2+k
j1+···+ jm�3+k

m�2

|∇ j1w| . . . |∇ jmw|.

Therefore, arguing exactly as above, we have
∫

�

|∇k J1|2 dH2 � 1

20

∫
�

|∇k+4h|2 dH2 + C̃k . (3.13)

In order to control the derivatives of J2 we need a slightly different argument,
because we need to separate the terms involving f and h from each other. We recall
(3.8) and begin by estimating
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|∇k(� f + 〈A1,∇2 f 〉)| � C
k∑

l=0

|∇l+2 f |

+C
k∑

i=1

∑
1� j1�...� jm�i
j1+···+ jm�i

m�1

|∇ j1w| . . . |∇ jmw||∇k+2−i f |.

Therefore, using interpolation as above,∫
�

|∇k(� f + 〈A1,∇2 f 〉)|2 dH2 � C
(
‖ f ‖2∞ + ‖∇k+2 f ‖22

)

+ C
k∑

i=1

∑
1� j1�...� jm�i
j1+···+ jm�i

m�1

m∏
l=1

‖∇ jlw‖22(2+k)
jl

‖∇k+2−i f ‖22(2+k)
2+k−i

� C
(
‖ f ‖2∞ + ‖∇k+2 f ‖22

)

+ C
k∑

i=1

∑
1� j1�...� jm�i
j1+···+ jm�i

m�1

m∏
l=1

‖w‖2θ( jl )
Hk+3 ‖w‖2(1−θ( jl ))∞ ‖∇2+k f ‖

2(k+2−i)
k+2

2 ‖ f ‖
2i
k+2∞ ,

where θ( jl) := jl (k+1)
(k+2)2

. Observe that since j1 + · · · + jm � i ,

m∑
l=1

(
2θ( jl) + 2

(2 + k − i)

k + 2

)
� 2[(2 + k)2 − i]

(2 + k)2
< 2.

Therefore, using Young’s inequality, we may conclude that∫
�

|∇k(� f + 〈A1,∇2 f 〉)|2 dH2 � 1

20
‖∇k+4h‖22

+C̃k

(
1 + ‖ f ‖pk∞ + ‖∇k+2 f ‖22

)
. (3.14)

A similar argument, whose details are left to the reader, shows that∫
�

|∇k〈A2,∇ f 〉 + 〈B, (∇2h ⊗ ∇ f )〉|2 dH2 � 1

20
‖∇k+4h‖22

+C̃k

(
1 + ‖ f ‖pk∞ + ‖∇k+2 f ‖22

)
.

The conclusion then follows by combining this inequality with (3.12), (3.13), and
(3.14). �


In the second lemma we “linearize” the terms J1 and J2 in the Equation (3.6).
The argument is similar to the previous one and therefore we postpone its proof
until the “Appendix”.
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Lemma 3.3. Let T ∈ (0, 1) and let h1, h2, f : � × (0, T ) → R be smooth
functions such that

sup
0�t�T

‖hi (·, t)‖2H3(�)
+

∫ T

0

∫
�

|∇5hi |2 dH2dt � M0,

and

sup
0�t�T

‖ f (·, t)‖L∞(�) +
∫ T

0

∫
�

|∇3 f |2 dH2dt � K0.

Then, there exists θ ∈ (0, 1) with the following property: for any ε > 0 there exist
C = C(ε, K0, M0) > 0and δ = δ(ε, M0) > 0 such that if sup0�t�T ‖hi (·, t)‖L2(�)

� δ, i = 1, 2, then

∫ T

0

∫
�

|Jh2 − Jh1 |2 dH2dt � ε

∫ T

0

∫
�

|∇4h2 − ∇4h1|2 dH2dt

+CT θ sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2(�)
,

where Jh is defined as in (3.17).

Proof of Theorem 3.1. Given K0, let us define the set S of functions inC∞(0, T0;
C∞(�)) ∩ H1(0, T0; H1(�)), which satisfy

sup
0�t�T0

‖h(·, t)‖L2(�) � σ0,

sup
0�t�T0

‖h(·, t)‖2H3(�)
+

∫ T0

0
‖h(·, t)‖2H5(�)

� M0, (3.15)

where the constants M0 and σ0 will be chosen later. We also define a subclass
S ′ ⊂ S of functions which satisfy the additional requirement (3.11), where the
constants Ck and qk will again be chosen later. The goal is to obtain a solution of
(3.6) in S ′ which is unique in S.

Webeginby assuming thath0 is smoothwith‖h0‖H3(�) < K0 and2‖h0‖L2(�) �
σ0. We now define a map L : S → C∞(0, T0;C∞(�)) by setting L (h) := h̃,
where h̃ : � × [0,∞) → R is the solution of

⎧⎨
⎩

∂ h̃

∂t
= −�2h̃ + Jh(x, t)

h̃(·, 0) = h0
(3.16)

and where we have set

Jh(x, t) := 〈A(x, h,∇h),∇4h〉 + J1(x, h,∇h,∇2h,∇3h)

+J2(x, h,∇h,∇2h,∇ f,∇2 f ) (3.17)

with A, J1, J2 as in (3.6).
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We note that the set S ′ is nonempty when the constants Ck are chosen properly.
To see this consider the solution h̄ of⎧⎨

⎩
∂ h̄

∂t
= −�2h̄

h̄(·, 0) = h0.
(3.18)

Byclassical regularity estimates h̄ is smooth and satisfies sup0�t�1 ‖h̄(·, t)‖L2(�) �
‖h0‖L2(�) and

sup
0�t�1

tk‖h(·, t)‖2H2k+3(�)
+

∫ 1

0
tk‖h(·, t)‖2H2k+5(�)

dt � C ′
k ‖h0‖2H3(�)

for all integers k � 0, and therefore h̄ ∈ S ′ provided that we choose M0 sufficiently
large. We remark that in Steps 1 and 2 below we give an argument which can be
applied to prove the above estimate.
Step 1: In this step we prove that if h ∈ S then h̃ = L (h) ∈ S for a suitable choice
of M0, σ0 and T0.

To prove this we multiply (3.16) by �3h̃. Integrating by parts both sides we get

∂

∂t

1

2

∫
�

|∇(�h̃)|2 dH2 = −
∫

�

∂ h̃

∂t
�3h̃ dH2

=
∫

�

(�2h̃ − Jh)�
3h̃ dH2

=
∫

�

( − |∇(�2h̃)|2 + 〈∇ Jh,∇(�2h̃)〉) dH2.

By Proposition 3.2 it follows that if σ0 is sufficiently small, then by Young inequal-
ity,

∂

∂t

1

2

∫
�

|∇(�h̃)|2 dH2 � −1

2

∫
�

|∇(�2h̃)|2 dH2 + 1

2

∫
�

|∇ Jh |2 dH2

� −1

2

∫
�

|∇(�2h̃)|2 dH2 + 3

8

∫
�

|∇5h|2 dH2

+ 3

2
C̃1

(
1 + ‖ f ‖q0L∞(�) +

∫
�

|∇3 f |2 dH2
)

,

where q0 = p1 and C̃1 are from the Proposition 3.2. Integrate this over (0, t) with
t � T0, where T0 will be chosen later, and get

∫
�

|∇(�h̃(·, t))|2 dH2 −
∫

�

|∇(�h0)|2 dH2 +
∫ t

0

∫
�

|∇(�2h̃)|2 dH2ds

� 3

4

∫ T0

0

∫
�

|∇5h(·, t)|2 dH2 dt

+ 3C̃1

∫ T0

0

(
1 + ‖ f (·, t)‖q0L∞(�) +

∫
�

|∇3 f (·, t)|2 dH2
)
dt.

(3.19)
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From this estimate, from the fact thath satisfies (3.15), f satisfies (3.9),‖h0‖H3(�) <

K0 and using Remark 2.5 (with a sufficiently small ε) we obtain

sup
0�t�T0

‖h̃(·, t)‖H3 +
∫ T0

0
‖h̃(·, t)‖2H5 dt

� C sup
0�t�T0

‖h̃(·, t)‖L2 + K 2
0 + 4

5
M0

+4C̃1((T0 + T0K
q0
0 ) + K0). (3.20)

In order to estimate the L2-norm of h̃, we multiply the Equation (3.16) by h̃.
Recalling (3.17), using the interpolation Lemma 2.1 to estimate the derivatives of
h in terms of ‖∇5h‖2 and ‖∇3h‖2 and the derivatives of f in terms of ‖∇3 f ‖2 and
‖ f ‖∞ and then using the H3-bound on h, we get

∫
�

∂ h̃

∂t
h̃ dH2 = −

∫
�

�2h̃ h̃ dH2 +
∫

�

Jhh̃ dH2

�
∫

�

(−|�h̃|2 + h̃2

η
) dH2 + η

∫
�

J 2h dH2

� 1

η

∫
�

h̃2 dH2

+ Cη

∫
�

(
1 + |∇4h|2 + (1 + |∇2h|2)|∇3h|2 + |∇2h|6

+(1 + |∇2h|2)(|∇ f |2 + |∇2 f |2)
)
dH2

� 1

η

∫
�

h̃2 dH2 + Cη

(
1 + ‖ f ‖2L∞ +

∫
�

(|∇5h|2 + |∇3 f |2) dH2
)

,

(3.21)

for some C > 0 depending on M0 and K0. Integrating this over (0, t) and using
the fact that h satisfies (3.15) and f satisfies (3.9) yields that

1

2

∫
�

h̃(·, t)2 dH2 − 1

2

∫
�

h20 dH2 � T0
η

sup
0�t�T0

‖h̃(·, t)‖2L2(�)

+ C̃η

(
T0 + T0K

2
0 + M0 + K0

)
.

Hence, recalling that ‖h0‖L2(�) � σ0
2 we have

sup
0�t�T

‖h̃(·, t)‖2L2 � σ 2
0

4
+ 2T0

η
sup

0�t�T0

‖h̃(·, t)‖2L2 + 2C̃η

(
T0 + T0K

2
0 + M0 + K0

)
.

From this inequality, choosing η and T0 sufficiently small (depending on M0 and
K0) we conclude that

sup
0�t�T0

‖h̃(·, t)‖L2(�) � σ0.
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In turn, since σ0 � 1, we may choose M0 sufficiently large (depending on K0) and
T0 smaller if needed to deduce that from (3.20) that

sup
0�t�T0

‖h̃(·, t)‖H3(�) +
∫ T0

0
‖h̃(·, t)‖2H5(�)

dt � M0.

This concludes the proof of the fact that h̃ = L (h) satisfies (3.15) and thus belongs
to S.
Step 2: Let us now prove that if h ∈ S ′ then h̃ = L (h) ∈ S ′, that is, it satisfies
(3.11) with h replaced by h̃. We begin by observing that the case k = 0 can be
proven by a similar argument as the one used in Step 1, by combining (3.19), (3.21)
and replacing T0 by T � T0. We proceed by induction and assume that (3.11) holds
for k − 1 and prove it for k. We argue similarly as in the previous step and multiply
the Equation (3.16) by �2k+3h̃, and after integrating by parts the left-hand side
(2k + 3)-times and the right-hand side (2k + 1)-times and using Proposition 3.2
with k replaced by 2k + 1 we get

∂

∂t

1

2

∫
�

|∇(�k+1h̃)|2 dH2 � −1

2

∫
�

|∇(�k+2h̃)|2 dH2 + 1

2

∫
�

|∇2k+1 Jh |2 dH2

� −1

2

∫
�

|∇(�k+2h̃)|2 dH2 + 3

8

∫
�

|∇2k+5h|2 dH2

+ 3

2
C̃2k+1

(
1 + ‖ f (·, t)‖p2k+1

L∞ +
∫

�

|∇2k+3 f |2 dH2
)

.

From this estimate we obtain

∂

∂t

(
tk

∫
�

|∇(�k+1h̃)|2 dH2
)

� k tk−1
∫

�

|∇(�k+1h̃)|2 dH2

− tk
∫

�

|∇(�k+2h̃)|2 dH2

+ 3

4
tk

∫
�

|∇2k+5h|2 dH2

+ 3C̃2k+1t
k
(
1 + ‖ f (·, t)‖p2k+1

L∞

+
∫

�

|∇2k+3 f |2 dH2
)

.

Integrating this inequality over (0, t) for t � T yields

sup
0�t�T

tk
∫

�

|∇(�k+1h̃)|2 dH2 +
∫ T

0
tk

∫
�

|∇(�k+2h̃)|2 dH2dt

� k
∫ T

0
tk−1

∫
�

|∇2k+3h̃|2 dH2dt
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+
∫ T

0
tk

(
3

4

∫
�

|∇2k+5h|2 dH2 + 3C̃2k+1(1 + ‖ f (·, t)‖p2k+1
L∞

+
∫

�

|∇2k+3 f |2 dH2)

)
dt.

By using the fact that h̃ satisfies (3.11) with k−1, and h satisfies (3.11) we deduce

sup
0�t�T

tk‖∇(�k+1h̃)‖2L2(�)
+

∫ T

0
tk

∫
�

|∇(�k+2h̃)|2 dH2dt

� (kCk−1 + 3

4
Ck + 3C̃2k+1)

( ∫ T0

0
(‖h0‖2H3(�)

+ 3 + 3‖ f (·, t)‖qkL∞(�)

+
k∑

i=0

t i‖ f (·, t)‖2H2i+3) dt

)

whenwechooseqk � max{qk−1, p2k+1}.Using the fact that sup0�t�T0 ‖h̃(·, t)‖L2 �
σ0 and by Remark 2.5, we obtain the estimate (3.11) for h̃ by choosing Ck large
enough.
Step 3: In this step we prove that the map L introduced in the previous step is
a contraction with respect to a suitable norm, provided that σ0 and T0 are chosen
sufficiently small.

To this aim, let h1, h2 ∈ S and let h̃1, h̃2 ∈ S be the corresponding solutions
of (3.16). Multiplying the equation satisfied by h̃i by �2(h̃2 − h̃1), subtracting and
integrating by parts we get

∂

∂t

1

2

∫
�

|�(h̃2(·, t) − h̃1(·, t))|2 dH2

= −
∫

�

|�2(h̃2 − h̃1)(·, t)|2 dH2

+
∫

�

�2(h̃2 − h̃1)(·, t)(Jh2(·, t) − Jh1(·, t)) dH2

� −1

2

∫
�

|�2(h̃2 − h̃1)(·, t)|2 dH2

+ 1

2

∫
�

|Jh2(·, t) − Jh1(·, t)|2 dH2.

Fix ε > 0 small. By choosing σ0 smaller in (3.15) if needed, we may integrate the
above inequality over (0, t), with t < T0, and use Remark 2.5 and Lemma 3.3 to
obtain
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‖h̃2(·, t) − h̃1(·, t)‖2H2(�)
+

∫ T0

0

∫
�

|∇4(h̃2 − h̃1)|2 dH2dt

� C‖h̃2(·, t) − h̃1(·, t)‖2L2(�)
+ C

∫ T0

0

∫
�

|h̃2 − h̃1|2 dH2dt

+ ε

∫ T0

0

∫
�

|∇4(h2 − h1)|2 dH2dt

+ CT θ
0 sup

0�t�T0

‖h2(·, t) − h1(·, t)‖2H2(�)

� C sup
0�t�T0

‖h̃2(·, t) − h̃1(·, t)‖2L2(�)

+ ε

∫ T0

0

∫
�

|∇4(h2 − h1)|2 dH2dt

+ CT θ
0 sup

0�t�T0

‖h2(·, t) − h1(·, t)‖2H2(�)
.

(3.22)

Next we have to estimate the first term on the right-hand side. To this aim we
multiply the equations satisfied by h̃1 and h̃2 by h̃2 − h̃1, subtract and get

∂

∂t

1

2

∫
�

|h̃2(·, t) − h̃1(·, t)|2 dH2

=
∫

�

(h̃2(·, t) − h̃1(·, t)) ∂

∂t
(h̃2 − h̃1)(·, t) dH2

= −
∫

�

(h̃2(·, t) − h̃1(·, t))�2(h̃2 − h̃1)(·, t) dH2

+
∫

�

(h̃2(·, t) − h̃1(·, t))(Jh2(·, t) − Jh1(·, t)) dH2

� −
∫

�

|�(h̃2 − h̃1)(·, t)|2 dH2 + 1

2

∫
�

|h̃2(·, t) − h̃1(·, t)|2 dH2

+ 1

2

∫
�

|Jh2(·, t) − Jh1(·, t)|2 dH2.

Integrating over (0, t), with t < T0, and using again Lemma 3.3 we get
∫

�

|h̃2(·, t) − h̃1(·, t)|2 dH2 � T0 sup
0�t�T0

‖h̃2(·, t) − h̃1(·, t)‖2L2(�)

+ ε

∫ T0

0

∫
�

|∇4h1 − ∇4h2|2 dH2dt + CT θ
0 sup

0�t�T0

‖h1(·, t) − h2(·, t)‖2H2(�)
,

from which it follows that

sup
0�t�T0

‖h̃2(·, t) − h̃1(·, t)‖2L2(�)
� 2ε

∫ T0

0

∫
�

|∇4h1 − ∇4h2|2 dH2dt

+2CT θ
0 sup

0�t�T0

‖h1(·, t) − h2(·, t)‖2H2(�)
, (3.23)
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provided that T0 � 1
2 . Combining (3.22) and (3.23), and taking ε small and T0

smaller if needed, we deduce that

sup
0�t�T0

‖h̃2(·, t) − h̃1(·, t)‖2H2(�)
+

∫ T0

0

∫
�

|∇4(h̃2 − h̃1)|2 dH2dt

� 1

2

(
sup

0�t�T0

‖h2(·, t) − h1(·, t)‖2H2(�)

+
∫ T0

0

∫
�

|∇4(h2 − h1)|2 dH2dt

)
. (3.24)

Step 4. (Conclusion) We may proceed with a standard argument, by recursively
setting h1 = h̄, with h̄ defined as in (3.18), and hn := L(hn−1) and for every n � 2.
From (3.24) we have that there exists h such that hn → h in L∞(0, T0; H2(�)) ∩
L2(0, T0; H4(�)). Moreover, from Step 1 and Step 2 we have also that hn ⇀ h
weakly in H1

loc(0, T ; Hk(�)) and that h satisfies (3.10) and (3.11). Using these
convergences one can easily pass to the limit in the equations satisfied by the hn’s
to conclude that h is a solution of (3.1). We remark that the smoothness of h in
time follows from the equation and from the regularity in space of h. Note that
the smoothness assumption on h0 can be removed by a standard approximation
argument. Finally, the uniqueness follows from the same argument used to prove
(3.24). �


4. Short Time Existence for the Surface Diffusion Flow with Elasticity

Here we will prove the existence of the flow

Vt = �∂Ft (HFt − Q(E(uFt ))), (4.1)

where uFt is the minimizer of the elastic energy, that is the solution to (2.12), with
F replaced bu Ft .

The most crucial point for the proof of the short time existence of (4.1), is to
prove sharp regularity estimates for uF up to the boundary ∂F in terms of regularity
of ∂F . We prove this in the theorem below.

Theorem 4.1. Let K > 0, α ∈ (0, 1), and let k � 3 be an integer. There exists
Ck = Ck(K ) > 0 such that if h ∈ Hk(�) and Fh ∈ h1,αK (�), defined as in (2.18),
then

‖Q(E(uFh )) ◦ π−1
Fh

‖
Hk− 3

2 (�)
� Ck(‖h‖Hk (�) + 1). (4.2)

Moreover if h1, h2 ∈ H3(�) and Fhi ∈ h3K (�) for i = 1, 2, then there exists
C = C(K ) > 0 such that

‖uFh2
◦ π−1

Fh2
− uFh1

◦ π−1
Fh1

‖H3/2(�) � C‖h2 − h1‖H2(�). (4.3)



1354 N. Fusco et al.

Proof. We begin by proving (4.2). By standard approximation argument we may
assume that h is smooth, which implies that uFh is smooth up to the boundary ∂Fh .

We consider a diffeomorphism �h : �\G → �\Fh such that

�h(x) = x + h(π(x))ν(π(x))

inN+
η0

(G), where for any σ > 0N+
σ (G) = {x ∈ �\G : dG � σ } is the one-sided

neighborhood of �. Note that we may construct �h such that ‖�h − I‖Hk (�\G) +
‖�−1

h − I‖Hk (�\G) � C‖h‖Hk (�).
Let us fix x0 ∈ �. There exists a smooth diffeomorphism � from a neigh-

borhood U ⊂⊂ � of x0 to a ball B2R which straightens the boundary such
that �(U\G) = B+

2R = B2R ∩ {x3 > 0}. Setting v = uFh ◦ �h ◦ �−1 and
h̄ := h ◦ π ◦ �−1, v is a solution of a system of the form

∫
B+
2R

A(x, h̄, Dh̄)Dv : Dϕ dx = 0 (4.4)

for all ϕ ∈ C∞(B+
2R;R3) vanishing on ∂B2R ∩ {x3 > 0}, where the tensor A is

smooth. In particular, by using the explicit definition of h̄ and Lemma 7.1 it holds
‖h̄‖Hk (B+

2R) � C(k)(1 + ‖h‖Hk (�)) for every k ∈ N. Moreover, by using Korn’s
inequality, one may check that A is elliptic in the sense that

∫
B+
2R

A(x, h̄, Dh̄)Dϕ : Dϕ dx � c0

∫
B+
2R

|Dϕ|2 dx (4.5)

for all ϕ ∈ C∞(B+
2R;R3) vanishing on ∂B2R ∩ {x3 > 0}.

We now start differentiating the equation in the tangential directions so to esti-
mate the tangential derivatives. Then we will use the equation to extract from these
estimates also information and the normal and the mixed derivatives.

Let us fix k � 3 and a multi-index β = (β1, β2, 0), with β1 + β2 = k − 1. By
differentiating the Equation (4.4) in the β-directions we have

∫
B+
2R

Dβ(A(x, h̄, Dh̄)Dv) : Dϕ dx = 0. (4.6)

Let η ∈ C∞
0 (B2R) be a standard cut-off function such that η ≡ 1 in BR and

0 � η � 1. By choosing ϕ = Dβvη2 as a test function in (4.6) and by expanding
the term Dβ((A(x, h̄, Dh̄)Dv) by Leibniz formula we deduce

∫
B+
2R

(A(x, h̄, Dh̄)DDβv) : DDβvη2 dx � 2
∫
B+
2R

|A(x, h̄, Dh̄)||DDβv||Dη|η|Dβv| dx

+ C
k−1∑
i=1

∫
B+
2R

|Di
A(x, h̄, Dh̄)||Dk−iv|(|DDβv|η2 + |Dβv||Dη|η) dx .
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Moreover, by the ellipticity condition (4.5) we have

c0
2

∫
B+
2R

|D(Dβv)|2η2 dx � c0

∫
B+
2R

|D(Dβvη)|2 dx

+ c0

∫
B+
2R

|Dβv|2|Dη|2 dx

�
∫
B+
2R

(A(x, h̄, Dh̄)D(Dβvη)) : D(Dβvη) dx

+ c0

∫
B+
R

|Dβv|2|Dη|2 dx

�
∫
B+
2R

(A(x, h̄, Dh̄)DDβv) : DDβvη2 dx

+ C
∫
B+
2R

(|DDβv||Dη|η|Dβv|

+ |Dβv|2|Dη|2) dx,
where in the last inequality we have used fact that ‖h̄‖C1,α � C , which in turn
implies that A(x, h̄, Dh̄) is bounded. Combining the previous estimates and using
Young’s inequality we obtain, recalling that η = 1 on B+

R ,∫
B+
R

|D(Dβv)|2 dx � C
∫
B+
2R

|Dk−1v|2 dx

+C
k−1∑
i=1

∫
B+
2R

|Di
A(x, h̄, Dh̄)|2|Dk−iv|2 dx . (4.7)

We denote w = Dh̄ and estimate by the Leibniz formula that

k−1∑
i=1

|Di
A(x, h̄, Dh̄)|2|Dk−iv|2 � C

k−1∑
i=1

|Dk−iv|2

+C
k−1∑
i=1

∑
1� j1�...� jm�i
j1+···+ jm�i

m�1

|D j1w|2 · · · |D jmw|2|Dk−iv|2.

Then, by Hölder’s inequality, we get

k−1∑
i=1

∫
B+
2R

|Di
A(x, h̄, Dh̄)|2|Dk−iv|2 dx � C‖v‖2

Hk−1(B+
2R)

+ C
k−1∑
i=1

∑
1� j1�...� jm�i
j1+···+ jm�i

m�1

‖D j1w‖22(k−1)
j1

. . . ‖D jmw‖22(k−1)
jm

‖Dk−iv‖22(k−1)
k−i−1

,
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where all the norms in the last line are evaluated in B+
2R . Note that if i = k−1 then in

the last term it is understood that ‖Dk−iv‖ k−1
k−1−i

= ‖Dv‖L∞ . Note that by standard

Schauder estimates the assumption ‖h‖C1,α(�) � K implies that ‖Dv‖L∞(B+
2R) �

C . We use Lemma 2.1 to estimate

‖D jlw‖ 2(k−1)
jl

� C‖w‖θ( jl )
Hk−1‖w‖1−θ( jl )

L∞ � C‖w‖θ( jl )
Hk−1

for θ( jl) := jl
k−1 . By the same lemma we also have

‖Dk−iv‖ 2(k−1)
k−i−1

� C‖v‖θ
Hk‖Dv‖1−θ

L∞ � C‖v‖θ
Hk

for θ = k−i−1
k−1 . Since θ( j1)+· · ·+ θ( jm) � i

k−1 , from (4.7) and from the previous
estimate we have, by Young’s inequality,

∫
B+
R

|D(Dβv)|2 dx � C‖v‖2
Hk−1(B+

2R)
+ C

k−1∑
i=1

(‖w‖
2i
k−1

Hk−1(B+
2R)

+ 1)‖v‖
2(k−i−1)

k−1

Hk (B+
2R)

� ε‖Dkv‖2
L2(B+

2R)
+ C‖v‖2

Hk−1(B+
2R)

+ C(1 + ‖h‖2Hk (�)
).

In order to control the remaining derivatives we use the Equation (4.4) in the strong
form

div(A(x, h̄, Dh̄)Dv) = 0.

Indeed, observe that we have estimated all the derivatives of the type Dβ(Dv),
where β = (β1, β2, 0), with β1 + β2 = k − 1. Using these estimates and differen-
tiating the equation k − 2 times with respect to the horizontal directions and once
in the vertical direction, we may estimate Dβ(Dx3x3v) for all β = (β1, β2, 0), with
β1 +β2 = k − 2, by using an interpolation argument as before to control the lower
order derivatives. Then we proceed by induction by differentiating the equation
k − 3 times with respect to the horizontal directions and twice in the vertical direc-
tion, and so on, until we differentiate the equation k − 1 times only in the vertical
direction. As a result we obtain∫

B+
R

|Dkv|2 dx � ε‖Dkv‖2
L2(B+

2R)
+ C‖v‖2

Hk−1(B+
2R)

+ C(1 + ‖h‖2Hk (�)
).

The previous estimate holds at every point on ∂Fh . Thus we may cover N+
σ1

(Fh),
with σ1 <

η0
2 , by a finite union of balls and use the previous estimate in every ball

of the covering. Precisely, we go back to the original map, set u = uFh ◦ �h for
simplicity, use Lemma 7.1 and conclude that there are 0 < σ1 < σ2 such that

∫
N+

σ1

|Dku|2 dx � Cε

∫
N+

σ2

|Dku|2 dx + C‖u‖2
Hk−1(N+

σ2 )
+ C(1 + ‖h‖2Hk (�)

)

� 2Cε

∫
N+

σ2

|Dku|2 dx + C‖u‖2
L2(N+

σ2 )
+ C(1 + ‖h‖2Hk (�)

),
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where the last inequality follows from standard interpolation inequality. Choosing
ε small we obtain∫

N+
σ1

|Dku|2 dx � 2
∫
N+

σ2\N+
σ1

|Dku|2 dx + C‖u‖2
L2(N+

σ2 )
+ C(1 + ‖h‖2Hk (�)

).

By standard interior regularity it holds that
∫
N+

σ2\N+
σ1

|Dku|2 dx � C‖uFh‖2L2(�\Fh).

From the two previous inequalities and by standard interpolation we have that

‖u‖Hk (N+
σ1 ) � C(1 + ‖u‖L2(N+

σ1 ) + ‖h‖Hk (�)).

By theminimality andbyPoincaré inequalitywehave that‖uFh‖L2(�\Fh) is bounded
by the boundary valuew0. Using the last part of Lemma 7.1, we have from the above
inequality that

‖Q(E(uFh )) ◦ �h‖Hk−1(N+
σ1 ) � C(1 + ‖h‖Hk (�)).

From this inequality the first claim follows by the trace theorem.
As for the second part of the lemma, let �i be a diffeomorphism constructed

as above from �\G to �\Fhi . Note that, since h1 and h2 are bounded in C1,α , we
may construct the �i ’s in such a way that

‖�2 − �1‖H1(�\G) � C‖h2 − h1‖H1(�).

As before we fix x0 ∈ � and denote as before by � the diffeomorphism that
straightens �. Setting vi = uFhi

◦ �i ◦ �−1 and h̄i = hi ◦ π ◦ �, we have that

∫
B+
2R

A(x, h̄i , Dh̄i )Dvi : Dϕ dx = 0

for all ϕ ∈ C∞(B+
2R;R3) vanishing on ∂B2R ∩ {x3 > 0}, where A is the same

tensor as before.
Differentiating the equations in the x j -direction, j = 1, 2, and subtracting the

two resulting equations we obtain
∫
B+
2R

A(x, h̄2, Dh̄2)D(Dj (v2 − v1)) : Dϕ dx

= −
∫
B+
2R

D j (A(x, h̄2, Dh̄2))D(v2 − v1) : Dϕ dx

−
∫
B+
2R

[A(x, h̄2, Dh̄2) − A(x, h̄1, Dh̄1)]DDjv1 : Dϕ dx

−
∫
B+
2R

D j [A(x, h̄2, Dh̄2) − A(x, h̄1, Dh̄1)]Dv1 : Dϕ dx .
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We choose ϕ = Dj (v2 − v1)η
2 as a test function to get an inequality similar to

(4.7) with v replaced by v2 − v1, from which we obtain∫
B+
R

|D(Dj (v2 − v1))|2 dx � C
∫
B+
2R

(1 + |D2h̄2|2 + |D2h̄1|2)|Dv2 − Dv1|2 dx

+ C
∫
B+
2R

(|h̄2 − h̄1|2 + |Dh̄2 − Dh̄1|2

+ |D2h̄2 − D2h̄1|2)|Dv1|2 dx
+ C

∫
B+
2R

(|h̄2 − h̄1|2 + |Dh̄2 − Dh̄1|2)|D2v1|2 dx .

Recall first that as before ‖Dv1‖L∞ � C . Moreover, we assume that ‖hi‖H3(�) �
K and therefore by the proof of the first statement we conclude that ‖vi‖H3(B+

2R) �
C . Using interpolation we get∫

B+
2R

|D2h̄1|2|Dv2 − Dv1|2 dx � ‖D2h̄1‖2L4 ‖Dv2 − Dv1‖2L4

� C‖h̄1‖2H3 ‖v2 − v1‖
3
2
H2‖v2 − v1‖

1
2
L2 .

In the same way, using interpolation and the fact that ‖v1‖H3(B+
2R) is bounded,

we may estimate the remaining two integrals on the right hand side by C‖h̄2 −
h̄1‖2H2(B+

2R)
, with a constantC depending only on ‖v1‖H3(B+

2R), hence on ‖h1‖H3(�).

Then, using the equation to estimate D33(v2 − v1), we get, for any ε ∈ (0, 1),∫
B+
R

|D2(v2 − v1)|2 � C‖v2 − v1‖
3
2

H2(B+
2R)

‖v2 − v1‖
1
2

L2(B+
2R)

+ C‖h̄2 − h̄1‖2H2(B+
2R)

� ε

∫
B+
2R

|D2(v2 − v1)|2

+ C
∫
B+
2R

|v2 − v1|2 + C‖h2 − h1‖2H2(�)
.

Using a simple covering argument as before, going back to the original functions
and arguing as above we get

‖D2(uFh2
◦ �h2 − uFh1

◦ �h1)‖L2(N+
σ1 )

� C‖uFh2
◦ �h2 − uFh1

◦ �h1‖L2(N+
σ2 ) + C‖h2 − h1‖H2(�).

Observe now that writing down the equations satisfied by uFhi
◦ �hi in �\G and

using as an admissible test function ϕ = uFh1
◦ �h1 − uFh2

◦ �h2 , one may check
that

‖D(uFh1
◦ �h1 − uFh2

◦ �h2)‖L2(�\G)

� C‖�1 − �2‖H1(�\G) � C‖h1 − h2‖H1(�).
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The conclusion follows from this estimate and from the previous one by thePoincaré
inequality. �

Remark 4.2. Let hFi and uFi for i = 1, 2 be as in Theorem 4.1. The inequality at
the end of the proof of the theorem implies that

‖uFh2
◦ π−1

Fh2
− uFh1

◦ π−1
Fh1

‖H1/2(�) � C‖h2 − h1‖H1(�).

Moreover, if in addition to the assumptions of the second part of Theorem 4.1 we
know also that ‖hi‖C1(�) is sufficiently small for i = 1, 2, then the proof of the
inequality (4.3) also gives the estimate

‖(DuFh2
) ◦ π−1

Fh2
− (DuFh1

) ◦ π−1
Fh1

‖L2(�) � C‖h2 − h1‖H2(�).

Let us consider the smooth flow (Ft )t∈(0,T0) with initial set F0, which is a
solution of (3.1) with smooth forcing term f : � × [0, T0) → R. Here T0 is
the existence time provided by Theorem 3.1. For every given time t ∈ (0, T0)
we consider the elastic equilibrium ut in �\Ft defined in (2.12) and we use the
regularity estimates from Theorem 4.1 to establish

Lemma 4.3. Let K0 > 1be such that ||Q(E(uG))||L∞(�) < K0/4. There exist T >

0 and ε̃ > 0 with the following property: if ‖h0‖H3(�) < K0, and ‖h0‖L2(�) < ε̃,
and f is a smooth function satisfying (3.9) then the solution of (3.1), with initial
datum h0, provided by Theorem 3.1 exists for the time interval (0, T ) and it holds
that

sup
0�t�T

‖Q(E(ut )) ◦ π−1
Ft

‖L∞(�) +
∫ T

0
‖Q(E(ut )) ◦ π−1

Ft
‖2H3(�)

dt � K0.

(4.8)

Moreover, for every k ∈ N there exists C ′
k(K0) > 0 such that

k∑
i=0

∫ T

0
t i‖Q(E(ut )) ◦ π−1

Ft
‖2H2i+3(�)

dt

� 1

2

(
C ′
k(K0) +

k∑
i=0

∫ T

0
t i‖ f (·, t)‖2H2i+3(�)

dt

)
. (4.9)

Proof. We begin by proving (4.8). Let us fix α ∈ (0, 1). Given δ0 > 0 to be
chosen later and taking ε̃ equal to the corresponding ε0, let h(·, t) be the solution
defined on (0, T0), provided by Theorem 3.1. Note that from (3.10) and (3.11) we
have sup0�t�T0 ‖h(·, t)‖H3 � C(K0) and sup0�t�T0 ‖h(·, t)‖L2 � δ0. In turn, by

interpolation sup0�t�T0 ‖h(·, t)‖C1,α � Cδθ
0 < 1 for some θ ∈ (0, 1). Recall also

that by choosing ε̃ small we can make δ0 as small as we wish. Observing that the
coefficients of the equation solved by ut ◦ π−1

Ft
are close in C0,α to the ones of the

equation solved by uG , by standard elliptic estimates we have that

sup
0�t�T0

‖ut ◦ π−1
Ft

− uG‖C1,α(�) � ω(δ0),
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and ω(δ0) → 0 as δ0 → 0. In turn, we conclude that for every t ∈ (0, T0) it holds
that

‖Q(E(ut )) ◦ π−1
Ft

‖L∞ � ‖Q(E(ut )) − Q(E(uG)) ◦ π−1
Ft

‖L∞

+ ‖Q(E(uG)) ◦ π−1
Ft

‖L∞ � K0

3
,

provided ε̃ (and thus δ0) is small enough.
Concerning the second term on the left-hand side of (4.8), we have by a well-

known interpolation result and by (4.2) for k = 5 from Theorem 4.1

∫ T

0
‖Q(E(ut )) ◦ π−1

Ft
‖2H3(�)

dt

� C
∫ T

0
‖Q(E(ut )) ◦ π−1

Ft
‖2θ
H

7
2 (�)

‖Q(E(ut )) ◦ π−1
Ft

‖2(1−θ)
L∞(�) dt

� C
∫ T

0
(1 + ‖h(·, t)‖2θH5(�)

)K 2(1−θ)
0 dt

� η

∫ T

0
‖h(·, t)‖2H5(�)

dt + CηK
2
0 T

� ηC

(
K 2
0 +

∫ T

0

(
1 + ‖ f (·, t)‖q0L∞(�) + ‖ f (·, t)‖2H3(�)

)
dt

)
+ CηK

2
0 T

� ηC
(
K 2
0 + T + T Kq0

0 + K0

)
+ CηK

2
0 T,

where the second last inequality follows from (3.11). The inequality (4.8) follows
by choosing η and T � T0 sufficiently small.

The inequality (4.9) follows by a similar argument. For all i = 1, . . . , k we
have again by interpolation and by (4.2) that

∫ T

0
t i‖Q(E(ut )) ◦ π−1

Ft
‖2H2i+3(�)

dt

� C
∫ T

0
t i‖Q(E(ut )) ◦ π−1

Ft
‖2θ
H2i+ 7

2 (�)
‖Q(E(ut )) ◦ π−1

Ft
‖2(1−θ)
L∞(�) dt

� Ck

∫ T

0
t i (1 + ‖h(·, t)‖2θH2i+5)K

2(1−θ)
0 dt

� η

∫ T

0
t i‖h(·, t)‖2H2i+5 dt + Ck,ηK

2
0 T .

The conclusion then follows by estimating the last integral by means of (3.11) and
choosing η sufficiently small and C ′

k(K0) sufficiently large. �

Theorem 4.4. Let K0 > 1 be such that ||Q(E(uG))||L∞(�) < K0/4 and fix δ0 > 0.
There exist T ∈ (0, 1) and ε1 ∈ (0, 1) with the following property: if F0 ∈ h3K0

(�),
defined in (2.18), with ‖h0‖L2(�) < ε1 then there exists a unique solution h to
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(4.1) in H1(0, T ; H1(�)) ∩ L∞(0, T ; H3(�)). Moreover, the solution belongs to
H1
loc(0, T ; Hk(�)) for every k � 1 and it holds that

sup
0�t�T

‖h(·, t)‖L2(�) < δ0 (4.10)

and

sup
0�t�T

tk‖h(·, t)‖2H2k+3(�)
+

∫ T

0
tk‖h(·, t)‖2H2k+5(�)

dt � C(k, K0).

(4.11)

Proof. We divide the proof into three steps.
Step 1. Let K0, T be as in Lemma 4.3. Let S be the set of functions in C∞(0, T ;
C∞(�)) that satisfy

sup
0�t�T

‖ f (·, t)‖L∞(�) +
∫ T

0
‖ f (·, t)‖2H3(�)

dt � K0

and

k∑
i=0

∫ T

0

(
t i‖ f (·, t)‖2H2i+3(�)

)
dt � C ′

k(K0)

for every k ∈ N, where C ′
k(K0) are the constants from (4.9). We define a map

L : S → S as L ( f )(·, t) := −Q(E(ut )) ◦ π−1
Ft

for all t ∈ (0, T ), where Ft is
the solution of (3.1) with initial datum h0 and forcing term f , and where ut stands
for uFt , that is for the elastic equilibrium in �\Ft . Lemma 4.3 implies that the map
L : S → S is well defined, provided that ε1 � ε̃. Note also that S is clearly
nonempty as the zero function belongs to S.

We will show thatL : S → S is a contraction with respect to a suitable norm.
Step 2. Fix μ ∈ (0, 1). Let f1 and f2 be two smooth functions in S and let h1 and
h2 be the corresponding solutions of (3.6) with intial datum h0. The goal in this
step is to show that it holds that

∫ T

0

∫
�

(h2(·, t) − h1(·, t))2 dH2dt

� μ

∫ T

0

∫
�

( f2(·, t) − f1(·, t))2dH2dt, (4.12)

possibly by decreasing the time T in a way independent of f1 and f2. We recall
that by Theorem 3.1 we have that

sup
0�t�T

‖h(·, t)‖L2(�) � δ0 and sup
0�t�T

‖h(·, t)‖H3(�) � C(K0),
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provided that ε1 < ε0.By interpolation these imply that sup0�t�T ‖h(·, t)‖C1,α(�) �
Cδθ

0 < 1 for some θ ∈ (0, 1). In turn, by standard Schauder estimates the corre-
sponding elastic equilibria in Fh(·,t) are uniformly bounded inC1,α up to the bound-
ary, that is, sup0�t�T ‖ut ◦ π−1

Ft
‖C1,α(�) � C . We will use these facts repeatedly

in the proof.
We denote by Ft,i the set related to hi (·, t) with ∂Ft,i = {x + hi (x, t)ν(x) :

x ∈ �}. We multiply (3.1) for i = 1, 2 by
(
(h2 −h1)◦π

)(
(Ji ◦π)νFt,i · (ν ◦π)

)−1,
where Ji stands for the tangential Jacobian on � of the map x �→ x + hi (x)ν(x)
and π for the projection on �. We then get

∫
∂Ft,i

(∂t hi (·, t) ◦ π)
(h1 − h2) ◦ π

Ji ◦ π
dH2

=
∫

∂Ft,i
�∂Ft,i [H∂Ft,i + fi (·, t) ◦ π)]((h2 − h1) ◦ π

)
(
(Ji ◦ π)νFt,i · (ν ◦ π)

)−1 dH2.

Recall that, denoting by ∂τ1hi and ∂τ2hi the tangential derivatives of hi in the
directions of the principal curvatures, we have

Ji =
√

(1 + hi k1)2(1 + hi k2)2 + (1 + hi k1)2(∂τ1hi )
2 + (1 + hi k2)2(∂τ2hi )

2,

where k1, k2 are the principal curvatures of �. Therefore we have by the formula
for the outer normal (3.2) that

(
(Ji ◦ π)νFt,i · (ν ◦ π)

)−1 = 1

(1 + hi k1)(1 + hi k2)
◦ π =: R(·, hi ) ◦ π.

By integrating by parts we get

∫
∂Ft,i

(∂t hi (·, t) ◦ π)
(h1 − h2) ◦ π

Ji ◦ π
dH2

=
∫

∂Ft,i
(H∂Ft,i + fi (·, t) ◦ π)�∂Ft,i [(h1 − h2) ◦ π R(·, hi ) ◦ π ] dH2

Rewriting the integrals above on � and subtracting, we have

1

2

∂

∂t

∫
�

(h2 − h1)
2 dH2

=
∫

�

(
J2H∂Ft,2 ◦ π−1

Ft,2
− J1H∂Ft,1 ◦ π−1

Ft,1

+J2 f2 − J1 f1
)
�∂Ft,2 [(h2 − h1) ◦ πR(·, h2) ◦ π ] ◦ π−1

Ft,2
dH2

+
∫

�

J1(H∂Ft,1 ◦ π−1
Ft,1

+ f1)
(
�∂Ft,2 [(h2 − h1) ◦ πR(·, h2) ◦ π ] ◦ π−1

Ft,2

−�∂Ft,1 [(h2 − h1) ◦ πR(·, h1) ◦ π ] ◦ π−1
Ft,1

)
dH2.



Surface Elastic Flow in 3D 1363

We recall (3.3) and (3.4),where the coefficients A, A1 and A2 vanish as (h,∇h) = 0.
We recall also that ‖hi (·, t)‖C1,α is small uniformly in time and that fi are uniformly
bounded with respect to time. After straighforward calculations we have

1

2

∂

∂t

∫
�

(h2 − h1)
2 dH + 1

2

∫
�

|�(h2 − h1)|2 dH2 � ε

∫
�

|∇2(h2 − h1)|2 dH2

+ C
∫

�

(1 + |∇2h1| + |∇2h2|)(|h2 − h1| + |∇(h2 − h1)|)·
· (|h2 − h1| + |∇(h2 − h1)| + |∇2(h2 − h1)|) dH2

+ C
∫

�

| f2 − f1|
(
(1 + |∇2h1| + |∇2h2|)(|h2 − h1|

+|∇(h2 − h1)|) + |∇2(h2 − h1)|
)
dH2

+ C
∫

�

(1 + |∇2h1|2 + |∇2h2|2)(|h2 − h1|2 + |∇(h2 − h1)|2) dH2 =: RHS.

Using Young’s Inequality we obtain

RHS � ε

∫
�

|∇2(h2 − h1)|2 dH2

+ C
∫

�

(1 + |∇2h1|2 + |∇2h2|2)(|h2 − h1|2

+ |∇(h2 − h1)|2) dH2 + C
∫

�

| f2 − f1|2 dH2.

Observe now that by interpolation, by controlling the second derivatives of hi
with the H3-norms, and using the fact that ‖h(·, t)‖H3 is bounded uniformly with
respect to time we have

∫
�

(1 + |∇2h1|2 + |∇2h2|2)(|h2 − h1|2

+ |∇(h2 − h1)|2) dH2

� C(1 + ‖∇2h1‖2L4 + ‖∇2h2‖2L4)‖h2 − h1‖2W 1,4

� C‖h2 − h1‖
3
2
H2‖h2 − h1‖

1
2
L2 .

From the previous inequalities we get

1

2

∂

∂t

∫
�

(h2 − h1)
2 dH2 � −1

2

∫
�

|�(h2 − h1)|2 dH2

+ ε

∫
�

|∇2(h2 − h1)|2 dH2

+ Cε

∫
�

(|∇(h2 − h1)|2

+ (h2 − h1)
2 + ( f2 − f1)

2) dH2.
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Using now Remark 2.5 we in turn obtain

1

2

∂

∂t

∫
�

(h2 − h1)
2 dH2 + 1

4

∫
�

|∇2(h2 − h1)|2 dH2

� C
∫

�

(|h2 − h1|2 + ( f2 − f1)
2) dH2.

Integrating this with respect to time over (0, t), with t ∈ (0, T ), we have
∫

�

(h2(·, t) − h1(·, t))2 dH2 + 1

2

∫ t

0

∫
�

|∇2(h2(·, s) − h1(·, s))|2 dH2ds

� C
∫ t

0

∫
�

(|h2(·, s) − h1(·, s)|2 + ( f2(·, s) − f1(·, s))2) dH2ds. (4.13)

Integrating the above inequality with respect to time over (0, T ) we obtain (4.12)
when T is sufficiently small.
Step 3. Here we finally prove that the map L : S → S is a contraction with
respect to the L2(0, T ; L2(�))-norm. To be more precise, let f1 and f2 be two
functions in S and h1 and h2 the corresponding solutions of (3.1). For simplicity
we denote the elastic equilibrium for Fhi as ui (·, t) := uFt,i , for i = 1, 2. Then
L ( fi ) = −Q(E(ui )) ◦ π−1

Ft,i
and our goal is to show

∫ T

0
‖Q(E(u2(·, t))) ◦ π−1

Ft,2
− Q(E(u1(·, t))) ◦ π−1

Ft,1
‖2L2(�)

dt

� 1

2

∫ T

0
‖ f2(·, t) − f1(·, t)‖2L2(�)

dt. (4.14)

Let us fix t ∈ (0, T ). We begin by proving that given ε > 0, if δ0 is small
enough we have

‖Q(E(u2(·, t))) ◦ π−1
Ft,2

− Q(E(u1(·, t))) ◦ π−1
Ft,1

‖L2(�)

� C‖∇(u2(·, t) ◦ π−1
Ft,2

) − ∇(u1(·, t) ◦ π−1
Ft,1

)‖L2(�)

+ ε‖∇2(h2(·, t) − h1(·, t))‖2L2(�)
+ C‖h2(·, t) − h1(·, t)‖H1(�).

(4.15)

To shorten the notation we denote Ui := Dui ◦ π−1
Ft,i

, νi = νFt,i ◦ π−1
Ft,i

and hi =
hi (·, t) for i = 1, 2. Recall that Q(E(ui (·, t))) ◦ π−1

Ft,i
= 1

2CUi : Ui . We may thus
write

‖Q(E(u2(·, t))) ◦ π−1
Ft,2

− Q(E(u1(·, t))) ◦ π−1
Ft,1

‖L2(�)

= 1

2
‖C(U2 +U1) : (U2 −U1)‖L2(�).

We estimate this simply as

‖C(U2 +U1) : (U2 −U1)‖L2(�)

� ‖C(U2 +U1) : (
(U2 −U1)(I − ν ⊗ ν)

)‖L2(�)

+ ‖C(U2 +U1) : (
(U2 −U1) (ν ⊗ ν)

)‖L2(�).

(4.16)
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Note that by the second condition in (2.12) it holdsCUi [νi ] = CE(ui )◦π−1
Ft,i

[νi ] =
0 on �. We use this equality to estimate the last term in (4.16) by

‖C(U2 +U1) : (
(U2 −U1) (ν ⊗ ν)

)‖L2(�)

� ‖C(U2 +U1) : (
(U2 −U1) (ν ⊗ (ν − ν2))

)‖L2(�)

+ ‖CU1 : (
(U2 −U1) (ν ⊗ ν2)

)‖L2(�)

= ‖C(U2 +U1) :((U2 −U1) (ν ⊗ (ν − ν2))
)‖L2(�)

+ ‖CU1 :((U2 −U1) (ν ⊗ (ν2 − ν1))
)‖L2(�).

Using the expression (3.2) for the normal ν2 and the uniform C1,α-bound for hi
we deduce that ‖ν − ν2‖L∞(�) � Cδθ

0 and ‖ν2 − ν1‖L2(�) � C‖h2 − h1‖H1(�).
Moreover, by the C1,α-bound for ui we have that ‖Ui‖L∞ � C and by the second
inequality in Remark 4.2 it holds ‖U2 −U1‖L2(�) � C‖h2 − h1‖H2(�). Therefore
we may estimate the above inequality as

‖C(U2 +U1) : (
(U2 −U1)(ν ⊗ ν)

)‖L2(�)

� ε‖h2 − h1‖H2(�) + C‖h2 − h1‖H1(�).

Thus we deduce by (4.16) that

‖C(U2 +U1) : (U2 −U1)‖L2(�)

� ‖C(U2 +U1) : (
(U2 −U1)(I − ν ⊗ ν)

)‖L2(�)

+ε‖h2 − h1‖H2(�) + C‖h2 − h1‖H1(�).

The inequality (4.15) then follows from (2.10) as

‖C(U2 +U1) : (
(U2 −U1)(I − ν ⊗ ν)

)‖L2(�)

= ‖C(U2 +U1) : (
(Du2(·, t) ◦ π−1

Ft,2
− Du1(·, t) ◦ π−1

Ft,1
)(I − ν ⊗ ν)

)‖L2(�)

� C‖(Du2(·, t) ◦ π−1
Ft,2

− Du1(·, t) ◦ π−1
Ft,1

)
τ
‖L2(�)

� C‖[(Du2(·, t) ◦ π−1
Ft,2

)Dπ−1
Ft,2

− (Du1(·, t) ◦ π−1
Ft,1

)Dπ−1
Ft,1

]
τ
‖L2(�)

+ C‖[(Du2(·, t) ◦ π−1
Ft,2

)(Dπ−1
Ft,2

− Dπ−1
Ft,1

)
]
τ
‖L2(�)

+ C‖[(Du2(·, t) ◦ π−1
Ft,2

− Du1(·, t) ◦ π−1
Ft,1

)(I − Dπ−1
Ft,1

)
]
τ
‖L2(�)

� C‖∇(u2(·, t) ◦ π−1
Ft,2

) − ∇(u1(·, t) ◦ π−1
Ft,1

)‖L2(�)

+ C‖h2 − h1‖H1(�) + ε‖h2 − h1‖H2(�),

where in the last inequality we used the second estimate in Remark 4.2 and the fact
that the C1-norm of h1 is small.

We proceed by using (4.15) and interpolation to deduce

‖Q(E(u2(·, t))) ◦ π−1
Ft,2

− Q(E(u1(·, t))) ◦ π−1
Ft,1

‖L2(�)

� C‖∇(u2(·, t)◦π−1
Ft,2

) − ∇(u1(·, t)◦π−1
Ft,1

)‖
1
2

H
1
2 (�)
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× ‖∇(u2(·, t)◦π−1
Ft,2

) − ∇(u1(·, t)◦π−1
Ft,1

)‖
1
2

H− 1
2 (�)

+ ε‖h2 − h1‖H2(�) + C‖h2(·, t) − h1(·, t)‖H1(�).

By the estimate (4.3) in Theorem 4.1 we have

‖∇(u2(·, t) ◦ π−1
Ft,2

) − ∇(u1(·, t) ◦ π−1
Ft,1

)‖
H

1
2 (�)

� ‖u2(·, t) ◦ π−1
Ft,2

− u1(·, t) ◦ π−1
Ft,1

‖H3/2(�) � C‖h2(·, t) − h1(·, t)‖H2 .

Moreover by using the well-known inequality ‖∇g‖
H− 1

2 (�)
� C‖g‖

H
1
2 (�)

and

Remark 4.2 we have

‖∇(u2(·, t) ◦ π−1
Ft,2

) − ∇(u1(·, t) ◦ π−1
Ft,1

)‖
H− 1

2 (�)

� C‖u2(·, t) ◦ π−1
Ft,2

− u1(·, t) ◦ π−1
Ft,1

‖
H

1
2 (�)

� C‖h2(·, t) − h1(·, t)‖H1(�).

Collecting the previous three inequalities, using standard interpolation,

‖h2(·, t) − h1(·, t)‖H1(�) � C‖h2(·, t) − h1(·, t)‖1/2H2(�)
‖h2(·, t) − h1(·, t)‖1/2L2(�)

,

and by Young’s inequality we obtain

‖Q(E(u2(·, t))) ◦ π−1
Ft,2

− Q(E(u1(·, t))) ◦ π−1
Ft,1

‖2L2

� 2ε‖∇2(h2(·, t) − h1(·, t))‖2L2 + Cε‖h2(·, t) − h1(·, t)‖2L2 .

Integrating the previous inequality over (0, T ) and using (4.12) and (4.13), we
obtain

∫ T

0
‖Q(E(u2(·, t))) ◦ π−1

Ft,2
− Q(E(u1(·, t))) ◦ π−1

Ft,1
‖2L2dt

�
(
(Cε + εC)μ + εC

) ∫ T

0
‖ f2(·, s) − f1(·, s)‖2L2 dH1ds

� 1

2

∫ T

0
‖ f2(·, s) − f1(·, s)‖2L2 dH1ds,

provided that ε and then μ are chosen sufficiently small. This proves (4.14) and we
conclude that L : S → S is a contraction with respect to the L2(0, T ; L2(�))-
norm.
Step 4. (Conclusion) We may proceed with a standard argument, by recursively
setting f1 = 0, fn := L( fn−1) and for every n � 1 letting hn be the solution to
(3.1) with f replaced by fn . From Step 2 and Step 3 we have that there exist f
and h such that fn → f and hn → h in L2(0, T ; L2(�)). Moreover, using (4.9)
and (3.11), we conclude easily that for every n � 1 the functions hn satisfy (4.10)
and (4.11) for every k ∈ N, with constants depending only on k and K0. Thus,
we have that hn ⇀ h weakly in H1(0, T ; H1(�))∩ L∞(0, T ; H3(�)). Moreover
using the equation satisfied by hn and (3.11) we also have that ∂t hn is bounded
in L2

loc(0, T ; Hk(�)) for every k ∈ N. Therefore we have that hn ⇀ h weakly
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in H1
loc(0, T ; Hk(�)) and thus strongly in L2

loc(0, T ; Hk(�)) and that h satisfies
(4.10) and (4.11). Using these convergences one can easily pass to the limit in
the equations satisfied by the hn’s to conclude that h is a solution of (4.1). The
uniqueness follows from the same argument used in Step 2 and Step 3. �


5. Asymptotic Stability

In this section we study the flow when the initial set is close to a smooth strictly
stable stationary set G, which will be our reference set, that is, we set � = ∂G.
Throughout this section we denote

Rt := HFt − Q(E(uFt )).

Moreover, in what follows we shall drop the subscript ∂Ft (and similar) in all the
covariant differential operators, when no danger of confusion arises. Here is the
main result:

Theorem 5.1. Let G ⊂⊂ � be a regular strictly stable stationary set in the sense
of Definition 2.11. There exists δ > 0 such that if F0 ∈ h3δ(�), then the unique
solution (Ft )t>0 of the flow (4.1) with intial datum F0 is defined for all times t > 0.

Moreover Ft → F∞ exponentially fast, where F∞ is the unique stationary set
near G such that |F∞,i | = |F0,i | for i = 1, . . . ,m. In particular, if |F0,i | = |Gi |
for i = 1, . . . ,m, then Ft → G exponentially fast. Here Gi denote the open
bounded sets enclosed by the components 
G,1, . . . , 
G,m of ∂G, F∞,i and F0,i
are diffeomorphic to Gi , and ∂F0,i and ∂F∞,i are the components of ∂F0 and ∂F∞
respectively.

Remark 5.2. By exponential convergence of Ft to F∞ we mean precisely the fol-
lowing: writing ∂Ft := {x + h̃(x, t)νF∞(x) : x ∈ ∂F∞}, we have that for every
k ∈ N there exists ck > 0 and Ck > 1 such that

‖h̃(·, t)‖Ck (∂F∞) � Cke
−ck t

for t � 1.

The proof of stability is based on the following energy identity:

Proposition 5.3. Let (Ft )t∈[0,T ) be the solution of (4.1) provided by Theorem 4.4.
Then the function

t �→
∫

∂Ft
|∇Rt |2 dH2

is absolutely continuous and for almost every t ∈ (0, T ) we have the following
energy identity

d

dt

(∫
∂Ft

|∇Rt |2 dH2
)

= −2∂2J (Ft )[�Rt ]

−2
∫

∂Ft
BFt [∇Rt ,∇Rt ] (�Rt ) dH2+

∫
∂Ft

HFt |∇Rt |2 (�Rt ) dH2, (5.1)

where ∂2J (Ft ) is defined as in (2.21) and BFt [·, ·] denotes the fundamental form
of ∂Ft .
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The proof of the proposition is similar to [24, Proposition 4.3] (see also [1,
Lemma 4.4]) and therefore we shift it to the “Appendix”.

In order to control the two last terms in (5.1) we need the following interpolation
result on the evolving boundaries. The proof of the next lemma is precisely the same
as [1, Lemma 4.7] and therefore we omit it.

Lemma 5.4. If F ⊂ U is such that ∂F = {x + hF (x)ν(x) : x ∈ �} with
‖hF‖C1,α(�) � M, then for every smooth function f ∈ C∞(∂F) it holds that

∫
∂F

|BF ||∇ f |2|� f | dH2 � C
(
1 + ‖HF‖3L6(∂F)

)
‖∇� f ‖2L2(∂F)

‖∇ f ‖L2(∂F).

The constant C depends only on M and �.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. For any set F ∈ h31(�) consider

D(F) :=
∫
F�G

dist (x, �) dx

and note that

1

C
‖hF‖2L2(∂G)

� D(F) � C‖hF‖2L2(∂G)
(5.2)

for a constant depending only on G. Moreover, we define

RF := HF − Q(E(uF )),

which is defined on ∂F .
Step 1. (Preliminary estimates) In this step we show that if F ∈ h31(�) and
‖hF‖C1(�) � δ for δ sufficiently small, then it holds that

1

C
‖hF‖1/θ

H3(�)
� D(F) +

∫
∂F

|∇RF |2 dH2 � C ‖hF‖θ
H3(�)

. (5.3)

for some θ ∈ (0, 1) and some constant C > 1.
We begin by proving the first inequality. We use interpolation, (4.2) and the

second inequality in Remark 4.2 to deduce that

‖∇(
Q(E(uF )) ◦ π−1

F − Q(E(uG))
)‖L2(�)

� C‖Q(E(uF )) ◦ π−1
F − Q(E(uG))‖θ ′

H
3
2 (�)

× ‖Q(E(uF )) ◦ π−1
F − Q(E(uG))‖1−θ ′

L2(�)

� (C + ‖Q(E(uF )) ◦ π−1
F ‖θ ′

H3/2(�)
)‖(DuF ) ◦ π−1

F − DuG‖1−θ ′
L2(�)

� (C + ‖hF‖θ ′
H3(�)

)‖hF‖1−θ ′
H2(�)

� C‖hF‖1−θ ′
H2(�)

(5.4)
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for θ ′ ∈ (0, 1). Since G is a stationary set it holds ∇RG = 0 on �. Therefore we
conclude by the above inequality that

‖∇(
HF ◦ π−1

F − HG
)‖2L2(∂F)

� 2
∫

�

|∇(RF ◦ π−1
F )|2 dH2 + 2‖∇(

Q(E(uF )) ◦ π−1
F − Q(E(uG))

)‖2L2(�)

� 2C
∫

∂F
|∇RF |2 dH2 + C‖hF‖2(1−θ ′)

H2(�)
.

We use (2.6), (3.3) and the fact that ‖hF‖C1(�) � δ to deduce with straightforward
calculations

‖hF‖2H3(�)
� C‖∇(HF ◦ π−1

F − HG)‖2L2(�)
+ C‖hF‖2H2(�)

.

Therefore, from the two previous inequalities and by interpolation we obtain that

‖hF‖2H3(�)
� C

∫
∂F

|∇RF |2 dH2 + C‖hF‖2(1−θ ′)
H2 + C‖hF‖2H2

� C
∫

∂F
|∇RF |2 dH2 + 1

2
‖hF‖2H3 + C‖hF‖θ ′′

L2

for a suitable θ ′′ ∈ (0, 1). The first inequality in (5.3) then follows from the pre-
vious estimate and from (5.2), recalling that since ‖hF‖H3(�) � 1, we also have
‖∇RF‖L2(∂F) � C .

To prove the second inequality in (5.3) we argue similarly as above and use
(3.3) to conclude that

‖∇(HF ◦ π−1
F − HG)‖2L2(�)

� C ‖hF‖2H3(�)
.

Moreover, by (5.4), we have that

‖∇(
Q(E(uF )) ◦ π−1

F − Q(E(uG))
)‖L2(�) � C ‖hF‖1−θ ′

H2(�)

for θ ′ ∈ (0, 1). Therefore since G is a critical set we obtain∫
∂F

|∇RF |2 dH2 � C
∫

�

|∇(RF ◦ π−1
F − RG)|2 dH2

� C
∫

�

|∇(HF ◦ π−1
F − HG)|2 dH2

+ C
∫

�

|∇(
Q(E(uF )) ◦ π−1

F − Q(E(uG))
)|2 dH2

� C‖hF‖2H3(�)
+ C‖hF‖2(1−θ ′)

H2(�)
� C‖hF‖θ

H3(�)
.

Hence, we have (5.3).
Step 2. (Global existence) Let us assume that the initial set F0 is in h3δ(�) with
δ < ε1, where ε1 ∈ (0, 1) is the constant provided by Theorem 4.4 corresponding to
the choice δ0 = 1, K0 = max{2, 5‖Q(E(uG))‖L∞(�)}. Then the flow (Ft )t∈[0,T )

starting from F0 which is a solution of (4.1) exists for a time interval (0, T ), with
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T bounded from below by a positive constant which depends only G. Let σ > 0
be a small number which will be chosen later. Note that by (5.3) and by continuity
we have

D(Ft ) +
∫

∂Ft
|∇Rt |2 dH2 � C‖h(·, t)‖θ

H3(�)
� Cδθ < σ (5.5)

for some time interval (0, T ′), where the last inequality holds provided that δ is
small enough. Note that by (5.3) it follows that

‖h(·, t)‖H3(�) < Cσθ < min{ε1, σ1} for every t ∈ (0, T ′), (5.6)

when σ is small enough, where σ1 is the constant provided by Proposition 2.13.
In particular, we conclude from Theorem 4.4 that as long as the flow (Ft )t∈(0,T )

satisfies (5.5) it is well defined. In other words, if (0, T ∗) is the maximal time of
existence and if it satisfies (5.5) for every t ∈ (0, T ∗), then T ∗ = ∞, that is, the
flow exists for all times.

Let us denote by [0, T ′) the maximal time interval where the flow satisfies (5.5).
We claim that if ‖h0‖H3(�) < δ for δ small enough, then the flow satisfies (5.5) for
every t ∈ (0, T ∗) and thus T ∗ = T ′ = +∞.

We start by recalling that by Lemma 2.12 and (5.6), since σ1 < σ0, we have

∂2J (Ft )[�Rt ] � c0
2

‖�Rt‖2H1(∂Ft )
for every t ∈ (0, T ′).

Thus, from the energy identity (5.1), using also Lemma 5.4 and again (5.5), we
may estimate

d

dt

∫
∂Ft

|∇Rt |2 dH2 � −2∂2J (Ft )[�Rt ] + C
∫
∂Ft

|BFt ||∇Rt |2 |�Rt | dH2

� −c0‖�Rt‖2H1(∂Ft )

+ C (1 + ‖HFt ‖3L6(∂Ft )
)‖∇�Rt‖2L2(∂Ft )

‖∇Rt‖L2(∂Ft )

� −c0‖�Rt‖2H1(∂Ft )
+ C

√
σ ‖∇�Rt‖2L2(∂Ft )

� − c0
2

‖�Rt‖2H1(∂Ft )
,

(5.7)

where the last inequality holds by taking σ smaller if needed.
Next we show that

‖∇Rt‖L2(∂Ft ) � C‖�Rt‖L2(∂Ft ) (5.8)

for some constant which depends on�. Let us fix a component of ∂Ft and denote it
by
t . Since Ft is diffeomorphic toG we denote the component of� diffeomorphic
to 
t by 
. Since 
 is smooth, compact and connected Riemannian manifold we
conclude by [5, Theorem 3.67] that the Poincaré inequality holds on 
, that is, for
every ϕ ∈ C∞(
) with

∫



ϕ dH2 = 0 it holds

‖ϕ‖L2(
) � C‖∇ϕ‖L2(
).
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Therefore since 
t = �t (
) with �t (x) = x + h(x, t)ν(x) and ‖h(·, t)‖C1,α � C
the Poincaré inequality holds also on 
t . In particular, we have

‖Rt − R̄t‖L2(
t )
� C‖∇Rt‖L2(
t )

,

where R̄t denotes the average of Rt on 
t and the constant depends on �. Then by
integration by parts we get
∫


t

|∇Rt |2 dH2 = −
∫


t

(Rt − R̄t )�Rt dH2

� ‖Rt − R̄t‖L2(
t )
‖�Rt‖L2(
t )

� C‖∇Rt‖L2(
t )
‖�Rt‖L2(
t )

.

We obtain (5.8) by repeating the above argument for every component of ∂Ft .
By (5.7) and (5.8) we conclude that

d

dt

∫
∂Ft

|∇Rt |2 dH2 � −c
∫

∂Ft
|∇Rt |2 dH2

for every t ∈ (0, T ′). Integrating this over (0, t), using (5.3) and ‖h0‖H3(�) � δ,
yields

∫
∂Ft

|∇Rt |2 dH2 � Ce−ctδθ . (5.9)

On the other hand by differentiating D(Ft ) with respect to time and using the same
calculations as in [24, Lemma 3.3] we get

d

dt
D(Ft ) =

∫
∂Ft

dG �Rt dH2 = −
∫

∂Ft
〈∇dG ,∇Rt 〉 dH2

� H2(∂Ft )
1/2

(∫
∂Ft

|∇Rt |2 dH2
)1/2

� Ce− c
2 tδ

θ
2 .

Integrating this over (0, t), using (5.2) and ‖h0‖H3(�) � δ, yields

D(Ft ) � D(F0) + Ce− c
2 tδ

θ
2 � Cδ2 + Ce− c

2 tδ
θ
2 < σ (5.10)

when δ is chosen small enough. Hence, we have that (5.5) holds for the whole life
span of the flow (0, T ∗) and by the previous discussion this implies that T ∗ = ∞.
Step3. (Convergence)Combining (5.3) and (5.5)wehave that supt>0 ‖h(·, t)‖H3(�) �
Cσθ . Therefore there exists a subsequence such that

h(·, tm) → h∞(·) in H2(�).

We denote the target set by F∞, that is, ∂F∞ = {x + h∞(x)ν(x) : x ∈ �}. By
(5.9) we deduce that ∇RF∞ = 0, that is, F∞ is a stationary set. We will show that
Ft → F∞ exponentially fast.

To this end we define

D∞(F) :=
∫
F�F∞

dist (x, F∞) dx .
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Repeating the calculations leading to (5.10) we get
∣∣∣ d
dt

D∞(Ft )
∣∣∣ =

∣∣∣
∫

∂Ft
dF∞ �Rt dH2

∣∣∣

� H2(∂Ft )
1/2

(∫
∂Ft

|∇Rt |2 dH2
)1/2

� Ce− c
2 tδ

θ
2 ,

where the last inequality follows from (5.9). This implies that limt→∞ D∞(Ft )
exists and the choice of F∞ implies that D∞(Ft ) → 0. Therefore integrating the
above inequality over (t,∞) we get

D∞(Ft ) � Ce− c
2 tδ

θ
2

for every t > 0. We change the reference set from � = ∂G to ∂F∞ and write
∂Ft = {x+ h̃(x, t)νF∞(x) : x ∈ ∂F∞}. Then by inequality (5.2), with ∂G replaced
by ∂F∞, and by the above inequality we have

‖h̃(·, t)‖L2(∂F∞) � Ce− c
4 tδ

θ
4 .

Moreover, since‖h(·, t)‖H3(�) � Cσθ for all t > 0 then also‖h̃(·, t)‖H3(∂F∞) � C

for all t > 0. By Theorem 4.4 we conclude that ‖h̃(·, t)‖H2k+3(∂F∞) � C(k, σ ) for
all t � 1 and for every k ∈ N. Thus we deduce by interpolation that

‖h̃(·, t)‖Ck (∂F∞) � Cke
−ck t for all t � 1

for some constants ck > 0 and Ck > 1 depending on k and K0.
To conclude the proof, for every t ∈ [0,+∞] denote by (
Ft ,i )i=1,...,m the

connected components of ∂Ft , numbered according to (2.19). Denote also by Ft,i
the bounded open set enclosed by
Ft ,i and recall that the flow preserves the volume
of each Ft,i . Indeed,

d

ds
|Ft+s,i ||s=0 =

∫

Ft ,i

Vt dH2 =
∫


Ft ,i

�Rt dH2 = 0.

Thus, recalling (5.6) and Proposition 2.13, we may conclude that F∞ is the unique
stationary set in h3σ1(∂G) such that |F∞,i | = |F0,i | for i = 1, . . . ,m.

�


6. Evolution of Epitaxially Strained Elastic Films

In this section we briefly describe how our main results read in the context of
evolving periodic graphs.

In this framework, given a (sufficiently regular) non-negative function h : R2 →
[0,+∞), 1-periodic with respect to both variables x1, x2, the free energy associated
with it reads as

J (h) :=
∫

�h

Q(E(uh)) dx + H2(
h), (6.1)
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where x = (x1, x2, x3) ∈ R
2, 
h , �h denote the graph and the subgraph of h,

respectively, over the periodic cell, that is,

�h := {(x1, x2, x3) ∈ (0, 1)2 × R : 0 < x3 < h(x1, x2)},

h := {(x1, x2, x3) ∈ (0, 1)2 × R : x3 = h(x1, x2)},

and uh is the elastic equilibrium in �h , namely the solution of the elliptic system
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div CE(uh) = 0 in �h,

CE(uh)[ν�h ] = 0 on 
h,

Duh(·, x3) is 1 − periodic,

u(x1, x2, 0) = e0(x1, x2, 0),

(6.2)

for a suitable fixed constant e0 �= 0. The above energy relates to a variational
model for epitaxial growth, see the introduction. Precisely, the graph 
h describes
the (free) profile of the elastic film, which occupies the region�h and is grown on a
(rigid) and much thicker substrate, while themismatch strain constant e0 appearing
in the Dirichlet condition for uh at the interface {x1 = 0} between film and substrate
measures the mismatch between the characteristic atomic distances in the lattices
of the two materials. In this framework, the (local) minimizers of (6.1) under an
area constraint on�h describe the equilibrium configurations of epitaxially strained
elastic films, see [21–23,25] and the references therein.

In the context of periodic graphs, given an initial 1-periodic profile h0 ∈
H3
loc(R

2) (in short h0 ∈ H3
per

(
(0, 1)2

)
), we look for a local-in-time solution h(·, t)

of the following problem:
⎧⎪⎨
⎪⎩

1
Jt

∂t h = �
t (Ht + Q(E(ut ))) on 
t and for all t ∈ (0, T ),

h(·, t) is 1-periodic for all t ∈ (0, T ),

h(·, 0) = h0,

(6.3)

where Jt := √
1 + |Dh(·, t)|2, ut stands for the solution of (6.2), with�ht in place

of �h , we wrote 
t instead of 
ht , and Ht denotes the mean curvature of 
t . Note
that in the first equation of (6.3) we have +Q(E(ut )) instead of −Q(E(ut )). This
is due to the fact that in (6.1) the vector ν�h now points outwards with respect to
the elastic body.

Although the setting is a bit different from that of the previous sections, the short-
time existence theory of Section 4 clearly extends also to the present situation, with
the same arguments. In this way we improve upon the results of [23] at least in the
case of isotropic surface energy density. We assume that the solution is periodic
for all times. If we had uniqueness in unbounded domains for this equation, the
periodicity would be implied by the periodic initial conditions.

Also the stability analysis of Section 5 applies without any essential changes,
thus showing that strictly stable stationary 1-periodic configurations are exponen-
tially stable in the sense of Theorem 5.1.

A particular class of critical configurations to which our stability theorem ap-
plies are the flat configurations, that is, in the case of constants profiles h ≡ d,
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provided that d > 0 is sufficiently small. Indeed in [9, Proposition 7.3] it is shown
that if d is sufficiently small then the flat configuration h ≡ d is strictly stable for
the functional J . Therefore, we may state the following theorem:

Theorem 6.1. There exists d0 > 0 with the following property: Let d ∈ (0, d0).
Then, there exists δ > 0 such that if

‖h0 − d‖H3((0,1)2) � δ and
∫

(0,1)2
h0 dx = d,

then the unique solution h(·, t) of (6.3) exists for all t > 0 and for every integer
k � 1 we have

‖h(·, t) − d‖Ck ([0,1]2) � Cke
−ck t for all t > 1

and for suitable positive constants Ck, ck .
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7. Appendix: Technical Lemmas

In this appendix we collect a few technical results and we give the proof of
Lemma 3.3 and of Proposition 5.3.

Lemma 7.1. Let � be an m-dimensional smooth compact manifold in R
n and

let k � 1. If f , g ∈ Hk(�) ∩ L∞(�), then f g ∈ Hk(�) and ‖ f g‖Hk(�) �
C

(‖ f ‖Hk (�)‖g‖L∞(�) + ‖g‖Hk (�)‖ f ‖L∞(�)

)
. Moreover, if A ∈ C∞(R) then

A( f ) ∈ Hk(�) and ‖A( f )‖Hk (�) � C(1 + ‖ f ‖Hk (�)) where the constant de-
pends on A and on ‖ f ‖L∞(�).
If U ⊂ R

m is an open set � : U → �(U ) ⊂ � is a diffeomorphism of class
Hk ∩ C1, k � 1, and f ∈ Hk(�(U )) ∩ C1(�(U )), then ‖ f ◦ �‖Hk (U ) �
C(‖Df ‖∞, ‖D�‖∞)(‖ f ‖Hk + ‖�‖Hk ).
Moreover, if k � 3, f ∈ Hk−1(�(U )), then ‖ f ◦�‖Hk−1(U ) � C(‖ f ‖∞, ‖D�‖∞)

(‖ f ‖Hk−1 + ‖�‖Hk ).

Proof. The first two statements of the lemma are classical, see for instance [43,
Propositions 3.7 and 3.9]. The third one can be proven by a similar argument. We
leave the details for the reader. �

We now prove Lemma 3.3.
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Proof of Lemma 3.3. First, recall (3.17) and observe that from the assumption on
hi we have sup0�t�T ‖hi (·, t)‖C1,α(�) � Cδθ ′

for a suitableC > 0 and θ ′ ∈ (0, 1).
We begin by estimating, for ε > 0,

∫ T

0

∫
�

|〈A(x, h2,∇h2),∇4h2〉 − 〈A(x, h1,∇h1),∇4h1〉|2 dH2dt

� 2
∫ T

0

∫
�

|A(x, h2,∇h2)|2|∇4h2 − ∇4h1|2 dH2dt

+ 2
∫ T

0

∫
�

|∇4h1|2|A(x, h2,∇h2) − A(x, h1,∇h1)|2 dH2dt

� ε

∫ T

0

∫
�

|∇4h2 − ∇4h1|2 dH2dt

+ C
∫ T

0

∫
�

|∇4h1|2(|h2 − h1|2 + |∇h2 − ∇h1|2) dH2dt.

(7.1)

To estimate the last term, we use the Sobolev inequality and the interpolation
Lemma 2.1, and have

∫ T

0

∫
�

|∇4h2|2(|h2 − h1|2 + |∇h2 − ∇h1|2) dH2dt

� C
∫ T

0
‖h2(·, t) − h1(·, t)‖2W 1,4‖∇4h2(·, t)‖2L4 dt

� C sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2

∫ T

0
‖h2(·, t)‖

5
3
H5‖∇h2(·, t)‖

1
3
L∞ dt

� Cδ
θ ′
3 sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2T
1
6

(∫ T

0
‖h2(·, t)‖2H5 dt

) 5
6

� C(M0)T
1
6 sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2 .

(7.2)

Concerning the estimate of,

∫ T

0

∫
�

|J1(x, h2,∇h2,∇2h2,∇3h2) − J1(x, h1,∇h1,∇2h1,∇3h1)|2 dH2dt

we observe that
∫ T

0

∫
�

|〈B1(x, h2,∇h2),∇3h2 ⊗ ∇2h2〉
− 〈B1(x, h1,∇h1),∇3h1 ⊗ ∇2h1〉|2 dH2dt

� C
∫ T

0

∫
�

|B1(x, h2,∇h2) − B1(x, h1,∇h1)|2|∇3h2 ⊗ ∇2h2|2 dH2dt

+ C
∫ T

0

∫
�

|B1(x, h1,∇h1)|2|∇3h2 − ∇3h1|2|∇2h2|2 dH2dt
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+ C
∫ T

0

∫
�

|B1(x, h1,∇h1)|2|∇2h2 − ∇2h1|2|∇3h1|2 dH2dt

� C
∫ T

0

∫
�

(|h2 − h1|2 + |∇h2 − ∇h1|2)|∇3h2|2|∇2h2|2 dH2dt

+ C
∫ T

0

∫
�

|∇2h2 − ∇2h1|2|∇3h1|2 dH2dt

+ C
∫ T

0

∫
�

|∇3h2 − ∇3h1|2|∇2h2|2 dH2dt =: I1 + I2 + I3.

By a simple interpolation argument, we have

I3 �
∫ T

0
‖∇3h2 − ∇3h1‖2L4‖∇2h2‖2L4 dt

� CM0

∫ T

0
‖h1 − h2‖

3
2
H4‖∇2h2 − ∇2h1‖

1
2
L2

� ε

∫ T

0
‖∇4h2 − ∇4h1‖2L2 dt

+ Cε(M0)T sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2 .

Similarly,

I2 �
∫ T

0
‖∇2h2 − ∇2h1‖2L4‖∇3h1‖2L4 dt

� C
∫ T

0
‖h2 − h1‖

1
2
H4‖h2 − h1‖

3
2
H2‖h1‖

1
2
H5‖∇3h1‖

3
2
L2 dt

� ε

∫ T

0
‖∇4h2 − ∇4h1‖2L2 dt

+ Cε(M0) sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2

∫ T

0
1 + ‖h1‖

2
3
H5 dt

� ε

∫ T

0
‖∇4h2 − ∇4h1‖2L2 dt

+ Cε(M0)T
2
3 sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2 .

Finally, arguing similarly as above,

I1 �
∫ T

0
‖h1 − h2‖2W 1,6‖∇3h2‖2L6‖∇2h2‖2L6 dt

� CM0 sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2

∫ T

0
‖h2‖

2
3
H5‖∇3h2‖

4
3
L2 dt

� C(M0)T
2
3 sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2 .
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Since the difference of the remaining terms in J1 can be treated in a similar (in fact
easier) way, we conclude that

∫ T

0

∫
�

|J1(x, h2,∇h2,∇2h2,∇3h2

− J1(x, h1,∇h1,∇2h1,∇3h1))|2 dH2dt

� ε

∫ T

0
‖∇4h2(·, t) − ∇4h1(·, t)‖22 dt

+ Cε(M0)T
θ sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2 . (7.3)

We are left to show that
∫ T

0

∫
�

|J2(x, h2,∇h2,∇2h2,∇ f,∇2 f

− J2(x, h1,∇h1,∇2h1,∇ f,∇2 f ))|2 dH2dt

� ε

∫ T

0
‖∇4h1(·, t) − ∇4h2(·, t)‖22 dt

+ Cε(M0, K0)T
θ sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2 . (7.4)

As before we only prove the estimate for

I4 :=
∫ T

0

∫
�

|〈A1(x, h2,∇h2) − A1(x, h1,∇h1),∇2 f 〉|2 dH2dt,

the other terms being similar (or easier). Using Lemma 2.1 once again we have

I4 �
∫ T

0
‖h2 − h1‖2W 1,4‖∇2 f ‖2L4 dt

� C sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2

∫ T

0
‖∇3 f ‖

3
2
2 ‖ f ‖

1
2
L∞ dt

� CK
1
2
0 sup

0�t�T
‖h2(·, t) − h1(·, t)‖2H2

∫ T

0
‖∇3 f ‖

3
2
L2 dt

� CK
5
4
0 T

1
4 sup
0�t�T

‖h2(·, t) − h1(·, t)‖2H2 .

The conclusion then follows by collecting (7.1)–(7.4). �

Finally we give the proof of Proposition 5.3.

Proof of Proposition 5.3. The proof is similar to the proof of [24, Lemma 3.3].
For this reason we adopt the same notation as there and extend every function on
∂Ft using the signed distance function dFt . In particular, the normal νt = νFt ,
the second fundamental form Bt = BFt and the mean curvature Ht = HFt are
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extended to a tubular neighborhood of ∂Ft . Recall that Dτ denotes the tangential
gradient defined in (2.9) anddivτ denotes the tangential divergence,which is defined
as divτ X = div X − (DXνt ) · νt . The Laplace–Beltrami operator on Ft can be
written as �v = divτ (Dτ v), the second fundamental form as Bt = Dτ νt and the
mean curvature as Ht = divτ νt .
The regularity properties of h stated in Theorem 4.4 imply that for every integer
k � 1∇kh ∈ H1

loc(0, T ; L2(�)). Therefore, inwhat follows all the time derivatives
are well defined almost everywhere. In turn, this allows us to differentiate ut := uFt

with respect to time. More precisely, setting u̇t := ∂ut+s
∂s

∣∣
s=0, we can argue as in

[9, Theorem 4.1] to conclude that u̇ solves that∫
�\Ft

CE(u̇t ) : E(ϕ) dx = −
∫

∂Ft
divτ (�Rt CE(ut )) · ϕ dH2 (7.5)

for all ϕ ∈ H1(�\Ft ;R3) such that ϕ = 0 on ∂D�. Note also that u̇t = 0 on ∂D�.
Let us fix time t > 0. To continue we observe that, by redefining the velocity field
X assosiated with the flow (4.1) if needed (in a time interval centered at t), we may
assume that Xt has only a normal component on ∂Ft ; that is,

Xt = (Xt · νt )νt = (�Rt )νt on ∂Ft .

Since we extended all the geometric quantities by means of the gradient of the
signed distance from Ft we have the following equality (see [13]):

ν̇t = −Dτ (Xt · νt ) = −Dτ (�Rt ) on ∂Ft .

This implies (see the proof of [1, Eq. (5.15)])

Ḣt := ∂

∂s
Ht+s

∣∣
s=0= −�2Rt on ∂Ft . (7.6)

Moreover we have (see [13])

∂νt Ht = −|Bt |2 on ∂Ft . (7.7)

Denoting by Dτt+s the tangential gradient on ∂Ft+s and by Jτ�s the tangential
Jacobian of �s , we have

d

ds

(
1

2

∫
∂Ft+s

|Dτt+s Rt+s |2 dH2
) ∣∣∣

s=0

= d

ds

(
1

2

∫
∂Ft

(|Dτt+s Rt+s |2 ◦ �s) Jτ�s dH2
) ∣∣∣

s=0

= 1

2

∫
∂Ft

|Dτ Rt |2 divτ (�Rt νt ) dH2

+
∫

∂Ft
Dτ Rt · ∂

∂s

(
Dτt+s Rt+s ◦ �s

) ∣∣∣
s=0

dH2

= 1

2

∫
∂Ft

Ht |Dτ Rt |2�Rt dH2

+
∫

∂Ft
Dτ Rt · ∂

∂s

(
Dτt+s Rt+s ◦ �s

) ∣∣∣
s=0

dH2

(7.8)
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We write the last term as

Dτt+s Rt+s ◦ �s = [
I − νt+s ◦ �s ⊗ νt+s ◦ �s

]
DRt+s ◦ �s

and get (recall �̇ = Xt = (�Rt )νt )

∂

∂s

(
Dτt+s Rt+s ◦ �s

)∣∣∣
s=0

= [I − νt ⊗ νt ] (DṘt + D2Rt Xt )

+ (−ν̇t ⊗ νt − νt ⊗ ν̇t )DRt

= Dτ Ṙt + �Rt

(
(I − νt ⊗ νt )D

2Rt

)
[νt ]

+ (DRt · νt ) Dτ�Rt − (DRt · ν̇t )νt .

Note that Dτ (DRt · νt ) = Bt Dτ Rt + (
(I − νt ⊗ νt )D2Rt

)[νt ]. Thus we have

Dτ Rt · ∂

∂s

(
Dτt+s Rt+s ◦ �s

) ∣∣∣
s=0

= (Dτ Rt · Dτ Ṙt )

− �Rt (Bt [Dτ R, Dτ Rt ])
+ �Rt

(
Dτ R · Dτ (DRt · νt )

)
+ (Dτ Rt · Dτ�Rt ) (DRt · νt ).

Therefore by integrating by parts the first and the third terms we obtain

∫
∂Ft

Dτ Rt · ∂

∂s

(
Dτt+s Rt+s ◦ �s

) ∣∣∣
s=0

dH2

=
∫

∂Ft
(Dτ Rt · Dτ Ṙt ) − �Rt

(
Bt [Dτ R, Dτ Rt ]

)
dH2

+
∫

∂Ft
�Rt

(
Dτ R · Dτ (DRt · νt )

) + (Dτ Rt · Dτ�Rt ) (DRt · νt ) dH2

=
∫

∂Ft
−�Rt Ṙt − �Rt

(
Bt [Dτ R, Dτ Rt ]

)
dH2

+
∫

∂Ft
−(DRt · νt ) divτ (�Rt Dτ Rt ) + (Dτ Rt · Dτ�Rt ) (DRt · νt ) dH2

=
∫

∂Ft
−�Rt Ṙt − (DRt · νt ) (�Rt )

2 − �Rt
(
Bt [Dτ R, Dτ Rt ]

)
dH2.

Let us denote ut = uFt and u̇t = ∂
∂t ut . By (7.6) it holds that

Ṙt = Ḣt + ∂

∂t
Q(E(ut )) = −�2Rt + CE(u̇t ) : E(ut ),

and by (7.7) we have

(DRt , νt ) = ∂νt Ht + ∂νt Q(E(ut )) = −|Bt |2 + ∂νt Q(E(ut )).
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Therefore we get
∫

∂Ft
Dτ Rt · ∂

∂s

(
Dτt+s Rt+s ◦ �s

) ∣∣∣
s=0

dH2

=
∫

∂Ft
�Rt �

2Rt − CE(u̇t ) : E(ut )�Rt dH2

+
∫

∂Ft
|Bt |2(�Rt )

2 − ∂νt Q(E(ut )) (�Rt )
2

− �Rt
(
Bt [Dτ R, Dτ Rt ]

)
dH2.

Observe now that using the second equation in (2.12) and (7.5) we have∫
∂Ft

CE(u̇t ) : E(ut )�Rt dH2 =
∫

∂Ft
CE(ut ) : D(u̇t )�Rt dH2

=
∫

∂Ft
CE(ut ) : Dτ (u̇t )�Rt dH2

= −
∫

∂Ft
divτ (�RtCE(ut )) · u̇t

= 2
∫

�\Ft
Q(E(u̇t )) dx .

Collecting the previous three identities we then get
∫

∂Ft
Dτ Rt · ∂

∂s

(
Dτt+s Rt+s ◦ �s

) ∣∣∣
s=0

dH2

= −
∫

∂Ft
|∇�τ Rt |2 + 2Q(E(u̇t ))�Rt dH2

+
∫

∂Ft
|B|2(�Rt )

2 − ∂νt Q(E(ut )) (�Rt )
2 − Bt [∇Rt ,∇Rt ] �Rt dH2.

Wenotice that the first four terms coincide with−∂2 J (Ft )[�Rt ] (see (2.21)). Thus,
combining the last identity with (7.8), we obtain (5.1). �
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