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Abstract. While there exist several reasoners for Description Logics,
very few of them can cope with uncertainty. BUNDLE is an inference
framework that can exploit several OWL (non-probabilistic) reasoners
to perform inference over Probabilistic Description Logics.
In this chapter, we report the latest advances implemented in BUN-
DLE. In particular, BUNDLE can now interface with the reasoners of
the TRILL system, thus providing a uniform method to execute proba-
bilistic queries using different settings. BUNDLE can be easily extended
and can be used either as a standalone desktop application or as a library
in OWL API-based applications that need to reason over Probabilistic
Description Logics.
The reasoning performance heavily depends on the reasoner and method
used to compute the probability. We provide a comparison of the different
reasoning settings on several datasets.

Keywords: Probabilistic Description Logic, Semantic Web, Reasoner

1 Introduction

The aim of the Semantic Web is to make information available in a form that is
understandable and automatically manageable by machines. In order to realize
this vision, the W3C has supported the development of a family of knowledge
representation formalisms of increasing complexity for defining ontologies, called
OWL (Web Ontology Languages), that are based on Description Logics (DLs).
Many inference systems, generally called reasoners, have been proposed to reason
upon these ontologies, such as Pellet [33], Hermit [32] and Fact++ [34].

Nonetheless, modeling real-world domains requires dealing with information
that is incomplete or that comes from sources with different trust levels. This
motivates the need for the management of uncertainty in the Semantic Web,
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and many proposals have appeared for combining probability theory with OWL
languages, or with the underlying DLs [24,17,21,10,23]. Among them, in [27,36]
we introduced the DISPONTE semantics, which applies the distribution seman-
tics [30] to DLs. Examples of systems that perform probabilistic logic inference
under DISPONTE are BUNDLE [27,28,36], and TRILL [38,36,37]. The former
is implemented in Java, the latter in Prolog.

To perform exact probabilistic inference over DISPONTE knowledge bases
(KBs), it is necessary to perform either one of the following reasoning tasks:
justification finding or pinpointing formula extraction. The former method con-
sists of finding the covering set of justifications, i.e., the set of all justifications
for the entailment of the query. In the latter, a monotonic boolean formula is
built, which compactly represents the covering set of justifications. Both of these
non-standard reasoning tasks can be performed by a non-probabilistic OWL rea-
soner. The first version of BUNDLE was able to execute justification finding by
exploiting the Pellet reasoner only [33]. Then it was extended to exploit different
non-probabilistic OWL reasoners and approaches for justification finding [7]. In
particular, it embeds Pellet, Hermit, Fact++ and JFact as OWL reasoners, and
three justification generators, namely GlassBox (only for Pellet), BlackBox and
OWL Explanation.

In this chapter, we illustrate the state of the art of the BUNDLE framework.
In particular, we present a newer version of BUNDLE which also interfaces with
the probabilistic reasoners of the TRILL system, namely: (i) TRILL [38,36],
which solves the justification finding problem, (ii) TRILLP [38,36], which re-
turns the pinpointing formula using the approach defined in [2,3], and (iii) TOR-
NADO [37], which, similarly to TRILLP, returns the pinpointing formula, but
the formula is represented in a way that can be directly used to compute the
probability. In this way, the user can run probabilistic queries in a uniform way
by using the preferred reasoner. In addition, BUNDLE can be easily extended
by “plugging-in” a new reasoner or by including new concrete implementations
of algorithms for justification finding/axiom pinpointing.

The performance of reasoning heavily depends on the reasoner and method
used to compute the probability for a given query and it is of foremost importance
for (distributed) probabilistic rule learning systems such as [29,8]. To evaluate the
system, we performed several experiments on various real-world and synthetic
datasets using different settings.

The chapter is organized as follows: Section 2 briefly introduces DLs, while
Section 3 illustrates the problems of justification finding and pinpointing formula
extraction. Section 4 and Section 5 present DISPONTE and the theoretical as-
pects of inference in DISPONTE KBs respectively. The description of BUNDLE
is provided in Section 6. Finally, Section 7 shows the experimental evaluation
and Section 8 concludes the paper.
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2 Description Logics

An ontology describes the concepts of the domain of interest and their rela-
tions with a formalism that allows information to be processable by machines.
The Web Ontology Language (OWL) is a knowledge representation language for
authoring ontologies or knowledge bases. The latest version of this language,
OWL 2 [35], is a W3C recommendation since 2012. In order to reach some com-
putational properties, it is possible to define a sublanguage of OWL 2, also called
profile, by applying syntactic restrictions.

Descriptions Logics (DLs) provide a logical formalism for knowledge repre-
sentation. They are useful in all the domains where it is necessary to represent
information and perform inference on it, such as software engineering, medical
diagnosis, digital libraries, databases and Web-based informative systems. They
possess nice computational properties such as decidability and (for some DLs)
low complexity [4].

There are many different DL languages that differ in the constructs that are
allowed for defining concepts (sets of individuals of the domain) and roles (sets of
pairs of individuals). The SROIQ(D) DL is one of the most common fragments;
it was introduced by Horrocks et al. in [14] and it is of particular importance
because it is semantically equivalent to OWL 2.

Let us consider a set of atomic concepts C, a set of atomic roles R and a
set of individuals I. A role could be an atomic role R ∈ R, the inverse R− of
an atomic role R ∈ R or a complex role R ◦ S. We use R− to denote the set of
all inverses of roles in R. Each A ∈ A, ⊥ and > are concepts and if a ∈ I, then
{a} is a concept called nominal. If C, C1 and C2 are concepts and R ∈ R∪R−,
then (C1 uC2), (C1 tC2) and ¬C are concepts, as well as ∃R.C, ∀R.C, ∃R.Self,
≥ nR.C and ≤ nR.C for an integer n ≥ 0.

A knowledge base (KB) K = (T ,R,A) consists of a TBox T , an RBox R
and an ABox A. An RBox R is a finite set of transitivity axioms Trans(R), role
asimmetricity axioms Asy(R), role disjointness axioms Dis(R,S), role inclusion
axioms R v S and role chain axioms R ◦ P v S, where R,P, S ∈ R ∪R−. A
TBox T is a finite set of concept inclusion axioms C v D, where C and D are
concepts. An ABox A is a finite set of concept membership axioms a : C and
role membership axioms (a, b) : R, where C is a concept, R ∈ R and a, b ∈ I.

A KB is usually assigned a semantics using interpretations of the form I =
(∆I , ·I), where ∆I is a non-empty domain and ·I is the interpretation function
that assigns an element in ∆I to each individual a, a subset of ∆I to each
concept C and a subset of ∆I ×∆I to each role R. The mapping ·I is extended
to complex concepts as follows (where RI(x,C) = {y|〈x, y〉 ∈ RI , y ∈ CI} and
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#X denotes the cardinality of the set X):

>I = ∆I ⊥I = ∅
{a}I = {aI} (¬C)I = ∆I \ CI

(C1 t C2)I = CI1 ∪ CI2 (C1 u C2)I = CI1 ∩ CI2
(∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅} (∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}

(≥ nR.C)I = {x ∈ ∆I |#RI(x,C) ≥ n} (≤ nR.C)I = {x ∈ ∆I |#RI(x,C) ≤ n}
(R−)I = {〈y, x〉|〈x, y〉 ∈ RI} (R1 ◦ ... ◦Rn)I = RI1 ◦ ... ◦RIn

(∃R.Self)I = {x|〈x, x〉 ∈ RI}

SROIQ(D) also permits the definition of datatype roles, which connect an
individual to an element of a datatype such as integers, floats, etc.

A query Q over a KB K is usually an axiom for which we want to test the
entailment from the KB, written as K |= Q.

Example 1. Consider the following KB “Crime and Punishment” containing 4
axioms αi

α1 = Nihilist v GreatMan α2 = ∃killed.> v Nihilist

α3 = (raskolnikov, alyona) : killed α4 = (raskolnikov, lizaveta) : killed

This KB states that if you killed someone then you are a nihilist and whoever is
a nihilist is a “great man” (TBox). It also states that Raskolnikov killed Alyona
and Lizaveta (ABox). The KB entails the query Q = raskolnikov : GreatMan (but
are we sure about that?).

2.1 Decidability of SROIQ

In order to ensure decidability of inferencing in SROIQ DL, three conditions
must be met:

– no cardinality restrictions must be applied on transitive roles or on roles that
have transitive subroles [16,15];

– the RBox must be regular [14];
– in the class expressions ≥ nR.C, ≤ nR.C and ∃R.Self, and in the axioms
∃R.Self v ⊥ (also known as role irreflexivity axiom Irr(R)), Asy(R) and
Dis(R), R must be simple.

Definition 1 (Regular RBox [14]).

– An RBox is regular if there is a strict linear order ≺ on roles and the RBox
contains only role chain axioms of the following forms:

R ◦R v R S− v R
S1 ◦ S2 ◦ ... ◦ Sn v R R ◦ S1 ◦ S2 ◦ ... ◦ Sn v R
S1 ◦ S2 ◦ ... ◦ Sn ◦R v R

where Si ≺ R for all i = 1, 2, . . . , n.



A Framework for Reasoning on Probabilistic Description Logics 5

Definition 2 (Simple role in SROIQ(D) [14]). Given a role R, its simplic-
ity is inductively defined as follows:

– R is simple if it does not occur on the right hand side of a role inclusion axiom
in R, i.e. there is no role chain axiom of the form: S1 ◦ S2 ◦ · · · ◦ Sn v R;

– an inverse role R− is simple if R is, and
– if R occurs on the right hand side of a role inclusion axiom in R, then R is

simple if, for each S v R, S is a simple role.

3 Justification Finding and Pinpointing Formula

3.1 Justification Finding

Here we discuss the problem of finding the covering set of justifications for a
given query. This non-standard reasoning service is also known as axiom pin-
pointing [31] and it is useful for tracing derivations and debugging ontologies.
This problem has been investigated by various authors [18,31,5,13]. A justifica-
tion corresponds to an explanation for a query Q. An explanation is a subset
of logical axioms E of a KB K such that E |= Q, whereas a justification is an
explanation such that it is minimal w.r.t. set inclusion. Formally, we say that an
explanation J ⊆ K is a justification if for all J ′ ⊂ J , J ′ 6|= Q, i.e. J ′ is not an
explanation for Q . The problem of enumerating all justifications that entail a
given query is called axiom pinpointing or justification finding. The set of all the
justifications for the query Q is the covering set of justifications for Q. Given a
KB K, the covering set of justifications for Q is denoted by All-Just(Q,K).

Below, we provide the formal definitions of justification finding problem.

Definition 3 (Justification finding problem).
Input: A knowledge base K, and an axiom Q such that K |= Q.
Output: The set All-Just(Q,K) of all the justifications for Q in K.

Example 2. Consider the KB and the query Q = raskolnikov : GreatMan of Ex-
ample 1. All-Just(Q,K) = { {α1, α2, α3}, {α1, α2, α4} }.

There are two categories of algorithms for finding a single justification: glass-
box [18] and black-box algorithms. The former category is reasoner-dependent,
i.e. a glass-box algorithm implementation depends on a specific reasoner, whereas
a black-box algorithm is reasoner-independent, i.e. it can be used with any rea-
soner. In both cases, we still need a reasoner to obtain a justification.

It is possible to incrementally compute all justifications for an entailment by
using Reiter’s Hitting Set Tree (HST) algorithm [26]. This algorithm repeatedly
calls a glass-box or a black-box algorithm which builds a new justification. To
avoid the extraction of already found justifications, at each iteration the extrac-
tion process is performed on a KB from which some axioms are removed by
taking into account the previously found justifications. For instance, given a KB
K and a query Q, if the justification J = {β1, β2, β3} was found, where βis are
axioms, to avoid the generation of the same justification, the HST algorithm
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tries to find a new justification on K′ = K r β1. If no new justification is found
the HST algorithm backtracks and tries to find another justification by removing
other axioms from J , one at a time.

3.2 Pinpointing Formula

Given a query, instead of finding the covering set of justifications, we can com-
pute the pinpointing formula, which compactly represents the covering set of
justifications, following the approaches proposed in [2,3].

To build a pinpointing formula, first we have to associate a unique proposi-
tional variable to every axiom E of the KB K, indicated with var(E). Let var(K)
be the set of all the propositional variables associated with axioms in K, then the
pinpointing formula is a monotone Boolean formula built using some or all of the
variables in var(K) and the conjunction and disjunction connectives. A valuation
ν of a set of variables var(K) is the set of propositional variables that are true,
i.e., ν ⊆ var(K). For a valuation ν ⊆ var(K), let Kν := {E ∈ K|var(E) ∈ ν}.

Definition 4 (Pinpointing formula). Given a query Q and a KB K, a mono-
tone Boolean formula φ over var(K) is called a pinpointing formula for Q if for
every valuation ν ⊆ var(K) it holds that Kν |= Q iff ν satisfies φ.

It is worth noting that a pinpointing formula could be directly generated
from the covering set of justifications. However, this formula may not be the
most compact.

Example 3. Consider the KB and the query Q = raskolnikov : GreatMan of Ex-
ample 1. If we associate a Boolean variable Xi with each axiom αi, a pinpoint-
ing formula could be X1 ∧ X2 ∧ (X3 ∨ X4). Another (non-compact) pinpoint-
ing formula could be directly generated from the covering set of justifications:
(X1 ∧X2 ∧X3) ∨ (X1 ∧X2 ∧X4).

4 Probabilistic Description Logics

DISPONTE [27,36] applies the distribution semantics [30] to Probabilistic De-
scription Logic KBs.

In DISPONTE, a probabilistic knowledge base K is a set of certain axioms
and probabilistic axioms. Certain axioms take the form of regular DL axioms,
whereas probabilistic axioms take the form p :: E, where p ∈ [0, 1] and E is a DL
axiom. The probability p can be interpreted as an epistemic probability, i.e., as
the degree of our belief in the truth of axiom E. Another interpretation is that
p represents the trustworthiness level of the data source for the axiom E.

DISPONTE associates independent Boolean random variables to the DL
axioms. The set of axioms that have the random variable assigned to 1 constitutes
a world. The probability of a world w is computed by multiplying the probability
pi for each probabilistic axiom βi included in the world by the probability 1− pi
for each probabilistic axiom βi not included in the world.

Below, we provide some formal definitions for DISPONTE.
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Definition 5 (Atomic choice). An atomic choice is a couple (βi, k) where βi
is the ith probabilistic axiom and k ∈ {0, 1}. The variable k indicates whether βi
is chosen to be included in a world (k = 1) or not (k = 0).

Definition 6 (Composite choice). A composite choice κ is a consistent set
of atomic choices, i.e., (βi, k) ∈ κ, (βi,m) ∈ κ implies k = m (only one decision
is taken for each axiom).

The probability of composite choice κ is: P (κ) =
∏

(βi,1)∈κ pi
∏

(βi,0)∈κ(1 − pi),
where pi is the probability associated with axiom βi, because the random vari-
ables associated with axioms are independent.

Definition 7 (Selection). A selection σ is a total composite choice, i.e., it
contains an atomic choice (βi, k) for every probabilistic axiom of the theory. A
selection σ identifies a theory wσ called a world: wσ = C∪{βi|(βi, 1) ∈ σ}, where
C is the set of certain axioms.

P (wσ) is a probability distribution over worlds. Let us indicate with W the
set of all worlds. The probability of Q is [27]: P (Q) =

∑
w∈W:w|=Q P (w), i.e. the

probability of the query is the sum of the probabilities of the worlds in which
the query is true.

Example 4. Let us consider the knowledge base and the query Q = raskolnikov :
GreatMan of Example 1 where some of the axioms are probabilistic:

β1 = 0.2 :: Nihilist v GreatMan α1 = ∃killed.> v Nihilist

β2 = 0.6 :: (raskolnikov, alyona) : killed β3 = 0.7 :: (raskolnikov, lizaveta) : killed

Whoever is a nihilist is a “great man” with probability 0.2 (β1) and Raskolnikov
killed Alyona and Lizaveta with probability 0.6 and 0.7 respectively (β2 and β3).
Moreover there is a certain axiom (α1). The KB has eight worlds and Q is true
in three of them, corresponding to the selections:

{ {(β1, 1), (β2, 1), (β3, 1)}, {(β1, 1), (β2, 1), (β3, 0)}, {(β1, 1), (β2, 0), (β3, 1)} }

The probability is P (Q) = 0.2·0.6·0.7+0.2·0.6·(1−0.7)+0.2·(1−0.6)·0.7 = 0.176.

5 Inference in Probabilistic Description Logics

It is often infeasible to find all the worlds where the query is true. To reduce
reasoning time, inference algorithms find, instead, explanations for the query
and then compute the probability of the query from them. Below we provide
the definitions of DISPONTE explanations and justifications, which are tightly
intertwined with the previous definitions of explanation and justification for the
non-probabilistic case.

Definition 8 (DISPONTE Explanation). A composite choice φ identifies a
set of worlds ωφ = {wσ|σ ∈ S, σ ⊇ φ}, where S is the set of all selections. We
say that φ is an explanation for Q if Q is entailed by every world of ωφ.



8 G. Cota, R. Zese et al.

Definition 9 (DISPONTE Justification). We say that an explanation γ is
a justification if, for all γ′ ⊂ γ, γ′ is not an explanation for Q.

The set of worlds ωΦ identified by the set of explanations Φ is covering Q
if every world wσ ∈ W in which Q is entailed is such that wσ ∈ ωΦ. In other
words, a covering set Φ identifies all the worlds in which Q succeeds.

Two composite choices κ1 and κ2 are incompatible if their union is incon-
sistent. For example, κ1 = {(βi, 1)} and κ2 = {(βi, 0)} are incompatible. A set
K of composite choices is pairwise incompatible if for all κ1 ∈ K, κ2 ∈ K,
κ1 6= κ2 implies that κ1 and κ2 are incompatible. The probability of a pairwise
incompatible set of composite choices K is P (K) =

∑
κ∈K P (κ).

Given a query Q and a covering set of pairwise incompatible explanations Φ,
the probability of Q is [27]:

P (Q) =
∑

wσ∈ωΦ

P (wσ) = P (ωΦ) = P (Φ) =
∑
φ∈Φ

P (φ) (1)

Unfortunately, in general, explanations (and hence justifications) are not
pairwise incompatible, therefore the covering set of justifications cannot be di-
rectly used to compute the probability. Even more so, the pinpointing formula,
which compactly encodes the covering set of justifications, cannot be directly
used for probability computation. The problem of calculating the probability of
a query is therefore reduced to that of finding a covering set of justifications or
the pinpointing formula and then transforming it into a covering set of pairwise
incompatible explanations.

We can think of using non-probabilistic reasoners for justification finding
or pinpointing formula extraction, then consider only the probabilistic axioms
and transform the covering set of justifications or the pinpointing formula into
a pairwise incompatible covering set of explanations from which it is easy to
compute the probability.

Example 5. Consider the KB and the query Q = raskolnikov : GreatMan of
Example 4. If we use justification finding algorithms by ignoring the proba-
bilistic annotations, we find the following non-probabilistic justifications: J =
{ {β1, α1, β2}, {β1, α1, β3} }. Then we can translate them into DISPONTE justi-
fications: Γ = { {(β1, 1), (β2, 1)}, {(β1, 1), (β3, 1)} }. Note that Γ is not pairwise
incompatible, therefore we cannot directly use Equation (1). The solution to this
problem will be shown in the following section.

6 BUNDLE

The reasoner BUNDLE [27,28] computes the probability of a query w.r.t. DIS-
PONTE KBs by first computing all the justifications for the query, then con-
verting them into a pairwise incompatible covering set of explanations by build-
ing a Binary Decision Diagram (BDD). Finally, it computes the probability by
traversing the BDD using function Probability described in [19]. A BDD for
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a function of Boolean variables is a rooted graph that has one level for each
Boolean variable. A node n has two children corresponding respectively to the
1 value and the 0 value of the variable associated with the level of n. When
drawing BDDs, the 0-branch is distinguished from the 1-branch by drawing it
with a dashed line. The leaves store either 0 or 1.

Example 6 (Example 4 cont.). Let us consider the KB and the query of Exam-
ple 4. If we associate random variables X1 with axiom β1, X2 with β2 and X3

with β3, the BDD representing the set of explanations is shown in Figure 1. By
applying function Probability [19] to this BDD we get

Probability(n3) = 0.7 · 1 + 0.3 · 0 = 0.7

Probability(n2) = 0.6 · 1 + 0.4 · 0.7 = 0.88

Probability(n1) = 0.2 · 0.88 + 0.8 · 0 = 0.176

and therefore P (Q) = Probability(n1) = 0.176, which corresponds to the
probability given by DISPONTE.

X1 n1

X2 n2

X3 n3

1 0

Fig. 1. BDD representing the set of explanations for the query of Example 4.

BUNDLE uses implementations of the HST algorithm to incrementally ob-
tain all the justifications from non-probabilistic reasoner. Moreover, in the latest
version, BUNDLE can exploit the reasoners provided by the TRILL framework,
thus providing a simple and uniform way to execute probabilistic queries by
using the preferred method and reasoner.

Figure 2 shows the new architecture of BUNDLE. The main novelties are the
interfaces for the probabilistic reasoners of the TRILL system. These reasoners
directly return the probability of the query, therefore, when using one of the
TRILL reasoner interfaces, the Probability Computation module, which converts
a covering set of justifications into a BDD, is not used.

BUNDLE now supports: (1) four different OWL reasoners: Pellet 2.5.0, Her-
mit 1.3.8.413 [32], Fact++ 1.6.5 [34], and JFact 4.0.44; (2) three probabilistic
reasoners TRILL, TRILLP and TORNADO, which exploit Prolog’s backtrack-
ing feature to obtain the justifications or the pinpointing formula; and (3) three
different strategies for finding a justification using a non probabilistic reasoner,
which are:
4 http://jfact.sourceforge.net/

http://jfact.sourceforge.net/
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User Interface

BUNDLE App

Pellet Hermit Fact++ JFact

Probability Computation

BUNDLE Library

OWL
Explanation

GlassBox
(Pellet)

BlackBox
(OWLAPI)

TRILL

TORNADO

TRILLP

TRILL System

Custom 
Hitting Set Tree

TRILL
interface

TRILLP

interface

TORNADO
interface

TRILL Interfaces

Fig. 2. Software architecture of BUNDLE.

GlassBox A glass-box approach which depends on Pellet. It is a modified ver-
sion of the GlassBoxExplanation class contained in the Pellet Explanation
library.

BlackBox A black-box approach offered by the OWL API5 [12]. The OWL API
is a Java API for the creation and manipulation of OWL 2 ontologies.

OWL Explanation A library that is part of the OWL Explanation Work-
bench [13]. The latter also contains a Protégé plugin, underpinned by the
library, that allows Protégé users to find justifications for entailments in their
OWL 2 ontologies.

All the supported non-probabilistic reasoners can be paired with the BlackBox
or the OWL Explanation methods, while only Pellet can exploit the GlassBox
method.

To find all justifications using the GlassBox and BlackBox approaches, we
extended the HSTExplanationGenerator class of the OWL API, which provides
an implementation of the HST algorithm, in order to support annotated axioms
(DISPONTE axioms are OWL axioms annotated with a probability). OWL Ex-
planation, instead, already contains an HST implementation and a black-box
approach that supports annotated axioms.

Table 1 provides an overview of the reasoners and methods supported by the
BUNDLE framework.

BUNDLE can be easily extended in three main ways:

– By adding a non-probabilistic reasoner that implements the OWLReasoner

interface of the OWL API library.
– By adding a probabilistic reasoner that implements the interface

ProbabilisticReasoner defined in BUNDLE. Indeed, the interfaces for the
TRILL reasoners implement this Java interface.

5 http://owlcs.github.io/owlapi/

http://owlcs.github.io/owlapi/
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Table 1. Reasoners supported by the BUNDLE framework. The symbol Xmeans that
the reasoner is compatible with the method used for computing the probability.

Justification Finding Pinpointing Formula

Hitting Set Tree Prolog backtracking

Reasoner DL GlassBox BlackBox OWL Expl. built-in built-in

Pellet SROIQ(D) X X X
Hermit SROIQ(D) X X
Fact++ SROIQ(D) X X
JFact SROIQ(D) X X
TRILL SHIQ X
TRILLP SHI X
TORNADO SHI X

– By adding a non-probabilistic reasoner that is able to perform the rea-
soning task of justification finding. This reasoner should implement the
ExplanationReasoner interface defined in BUNDLE.

BUNDLE can be used as standalone desktop application or as a library. More-
over, we developed a web application available at http://bundle.ml.unife.it/
in a similar way to what has been done for TRILL [6] and cplint [1]. The web
application allows the user to test BUNDLE without installing any software on
the local machine.

6.1 Using BUNDLE as an Application

BUNDLE is an open-source software and is available on Bitbucket, together with
its manual, at https://bitbucket.org/machinelearningunife/bundle.

A BUNDLE image was deployed in Docker Hub. Users can start using BUN-
DLE by executing the following commands:

sudo docker pull giuseta/bundle :4.0.0

sudo docker run -it giuseta/bundle :4.0.0 bash

A bash shell of the container then starts and users can execute probabilistic
queries by running the command bundle.

6.2 Using BUNDLE as a Library

BUNDLE can also be used as a library. Once the developer has added BUN-
DLE dependency in the project’s POM file, the probability of the query can be
obtained in just few lines:

1 BundleConfigurationBuilder configBuilder = new
BundleConfigurationBuilder(ontology);

2 BundleConfiguration config = configBuilder
3 .hstMethod(hstMethod).reasoner(reasonerName)
4 .buildConfiguration ();
5 Bundle reasoner = new Bundle(config);
6 reasoner.init();
7 QueryResult result = reasoner.computeQuery(query);

http://bundle.ml.unife.it/
https://bitbucket.org/machinelearningunife/bundle
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where ontology and query are objects of the classes OWLOntology and
OWLAxiom of the OWL API library respectively.

Lines 1-4 show that the developer can inject the preferred HST method for
justification finding (none for the TRILL reasoners) and the favorite reasoner
by using a configuration builder. After initialization (lines 5-6), probabilistic
inference is performed (line 7).

7 Experiments

We performed four different tests to compare the possible configurations of BUN-
DLE, which depend on the reasoner and the justification search strategy chosen,
for a total of 12 combinations. For each query we set a timeout of 10 minutes. In
the first test we compared all configurations on four different datasets, in order to
highlight which combination reasoner/strategy shows the best behavior in terms
of inference time. To investigate the scalability of the different configurations, in
the last three experiments, we considered KBs of increasing size in terms of the
number of probabilistic axioms.

All tests were performed on the HPC System Galileo6 equipped with Intel
Xeon E5-2697 v4 (Broadwell) @ 2.30 GHz, using 1 core for each test.

Test 1 The first test considers 4 real world KBs of various complexity as in [38]:
(1) BRCA [20], which models the risk factors of breast cancer; (2) an extract of
DBPedia [22], containing structured information from Wikipedia, usually those
contained in the information box on the righthand side of pages; (3) Biopax
level 3 [9], which models metabolic pathways; (4) Vicodi [25], which contains
information on European history and models historical events and important
personalities.

We used a version of the DBPedia, Biopax and BRCA KBs without the ABox
and a version of Vicodi with an ABox of 19 individuals. For each KB we added
a probability annotation to each axiom. The probabilistic values of a KB were
randomly assigned using a uniform distribution U(0, 1) and are fixed for all the
queries performed on that KB. We randomly created 50 different subclass-of
queries for BRCA, DBPedia and BioPax, and 50 different instance-of queries for
Vicodi, following the concepts hierarchy of the KBs, ensuring each query had at
least one explanation.

Table 2 shows the average time in seconds to answer queries with different
BUNDLE configurations. Bold values highlight the fastest configuration for each
KB. Cells with “–” indicate that the timeout was reached in at least one query.
Cells with “crash”, instead, indicate that the reasoner experienced an internal
error and was not able to return a result.

Overall, the best results are obtained by Pellet with the GlassBox approach.
However, the use of OWL Explanation library shows competitive results. For
BioPax and Vicodi KBs, the Fact++/BlackBox configuration was not able to

6 http://www.hpc.cineca.it/hardware/galileo

http://www.hpc.cineca.it/hardware/galileo
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return a result for any query. TRILL and TRILLP reached the timeout at least
in one query for BioPax and BRCA, while using TORNADO a timeout occurred
when querying BioPax.

Table 2. Average time (in seconds) for probabilistic inference with all possible con-
figurations of BUNDLE over different datasets (Test 1). “–” means that the execution
timed out (600 s). crash means that the reasoner experienced an internal error.

Dataset
Reasoner Method BioPax BRCA DBPedia Vicodi Average

Pellet GlassBox 1.316 0.886 0.623 0.956 0.945
Pellet BlackBox 1.619 1.653 0.570 1.614 1.364
Pellet OWLExp 1.070 1.034 0.914 1.420 1.110
Hermit BlackBox 4.199 6.694 1.299 4.832 4.256
Hermit OWLExp 1.198 2.071 0.835 2.024 1.532
JFact BlackBox 1.648 1.852 0.541 1.341 1.346
JFact OWLExp 0.887 1.012 0.878 1.179 0.989
Fact++ BlackBox crash 0.649 0.363 crash n.a.
Fact++ OWLExp 0.903 0.554 0.588 3.285 1.333
TRILL – – 0.442 0.470 n.a.
TRILLP – – 0.335 0.424 n.a.
TORNADO – 2.439 0.287 0.373 n.a.

Test 2 The second test was performed following the approach presented in [20]
on the BRCA KB (ALCHF(D), 490 axioms). To test BUNDLE, we randomly
generated and added an increasing number of subclass-of probabilistic axioms.
The number of these axioms was varied from 9 to 16, and, for each number,
30 different consistent KBs were created. Every time a KB is generated, the
probability values of the axioms are generated anew. The number of additional
axioms may cause an exponential increase of the inference complexity (please see
[20] for a detailed explanation). In these tests we consider those possible cases
where most of our knowledge is certain but there are some uncertainties.

Finally, an individual was added to every KB, randomly assigned to each
simple class that appeared in the probabilistic axioms, and a random probability
was attached to it. We ran 60 probabilistic queries of the form a : C where a is the
added individual and C is a class randomly selected among those that represent
women under increased and lifetime risk such as WomanUnderLifetimeBRCRisk
and WomanUnderStronglyIncreasedBRCRisk, which are at the top of the concept
hierarchy.

Table 3 shows the execution time averaged over the 60 queries as a function
of the number of probabilistic axioms. For each size, bold values indicate the
best configuration. The results show that TORNADO is the only reasoner that
can provide answers by respecting the time limits and all its execution timings
where competitive with the best configurations.



14 G. Cota, R. Zese et al.

Table 3. Average execution time (in seconds) for probabilistic inference with different
configurations of BUNDLE on versions of the BRCA KB of increasing size (Test 2).
“–” means that the execution timed out (600 s).

Reasoner Method 9 10 11 12 13 14 15 16

Pellet GlassBox 2.437 1.812 14.914 – 4.101 – 3.743 7.102
Pellet BlackBox 8.082 5.152 29.151 – 14.470 – 12.453 18.727
Pellet OWLExp 3.034 2.339 10.507 – 4.759 – 4.025 5.405
Hermit BlackBox 38.431 22.625 – – 73.854 – – –
Hermit OWLExp 11.249 8.497 29.536 – 18.850 – – 19.692
JFact BlackBox 8.937 5.759 35.504 – 16.451 – 15.096 23.108
JFact OWLExp 3.068 2.384 8.494 – 4.493 – 3.978 5.103
Fact++ BlackBox – – 17.015 – – – – –
Fact++ OWLExp – – – – – – – 4.510
TRLL – – – – – – – –
TRILLP – – – – – – – –
TORNADO 3.425 2.659 4.705 4.252 4.604 4.277 4.022 4.745

Test 3 In the third test we artificially created a set of KBs of increasing size of
the following form:

(β1,i) 0.6 :: Bi−1 v Pi uQi (β2,i) 0.6 :: Pi v Bi (β3,i) 0.6 :: Qi v Bi

where n ≥ 1 and 1 ≤ i ≤ n. The query Q = B0 v Bn has 2n justifications, even
if the KB has a size that is linear in n. We increased n from 2 to 10 in steps of 2
and we collected the running time, averaged over 50 executions. Table 4 shows,
for each n, the average time in seconds that the systems took for computing the
probability of the query Q (in bold the best time for each size). Cells with “–”
indicate that the timeout occurred at least in one query.

The experimental results show that using TORNADO outperforms the other
settings. If the size of the synthetic dataset is greater or equal to 10, all the runs
reach a timeout.

Table 4. Average execution time (in seconds) for probabilistic inference with different
configurations of BUNDLE on synthetic datasets (Test 3). “–” means that the execution
timed out (600 s).

Reasoner Method 2 4 6 8 10

Pellet GlassBox 0.890 1.573 7.720 – –
Pellet BlackBox 1.060 2.446 12.738 – –
Pellet OWLExp 1.843 4.055 10.443 31.118 –
Hermit BlackBox 5.968 29.316 168.286 – –
Hermit OWLExp 4.410 16.637 63.062 239.256 –
JFact BlackBox 1.039 2.205 10.978 – –
JFact OWLExp 1.749 3.869 9.833 28.170 –
Fact++ BlackBox – 2.229 – – –
Fact++ OWLExp 1.728 – 10.159 30.923 –
TRILL 0.549 1.244 3.708 34.105 –
TRILLP 0.267 0.443 23.767 – –
TORNADO 0.194 0.203 0.240 0.343 –
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Test 4 To further test the various settings of the BUNDLE framework on real
world KBs, we have conducted a test using the Foundational Model of Anatomy
Ontology (FMA for short)7. FMA is a KB for biomedical informatics that models
the phenotypic structure of the human body anatomy. It contains 4,706 axioms in
the TBox and RBox, with 2,626 different classes. To perform this test, we created
7 versions of the KB containing an increasing number of individuals. The first
5 versions contains a number of individuals varying from 20 to 100 with steps
of 20, while the last 2 versions contain 200 and 300 individuals. Each individual
can be the subject of 1 to 11 assertions. Then we added a probability annotation
to each axiom with random values sampled from a uniform distribution U(0, 1).
For each KB of a given size, we ran 10 times the query i0 : Organ zone, where
i0 is an individual which is present in all the KBs. The averaged running time
is reported in Table 5.

The results show that Pellet with GlassBox obtains the best performances
and that with OWL Explanation paired with any reasoner we obtain competitive
results. However, it seems that the Prolog-based approaches have some issues
handling high numbers of individuals.

Table 5. Average execution time (in seconds) for probabilistic inference with different
configurations of BUNDLE on versions of the FMA KB of increasing size (Test 4). “–”
means that the execution timed out (600 s).

Reasoner Method 20 40 60 80 100 200 300

Pellet GlassBox 1.392 1.491 1.611 1.594 2.457 1.890 1.931
Pellet BlackBox 9.253 9.458 11.772 15.509 43.435 20.649 22.118
Pellet OWLExp 2.000 2.004 2.091 2.092 5.757 2.371 2.470
Hermit BlackBox 23.660 24.306 26.570 32.344 97.917 40.773 40.969
Hermit OWLExp 3.913 3.907 3.950 4.201 10.349 4.169 4.184
JFact BlackBox 7.715 8.206 9.612 12.129 31.382 17.708 17.547
JFact OWLExp 1.900 1.985 1.956 2.003 4.995 2.290 2.294
Fact++ BlackBox 8.219 – 9.526 11.676 34.216 16.953 –
Fact++ OWLExp 1.644 1.687 1.689 1.774 4.648 1.853 1.845
TRILL 17.286 23.912 35.932 59.228 93.456 – –
TRILLP 17.884 31.431 50.811 89.426 142.585 – –
TORNADO 17.035 24.192 37.112 62.409 97.258 – –

8 Conclusions

In this chapter, we illustrated the state of the art of BUNDLE, a framework for
reasoning on Probabilistic Description Logics KBs that follow DISPONTE. The
framework can be used both as a standalone application and as a library and
it allows to pair 4 different OWL reasoners with 3 different approaches to find
query justifications. Moreover, the latest version add the possibility of using the
Prolog-based probabilistic reasoners TRILL, TRILLP and TORNADO. We also

7 http://si.washington.edu/projects/fma

http://si.washington.edu/projects/fma
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developed a web application that allows to test BUNDLE without installing any
software on the local machine.

We provided a comparison between the various configurations reasoner/ap-
proach over different datasets, showing that in 2 out of 4 experiments (Test 1 and
Test 4) Pellet paired with GlassBox or any reasoner paired with the OWLExpla-
nation library achieve the best results in terms of inference time on a probabilistic
ontology. However, for BRCA datasets of increasing size (Test 2) and for syn-
thetic datasets with queries that have an exponential number of justifications
(Test 3), TORNADO showed the best performance.

In the future, we plan to study the effects of glass-box or grey-box methods for
collecting explanations. Moreover, we plan to integrate in BUNDLE a reasoner
based on Abductive Logic Programming [11].
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