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Abstract: In the present work, the provenance discrimination of Argentinian honeys was used as case
study to compare the capabilities of three spectroscopic techniques as fast screening platforms for honey
authentication purposes. Multifloral honeys were collected among three main honey-producing
regions of Argentina over four harvesting seasons. Each sample was fingerprinted by FT-MIR,
NIR and FT-Raman spectroscopy. The spectroscopic platforms were compared on the basis of
the classification performance achieved under a supervised chemometric approach. Furthermore,
low- mid- and high-level data fusion were attempted in order to enhance the classification results.
Finally, the best-performing solution underwent to SIMCA modelling with the purpose of reproducing
a food authentication scenario. All the developed classification models underwent to a “year-by-year”
validation strategy, enabling a sound assessment of their long-term robustness and excluding any
issue of model overfitting. Excellent classification scores were achieved by all the technologies
and nearly perfect classification was provided by FT-MIR. All the data fusion strategies provided
satisfying outcomes, with the mid- and high-level approaches outperforming the low-level data
fusion. However, no significant advantage over the FT-MIR alone was obtained. SIMCA modelling
of FT-MIR data produced highly sensitive and specific models and an overall prediction ability
improvement was achieved when more harvesting seasons were used for the model calibration (86.7%
sensitivity and 91.1% specificity). The results obtained in the present work suggested the major
potential of FT-MIR for fingerprinting-based honey authentication and demonstrated that accuracy
levels that may be commercially useful can be reached. On the other hand, the combination of
multiple vibrational spectroscopic fingerprints represents a choice that should be carefully evaluated
from a cost/benefit standpoint within the industrial context.
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1. Introduction

According to the European Union Council Directive 2001/110/EC [1] and FAO/WHO Codex
Alimentarius [2], honey is defined as the natural substance produced by Apis mellifera bees from plant
nectar or excretions of plant-sucking insects. As a relative expensive food commodity, honey is known
to be highly vulnerable to adulteration with the main concern historically being its dilution with
cheaper sugars and/or syrups. Nowadays, the premium price usually commanded by mono-floral
and mono-geographic products encourages other fraud practices such as false origin labelling or
misdescription [3].

Reliable analytical methods for the honey authenticity assessment are highly claimed and
lot of research has been undertaken in this field. Botanical origin is traditionally confirmed by
melissopalynology, a microscopy-based qualitative and quantitative characterization of pollen [4].
This technique has been tested also for geographical discrimination purposes, but its application suffers
from methodological shortages and limitations [3,5]. Consequently, novel alternative approaches have
been proposed, including those based on mass spectrometry, vibrational spectroscopy and molecular
biology [6–8]. The targeted quantification of specific compounds indicative for certain properties and/or
origin would represent the most straightforward approach for food authentication; the comparison of
the measured parameter with a control limit would empower the direct assessment of the product
compliance and might also be used for forensic purposes [9]. However, finding reliable authenticity
markers for honey’s botanical/geographical origin proved to be a hard task due to the number of factors
affecting its chemical composition (e.g., beekeeping technique, harvest and storage environmental
conditions, etc.). In addition, the analytical output may strongly depend on the adopted sample
preparation procedure, hindering the data comparison and interpretation [10].

Over the past few years, new food testing strategies based on the so-called fingerprinting
approaches have been introduced. The intrinsic aim of food fingerprinting is the non-targeted detection
of as many features as technically possible, by means of high-throughput techniques, to gain a
comprehensive insight into the sample composition. The recorded output consists of multidimensional
datasets which, beside relevant information, may also contain unintended systematic and random
variation. For this reason, mathematical and statistical tools (multivariate analysis/chemometrics)
constitute an integral part of the fingerprinting workflow for the extraction of meaningful information
from the raw data [9]. A review of the main fingerprinting technologies has been published by Ellis
et al., with particular interest toward vibrational spectroscopy techniques, namely Raman, near- and
mid-infrared spectroscopy [11]. These platforms offer non-destructive and cost-effective solutions
to get quick spectral information about the tested material; the easy-of-use and potential on/in-line
implementation represent further advantages over traditional methods that contributed to their spread
in virtually all branches of agricultural and food industries [12].

In the honey authenticity field, the potential of vibrational spectroscopy coupled to multivariate
data analysis to confirm the product’s claimed provenance [6,13–17] and/or botanical origin [18–20]
has been widely investigated. Most of the published works are represented by truthful feasibility
studies that demonstrated the capability of the employed technologies to capture differences between
the analysed honey samples. To this end, discriminant analysis (DA) techniques have been used to
develop supervised classification models that would correctly assign each sample to its belonging
class. However, in real-world authentication contexts, no information is normally available about
the alternative classes to which the tested item may belong. Indeed, the goal is typically to establish
whether the analysed sample is compliant or not with a defined reference standard. For these reasons,
DA methods have been defined inappropriate for solving food authenticity problems by several
authors [21–23]. In contrast, one-class classifier (OCC) approaches should be preferred. Furthermore,
the sample collection in the above-mentioned studies was most often limited to 1–2 years, thus hardly
representative of the potential seasonal variability. This has certainly posed some limitations for a
solid validation of the achieved classification results. As a matter of fact, the adaption of existing
models to new harvests is a problem scarcely addressed in pilot studies, usually due to the limited
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samples and/or resources availability. Nevertheless, it represents an essential challenge to be faced for
a relevant implementation of non-targeted fingerprinting approaches in routine analysis [24].

The present work deals with the geographical origin discrimination of Argentinian honeys.
Multifloral honeys were collected from three main honey-producing Argentinian provinces (i.e., Buenos
Aires, Catamarca, Misiones) and the sampling was repeated over four harvesting seasons, from 2014 to
2017. Each sample was fingerprinted by near-infrared (NIR), Fourier-transform mid-infrared (FT-MIR)
and Raman (FT-Raman) spectroscopy. The main intention was not the development of a multivariate
model able to correctly classify the analysed samples according to their provenance. Rather, the aim
was to use this survey as a case study to compare the capabilities of the employed spectroscopic
techniques as fast screening platforms for honey authentication purposes. In order to further improve
the results obtained by the individual techniques, different data fusion strategies were attempted.
Finally, the best-performing solution (i.e., either individual or fused data) was further modelled using
an OCC approach with the purpose of reproducing a food authentication scenario and establish
whether commercially useful accuracy levels can be reached. All the developed classification models
underwent to a “year-by-year” validation strategy that enabled a sound assessment of their long-term
robustness and excluded any issue of model overfitting.

2. Materials and Methods

2.1. Sample Collection

Authentic and traceable multifloral honey samples were collected from three main honey-
producing provinces of Argentina: Buenos Aires (BA), Catamarca (Cat) and Misiones (Mis) (Figure S1),
within the framework of the Argentinean National Projects PICT 3264/2014 and PICT 0774/2017,
following the instructions depicted on the Projects’ analytical plan, and used for the scope of the
present study. The samples (about 1 Kg of raw honey each) were provided directly by beekeepers
and/or honey producer cooperatives along with farming information: harvest date and conditions,
declared botanical origin, field or hive address and GPS coordinates, agricultural system, treatments,
etc. The honeys were harvested between April and August and the sampling was repeated over four
harvesting seasons (i.e., 2014, 2015, 2016 and 2017). Collected information on honey samples are to be
considered part of the above-mentioned projects, and may be available upon request according to the
data protection policy.

From here on, the sample batches (i.e., honeys from each harvest) are referred to as HN2014,
HN2015, HN2016, HN2017, respectively. The total number of samples was n = 502 and an overview of
the sample set is given in Table S1. After collection, the honeys were stored in screw-capped glass
containers, in the dark and at 4 ◦C, until analysis.

2.2. Instrumental Analysis

All the collected samples were fingerprinted by means of FT-MIR, FT-Raman and NIR. After the
collection, each sample batch (i.e., harvest) was scanned over a 14-day period. Prior to the analysis,
the honeys were incubated at 40 ◦C and manually stirred in order to dissolve any crystalline residue
material. Quality control materials were scanned throughout the whole analysis in order to monitor
potential batch-to-batch instrumental drift.

FT-MIR spectra were recorded in attenuated total reflection (ATR) mode, on a Vertex 70 FT-IR
spectrometer (Bruker, Billerica, MA, USA), equipped with a Globar source, a DLaTGS detector and a
Golden Gate ATR cell (Specac Ltd., Orpington, UK). Analyses were carried out in triplicate, placing
the honey samples directly on the ATR crystal. All the spectra were computed at 4 cm−1 resolution,
across the spectral range 4000–600 cm−1 and averaging a total of 64 scans. Data export was performed
by Opus 7.2 software (Bruker).

FT-Raman spectra were collected on a Vertex 70 equipped with the RAM II add-on module
(Bruker), a laser source emitting at 1064 nm and a Ge(418-T/R) detector cooled by liquid N2. The laser
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power was set to 0.8 W. Honey samples were placed in a glass tube and analyzed in duplicate, across the
spectral range 3600–0 cm−1, at a nominal resolution of 4 cm−1. Each spectrum was obtained by
averaging 128 scans and exported with Opus 7.2 software (Bruker).

NIR spectroscopic analysis was performed on an XDS Vis/NIR spectrometer (FOSS Analytical,
Hilleroed, Denmark) equipped with a tungsten halogen lamp and a dual detector Si (400–1100 nm) and
PbS (1100–2500 nm). The spectra were recorded in transflectance mode, directly depositing the honey
on the golden reflector. The analysis ran in duplicate and a total of 16 scans were averaged for each
spectrum, at a nominal resolution of 2 nm, across the spectral range 400–2500 nm. Signal acquisition
and export were performed by ISIscan software (FOSS Analytical).

2.3. Statistical Data Analysis

All the chemometric computations were carried out using Matlab v2019b (The Mathworks, Inc.,
Natick, MA, USA) and the PLS Toolbox (Eigenvector Research, Inc., Manson, WA, USA).

2.3.1. Data Preprocessing

Prior to any exploratory or classification analysis, spectral preprocessing was applied to reduce
the impact of unwanted sources of variability on the overall signal, thus highlighting the chemical
information contained in the spectra. Different algorithms for spectral pretreatment, namely 1st and
2nd order derivative according to the Savitzky–Golay method (S-G), multiplicative scatter correction
(MSC) and standard normal variate (SNV), were tested both on their own and in combination. The SNV
and MSC are both designed to remove from reflectance spectra part of the variability that may be
caused by scattering effects. In many cases, these two spectral pretreatment produced very similar
results, so that they are widely regarded as exchangeable [25]. S-G derivative filter emphasizes band
width, position, and separation while simultaneously reducing baseline and background effects [26].

2.3.2. Unsupervised Pattern Recognition

After the preprocessing, principal component analysis (PCA) was performed as exploratory
data analysis for the detection of evident outlying samples and/or potential data structures in a
reduced-dimension space. The underlying concept of the PCA is to decrease the dimensionality of a
dataset containing a large number of interrelated variables, while retaining as much as possible of the
initial data variation. The original descriptors are “compressed”, through linear combination, into a
new set of uncorrelated variables (i.e., principal components, PCs), which point in the directions of
maximal variance. The so-called scores and loadings constitute the main output of the PCA. The scores
represent the newly computed latent variables onto which the objects are projected, therefore they can
be interpreted in exactly the same way as any other variable. On the other hand, the loadings are the
weights given to the original variables during the computation of the PCs; thus, they determine what a
PC represent. Both scores and loadings can be graphically plotted as line or scatter plots [27].

2.3.3. Supervised Pattern Recognition and Validation Strategy

The employed spectroscopic techniques were compared on the basis of the classification
performance achieved under a supervised chemometric approach, by using partial least squares
discriminant analysis (PLS-DA) as classification algorithm. PLS-DA is arguably the most widely used
DA technique, particularly suitable for dealing with data matrices characterized by a large number of
highly correlated variables, such as spectroscopic data. PLS-DA can be regarded as a linear two-class
classifier, although extension to more than two groups is also possible. The method aims to find a
linear decision function(s) that divides the multidimensional variable space into as many regions as
the number of classes. The objects are then projected onto lines orthogonal to this function and their
distance along this discriminator is considered as discriminant score [28].

Binary PLS-DA models were generated on each data block, considering two geographical regions
at once (i.e., BA-Mis, BA-Cat, Cat-Mis). At first, the models were built including all the harvesting
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seasons and optimized through “leave-one-out” cross-validation. Afterwards, the so-called receiver
operating characteristic (ROC) curves were derived. ROC curves are widely used in many application
fields as they allow a straightforward comparison of binary classifier systems. In the multivariate
case, the curves are built varying the criterion threshold at which the classification is performed.
Model’s sensitivity (i.e., fraction of compliant objects correctly accepted) and specificity (i.e., fraction of
alien objects correctly rejected) are computed at each step and graphically represented in a two-axis
Cartesian plot, in which 1-specificity is usually reported on the x-axis against the sensitivity on the
y-axis. Experimental outcomes are connected by a line that constitutes the ROC curve. The area under
the curve (AUC) is often used as summary measure of the general discrimination quality of the model.
Intuitively, the larger the AUC, the higher the model classification ability. The ideal situation would
be with both sensitivity and specificity equal to 1, which corresponds to a curve passing through
the top-left corner of the graph and an AUC = 1; in contrast, a curve lying on the diagonal bisector
(corresponding to an AUC = 0.5) suggests no discrimination [23].

Since ROC curves were built upon a cross-validation procedure, which may be prone to overfitting,
the results reliability was ensured by the following validation strategy. At first, models were trained
on the HN2014 and the provenance of HN2015 was predicted. Afterwards, the training set was
augmented with the HN2015 samples and the models, upon re-optimization, were applied for the
prediction of HN2016 provenance. As final step, HN2014, HN2015 and HN2016 were included in the
training set and the HN2017 samples were classified. In this manner, the whole process involved three
external validation steps independent of each other; thus, it can be considered much more reliable than
a cross-validation approaches [29]. The validation scheme is summarized in Figure S2.

2.3.4. Data Fusion

Since each honey was fingerprinted by three spectroscopic techniques, three different data matrices
for the same sample set were obtained. The process of integrating multiple data blocks into a single
global model is called data fusion (DF) and can lead to improvements of the classification accuracy
respect to the individual data sources. Essentially, three DF strategies have been proposed in literature
according to the degree of information merged: low, mid- and high-level data fusion (LL-, ML- and
HL-DF, respectively). In LL-DF, data from all sources are simply concatenated column-wise into a single
array. The merged matrix is then processed by the desired chemometric technique. ML-DF operates
in a similar way, but relevant features are previously extracted from each data sources, separately.
These features can be original descriptors identified as relevant or, more commonly, latent variables
(e.g., PCA scores). The so-extracted variables are then concatenated prior to the multivariate data
analysis. Lastly, in the HL-DF, separate models are built on the individual data blocks and the fusion
occurs at the decision level, i.e., the individual predictions are integrated into a single final response.
A more detailed description of DF methodologies employed in food and beverage authentication can
be found in [30].

In the present study, LL-, ML- and HL-DF were attempted for the HN2017 prediction (i.e.,
last step of the year-by-year validation) with the aim of improving the performance of the single
techniques. Briefly:

LL-DF: FT-MIR, FT-Raman and NIR data blocks consisted of 1349, 3009 and 751 variables,
respectively. Each dataset was preprocessed according to its optimal spectral pretreatment prior to the
concatenation. As a result, each sample was described by 5109 predictors. Autoscaling was applied to
the fused matrix before further modelling;

ML-DF: PCA was separately performed on the training set of each data block. HN2017 objects
were projected onto the PCs space so that both training and test sets were described by the same
(latent) variables. Thereafter, PCA scores obtained from the individual blocks were merged and used
for subsequent modelling;

HL-DF: The provenance of HN2017 samples was separately predicted carrying out PLS-DA on
the individual data blocks as described in Section 2.3.3. Therefore, three column vectors containing
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the predicted classes were obtained and merged into a single array. The final decision on the class
membership was made upon majority vote criterion.

2.3.5. Soft Independent Modelling of Class Analogy

Soft independent modelling of class analogy (SIMCA) was the first class-modelling method
introduced in the literature. It is a non-probabilistic distance-based modelling which relies on the
assumption that the main systematic variability of the class of interest can be captured by a PCA model
of appropriate dimensionality. The results of the PCA decomposition of the target category are used to
define the so-called SIMCA inner space. At this point, the membership of the tested objects is decided
on the basis of some statistical criterion for outlier detection. A comprehensive tutorial of SIMCA,
and OCC methods in general, is provided in [23].

In the present study, being the most represented within the sample set, BA was set as target class
whereas Catamarca and Misiones honeys were used as alien objects to challenge the model. The “degree
of outlyingness” with respect to the target category was computed as combination of the Mahalanobis
distance to the center of the inner space (T2) and the orthogonal distance (Q). For multivariate models
whose assignation rule is based on the combined T2-Q distances, the classification outcome can be
graphically represented in a Cartesian plot reporting the T2 and Q of the tested objects on the x- and
y-axis, respectively. Roughly, the further from the origin (down-left corner) the sample is, the higher is
its degree of outlyingness.

The same validation strategy described in Section 2.3.3 was adopted to ensure the reliability of the
obtained classification results.

3. Results

3.1. Data Exploration

Prior to any chemometric manipulation, the recorded raw spectra of all honey samples were
plotted and visually inspected (Figure S3). While very consistent FT-MIR and NIR spectra were
obtained, FT-Raman spectra exhibited evident baseline drift, likely due to fluorescence phenomena.
Therefore, the optimal combination of spectral filters and/or mathematical preprocessing was found
to be SNV + S-G derivative (1st order derivative, 2nd order polynomial, 9 points window) + Mean
centering for FT-MIR and NIR spectra, whereas a baseline correction step (manually-selected points,
3rd order polynomial, 5 regions) prior to SNV + Mean centering was included in the FT-Raman data
preprocessing workflow.

As explained in Section 2.1, each sample batch (i.e., harvest) was scanned within 14 days after
the collection. However, the analysis of the whole sample set was performed over a 4-years period.
Therefore, the spectra recorded from the quality control materials were both visually examined and
inspected through PCA in order to reveal any batch-to-batch instrumental drifts. No substantial
spectral differences and/or separation in the scores plot were observed further to the application of
SNV as data pretreatment (data not shown).

Once the data consistency had been ensured, PCA was carried out on the preprocessed honey
spectra. The first three PCs accounted for more than 87% of the total variance in all the datasets.
Regardless of the used platform, the PC1 vs. PC2 scores plot highlighted a noteworthy separation
between BA and Mis honeys, whereas Cat samples were more scattered (Figure 1). Visual examination
of higher order PCs did not reveal any greater degree of separation. Here too, no apparent clustering
related to the harvesting year was noticed.
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Figure 1. Scatter plot of PC1 vs PC2 scores obtained from FT-MIR (a), FT-Raman (b) and NIR (c) data.
Objects are marked according to the provenance region (Red diamond: BA; Green star: Cat; Blue
circle: Mis).

As denoted by the PC1 and PC2 loadings (Figure S4), the variables that shown the highest relevance
in the PCs definition all corresponded to chemically meaningful spectral intervals. Specifically, most of
the dispersion among the samples is explained by the wavelength range 1500–600 cm−1 for FT-MIR,
3000–2900 and 1500–0 cm−1 for FT-Raman, 480–600 and 1850–2500 nm for NIR.

According to previous reports, carbohydrate moieties are chiefly responsible for absorptions in
these ranges of the honey spectra [14,15,31]. Noisy and/or uninformative spectral regions, i.e., CO2 band
and flat regions, were excluded from the subsequent data treatment. As a result, the considered
wavelength ranges were, respectively, 3800–2400 cm−1 and 1990–600 cm−1 for FT-MIR, 3600–2500 cm−1

and 1800–0 cm−1 for FT-Raman; 400–700 nm and 1300–2500 nm for NIR (Figure S3).
Band assignment was not the main goal of the study as the general tendency in fingerprinting

methods is to use the entire spectra in the multivariate data analysis [32]. Nevertheless, description of
the main peaks/bands responsible for the sample discrimination might be helpful for future research.
Therefore, illustration of the statistically-significant spectral signals and of the three datasets has been
reported in Supplementary Materials (Figure S5). Furthermore, assignment of the relevant peaks/bands
was carried out based on the literature [6,13,20,31,33–37].

3.2. Techniques Comparison under a Supervised Chemometric Approach

Classification outcomes provided by the individual spectroscopic techniques, as well as the fused
datasets, are summarized in this section. ROC curves were constructed as described in Section 2.3.3
and graphically reported in Figure 2.

As expected from the unsupervised pattern recognition, better results were reached in the
discrimination of Mis honeys (i.e., BA-Mis and Cat-Mis models). In particular, the BA-Mis model
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produced nearly perfect classification, with AUC always above 0.99 regardless the spectroscopic
technique. In contrast, the BA-Cat model provided slightly lower AUC, ranging from 0.88 (NIR) to 0.93
(FT-MIR), perhaps due to unbalanced number of samples available. Concerning the inter-platforms
comparison, FT-MIR provided yielded the largest AUC in all the binary models, while the lowest score
was always obtained by FT-Raman spectroscopy.

The results of the validation procedure are summarized as correct classification rates (i.e., ratio
between correctly classified and total tested objects, CCRs) in Table 1. For purposes of presentation,
only the scores provided by FT-MIR data were reported, while FT-Raman and NIR data are available
in Supplementary materials (Tables S2 and S3).

FT-MIR
FT-Raman
NIR

Figure 2. ROC curves related to the binary classification models (a) BA vs. Cat; (b) BA vs. Mis; (c) Cat
vs. Mis.

Table 1. PLS-DA prediction results expressed as correct classification rates (FT-MIR data).

Predicted Harvest
Correct Classification Rate (%)

BA vs. Cat BA vs. Mis Cat vs. Mis

2015 84.6 88.4 92.3
2016 91.8 100.0 92.5
2017 91.9 100.0 95.5

The model validation confirmed what was highlighted by the ROC curves. The best performance
was offered by FT-MIR and, here too, the best classification was reached for Mis honeys, whatever the
spectroscopic technique. Interestingly, in the case of FT-MIR, an overall improvement of the models’
prediction ability was achieved as more harvesting seasons were included in the training set, with all
the binary models reaching CCRs > 90% in the prediction of HN2017 (i.e., last step of the validation
scheme). It must be pointed out that small differences (e.g., 0.1–0.2%) between the results have to be
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assessed with caution since these classification outcomes cannot be tested for statistical significance.
Nevertheless, the overall trends have been clearly evidenced.

To further enhance the obtained results, the DF strategies described in Section 2.3.4. were attempted
and the CCRs achieved in the HN2017 prediction summarized in Table 2.

Table 2. PLS-DA classification results of HN2017, expressed as correct classification rates, according to
the different DF strategies.

Predicted Harvest
Correct Classification Rate (%)

BA vs. Cat BA vs. Mis Cat vs. Mis

LL-DF 85.4 91.7 80.0
ML-DF 87.0 98.6 80.0
HL-DF 93.5 98.6 95.5

All the DF methods provided satisfying classification performance, with HL-DF showing the
highest scores, followed by ML-DF and LL-DF. The HL-DF reached comparable results respect to the
FT-MIR (Table 1), with slightly better scores in the BA-Cat model and lower CCRs achieved in the
BA-Mis honeys discrimination. A further attempt was made by combining the data blocks from two
platforms only (i.e., FT-MIR+FT-Raman, FT-MIR+NIR and FT-Raman+NIR). However, no significant
classification improvement was achieved (data not shown).

3.3. SIMCA Modelling

FT-MIR dataset underwent to SIMCA modelling as, in the light of the above results, it proved to be
the most promising option for a hypothetical fingerprinting method for honey authentication. BA was
set as target category to be modelled; thus, Cat and Mis samples represented the alien objects to be
rejected by the model. Five PCs were considered sufficient for proper modelling as they accounted for
> 95% of the original data variance. The confidence level was set to α = 0.05 and the classification rule
was based on the so-called T2-Q augmented distances. The same year-by-year validation was adopted.

SIMCA results are reported as sensitivity, specificity and overall CCRs in Table 3.

Table 3. SIMCA modelling results of class BA (FT-MIR data) according to the different harvesting
seasons, expressed as sensitivity, specificity and overall correct classification rates.

Predicted Harvest Sensitivity (%) Specificity (%) CCR (%)

2015 61.0 89.7 69.6
2016 90.6 75.0 85.8
2017 86.7 91.1 88.8

Highly sensitive and specific models were produced, confirming what expected from the excellent
classification previously obtained. In accordance with the PLS-DA results (Table 1), the inclusion of
2015 and 2016 harvest in the model training led to an overall enhancement of the model performance.
Remarkably, within the prediction of HN2017, 39 out of 45 BA samples were correctly recognized as
belonging to the target class (86.7% sensitivity), while 15 out of 17 Cat and 26 on 28 Mis honeys were
rightly rejected by the model (91.1% specificity). T2 and Q distances of the predicted HN2017 samples
are graphically represented in Figure 3.
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4. Discussion

Since the analysis of all the collected honeys was carried out over a 4-years period, ensuring
the absence of instrumental drift among the analysis batches was the first concern. The routine
maintenance of the equipment, typically performed once a year, includes the substitution of overused
components (e.g., source) and re-alignment of the interferometer, which may easily result in signal
intensity (i.e., absorbance) shifts. Such technical variations, if not properly handled, may give rise to
fingerprint deviations that prevent the use of the classification model for its ultimate purpose: the
prediction of new harvests [24]. As an example, Woodcock et al. observed a clear separation between
honey samples analysed in two consecutive years. However, the authors were not able to definitely
attribute such trend to different sample’s characteristics, rather than the use of a non-standardized
instrument [13].

Both the unsupervised and supervised chemometric approaches evidenced the presence of actual
differences between the honeys having diverse provenance. Such differences are unlikely due to
random variation or overfitting issues. In fact, it is worth stressing that the employed validation
strategy allowed any developed model to be challenged with independent external test sets. With the
main factor under investigation being the geographical origin, it is reasonable to ascribe the samples
separation to the distinct environmental features of the three Argentinian regions. Variations of soil and
weather conditions likely result in different melliferous floras foraged by the bees, which is known to
have the greatest influence on the honey’s chemical composition [38]. Buenos Aires province is located
within the ecoregion Pampeana, where the temperate climate and abundant rainfall encourage extensive
crop cultivation. Misiones province is characterized by its typical flora, known as “Missionary Forest”,
favored by the subtropical weather of the ecoregion Selva Paranaense. The peculiar characteristics of this
ecoregion might underlie differences in the honeys’ physiochemical properties, which would explain
the better results achieved in the classification of Mis samples. While Buenos Aires and Misiones
regions show fairly uniform climate conditions, five different ecoregions are recognized in Catamarca
(i.e., Yungas, Chaco Seco, Monte de Sierras and Bolsones, Puna and Altos Andes) and therefore a number
of microclimates can be encountered, from the subtropical rains in the east, to the arid highland in
the west [39]. Therefore, the larger overlap of Cat samples over the other classes might be due to this
climate, and thus botanical, heterogeneity.

All the employed spectroscopic techniques provided more than satisfying performance, confirming
the high potential of vibrational spectroscopy as rapid screening tool for honey authentication.
Although lot of research has been done in the application of vibrational spectroscopy for honey testing,
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cross-platform comparisons have been scarcely documented. Tahir and co-workers observed equivalent
performance of FT-MIR and FT-Raman spectroscopy for the prediction of phenolic compounds
content and the antioxidant activity in honey [40]. Ballabio et al. recently evaluated five different
technologies, including FT-MIR, NIR and FT-Raman spectroscopy, for the botanical origin identification
of honeys [41]. The authors reported better classification provided by NIR, respect to FT-MIR and
FT-Raman spectroscopy. Nevertheless, the same authors pointed out that such outcomes have to be
assessed with caution due to the small size of the sample set. Within the present work, FT-MIR shown
to be the best option for honey fingerprinting, providing always the largest AUC within the ROC
curves, as well as superior CCRs (>90%) through the validation process. The reason probably lies in
the better sensitivity and higher S/N normally provided by FT-MIR instruments respect to NIR and
FT-Raman, since fundamental absorptions are being measured in the MIR region [42].

As pointed out in Section 3.2, LL-DF provided the poorest results among the attempted DF
strategies. This is consistent with the literature, where LL-DF approach either did not produce
substantial classification/prediction improvement over the single techniques or was outperformed
by higher-level DF [40,41,43]. The explanation can be found in the high collinearity of vibrational
spectroscopy data. In fact, LL-DF introduces, along with useful information, a large number of
redundant and irrelevant variables. Such noise is, for example, reduced in the ML-DF by the features
extraction prior to the concatenation. Concerning the ML-DF and HL-DF, despite the noteworthy
results, no significant classification enhancement was reached respect to the FT-MIR only. On the
basis of the present outcomes, the combination of vibrational spectroscopic data cannot be regarded as
worthwhile as no evident advantage has been provided over the individual techniques. The authors
attributed the ineffectiveness of DF to the lack of information orthogonality between the combined
data sources, which is crucial for the successful application of DF [30].

When evaluated under conditions “closer” to a real authentication scenario, FT-MIR still yielded
remarkable classification scores. The lower CCRs achieved by SIMCA respect to PLS-DA are not
surprising as DA algorithms use information about the modelled classes to maximize the group
differences, whereas OOC methods “do not know anything about existence of alternative classes
or samples”. In fact, despite the widespread opinion that “PLS-DA may go further than SIMCA”,
performance comparisons of these two algorithms are not even consistent as they employ diverse
amounts of modelling information [21]. As mentioned in Section 1, DA algorithms are not suited
for one-class problems where only one target category is modeled against a heterogeneous group of
off-specification products [23]. For this reason, the authors believe that the SIMCA results (Section 3.3)
are more representative of the potential performance of a routine screening method based on FT-MIR
fingerprinting. The classification achieved in the HN2017 prediction can be considered excellent for
a rapid screening platform and demonstrated that, under a proper characterization of the class of
interest, FT-MIR spectroscopy can be a powerful tool for honey authenticity purposes.

In the authors’ opinion, the results herein obtained can be sensibly extended to problems of
honey’s floral origin. In fact, botanical/varietal and geographical origin of food products are often
treated as separate issues in food authenticity studies; however, they are highly correlated and hard
to be considered individually, especially in the case of natural products such as honey. For example,
distinct geographic areas do not only provide different climatic conditions affecting the accumulation
of phytochemicals in pollen and nectar, but also normally offer diverse melliferous flora foraged by the
bees. All these factors and relationships cannot be ignored in the development of methods for honey’s
origin confirmation.

Despite the remarkable outcomes, in must be pointed out that the development of a comprehensive
model able to identify the geographic origin of an unknown sample is unrealistic; it would require an
exhaustive sampling of world honeys over several harvest years. Furthermore, honeys from different
localities may not have unique spectral signatures due to similarities in vegetation. Thus, it is unlike to
reach similar performance at a world-level. We believe that a fundamental knowledge of the limits and
capabilities of the chosen methods is essential for their correct utilization and interpretation. Screening
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platforms based on spectroscopic fingerprints find the best applicability at a company-level, where the
“boundaries” of the application can be clearly defined. Typical examples are internal quality assurance
or the management of incoming raw materials from suppliers with established relationships. In these
contexts, the target classes can be appropriately outlined and sampled in a representative way.

5. Conclusions

Honey authenticity remains a challenging issue to deal with as reliable and manageable methods
for its floral and geographical origin confirmation are still lacking. Several feasibility studies have been
reported in literature to demonstrate the capabilities of vibrational spectroscopy for the discrimination
of honey’s botanical and/or geographical origin.

A key feature of the present work was the realistic and rather large variability included in the
sample set. All the collected honeys were multifloral, thus covering differences in nectar sources.
Besides, seasonal climate fluctuations were also considered by repeating the sampling over four
consecutive harvesting seasons. This extra variation is of great benefit for the robustness of any
developed model and crucial to demonstrate its capabilities under real-world conditions.

Excellent classification scores were achieved by all the technologies and the adopted validation
strategy allowed to exclude any issue related to model overfitting. The nearly perfect classification
results provided by FT-MIR suggested its major potential for honey fingerprinting. DF strategies
yielded satisfying outcomes, however, no significant improvement in discrimination power was
achieved respect to FT-MIR. Therefore, within an industrial context, a multi-platforms spectroscopic
fingerprint is a choice that should be carefully evaluated from a cost/benefit standpoint. In fact, it must
be considered that a multiple sample fingerprinting would represent an increased expense in terms of
equipment and expertise, making the food control process more time and labour-demanding.

SIMCA modelling was successfully applied on the FT-MIR dataset and demonstrated that the use
of large and representative training sets can definitely improve the model robustness over analytical
and biological factors. The year-by-year validation not only ensured the results reliability, but also well
reproduced a hypothetical quality control context where, reasonably, spectral libraries are gradually
enlarged with newly recorded spectra. In the author’s opinion, such results can be considered a reliable
performance estimation of a potential FT-MIR-based fingerprinting method.
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