
cells

Article

Activation of Nrf2/HO-1 Pathway and Human
Atherosclerotic Plaque Vulnerability: An In Vitro and
In Vivo Study

Susanna Fiorelli 1, Benedetta Porro 1, Nicola Cosentino 1, Alessandro Di Minno 1,
Chiara Maria Manega 1 , Franco Fabbiocchi 1, Giampaolo Niccoli 2, Francesco Fracassi 2,
Simone Barbieri 1, Giancarlo Marenzi 1, Filippo Crea 2, Viviana Cavalca 1,*, Elena Tremoli 1

and Sonia Eligini 1

1 Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy; susanna.fiorelli@cardiologicomonzino.it (S.F.);
benedetta.porro@ccfm.it (B.P.); nicola.cosentino@cardiologicomonzino.it (N.C.);
alessandro.diminno@cardiologicomonzino.it (A.D.M.); chiara.manega@cardiologicomonzino.it (C.M.M.);
franco.fabbiocchi@cardiologicomonzino.it (F.F.); simone.barbieri@cardiologicomonzino.it (S.B.);
giancarlo.marenzi@cardiologicomonzino.it (G.M.); elena.tremoli@cardiologicomonzino.it (E.T.);
sonia.eligini@cardiologicomonzino.it (S.E.)

2 Department of Cardiovascular & Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli,
I.R.C.C.S., Università Cattolica del Sacro Cuore, 00168 Rome, Italy; gniccoli73@hotmail.it (G.N.);
francesco.fracassi@yahoo.it (F.F.); filippo.crea@rm.unicatt.it (F.C.)

* Correspondence: viviana.cavalca@cardiologicomonzino.it; Tel.: +39-025-800-2345

Received: 27 March 2019; Accepted: 15 April 2019; Published: 16 April 2019
����������
�������

Abstract: Reactive oxygen species (ROS) induce nuclear factor erythroid 2–related factor 2 (Nrf2)
activation as an adaptive defense mechanism, determining the synthesis of antioxidant molecules,
including heme-oxygenase-1 (HO-1). HO-1 protects cells against oxidative injury, degrading free
heme and inhibiting ROS production. HO-1 is highly expressed in macrophages during plaque growth.
Macrophages are morpho-functionally heterogeneous, and the prevalence of a specific phenotype
may influence the plaque fate. This heterogeneity has also been observed in monocyte-derived
macrophages (MDMs), a model of macrophages infiltrating tissue. The study aims to assess oxidative
stress status and Nrf2/HO-1 axis in MDM morphotypes obtained from healthy subjects and coronary
artery disease (CAD) patients, in relation to coronary plaque features evaluated in vivo by optical
coherence tomography (OCT). We found that MDMs of healthy subjects exhibited a lower oxidative
stress status, lower Nrf2 and HO-1 levels as compared to CAD patients. High HO-1 levels in MDMs
were associated with the presence of a higher macrophage content, a thinner fibrous cap, and a
ruptured plaque with thrombus formation, detected by OCT analysis. These findings suggest the
presence of a relationship between in vivo plaque characteristics and in vitro MDM profile, and may
help to identify patients with rupture-prone coronary plaque.

Keywords: oxidative stress; nuclear factor erythroid 2–related factor 2; heme-oxygenase-1; macrophages;
plaque vulnerability; optical coherence tomography

1. Introduction

The progression of coronary atherosclerotic plaque and its destabilization with plaque rupture and
thrombus formation are the key mechanisms of acute myocardial infarction (AMI) [1,2]. Post-mortem
reports have demonstrated that the vulnerable plaque is characterized by a large lipid/necrotic core,
a thin fibrous cap, and a great amount of resident macrophages [3]. Macrophages are versatile
cells and, in relation to microenvironmental stimuli, they respond by activating different signal
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transduction pathways, expressing several receptors, and acquiring specific phenotypes. At coronary
atherosclerotic plaque level, macrophage population is also characterized by morphological and
functional heterogeneity that may enhance plaque growth and/or rupture [4].

An increasing body of evidence suggests that oxidative stress is closely associated with the
atherosclerotic process and plaque instability [5,6] through different pathological mechanisms,
including endothelial dysfunction, lipid oxidation, expression of adhesion molecules, and monocyte
recruitment [7–9]. In response to oxidative stress stimuli, cells implement several defense mechanisms
and, among them, the activation of nuclear erythroid factor 2 – related factor 2 (Nrf2)/heme oxygenase-1
(HO-1) pathway was reported to be associated with atherosclerosis [10,11]. Under unstressed conditions,
Nrf2 is constitutively expressed and sequestrated in the cytoplasm by Keap1 (Kelch-like erythroid
cell-derived protein with cap ’n’ collar homology-associated protein 1), inducing its proteasomal
degradation. On the other hand, under an oxidative stress stimulus, the complex Keap1/Nrf2 dissociates
itself, and Nrf2 translocates into the nucleus. At this level, Nrf2 binds the antioxidant responsive
element and promotes the transcription of proteins with antioxidant activity. Among them, HO-1 plays
a fundamental role in the antioxidant mechanism within the cell by degrading the prooxidant heme
to carbon monoxide, biliverdin, and ferrous ion [11]. In addition, HO-1 induction partially inhibits
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity representing a mechanism of
cytoprotection against oxidative stress [12].

HO-1 expression is induced by various proatherogenic stimuli and risk factors for cardiovascular
diseases [13–15]. HO-1 is highly expressed in atherosclerotic plaques, mainly localized in macrophages
and foam cells [16], where its antioxidant and anti-inflammatory properties could be fundamental to
counteract the development of early stage lesions [17]. In particular, HO-1 reduces the immune cell
recruitment and infiltration [18], regulates the macrophage polarization also driving a phenotypic shift
towards an anti-inflammatory phenotype [19,20], and inhibits the maturation of dendritic cells [21],
thus affecting lesion formation.

HO-1 may also affect plaque progression and its anti-atherogenic role was highlighted in in vitro
and in vivo models. Indeed, the induction of HO-1 in co-cultures of human aortic endothelial cells
and smooth muscle cells inhibited the monocyte oxidized low density lipoprotein (oxLDL)-dependent
chemotaxis [22]. Accordingly, the evidence of an augmented atherogenesis after HO-1 inhibition
and an attenuation in the development of atherosclerotic lesion after HO-1 induction confirms this
protective role. Indeed, accelerated and more advanced atherosclerotic plaques were described in
HO-1 knockout mice [23]. Moreover, the inhibition of HO-1 expression in hyperlipidemic rabbits [24]
or in LDL-receptor deficient mice fed with high-fat diet [25] resulted in greater atherosclerotic lesions
and increased plasma and tissue lipid peroxide levels.

Despite these preclinical studies, HO-1 levels, higher than those of healthy subjects, were observed
in lymphocytes and monocytes isolated from coronary artery disease (CAD) patients. In particular, its
expression was higher in patients with AMI than in those with stable angina (SA) [26]. More recently,
Cheng et al. showed an increased HO-1 expression in carotid atherosclerotic lesions with a vulnerable
phenotype. Of note, the HO-1 levels positively correlated with plaque macrophage and lipid content,
and they inversely correlated with stable plaque features, like the presence of intra-plaque smooth
muscle cells and collagen [16]. Overall, animal and human studies suggest that HO-1 reflects the severity
of atherosclerosis, indicating that a high level of this protein in vulnerable plaque macrophages may
represent an antioxidant response, aiming at counteracting the oxidative damage inside atherosclerotic
plaque [16,27].

Since resident macrophages are not easily obtainable and manageable, macrophages obtained
from a spontaneous differentiation of monocytes (MDMs) are considered to be a good in vitro
model to study tissue macrophages. We have previously reported the co-existence of two main and
different macrophage morphotypes (round and spindle cells) after 7-day culture of human monocytes
isolated from healthy subjects [28]. Similarly to tissue macrophages heterogeneity [4], different MDM
morphotypes showed different functional properties: in particular, round-shaped cells were reminiscent
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of M2 macrophage phenotype with anti-inflammatory and reparative characteristics. On the contrary,
spindle-shaped cells showed a pro-inflammatory profile resembling M1 macrophages [28].

In our more recent study, we demonstrated that the peculiar morpho-phenotype profile of MDMs
isolated from CAD patients is associated with the characteristics of coronary vulnerable plaque, as
assessed by optical coherence tomography (OCT) [29]. This accurate intracoronary imaging technique
allows the visualization and the characterization of the atherosclerotic plaque [30,31] providing its
detailed architecture and highlighting the rupture prone plaques.

Currently, no data have been provided on the association between HO-1 levels and macrophage
phenotype in CAD patients. In this work, we investigated HO-1 levels and the activation of Nrf2/HO-1
axis in different MDM morphotypes obtained from healthy subjects and CAD patients, also in relation
to coronary plaque morphology and activity, as analyzed in vivo by OCT.

2. Materials and Methods

2.1. Study Population

Thirty consecutive CAD patients undergoing coronary angiography, due to SA or AMI, as their
first manifestation of ischemic heart disease, were enrolled at Centro Cardiologico Monzino, Milan,
Italy. SA was defined as angina on effort with a stable pattern of symptoms for at least the last six
months prior to admission; AMI diagnosis encompassed patients presenting with non-ST-elevation
(NSTEMI) or ST-elevation-acute myocardial infarction (STEMI). NSTEMI was defined as chest pain
at rest in the last 48 h preceding the admission associated with evidence of transient ST-segment
depression on 12-lead electrocardiogram and normal (unstable angina) or elevated (NSTEMI) serum
troponin I (TnI) levels. The diagnosis of STEMI was based on typical symptoms lasting more than
30 min and new ST-segment elevation at the J point in ≥2 contiguous leads. Exclusion criteria were:
Previous history of CAD; severe chronic heart failure, severe heart valve disease, acute and chronic
infections, liver diseases, neoplasia, evidence of immunologic disorders, recent (<3 months) surgical
procedures or trauma and use of anti-inflammatory or immunosuppressive drugs and antioxidant
supplements. All AMI included patients underwent percutaneous coronary intervention, specifically
within 24 h from admission for NSTEMI and within 12 h of symptom onset for STEMI patients. OCT
assessment was performed both in SA and in AMI in order to investigate coronary plaque features.
The control group consisted of 10 healthy subjects, with neither history of CAD, nor cardiovascular risk
factors, nor inflammatory disorders, and specifically not taking any cardiovascular therapy. The ethics
committee approved the study protocol, and all participants provided written informed consent to
participate in the study. The study was performed according to the Declaration of Helsinki.

2.2. Monocyte Isolation and Culture

Venous blood samples were drawn from the antecubital vein of healthy subjects and CAD patients
when fasting into tubes containing ethylenediaminetetraacetic acid (EDTA) (9.3 mM; Vacutainer Systems,
Becton Dickinson, USA). Mononuclear cells were isolated by Ficoll-Paque Plus (GE Healthcare, Milan,
Italy) density centrifugation and plated (2 × 106/mL) in 35 mm well plates (Primaria, Falcon, Como,
Italy) as previously described [11]. After 90 min, non-adherent cells were removed and adherent cells
were cultured over 7 days at 37 ◦C (5% CO2) in Medium 199 (Lonza, Milan, Italy) supplemented with
2 mM l-glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin, and 10% autologous serum without
replacement of the medium throughout the entire culture period. MDM morphology was examined by
phase contrast microscopy (Axiovert 200 M; Zeiss, Milan, Italy) at 20× or 40×magnification. MDMs
were defined spindle/elongated when a length > 70 µm and a width < 30 µm were detected, and
round MDMs when width and length were similar and >30 to 40 µm. Cells, whose morphology and
dimension did not satisfy the above criteria, were classified as undefined.
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2.3. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Analysis

For the determination of reduced (GSH) and oxidized (GSSG) glutathione levels, MDMs were
washed with phosphate buffer saline (PBS) and detached by gentle scraping. After centrifugation
(400× g, 10 min), the supernatant was removed and MDMs were lysed in PBS containing 0.1 µg of
leupeptin, 0.2 M benzamidine, and 1 µg of trypsin inhibitor. Lysed cells were mixed in a 1:1 (v/v)
ratio with 10% trichloroacetic acid (TCA) containing 1 mM EDTA. After centrifugation (10,000× g,
10 min) at room temperature (RT), the supernatant was diluted 1:20 with 0.1% formic acid. The analysis
was performed using LC-MS/MS method as previously described [32]. Liquid chromatography was
performed on Luna analytical PFP column (100 × 2.0 mm, 3 µm) using an Accela HPLC pump
system (Thermo Fisher Scientific, Milan, Italy). Mass spectrometric analysis was performed using a
TSQ Quantum Access (Thermo Fisher Scientific) triple quadrupole mass spectrometer coupled with
electrospray ionization (ESI) operated in positive mode.

2.4. Western Blot Analysis

Western blot analysis was performed on MDMs total lysate, and on MDMs cytosolic and
nuclear fractions.

To obtain MDMs total lysate, cells were harvested and lysated in a buffer composed by 20 mM
Tris, 4% sodium dodecyl sulfate (SDS) and 20% glycerol, containing 1 mM sodium orthovanadate,
1 mM NaF, 1 µg/mL leupeptin hemisulfate, 1 mM benzamidine hydrochloride, 1 mM EDTA, 10 µg/mL
soybean trypsin inhibitor, 0.5 mM pefabloc, 0.5 mM dithiothreitol (DTT) [33].

For the isolation of cytosolic fraction, MDMs were harvested in 50 µL of buffer containing
10 mM HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT and then Triton X-100 (0.2% final
concentration) was added. Cells were centrifuged at 15,000× g for 1 min at 4 ◦C to separate cytosols
from nuclei [34]. The supernatant containing cytosolic fraction was used for the analysis and the pellet
was used for nuclear fraction extraction.

The pellet nuclear fraction was washed with a buffer (20 mM HEPES, pH 7.9, 400 mM NaCl, 25%
glycerol, 1.5 mM MgCl2, 0.2 mM EDTA) containing 0.5 mM PMSF, and 0.5 mM DTT and centrifuged at
15,000× g (10 min, 4 ◦C) [34]. The supernatant containing nuclear fraction was used for the analysis.

SDS-polyacrylamide gel electrophoresis (PAGE) was performed as previously described [33].
After blotting, membranes carrying MDMs total lysates were incubated overnight at 4 ◦C with primary
antibodies directed against HO-1 (1:250) (catalogue number: ab13248; Abcam, Milan, Italy) or Nrf2
(1:200) (Santa Cruz Biotechnology; catalogue number: sc-722, Milan, Italy).

Membranes carrying MDMs cytosolic and nuclear fraction samples were incubated overnight at
4 ◦C with primary antibodies directed against Nrf2 (1:200) (Santa Cruz Biotechnology). After incubation
with horseradish peroxidase-conjugated anti-mouse (1:10,000, catalogue number: 715-035-151) or
anti-rabbit secondary antibody (1:5000, catalogue number: 111-035-003) (Jackson ImmunoResearch
Labs Inc., Li StarFISH, Milan, Italy), as appropriate, for 1 h at RT, protein bands were detected by
chemiluminescence. β-Actin was used as internal standard for control of protein load.

2.5. Immunofluorescence Analysis

Immunofluorescence was performed as previously described [35]. Fixed MDMs were incubated
overnight at 4 ◦C with a monoclonal rabbit anti-human HO-1 antibody (1:100) (Abcam), or with
a polyclonal rabbit anti-human Nrf2 antibody (1:200) (Santa Cruz Biotechnology). Detection was
performed with Alexa Fluor 488 (1:200, catalogue number: A11034, 60 min at RT) (Life Technologies
Italia, Monza, Italy). Nuclei were visualized by Hoechst 33258 (1:10,000, catalogue number: B2883)
(Sigma-Aldrich, Milan, Italy). Negative control experiments were performed by omitting the primary
antibodies. Fluorescence quantification was performed as previously described [33]. Data are expressed
as mean ± SD of fluorescence intensity/µm2 for each MDM morphotype, subtracted of the negative
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control value obtained in the absence of primary antibody. Multiple fields of view (at least three fields,
400×magnification) were captured for each culture.

2.6. OCT Image Acquisition and Analysis

OCT examination was performed in AMI patients at culprit lesion and in SA patients at the minimal
lumen area (MLA) site. Some plaque characteristics were determined such as the measurement of
the thickness of fibrous cap, lipid content, and macrophage accumulation. Fibrous cap thickness was
defined as the minimum distance from the coronary artery lumen to the inner border of the lipid
pool and a thin-cap fibroatheroma (TCFA) was defined as a minimal fibrous cap thickness ≤ 65 µm;
thick-cap fibroatheroma was a plaque with a minimal fibrous cap thickness > 65 µm. The max lipid arc
was measured on the frame with the largest lipid core by visual screening. A plaque showing two or
more lipid containing quadrants was considered a lipid-rich plaque. A lipid plaque with fibrous cap
discontinuity and cavity formation inside the plaque was defined as rupture plaque. A thrombus was
defined as an irregular mass protruding into the lumen with a measured dimension > 250 µm.

The macrophage infiltration (MØI) in the analyzed lesions by OCT, has been assessed as previously
reported [36], according to the International Working Group for Intravascular Optical Coherence
Tomography (IWG-IVOCT) Consensus standards [37]. Briefly, macrophages were qualitatively
identified on raw OCT data within a 300 × 125 µm2 (lateral x axial) region of interest (ROI). In
particular, macrophages have been visualized by OCT imaging as signal-rich, distinct, or confluent
punctate regions that exceed the intensity of background speckle noise and generate a backward
shadowing. For caps having a thickness < 125 µm2, the depth of the ROI was matched to the cap
thickness. Median filtering was performed with a 3 × 3 square kernel to remove speckle noise. In
plaques with MØI, quantitative evaluation of macrophage content was obtained by measuring the
normalized standard deviation (NSD) known to have a high degree of positive correlation with
histological measurements of macrophage content, by using a dedicated software provided by S. Jude
medical [38,39]. In particular, NSD was measured for each pixel within each cap using a 125 µm2

window centered at the pixel location:

NSD (x,y) = [σ (x,y)125 µm2/(Smax-Smin)] × 100 (1)

where NSD (x,y) is the normalized standard deviation of the OCT signal at pixel location (x,y), Smax
is the maximum OCT image value, and Smin is the minimum OCT image value. Pixels within the
(125 × 125) µm2 window that did not overlap with the segmented cap were excluded.

2.7. Statistical Analysis

Continuous variables are presented as mean ± SD, variables not normally distributed are
presented as median and interquartile ranges (IQR), and categorical variables as absolute numbers
and percentages. Comparisons between ‘healthy subjects’ vs. ‘CAD patients’ groups were performed
using independent samples t-Test for normally distributed variables and Wilcoxon rank-sum test for
not normally distributed variables.

Comparisons between ‘healthy subjects’ vs. ‘SA’, ‘NSTEMI’, and ‘STEMI’ groups were performed
using ANOVA Test for normally distributed variables and Kruskal–Wallis Test for not normally
distributed variables. Categorical variables were compared using Fisher’s exact test. Post-hoc testing
of main effects was performed using Bonferroni adjustment for multiple comparisons (α/[number of
comparisons]). Correlations between variables were determined using Spearman’s rank test. Trends of
variation from healthy subjects to STEMI patients were assessed by general linear models. All tests
were two-sided, and a p value of less than 0.05 was required for statistical significance. All calculations
were computed by using SAS software package v9.4 (SAS Institute Inc., Cary, NC, USA).
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3. Results

3.1. Clinical Features

Demographic and clinical characteristics of the enrolled subjects are shown in Table 1. CAD
patients had higher body mass index (BMI) and they were more frequently males. Moreover, as
expected, in CAD group there was a prevalence of subjects with cardiovascular risk factors as smoking,
diabetes, dyslipidemia, hypertension, and family history of cardiovascular disease. Despite there
being more subjects with dyslipidemia among CAD patients, the LDL cholesterol values were similar
between patients and healthy subjects, as the result of pharmacological treatment. Furthermore, CAD
patients had higher levels of glycaemia and of C-reactive protein (hs-CRP), an inflammatory marker.

Of the 30 consecutive CAD patients, 10 (33.3%) had a diagnosis of SA, whereas 20 (66.6%) of AMI
(10 NSTEMI (33.3%) and 10 STEMI (33.3%)). Among CAD patients, those with STEMI showed a higher
BMI, higher levels of hs-CRP, creatinine, glycaemia, total cholesterol, triglycerides, TnI, and creatine
phosphokinase-MB (CK-MB). In addition, lower high-density lipoprotein (HDL) cholesterol levels were
observed in AMI patients. No difference in admission therapy was observed among CAD patients.

3.2. Oxidative Stress Status

The levels of GSH and GSSG, whose ratio is a recognized index of oxidative stress, were measured
in MDMs obtained from the study population. The results are showed in Figure 1. The GSH/GSSG
ratio was significantly lower in CAD patients as compared to healthy subjects. The analysis of the
different clinical presentations of CAD revealed a progressive decrease of GSH/GSSG ratio in MDMs
going from SA, NSTEMI, to STEMI patients (ptrend < 0.005).

3.3. HO-1 and Nrf2 Expression

MDMs of CAD patients displayed higher levels of HO-1 protein as compared to those observed in
healthy subjects (0.12 ± 0.09 vs. 0.06 ± 0.02, p < 0.05) (Figure 2a). Moreover, the immunofluorescence
analysis showed higher protein levels in spindle compared to round cells in all study patients’ groups.
(Figure 2b) with a significant increase in both MDM morphotypes of STEMI patients. A progressive
increase was also shown going from healthy subjects to STEMI patients (ptrend round < 0.0002, ptrend

spindle < 0.0001; Figure 2c).
This behavior was mirrored by the levels of the transcription factor Nrf2. Higher levels of total

Nrf2 were detected in CAD patients as compared to healthy subjects (1.49 ± 0.73 vs. 0.51 ± 0.62,
p < 0.01) (Figure 3a). In addition, the evaluation of Nrf2 levels in cytoplasmic and nuclear fractions
demonstrated a significant increase of Nrf2 translocation into the nucleus in CAD patients as compared
to those of healthy subjects (Figure 3b). The immunofluorescence analysis of the MDM morphotypes
evidenced significantly higher Nrf2 protein levels in both spindle and round MDMs of AMI patients
(NSTEMI and STEMI) as compared to those of healthy subjects (Figure 3c). Furthermore, an increasing
trend in protein levels was detected in both MDM morphotypes paralleling the severity of the clinical
presentations (ptrend round < 0.02, ptrend spindle = 0.06) (Figure 3d).
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Table 1. Baseline clinical, laboratory, and angiographic characteristics of the study subjects.

Variables
Healthy
Subjects
(n = 10)

CAD
(n = 30)

p Value Healthy
Subjects vs. CAD ◦◦

CAD

SA
(n = 10)

NSTEMI
(n = 10)

STEMI
(n = 10) ANOVA p Value ◦

Demographics
Age (years) 61.5 ± 10 63.8 ± 12.1 0.5927 70.3 ± 7.2 61.0 ± 11.9 60.0 ± 14.8 0.1660

Male sex, n (%) 5 (50) 26 (86.7) 0.0290 ‡ 8 (80) 9 (90) 8 (80) 0.8179 ‡

Body mass index (kg/m2) 23.5 ± 1.6 29.3 ± 4.6 0.0004 28.0 ± 4.5 * 28.1 ± 3.7 * 32.3 ± 4.6 * 0.0002
Clinical characteristics

Current smoking, n (%) 0 18 (60) 0.0010 ‡ 7 (70) 6 (60) 5 (50) 0.5884 ‡

Diabetes mellitus, n (%) 0 16 (53.3) 0.0030 ‡ 5 (50) 5 (50) 6 (60) 0.6593 ‡

Dyslipidemia, n (%) 0 16 (53.3) 0.0030 ‡ 7 (70) 5 (50) 4 (40) 0.4704 ‡

Hypertension, n (%) 0 14 (46.7) 0.0070 ‡ 4 (40) 5 (50) 5 (50) 0.9004 ‡

Family history of CAD, n (%) 0 17 (56.7) 0.0020 ‡ 4 (40) 9 (90) # 4 (40) 0.0149 ‡

LVEF (%) NA 50.1 ± 8.8 48 ± 9.3 51.3 ± 9.8 51.0 ± 7.7 0.7510
Laboratory data
WBC (× 109/L) 7.6 ± 2.9 9.2 ± 3.9 0.2537 8.9 ± 2.4 9.1 ± 5.1 9.7 ± 4.0 0.6852
RBC (× 1012/L) 4.5 ± 0.8 5.1 ± 2.0 0.3917 4.6 ± 0.6 5.1 ± 0.6 5.8 ± 3.6 0.4330

Neutrophil count (× 109/L) 4.8 ± 2.3 6.2 ± 3.5 0.2585 5.8 ± 2.3 6.1 ± 4.7 6.9 ± 3.4 0.6249
Lymphocyte count (× 109/L) 2.1 ± 1.2 2.0 ± 0.9 0.7190 2.3 ± 1.2 1.9 ± 0.7 1.8 ± 0.9 0.6889
Eosinophil count (× 109/L) 0.1 ± 0.1 0.2 ± 0.2 0.6303 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.4 0.6123
Monocyte count (× 109/L) 0.5 ± 0.2 0.6 ± 0.3 0.1398 0.6 ± 0.2 0.6 ± 0.4 0.7 ± 0.4 0.3176
Basophil count (× 109/L) 0.03 ± 0.02 0.01 ± 0.00 0.0072 0.01 ± 0.02 0.01 ± 0.03 * 0.01 ± 0.02 0.0343

Platelets (× 109/L) 248 ± 61.9 230.8 ± 83.4 0.5714 213.7 ± 49.8 252.2 ± 106.0 223.7 ± 85.6 0.6549
hs-CRP (mg/L) 1.9 (1.4–2.3) 4.9 (2.0–21.0) 0.0141 † 2.1 (1.6–2.1) }# 6.7 (1.6–17.0) * 38.6 (6.0–75.0) * 0.0003 §

Creatinine (mg/dL) 1 ± 0.1 1.0 ± 0.5 0.9372 0.8 ± 0.3 # 0.8 ± 0.3 # 1.4 ± 0.5 0.0015
Glycaemia (mg/dL) 93.5 ± 12.2 140.2 ± 42.8 0.0017 116.4 ± 27.1 # 130.3 ± 33.4 # 178.8 ± 43.7 * <0.0001

Total cholesterol (mg/dL) 187.7 ± 22.1 204.4 ± 42.6 0.2438 181.1 ± 34.1 # 207.9 ± 42.8 226.1 ± 41.7 0.0417
LDL (mg/dL) 112.6 ± 26 122.4 ± 41.9 0.4924 102.0 ± 23.5 130.4 ± 47.5 135.2 ± 46.2 0.1890
HDL (mg/dL) 41.1 ± 5.3 48.83 ± 14.9 0.0242 61.6 ± 16.7 *,},# 44.5 ± 10.5 43.3 ± 9.3 0.0004

Triglycerides (mg/dL) 143.8 ± 31.6 161.2 ± 55.5 0.3333 117.9 ± 42.7 }# 176.7 ± 59.6 190.3 ± 32.2 0.0034
Peak TnI (µg/dL) NA 1 (0.0–29.4) NA 1.2 (0.5–1.4) # 29.7 (25.0–163.0) <0.0001 §

Peak CK-MB (µg/dL) NA 11.1 (2.1–110.0) 2.1 (1.5–2.1) 12.3 (2.5–28.0) # 281 (110.0–521.0) # <0.0001 §

Angiographic data
Culprit or treated vessel, n (%) 0.1489 ‡

LAD NA 14 (46.7) 3 (30) 8 (80) 3 (30)
LCX NA 10 (30.3) 4 (40) 1 (10) 5 (50)
RCA NA 6 (20) 3 (30) 1 (10) 2 (20)

Multivessel disease, n (%) NA 17 (56.7) 8 (80) 4 (40) 5 (50) 0.3276 ‡

Admission therapy
ASA, n (%) 0 11 (36.7) 0.0380 ‡ 3 (30) 5 (50) 3 (30) 0.3192 ‡

Beta-Blockers, n (%) 0 8 (26.7) 0.1650 ‡ 2 (20) 5 (50) 1 (10) 0.2319 ‡

ACE-inhibitors, n (%) 0 9 (30) 0.0810 ‡ 5 (50) 2 (20) 2 (20) 0.3192 ‡

Statins, n (%) 0 10 (30.3) 0.0430 ‡ 5 (50) 2 (20) 3 (30) 0.3459 ‡

SA: Stable angina; CAD: Coronary artery disease; LVEF: Left ventricular ejection fraction; WBC: White blood cells; RBC: Red blood cells; LDL: Low-density lipoprotein; HDL: High-density
lipoprotein; hs-CRP: High-sensitive C-reactive protein: TnI: Troponin-I; CK-MB: Creatine phosphokinase-MB; LAD: Left anterior descending; LCX: Left circumflex; RCA: Right coronary
artery; ASA: Aspirin; ACE-inhibitors, angiotensin-converting enzyme-inhibitors; NA: Not assessed. Data are expressed as mean ± SD or median and interquartile range. * p < 0.05 vs.
healthy subjects; }p < 0.05 vs. NSTEMI; # p < 0.05 vs. STEMI; ◦ by ANOVA test, except: § Kruskal–Wallis Test, ‡ Fisher exact test; ◦◦ by Independent t-test, except: †Wilcoxon rank-sum
test, ‡ Fisher exact test.
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Figure 1. GSH/GSSG evaluation in monocyte-derived macrophages (MDMs). MDMs were obtained
from CAD patients and healthy subjects. Data are expressed as mean± SD and derive from independent
cultures obtained from 10 healthy subjects and 30 CAD patients (SA n = 10; NSTEMI n = 10; STEMI
n = 10. * p < 0.05 vs. healthy subjects.

1 
 

 
  Figure 2. HO-1 levels in CAD patients and healthy subjects. (a) The protein levels of HO-1 were

detected by western blot analysis. β-actin was used as a control of protein loading. Densitometry is
shown in the bar graph. Data are expressed as mean ± SD and derive from MDMs obtained from 10
healthy subjects and 17 CAD patients. (b) Representative images of HO-1 in round and spindle MDMs
obtained from healthy subjects and CAD patients (400× original magnification), nuclei were visualized
by Hoechst 33258. (c) Quantitative analysis of HO-1 in round and spindle MDMs. Data are expressed
as mean ± SD of fluorescence intensity/µm2 (at least three fields, 400×magnification, were analyzed)
and data derive from independent cultures obtained from 10 healthy subjects and 30 CAD patients
(SA n = 10; NSTEMI n = 10; STEMI n = 10. # p < 0.05 vs. round; * p < 0.05, ** p < 0.01, *** p < 0.001 vs.
healthy subjects.
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2 

 Figure 3. Nrf2 levels in CAD patients and healthy subjects. (a,b) Nrf2 levels in (a) total cellular lysate,
(b) nuclear and cytosolic compartments were detected by western blot analysis. β-actin was used as a
control of protein loading. Densitometry is shown in the bar graph. Data are expressed as mean ± SD
and derive (a) from MDMs obtained from 10 healthy subjects and 17 CAD patients; (b) from MDMs
obtained from 5 healthy subjects and 5 CAD patients. (c) Representative images of Nrf2 in round and
spindle MDMs obtained from healthy subjects and CAD patients (400× original magnification), nuclei
were visualized by Hoechst 33258. (d) Quantitative analysis of Nrf2 in round and spindle MDMs. Data
are expressed as mean ± SD of fluorescence intensity/µm2 (at least three fields, 400× magnification,
were analyzed) and derive from independent cultures obtained from 10 healthy subjects and 30 CAD
patients (SA n = 10; NSTEMI n = 10; STEMI n = 10). * p < 0.05, ** p < 0.01, vs. healthy subjects.

3.4. Association Between In Vivo Plaque Morphology and HO-1 Levels in MDMs

The coronary plaque characteristics in CAD patients are illustrated in Table 2.

Table 2. Optical coherence tomography features of coronary plaque in CAD patients.

Variables CAD (n = 30)

Lipid plaque, n (%) 26 (86.67)
Fibrous plaque, n (%) 1 (3.33)
Calcific plaque, n (%) 3 (10)
Plaque rupture, n (%) 15 (50)

MLA, mm2 (IQR) 1.70 (1.43–2.58)
TCFA, n (%) 15 (50)

Thrombus, n (%) 14 (46.67)
Lipid quadrants, n 2.70 ± 1.02

Lipid arc, degree ◦ (IQR) 163 (133.5–280)
Max lipid arc, degree ◦ 206.37 ± 87.10

Macrophage infiltration detection, n (%) 21 (70)
Macrophage NSD 6.24 ± 1.16

MLA: Minimal lumen area; TCFA: Thin-cap fibroatheroma; NSD: Normalized standard deviation. Data are expressed
as mean ± SD or median and IQR.
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Patients with high levels of HO-1 in both MDM morphotypes more frequently displayed a TCFA
(p = 0.049 and p = 0.015, spindle and round, respectively) (Figure 4a), a ruptured plaque (p = 0.001
and p = 0.036, spindle and round, respectively) (Figure 4b), and presence of thrombi (p = 0.0005 and
p = 0.028, spindle and round, respectively) (Figure 4c).
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Figure 4. In vivo plaque features and HO-1 levels in MDM morphotypes. (a) Association between
HO-1 levels and thin cap fibroatheroma (TCFA), (b) fibrous cap integrity, (c) presence of thrombi
detected by means of optical coherence tomography (OCT). Data are expressed as median and IQR.
* p < 0.05, ** p < 0.01.
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In addition, in both MDM morphotypes we observed significant positive correlations between
HO-1 levels and macrophage content (NSD) (spindle: r = 0.62, p = 0.003; round: r = 0.59, p = 0.005)
(Figure 5a). Moreover, borderline positive correlations were observed between HO-1 levels and max
lipid arc (spindle: r = 0.34, p = 0.06; round: r = 0.43, p = 0.02) (Figure 5b).

Figure 5. Correlations between in vivo plaque features and HO-1 levels in MDM morphotypes.
Correlation between HO-1 levels in round and spindle MDMs and (a) macrophage content (NSD) and
(b) max lipid arc, detected by means of OCT in in vivo plaque.

4. Discussion

In the present study we demonstrate higher HO-1 protein levels and the activation of its related
Nrf2/HO-1 pathway in MDMs obtained from CAD patients as compared to those obtained from healthy
subjects. For the first time, we analyzed this pathway in the different MDM morphotypes. Moreover,
we show a positive association between HO-1 levels in MDMs obtained in vitro and the vulnerable
coronary plaque features, as detected in vivo by OCT.

HO-1 is a stress response protein that is expressed in several cell types, including macrophages.
It is induced by several stimuli inducing oxidative stress, such as cardiovascular risks factors [13–15],
hypoxia [40], and GSH depletion [41]. In line with in animal models studies [42,43], our previous data
obtained in whole blood from CAD patients demonstrated a reduction of GSH levels and a related
imbalance of the GSH/GSSG ratio, that is commonly used as an index of oxidative status [44,45]. Here,
we detect a progressive decrease of this marker in MDMs obtained from SA, NSTEMI, and STEMI
patients, indicating an increase of oxidative stress status in patients with a worse prognosis.

Augmented oxidative stress levels activate the Nrf2/HO-1 pathway as one of the cellular protective
mechanisms. The important protective role of HO-1 against human atherosclerosis has been highlighted
in population genetic studies that evidenced a polymorphism in the promoter region of human HO-1
gene associated with atherosclerosis predisposition [46–48]. In the clinical setting HO-1 deficiency
is a very rare condition, but the autopsy case report of HO-1 deficient boy showed hyperlipidemia,
presence of foam cells in the liver, and of fatty streak and fibrous plaque in the aorta. These are several
lines of evidence that outline the role of HO-1 against atherogenesis [49].

Nevertheless, in our experimental conditions, MDMs from CAD patients expressed a progressive
increase of HO-1 levels in both morphotypes, going from healthy to STEMI patients. This is in
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line with previous studies that infer an adaptive defense role of HO-1 against atherosclerosis [50].
The mechanisms underlying the cardioprotective function of HO-1 involve the antioxidant action of its
products [51,52], the reduction in leukocyte recruitment and infiltration, and the suppression of the
pro-inflammatory response of immune cells [18].

The increase in HO-1 levels observed in our study CAD population goes in parallel with the
increased levels of Nrf2, the transcription factor involved in cell protection from oxidant stressors.
Several results strengthen the anti-atherogenic role of Nrf2 in preserving vascular integrity and
endothelial function [53], potentially through the release of NO [54] and the protection from cell
apoptosis [55]. Moreover, the activation of Nrf2 protects human coronary artery endothelial cells
against oxidative challenge [56]. In the present study, we also demonstrate the activation of Nrf2
pathway by its translocation into the nucleus. Indeed, CAD MDMs show higher levels in the nucleus
as compared to healthy MDMs. In turn, the latter exhibit very low and feeble protein levels in the
nucleus, and high protein levels in the cytosol. This is in line with Nrf2 cytosolic localization in
basal condition, where Nrf2 is associated to Keap-1 protein, which induces its ubiquitination and
proteasomal degradation. The increase of the Nrf2 stability and its translocation into the nucleus in
response to stress signals activates the antioxidant gene transcription [57].

This defense mechanism is evidenced also in atherosclerotic plaques by the presence of high levels
of HO-1. Notably, its levels in both carotid [16] and coronary [58] lesions positively correlated with
atherosclerotic grade and plaque vulnerability. In addition, Li et al. showed increased levels of HO-1
in lymphocytes and monocytes associated with the severity of the pathology [59]. Accordingly, in
our study, patients with the highest levels of HO-1 in MDMs, more frequently showed a vulnerable
coronary plaque featured by a TCFA, and an increase in macrophage and lipid content. In addition, in
our study, higher levels of HO-1 are detected in MDMs of CAD patients that presented with ruptured
plaque and with the presence of thrombus as compared to those with non-ruptured plaque and without
thrombi formation. This finding may be explained in light of previous studies reporting a positive
correlation between HO-1 and matrix metalloproteinase-9 levels and a negative correlation between
the presence of smooth muscle cells and collagen deposition [16]. Moreover, it has been observed that
MMP-9 is abundant in carotid plaques characterized by the presence of intraplaque hemorrhage [60].

Overall, these results highlight the activation of Nrf2/HO-1 pathway as an antioxidant response
mechanism in MDMs from CAD patients and point out that HO-1 levels may reflect coronary plaque
vulnerability. This association could help in identifying patients with rupture-prone plaque and
suggests Nrf2/HO-1 pathway as a new potential therapeutic target to counteract plaque progression.
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