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Abstract We study the Morse–Novikov cohomology and its almost-symplectic counter-
part on manifolds admitting locally conformally symplectic structures. More precisely, we
introduce lcs cohomologies and we study elliptic Hodge theory, dualities, Hard Lefschetz
condition. We consider solvmanifolds and Oeljeklaus–Toma manifolds. In particular, we
prove that Oeljeklaus–Toma manifolds with precisely one complex place, and under an addi-
tional arithmetic condition, satisfy theMostow property. This holds in particular for the Inoue
surface of type S0.
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Introduction

On a compact differentiable manifold X , flat line bundles (namely, local systems of 1-
dimensional C-vector spaces) are determined by the associated monodromy homomorphism
π1(X, x) → C

×, which can be viewed as a cohomology class [ϑ] ∈ H1(X; C). Consider the
twisted differential dϑ := d−ϑ∧-, that is the exterior derivative perturbed by a closed 1-form
ϑ . The cohomology of the perturbed complex (∧•X, dϑ) is calledMorse–Novikov cohomol-
ogy H•

ϑ(X) [18,36,37] of X with respect to ϑ , and it depends just on [ϑ] ∈ H1(X; R) up
to gauge equivalence. It may provide information on the manifold itself. See e.g. the explicit
computations on Inoue surfaces in [40], where the Morse–Novikov cohomology allows to
distinguish between Inoue surfaces of type S+ and S−, even if they have the same Betti num-
bers. So, it may be useful to understand the cohomology H•

ϑ(X) varying [ϑ] ∈ H1(X; R); in
particular one can study, for example, H•

k·ϑ(X) varying k ∈ R for a fixed [ϑ] ∈ H1(X; R).
In the holomorphic category, twisted differentials have been studied in [25], see also [4].

In particular, Kasuya gives in [25, Theorem 1.7] a structure theorem for Kähler solvmanifolds
in terms of strong-Hodge-decomposition with respect to any perturbation of the differentials,
which he calls hyper-strong-Hodge-decomposition. This result yields a Hodge-theoretical
proof of the Arapura theorem characterizing solvmanifolds in class C of Fujiki, see [4,
Theorem 3.3].

The twisted differential dϑ has also a geometric description. In fact, by the Poincaré
Lemma, closed 1-forms correspond to local conformal changes. So, for example, for an
almost-symplectic form� (that is, a non-degenerate 2-form), the locally conformal symplec-
tic condition corresponds to dϑ� = 0 for some closed Lee form ϑ , while the symplectic
condition corresponds to d� = 0, that is the case ϑ = 0.

In this note, we consider locally conformal symplectic (say, lcs) structures. We take their
associated closed Lee forms as natural twists for the differential—in the spirit of the equiv-
ariant point of view introduced in [16]. We introduce and study cohomologies in the lcs
setting as analogues of the Tseng and Yau symplectic cohomologies [47,48]. We develop
here the algebraic aspects arising from a structure of bi-differential vector space, while Le
and Vanz̆ura study primitive cohomology groups in [28]. (See also [3], where symplectic
cohomologies and symplectic cohomologies with values in a local system are studied, with
focus on solvmanifolds.)

More precisely, under the inspiration of [11,51], we start by looking at the commutation
between the twisted differential dϑ by the Lee form and the sl(2, R)-representation operators
associated with the lcs (almost-symplectic is enough) form �, namely L := � ∧ - and
� := −ι�−1 and H = [L ,�]. It is clear that dϑ L = Ld + dϑ�; so, the lcs condition
dϑ� = 0 assures that dϑ L = Ld . Moreover, the commutation between dϑ and � was
computed in [7, Proposition 2.8], and once again it gives a change of the twist but still in the
same line; see also [28, Section 2]. Both these results suggest to look not only at the twist
[ϑ], but also at k · [ϑ] varying k ∈ R. Moreover, in the spirit of the Novikov inequalities,
which link the number of zeroes of a closed 1-form of Morse-type with the dimension of the
Morse–Novikov cohomology, note that ϑ and k · ϑ have the same zeroes when k ∈ R \ {0}.
For large k, interesting phenomena occur: e.g. if ϑ is not exact, then k · ϑ is the Lee form of
a lcs structure [15]; if ϑ is nowhere vanishing, then the Morse–Novikov cohomology with
respect to k · ϑ vanishes [41].
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This is our motivation to define a bi-differential graded vector space associated with
(k + Z) · [ϑ], see Lemma 1.3. Once we have this bi-differential vector space structure, we
investigate its associated cohomologies: other than the Morse–Novikov cohomology and its
lcs-dual, we have lcs-Bott–Chern and Aeppli cohomologies. Following the same pattern as
[11,12,19,31,32,47,51], we study elliptic Hodge theory, and we get some results concerning
Poincaré dualities, see Proposition 2.3 and Theorem 2.4, and Hard Lefschetz condition, see
Theorems 2.6 and 2.7. Finally, we study some explicit examples, on nilmanifolds (Kodaira–
Thurston surface [26,46]) and solvmanifolds (Inoue surfaces of type S+ [23], for which see
also [40], and Oeljeklaus–Toma manifolds [38]).

For compact quotients of connected simply connected completely solvable Lie groups, the
Hattori theorem [22, Corollary 4.2] allows to reduce the computation of the Morse–Novikov
cohomology at the linear level of the Lie algebra, and the same holds for lcs cohomologies,
see Lemma 3.1. In general, for a solvmanifold �\G which is not completely solvable, there
is no reason of having H∗(g) � H∗(�\G). One situation when this happens is when the
solvmanifold satisfies theMostow condition [34].We prove this condition suffices also for the
lcs cohomologies with respect to an invariant closed one-form, see Proposition 3.2. The case
of Inoue surfaces is interesting because two subclasses, S±, are completely solvable, falling
thus under the scope of the Hattori theorem; however, this is not the case of the subclass
S0. In [40], the computations of the cohomology are done without using the structure of
solvmanifold, but instead with a “twisted” version of theMayer–Vietoris sequence.We prove
here that Inoue surfaces of type S0 and, more in general, certain Oeljeklaus–Toma manifolds
of type (s, 1), also known in the literature as with one complex place, satisfy the Mostow
condition, see Proposition 4.2 and Theorem 4.3, respectively. More precisely, here we have
to assume an arithmetic condition on the associated number field, namely, that there is no
totally real intermediate extension. This holds for example for the Inoue surface of type S0,
that is, in the case (s, t) = (1, 1), see also Proposition 4.2. As we show in Proposition 4.6,
for any s there exists an Oeljeklaus–Toma manifold of type (s, 1) satisfying such a property.

1 Bi-differential graded vector space for lcs structures

Let X be a compact differentiable manifold endowed with a locally conformal symplectic
form � with Lee form ϑ , namely: � is an almost-symplectic form (i.e. a non-degenerate
2-form) such that

d� − ϑ ∧ � = 0 with dϑ = 0.

We set

L := � ∧ - and � := −ι�−1 ,

where ι denotes the contraction. Read � = −L� = − �−1 L�, up to a sign, as the symplectic
adjoint of L , namely the dual of L with respect to the L2-pairing induced by the almost-
symplectic form �. Recall that, L and � together with

H := [L ,�],

yield an sl(2, R)-representation on ∧•X , see [51, Corollary 1.6], see also [28, Corollary 2.4]
quoting [29, Section 1].
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For k ∈ R, we consider the following operators, compare [28, Section 2]:

dk := dkϑ := d − (kϑ) ∧ - : ∧• X → ∧•+1X,

δk := dk−1� − �dk : ∧• X → ∧•−1X.

By a straightforward computation, the Leibniz rule for dk reads as:

dk(α ∧ β) = dk−hα ∧ β + (−1)degαα ∧ dhβ,

for h ∈ R, see [28, Lemma 2.1]. We also notice that if we change ϑ by ϑ + d f , then the lcs
structure � with Lee form ϑ yields the lcs structure exp( f )� with respect to the Lee form
ϑ + d f , and the above operators change as follows:

dk(ϑ+d f ) = exp(k f ) dkϑ exp(−k f ), (1.1)

δk(ϑ+d f ) = exp((k − 1) f ) δkϑ exp(−k f ). (1.2)

Remark 1.1 Note that, in [28], the sign of ϑ is chosen opposite: dLVk := d + kϑ ∧ -. There-
fore, we have dLVk = d−k . Their second operator is δLVk �∧h X := (−1)h � dLVn+k−h�, [28,
Equation (2.11)], that is, δLVk �∧h X= δ2n+k−2h , as follows by the formulas (1.3) and (1.4).
Moreover, as for �, the notation in our note differs from [28] up to a sign.

In order to give a different interpretation of δk , we need some preliminaries. Recall that,
once fixed any almost-complex structure J on X , one defines dck := J−1dk J . Denotingwith ∗
the Hodge-∗-operator associated with a fixed J -Hermitian metric g on X , the formula for the
adjoint of dk , respectively dck , with respect to the L

2-pairing induced by g is d∗
k = − ∗ d−k∗,

respectively (dck )
∗ = −∗dc−k∗. Moreover, we can also consider the L2-pairing induced by the

almost-symplectic structure �, whence the symplectic Hodge-�-operator in [11, Section 2].
The analogue formulas for the adjoint in the symplectic context are d�

k �∧h X= (−1)h � d−k�,
and (dck )

��∧h X= (−1)h � dc−k�. (Recall that ∗2�∧h X= (−1)h · id and �2 = id.) Finally, recall
that: if J is an almost-complex structure compatible with the almost-symplectic form �,
once set g := �(-, J --) the corresponding J -Hermitian metric (that is, (g, J,�) is an almost-
Hermitian structure), then we have the relation � = J∗ [11, Corollary 2.4.3]. Therefore, we
get

d�
k �∧h X = (−1)h � d−k� = − ∗ dc−k∗ = (dck )

∗. (1.3)

We have the following.

Lemma 1.2 ([7, Proposition 2.8]) Let X be a compact differentiable manifold of dimension
2n, endowed with a locally conformal symplectic form � with Lee form ϑ . Consider an
almost-complex structure compatible with �, and the associated Hermitian metric. Then,

δk �∧h X = d�
−(n+k−h) = (dc−(n+k−h))

∗. (1.4)

We have

Lemma 1.3 Let X be a compact differentiable manifold of dimension 2n, and let ϑ be a
d-closed 1-form. Assume that there is a locally conformal symplectic form � with Lee form
ϑ . Then, for any fixed k ∈ R, the diagram
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...
...

...

· · · ∧h−2X
dk−1 ∧h−1X

dk−1 ∧h X · · ·

· · · ∧h−1X
dk

δk

∧h X
dk

δk

∧h+1X

δk

· · ·

· · · ∧h X
dk+1

δk+1

∧h+1X

δk+1

dk+1 ∧h+2X

δk+1

· · ·

...
...

...

(1.5)

represents a Z-graded bi-differential vector space.

Proof We have to prove that:

(dk)
2 = 0, δkδk+1 = 0, dk−1δk + δkdk = 0.

• More in general, by straightforward computations, we notice that

dkd� = (� − k)ϑ ∧ -.

• Let J be an almost-complex structure compatible with the almost-symplectic structure
�, and let g be the associated J -Hermitian metric. We compute:

(δkδk+1)�∧h X

= (dc−(n+k−(h−1)))
∗(dc−(n+(k+1)−h))

∗

= ∗J−1dn+k−h+1 J ∗ ∗J−1dn+k−h+1 J ∗
= (−1)h+1 ∗ J−1dn+k−h+1dn+k−h+1 J∗ = 0.

The third equality follows from the fact that ∗2�∧h X= (−1)h ; the last one follows by the
previous point of the proof.

• We compute:

dk−1δk + δkdk

= dk−1dk−1� − dk−1�dk + dk−1�dk − �dkdk = 0.

This completes the proof. �	

2 Cohomologies for lcs structures

Let X be a compact differentiable manifold, and let ϑ be a d-closed 1-form. Assume that
there exits a locally conformal symplectic form� on X with Lee form ϑ , namely� is a non-
degenerate 2-form such that dϑ� = 0. Fix k ∈ R. Once given the bi-differential Z-graded
vector space in the Lemma 1.3, we can define the following cohomologies:
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H•
dk

(X) := ker dk
im dk

, H•
δk

(X) := ker δk
im δk+1

,

H•
dk+δk

(X) := ker dk∩ker δk
im δk+1dk+1

, H•
δkdk

(X) := ker δkdk
im dk+im δk+1

.

We call H•
dk+δk

(X) the lcs-Bott–Chern cohomology of weight k of X , and H•
δkdk

(X) the
lcs-Aeppli cohomology of weight k of X . Note that thanks to (1.1) and (1.2), the above
cohomologies depend just on [ϑ] ∈ H1

dR(X; R), up to gauge equivalence.
The identity induces natural maps of Z-graded vector spaces:

H•
dk+δk

(X)

H•
dk

(X) H•
δk

(X)

H•
δkdk

(X)

(2.1)

By definition, we say that X satisfies the δkdk-Lemma if the natural map H•
dk+δk

(X) →
H•

δkdk
(X) induced by the identity is injective. We say that X satisfies the lcs-Lemma if it

satisfies the δkdk-Lemma for any k ∈ R. In this case, all the above maps are isomorphisms,
see [14, Lemma 5.15], adapted in [6, Lemma 1.4] to the Z-graded case.

Remark 2.1 (ComparisonwithTseng andYau’s symplectic cohomologies) In the caseϑ = 0,
the lcs form � with Lee form ϑ is in fact symplectic. In [47,48], Tseng and Yau introduce
and study the Bott–Chern and the Aeppli cohomologies for symplectic manifolds, defined
as

H•
d+d�(X) := ker d ∩ ker d�

im dd�
and H•

dd�(X) := ker dd�

im d + im d�
,

where d� := [d,�]. In case ϑ = 0, notice that, for any k ∈ R, one has dk = d and δk = d�,
whence

H•
dk+δk

(X) = H•
d+d�(X), H•

δkdk (X) = H•
dd�(X).

This means that the lcs cohomologies defined above coincide with the ones defined by Tseng
and Yau in the symplectic case. In particular, X satisfies the δkdk-Lemma for some k if and
only if it satisfies the lcs-Lemma if and only if the symplectic structure satisfies the Hard
Lefschetz condition, see [47, Proposition 3.13] and the references therein.

2.1 Elliptic Hodge theory for lcs cohomologies

As before, consider an almost-complex structure J compatible with the almost-symplectic
form �, and let g := �(-, J --) be the corresponding J -Hermitian metric. Fix k ∈ R. We
consider the adjoint operators

d∗
k = − ∗ d−k∗, δ∗

k �∧h X = dc−(n+k−h),

of dk , respectively δk , with respect to the L2-pairing induced by g.
We follow [27,45,47], and we define the following operators, see also [18] for the Morse–

Novikov cohomology:
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dk := dkd
∗
k + d∗

k dk,

δk := δ∗
k δk + δk+1δ

∗
k+1,

dk+δk := d∗
k dk + δ∗

k δk + (δk+1dk+1) (δk+1dk+1)
∗ + (δkdk)

∗ (δkdk)

+ (
d∗
k δk+1

) (
d∗
k δk+1

)∗ + (
d∗
k−1δk

)∗ (
d∗
k−1δk

)
,

δkdk := dkd
∗
k + δk+1δ

∗
k+1 + (δkdk)

∗ (δkdk) + (δk+1dk+1) (δk+1dk+1)
∗

+ (
δk+1d

∗
k+1

) (
δk+1d

∗
k+1

)∗ + (
dkδ

∗
k

) (
dkδ

∗
k

)∗
.

Proposition 2.2 Let X be a compact differentiable manifold of dimension 2n, and let ϑ be a
d-closed 1-form. Assume that there is a locally conformal symplectic form � with Lee form
ϑ . Fix an almost-complex structure J compatible with �, and let g be the corresponding
J -Hermitian metric. Fix k ∈ R. Then:

(i) the operators dk , δk , dk+δk , δkdk are differential self-adjoint elliptic operators;
(ii) the following Hodge decompositions hold:

∧•X = kerdk ⊕ im dk ,

∧•X = kerδk ⊕ im δk ,

∧•X = kerdk+δk ⊕ im dk+δk ,

∧•X = kerδkdk ⊕ im δkdk ;
(iii) the following isomorphisms hold:

kerdk
�→ H•

dk (X),

kerδk

�→ H•
δk

(X),

kerdk+δk

�→ H•
dk+δk

(X),

kerδkdk
�→ H•

δkdk (X) ;
(iv) in particular, the lcs cohomologies H•

dk
(X), H•

δk
(X), H•

dk+δk
(X), H•

δkdk
(X) have finite

dimension.

Proof Notice that the top order terms coincide with the terms corresponding to k = 0. In
particular, the operators are ellipic, see [47, Proposition 3.3, Theorem 3.5, Theorem 3.16].
The statement follows from the general theory of differential self-adjoint elliptic operators.

�	
2.2 Symmetries in lcs cohomologies

The following two results resumes the dualities à la Poincaré for the lcs cohomologies.

Proposition 2.3 Let X be a compact differentiable manifold of dimension 2n endowed with
a locally conformal symplectic form � with Lee form ϑ . Then, for any weight k ∈ R, for any
degree h ∈ Z, the symplectic-�-operator induces the isomorphism

� : Hn−h
dk

(X)
�→ Hn+h

δh+k
(X).

On the other side, once chosen an almost-Kähler structure (g, J,�) on X, for any k ∈ R,
h ∈ Z, the Hodge-∗-operator induces the isomorphisms

∗: Hn−h
dk

(X)
�→ Hn+h

d−k
(X) and ∗: Hn−h

δ−k−h
(X)

�→ Hn+h
δk+h

(X) .
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Proof The first statement follows by the formula (1.4):

δh+k � �∧n−h X = d�
−n−(h+k)+(n+h)� = d�−k �

= (−1)n+h � dk � �

= (−1)n+h � dk�∧n−h X ,

and by �2 = id.
Now let (g, J,�) be a compatible triple. Denoting with H•

dk
(X) := kerdk , we prove

that

∗ : Hn−h
dk

(X)
�→ Hn+h

d−k
(X) ;

the proof of the other isomorphism is similar. Let α ∈ Hn−h
dk

(X), namely dkα = 0 and
d∗
k α = 0. Then

d−k ∗ α = (−1)n−h+1 ∗ ∗d−k ∗ α = (−1)n−h ∗ d∗
k α

and

d∗−k ∗ α = − ∗ dk ∗ ∗α = (−1)n−h+1 ∗ dkα.

We have then proved the commutation relation d−k∗ = ∗dk . �	

Theorem 2.4 Let X be a compact differentiable manifold of dimension 2n endowed with a
locally conformal symplectic form � with Lee form ϑ . Let (g, J,�) be an almost-Kähler
structure on X. Then, for any weight k ∈ R, for any degree h ∈ Z, the Hodge-∗-operator
induces the isomorphism

∗: Hn−h
dk+δk

(X)
�→ Hn+h

δ−kd−k
(X).

Proof Note that L∗ = ∗−1L∗ = �−1L� = L� = −�. We claim that δ∗
k = ∗δ−k+1∗. Indeed,

by using also J L = L and J� = �:

δ∗
k �∧h X = (dk−1� − �dk)

∗ = d∗
k L − Ld∗

k−1

= − ∗ d−k ∗ L ∗−1 ∗ + ∗ ∗−1 L ∗ d−k+1 ∗
= − ∗ d−k(∗−1L∗) ∗ + ∗ (∗−1L∗)d−k+1 ∗
= ∗d−k� ∗ − ∗ �d−k+1 ∗
= ∗(d−k� − �d−k+1) ∗
= ∗δ−k+1 ∗ .

Using this relation and the definitions of the lcs Laplacians, we get that, for any differential
form α, it holds dk+δkα = 0 if and only if

dkα = 0, δkα = 0, (dkδk+1)
∗α = 0,

equivalently,

d∗−k(∗α) = 0, δ∗−k+1(∗α) = 0, δ−kd−k(∗α) = 0,

that is, δ−kd−k (∗α) = 0. By Proposition 2.2, we get the proof. �	
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2.3 Hard Lefschetz condition for lcs cohomologies

As a consequence of the previous relations and their dual, we can prove the Hard Lefschetz
condition for the lcs-Bott–Chern and lcs-Aeppli cohomologies (see [47, Theorem 3.11, The-
orem 3.22] for the same result in the symplectic setting).

Lemma 2.5 Let X be a manifold endowed with a lcs structure � with Lee form θ . Then, the
following commutation relations hold:

Ldk − dk+1L = 0, Lδk − δk+1L = dk,

dk−1� − �dk = δk, δk−1� − �δk = 0.

Proof The first, [28, Equation (2.5)], follows by the Leibniz rule and the lcs condition d1� =
0. The second follows by the first one and by [L ,�] = H : indeed,

Lδk − δk+1L = Ldk−1� − L�dk − dk�L + �dk+1L

= dk L� − L�dk − dk�L + �Ldk = dk H − Hdk

= dk
∑

s

(n − s)π∧s X −
∑

s

(n − s − 1)dkπ∧s X = dk,

where we recall that H�∧•X= ∑
s(n − s)π∧s X where π∧sX denotes the projection onto the

space ∧s X . The third and the fourth relations are, respectively, the definition of δk and the
symplectic dual of the first commutation identity above, see [28, Proposition 2.5]. �	
Theorem 2.6 Let X be a compact manifold of dimension 2n endowed with a lcs structure �

with Lee form θ . Then, for any h ∈ Z, for any k ∈ R, the following maps are isomorphisms:

Lh : Hn−h
dk+δk

(X)
�→ Hn+h

dk+h+δk+h
(X),

Lh : Hn−h
δkdk

(X)
�→ Hn+h

δk+hdk+h
(X).

Proof We consider the following differential operators

Ddk+δk := d∗
k dk + δ∗

k δk + (δk+1dk+1) (δk+1dk+1)
∗ ,

Dδkdk := dkd
∗
k + δk+1δ

∗
k+1 + (δkdk)

∗ (δkdk) .

Notice that ker Ddk+δk = kerdk+δk and ker Dδkdk = kerδkdk . The advantage of consid-
ering these operators is that by the relations proved in Lemma 2.5 one easily gets

LDdk+δk = Ddk+1+δk+1L , LDδkdk = Dδk+1dk+1L .

Notice that the operator L does not commute with d•+δ• and δ•d• . As a consequence we
have that the following maps are isomorphisms

Lh : Hn−h
dk+δk

(X)
�→ Hn+h

dk+h+δk+h
(X),

Lh : Hn−h
δkdk

(X)
�→ Hn+h

δk+hdk+h
(X).

The statement follows by Proposition 2.2. �	
Similarly to [32, Proposition 1.4], [19], [12, Theorem 5.4] stating that the dd�-Lemma

and the Hard Lefschetz condition are equivalent in the symplectic context, in the lcs setting
we have the following result.
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Theorem 2.7 Let X be a compact manifold of dimension 2n endowed with a lcs structure
� with Lee form ϑ . Then, the following conditions are equivalent:

(1) it satisfies the lcs-Hard Lefschetz condition, that is, for any h ∈ Z, for any k ∈ R, the
map

Lh : Hn−h
dk

(X) → Hn+h
dk+h

(X)

is an isomorphism;
(2) it satisfies the lcs-Lemma, equivalently, for any h ∈ Z, for any k ∈ R, the map

Hh
dk+δk

(X) → Hh
dk (X)

is an isomorphism;
(3) it is symplectic up to global conformal changes, and it satisfies the Hard Lefschetz

condition.

We will show that (1) gives [ϑ] = 0 and then (3), and that (2) implies (1) because of
Theorem 2.6; finally, condition (3) is stronger than either (1) and (2) thanks to [32, Proposi-
tion 1.4], [19], [12, Theorem 5.4]. For the sake of completeness, we will also give a proof of
the equivalence of (1) and (2), which may possibly turn useful for weaker statements. Before
proving this, we will need few intermediate results.

Proposition 2.8 Let X be a compact manifold endowed with a lcs structure� with Lee form
ϑ . Then, the following conditions are equivalent:

• it satisfies the lcs-Hard Lefschetz condition;
• for any k ∈ R, there exists a δk-closed representative in any cohomology class in H•

dk
(X).

Proof The proof is an adaptation to the twisted case of the one presented in [12, Theorem5.3].
Wewill recall it for completeness. The “if” implication follows by the following commutative
diagram

ker dk ∩ ker δk |�n−h(X)
Lh

ker dk+h ∩ ker δk+h |�n+h(X)

Hn−h
dk

(X)
Lh

Hn+h
dk+h

(X).

The left and right vertical arrows are surjective by hypothesis, and the top horizontal arrow
is an isomorphism by the commutation relations. Hence, the bottom arrow is surjective.

Suppose now that the lcs-Hard Lefschetz condition holds. First of all notice that we have
the following decomposition

Hn−h
dk

(X) = im L + Pn−h

where

Pn−h =
{
[α] ∈ Hn−h

dk
(X) : Lh+1[α] = 0

}

and

im L = im
(
L : Hn−h−2

dk−1
(X) → Hn−h

dk
(X)

)
.
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Indeed, let α ∈ ∧n−h X be dk-closed. Take β := Lh+1α ∈ ∧n+h+2X : it is a dk+h+1-
closed form. By the lcs-HLC, there exists γ ∈ ∧n−h−2X a dk−1-closed form such that
Lh+2[γ ]dk−1 = [β]dk+h+1 . Therefore,

0 = [Lh+2γ − β]dk+h+1 = [Lh+2γ − Lh+1α]dk+h+1 = Lh+1[� ∧ γ − α]dk ,
so α = Lγ + (α − � ∧ γ ) ∈ im L + Pn−h .

Nowwe prove our thesis by induction on the degree of the form. If f is a dk-closed smooth
function, then it is obviously δk -closed. Letα ∈ ∧1X a dk-closed form, then δkα = dk−1�α−
�dkα = 0. Suppose that in every class in H j

dk
(X) there exists a δk-closed representative for

j < n − h and we prove the thesis for degree n − h. Let α ∈ ∧n−h X be dk-closed; then by
the previous decomposition α = Lγ + α̃ with Lh+1[α̃] = 0. By induction, there exists γ̃

a δk−1-closed form such that [γ ] = [γ̃ ] and so, if there exists ψ a δk-closed form such that
[ψ] = [α̃], then we conclude the proof.

This last fact follows by the following consideration. If α ∈ ∧n−h X is dk-closed and
such that Lh+1[α]dk = 0, then there exists a δk-closed form ψ ∈ ∧n−h X in the same dk-
cohomology class. Indeed, since Lh+1[α]dk = 0, then �h+1 ∧ α = dk+h+1β̃ for some
β̃ ∈ ∧n+h+1X . Since Lh+1 : ∧n−h−1 X → ∧n+h+1X is an isomorphism, there exists
β ∈ ∧n−h−1X such that Lh+1β = β̃. Setψ := α−dkβ. Clearly, dkψ = 0 and [ψ]dk = [α]dk
and Lh+1ψ = Lh+1α−Lh+1dkβ = dk+h+1Lh+1β−Lh+1dkβ = Lh+1dkβ−Lh+1dkβ = 0.
Hence, ψ is a primitive dk-closed form, so it is δk-closed by definition of δk . �	
Proposition 2.9 Let X be a compact manifold endowed with a lcs structure� with Lee form
ϑ . If X satisfies the lcs-Hard Lefschetz condition, then the following equalities hold for any
k ∈ R:

im δk+1 ∩ ker dk = im dk ∩ im δk+1,

im dk ∩ ker δk = im dk ∩ im δk+1.

Proof We prove the first equality. The second one is similar.
We need to prove that if α ∈ ∧h X is such that dkδk+1α = 0 then δk+1α is dk-exact. We

proceed by induction on the degree of α. If α is a smooth function then clearly δk+1α = 0
is dk-exact. Let α ∈ ∧1X be such that dkδk+1α = 0. We have to distinguish two cases. If
k �= 0, then δk+1α ∈ H0

dk
(X) = 0 (see e.g. [9]). Otherwise, if k = 0, then δ1α is a d-closed

0-form, so δ1α = c constant. Hence

− � dn � α = δ1α = c

and applying � to the first and the last term in the equalities we get−dn �α = cVol = Lnc, but
by hypothesis Ln : H0

d0
(X) → H2n

dn
(X) is an isomorphism and the volume form Vol = Ln1

cannot be dn-exact so 0 = c = δ1α.
Let now α ∈ ∧h X be such that dkδk+1α = 0 and take the decomposition

α =
∑

r

Lrαr

with αr primitive forms. It is a straightforward computation to show that

0 = dkδk+1α =
∑

Lrdk−r δk+1−rαr

withdk−r δk+1−rαr primitive forms; hence, every single term is zero, namelydk−r δk+1−rαr =
0. When r > 0, by induction δk+1−rαr = dk−rϕr for some ϕr ∈ ∧h−2r−2X . Hence,
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δk+1L
rαr = (Lδk − dk)L

r−1αr

= L(Lδk−1 − dk−1)L
r−2αr − dk L

r−1αr = · · ·
= Lr δk−r+1αr − rdk L

r−1αr

= Lrdk−rϕr − rdk L
r−1αr

= dk
(
Lrϕr − r Lr−1αr

)
.

The last case that we have to consider is when α ∈ ∧h X is a primitive form. We define
β ∈ ∧h−1X as

Ln−h+1β = dk+1+n−h L
n−hα.

Notice that β is a primitive form, indeed

Ln−h+2β = Ldk+1+n−h L
n−hα = dk+2+n−h L

n−h+1α = 0

because α is primitive. Applying �n−h+1 and by using [12, Lemma 5.4], we have that there
exists a nonnegative constant cn−h+1,h−1 such that

cn−h+1,h−1β = �n−h+1Ln−h+1β

= �n−h+1dk+1+n−h L
n−hα

= �n−h(dk+n−h� − δk+1+n−h)L
n−hα = · · ·

=
(
dk�

n−h+1 − (n − h + 1)δk+1�
n−h

)
Ln−hα

= −(n − h + 1)δk+1�
n−h Ln−h

= −(n − h + 1)δk+1cn−h,hα.

Applying Ln−h+1, there exists c �= 0 such that

cdk+1+n−h L
n−hα = cLn−h+1β = Ln−h+1δk+1α.

By the lcs-HLC, we have that

Ln−h+1 : Hh−1
dk

(X) → H2n−h+1
dk+n−h+1

(X)

is an isomorphism; since we have just proven that Ln−h+1[δk+1α] = 0 ∈ H2n−h+1
dk+n−h+1

(X), we
get that

[δk+1α] = 0 ∈ Hh−1
dk

(X)

namely δk+1α is dk-exact concluding the proof. �	
Now we are ready to proof Theorem 2.7.

Proof of Theorem 2.7. We prove that (1) implies (3). By hypothesis with h = n and k = −n,
we have the isomorphism Ln : H0−n(X) � H2n

0 (X), where clearly H2n
0 (X) = H2n

dR(X; R) �
R. Therefore, H0−n(X) �= 0, and this cannot happen unless ϑ is exact [18], [20, Example 1.6].
To prove the last claim, we can actually argue also as follows. We can choose a generator
f for H0−n(X) having no zero on M , since it maps to the volume class by Ln . Therefore,
d f − f ϑ = 0, that is, ϑ = d lg f is exact.

The lcs-Lemma clearly implies the lcs-Hard Lefschetz condition, thanks to Theorem 2.6.
Moreover, (3) clearly implies (1); and (3) implies (2) because of the results in the symplectic
case, [32, Proposition 1.4], [19], [12, Theorem 5.4].
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For the sake of completeness, now we give also a proof of the fact that (1) implies (2); this
may possibly be useful if one needs weaker statements. Suppose that the lcs-Hard Lefschetz
condition holds. By Proposition 2.9, we are reduced to prove that

im dk ∩ im δk+1 = im dkδk+1.

Let α p = dkγ p−1 = δk+1β
p+1 ∈ ∧p X ; we prove that α p = dkδk+1η for some η ∈ ∧p X .

We prove it by induction on the degree of the form. For p = 0 and p = dim X , it is obvious.
For p = dim X − 1 =: 2n − 1, we have dk+1β

2n = 0 for degree reasons. Hence, by
Proposition 2.8 there exists β̃2n such that δk+1β̃

2n = 0 and β2n = β̃2n +dk+1τ
2n−1 for some

τ 2n−1. So,

α2n−1 = δk+1β
2n = δk+1dk+1τ

2n−1 = dkδk+1(−τ 2n−1).

Now, suppose that the thesis holds for p = h + 2 and we prove it for p = h. Let αh =
dkγ h−1 = δk+1β

h+1. We set αh+2 := dk+1β
h+1, and we get

δk+1α
h+2 = −dkδk+1β

h+1 = 0,

namely αh+2 ∈ ker δk+1 ∩ im dk+1 = im dk+1 ∩ im δk+2. Setting αh+2 = dk+1β
h+1 =

δk+2μ
h+3, by induction we have

αh+2 = dk+1δk+2ν
h+2.

Then,

dk+1(β
h+1 − δk+2ν

h+2) = 0

and by Proposition 2.8, there exists β̃h+1 ∈ ∧h+1X such that

δk+1β̃
h+1 = dk+1β̃

h+1 = 0, βh+1 = β̃h+1 − δk+2ν
h+2 + dk+1λ

h

for some λh ∈ ∧h X . So,

αh = δk+1β
h+1 = δk+1dk+1λ

h = dkδk+1(−λh)

namely αh ∈ im dkδk+1. �	
Remark 2.10 Notice that if X is a compact lcs manifold with lcs form � dϑ -exact, then �n

would be dn-exact and this is not possible if X satisfies the lcs-Hard Lefschetz condition.

2.4 Further results

Remark 2.11 (generic vanishing) Let X be a compact differentiable manifold, endowed with
a closed non-exact 1-form ϑ . Consider one of the following cases:

• X is a completely solvable solvmanifold [33, Theorem 4.5],
• or, more in general, X is any compact differentiable manifold and ϑ is nonzero and

parallel with respect to the Levi Civita connection associated with some fixed metric [30,
Theorem 4.5],

• or, more in general, if ϑ is nowhere-vanishing [41, Theorem 1], see also [39, Exer-
cise 4.5.5].

Then,we know that H•
dk

(X) = 0 except for a finite number of k ∈ R. It follows that if� is a lcs
structure on X with Lee form ϑ , then also H•

δk
(X) = 0, H•

dk+δk
(X) = 0, and H•

δkdk
(X) = 0

except for a finite number of k ∈ R. (This follows by symmetries, see Proposition 2.3 and
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Theorem 2.4, and by [5, Theorem 6.2], which can be rewritten in the general context of
Z-graded bi-differential vector spaces.)

In general, there is no generic vanishing, since the Euler characteristic of the Morse–
Novikov complex coincides with the Euler characteristic of the manifold, as a consequence
of the Atiyah–Singer index theorem, see [8].

3 Twisted cohomologies of solvmanifolds

Recall that a solvmanifold X = �\G (respectively, nilmanifold) is a compact quotient of a
connected simply connected solvable G (respectively, nilpotent) Lie group by a co-compact
discrete subgroup �. In this section, we provide conditions on X that allow to reduce the
computation of the lcs cohomologies at the level of the associated Lie algebra, reducing the
problem to a linear problem. We can apply these results on explicit examples in the next
section.

3.1 Hattori theorem for completely solvable solvmanifolds

A solvmanifold is said to be completely solvable if the eigenvalues of the endomorphisms
given by the adjoint representation of the corresponding Lie algebra are all real. (In particular,
note that nilmanifolds are completely solvable solvmanifolds.) In this case, the subcomplex
of invariant forms inside the complex of forms induces an isomorphisms in de Rham coho-
mology, in fact, in Morse–Novikov cohomology too [22, Corollary 4.2]. Here, by invariant,
we mean that the lift to the Lie group is invariant with respect to the action of the group on
itself given by left-translations. In particular, it follows that, up to global conformal changes,
we can assume that the Lee forms are invariant.

The Hattori result holds in fact for lcs cohomologies.

Lemma 3.1 Let X = �\G be a completely solvable solvmanifold endowed with an invari-
ant lcs structure. Then, the inclusion of invariant forms into the space of forms induces
isomorphisms at the level of lcs cohomologies.

Proof Since both the lcs structure � and the Lee form ϑ are invariant, then the operators dk
and δk preserve the space of invariant forms. Left-translations induce maps

H•
�k

(g∗) → H•
�k

(X),

varying �k ∈ {dk, δk, dk +δk, δkdk}, for every k ∈ Z; where H•
�k

(g∗) denotes the cohomology
of the correspondingbi-differential complex at the level of theLie algebragofG, equivalently,
of the space of invariant forms. The above maps are injective, as a consequence of elliptic
Hodge theory in Proposition 2.2, with respect to an invariant metric compatible with the lcs
structure: see the argument in [13, Lemma 9]. In fact, by [22], under the assumption that G
is completely solvable, the map

H•
dk (g

∗) → H•
dk (X)

is an isomorphism. Note that the lcs structure being invariant, the Poincaré isomorphism in
Proposition 2.3 is compatible with the inclusion of invariant forms. Then, also the map

H•
δk

(g∗) → H•
δk

(X)

is an isomorphism. Finally, the fact that the maps

H•
dk+δk

(g∗) → H•
dk+δk

(X) and H•
δkdk (g

∗) → H•
δkdk (X)
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are isomorphisms can be deduced from the above isomorphisms for Hdk and Hδk , see the
general argument in [1, Theorem 2.7] as adapted to theZ-graded context in [3, Corollary 1.3],
and by Poincaré duality in Theorem 2.4. �	
3.2 Mostow condition for solvmanifolds

Consider a solvmanifold X = �\G , and let g be its associated Lie algebra. The isomorphism

H•
d (g∗) �→ H•

d (�\G) holds also under the Mostow condition that Ad (�) and Ad (G) have
the sameZariski closure inGL(g) (wherewe understand byGL(g) the group consisting solely
of the linear isomorphisms of g) [34, Corollary 8.1]. In fact, Mostow considers cohomology
H•(�\G; ρ)withρ a representation ofG in a vector space F , assuming that� isρ-ample [34,
Section 6] (say, ρ is �-admissible in the notation of [42, Definition 7.24].) This means that
ρ ⊕Ad, as a representation of G in F ⊕g, satisfy that (ρ ⊕ Ad) (�) = (ρ ⊕ Ad) (G), where
the closure is with respect to the Zariski topology. In this case, one has that the restriction
morphism H•(g; ρ) � H•(G; ρ) → H•(�; ρ) is an isomorphism, [34, Theorem 8.1],
see also [42, Theorem 7.26]. In particular, the assumption holds: when ρ is a unipotent
representation of a nilpotent Lie group G; when G satisfies the Mostow condition Ad (�) =
Ad (G) and ρ is trivial; see [34, Theorem 8.2]. As explicit application, we write down as the
result applies to Morse–Novikov cohomologies.

Proposition 3.2 Consider a solvmanifold satisfying the Mostow condition. Then, the inclu-
sion of invariant forms into the space of forms induces isomorphisms at the level of
Morse–Novikov cohomology with respect to any invariant Lee form. Moreover, if X is
endowed with an invariant lcs structure, then the same holds true at the level of lcs coho-
mologies.

Proof Let X = �\G be a solvmanifold such that the Mostow condition holds. Denote by g
its Lie algebra. Let ϑ be an invariant closed 1-form. In the case ϑ is exact, we are reduced to
the Mostow theorem [34, Corollary 8.1]; hence, assume ϑ is not exact. We want to prove that
the natural map H•

ϑ(g) → H•
ϑ(X) is an isomorphism. Let π∗ϑ =: ϑ̃ be the d-exact invariant

1-form on G that lifts ϑ , where π : G → X . Consider

ρ : G × R → R, ρ(g)(r) := exp

(∫ g

e
ϑ̃

)
· r,

where
∫ g
e is the integral over any path in G connecting the identity e to the element g; recall

that G is simply connected. Since ϑ̃ is invariant under left-translations, ρ is a representation
ofG inR. When restricted to � = π1(X), which is isomorphic to the deck group of the cover
π : G → X , it is equivalent to the representation

χ : π1(X) × R → R, χ([γ ])(r) := exp

(∫

γ

ϑ

)
· r.

Therefore

H•
ϑ(X) � H•(X; Lχ ) � H•(X; Lρ) � H•(�; ρ),

where Lρ denotes the flat real line bundle associated with the representation ρ, and where
the last isomorphism follows from [42, Lemma 7.4] since G is contractible. Then, we are
reduced to prove that χ is �-supported, that is χ(�) = χ(G), where overline denotes the
Zariski closure in AutR(R) = R

×: the statements then follows by [34, Theorem 8.1]. Here,
the topology in R

× is the one induced by R
2 where R

× is seen as a Zariski closed set.
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Note that χ(�) is identified with a subgroup of the torsion-free group (R>0, ·), and hence
it is either trivial or infinite. However, if it were trivial, the periods

∫
γ

ϑ would vanish for
all γ ∈ H1(X), meaning that ϑ is exact, which is not the case. So χ(�) is infinite. Then,
χ(�) = R

×, whence also χ(G) = R
×.

The last statement follows as in Lemma 3.1. �	

4 Examples

In this section, we discuss some examples.

4.1 Kodaira–Thurston surface

As an example, we consider the Kodaira–Thurston surface X [26,46]. Recall that a (primary)
Kodaira surface is a compact complex surface with Kodaira dimension 0, first Betti number
odd and trivial canonical bundle. It admits both complex and symplectic structures, but it has
no Kähler structure [46]. It is a homogeneous manifold of nilpotent Lie group, [21, Theorem
1]. More precisely, the connected simply connected covering Lie group is the product of
the real three dimension Heisenberg group and the real 1-dimensional torus. Denote its Lie
algebra by rh3 = g3.1 ⊕ g1.

We choose a co-frame of invariant 1-forms {e1, e2, e3, e4} with structure equations

de1 = 0, de2 = 0, de3 = e1 ∧ e2, de4 = 0.

The almost-symplectic form
� := e1 ∧ e2 + e3 ∧ e4 (4.1)

is a locally conformally symplectic structure with Lee form

ϑ := e4.

In fact, � = dϑ(e3) is dϑ -exact. Up to equivalence, this is the only lcs structure on the Lie
algebra rh3, see [2]. It admits a compatible complex structure J ; more precisely, consider
the almost-Kähler structure

Je1 := e2, Je3 := e4 and g =
4∑

j=1

e j  e j .

Thanks to Lemma 3.1, we can compute the lcs cohomologies of the Kodaira–Thurston
surface. (As a matter of notation, we have shortened, e.g. e124 := e1 ∧e2 ∧e4. Computations
have been performed with the help of Sage [44].)

Proposition 4.1 The lcs cohomologies of the Kodaira–Thurston surface endowed with the
lcs structure in (4.1) are summarized in Table 1 and Table 2

4.2 Lie algebra d4

As a further example, we study the Lie algebra d4 = g−1
4.8, that is, the Lie algebra associated

with the Inoue surface of type S+ [23]. It is completely solvable. It has structure equa-
tions (14,−24, 12, 0), namely there exists a basis {e1, e2, e3, e4} such that the dual basis
{e1, e2, e3, e4} satisfies

de1 = e1 ∧ e4, de2 = −e2 ∧ e4, de3 = −e1 ∧ e2, de4 = 0.
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Table 1 The lcs cohomologies of the Kodaira–Thurston surface

Hh
�k

k = −2 k = −1 k = 0 k = 1 k = 2

h = 0

H0
dk

– – 〈1〉 – –

H0
δk

〈1〉 – – – –

H0
dk+δk

– – 〈1〉 – –

H0
δkdk

〈1〉 – – – –

h = 1

H1
dk

– – 〈e1, e2, e4〉 – –

H1
δk

– 〈e1, e2, e3〉 – – –

H1
dk+δk

〈e4〉 – 〈e1, e2, e4〉 – –

H1
δkdk

– 〈e1, e2, e3〉 – 〈e3〉 –

h = 2

H2
dk

– – 〈e13, e14, e23, e24〉 – –

H2
δk

– – 〈e13, e14, e23, e24〉 – –

H2
dk+δk

– 〈e14, e24, e12 − e34〉 〈e13, e14, e23, e24〉 〈e12 + e34〉 –

H2
δkdk

– 〈e12 + e34〉 〈e13, e14, e23, e24〉 〈e13, e23, e12 − e34〉 –

h = 3

H3
dk

– – 〈e123, e134, e234〉 – –

H3
δk

– – – 〈e124, e134, e234〉 –

H3
dk+δk

– 〈e124〉 – 〈e124, e134, e234〉 –

H3
δkdk

– – 〈e123, e134, e234〉 – 〈e123〉
h = 4

H4
dk

– – 〈e1234〉 – –

H4
δk

– – – – 〈e1234〉
H4
dk+δk

– – – – 〈e1234〉
H4

δkdk
– – 〈e1234〉 – –

Just non-trivial cohomology groups are reported

Consider the lcs structure

� := e1 ∧ e2 + e3 ∧ e4 with Lee form ϑ := −e4.

In fact, � = dϑ(−e3).
The results for the lcs cohomologies are summarized in Tables 3 and 4.

4.3 Inoue surfaces S0

We prove here that the Inoue surfaces of type S0 satisfy the Mostow condition, and then
Proposition 3.2 applies for them. This is in accord with the results in [40] by the second-
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Table 2 Summary of the
dimensions of the lcs
cohomologies of the
Kodaira–Thurston surface

dim Hh
�k

k = −2 k = −1 k = 0 k = 1 k = 2

h = 0

H0
dk

– – 1 – –

H0
δk

1 – – – –

H0
dk+δk

– – 1 – –

H0
δkdk

1 – – – –

h = 1

H1
dk

– – 3 – –

H1
δk

– 3 – – –

H1
dk+δk

1 – 3 – –

H1
δkdk

– 3 – 1 –

h = 2

H2
dk

– – 4 – –

H2
δk

– – 4 – –

H2
dk+δk

– 3 4 1 –

H2
δkdk

– 1 4 3 –

h = 3

H3
dk

– – 3 – –

H3
δk

– – – 3 –

H3
dk+δk

– 1 – 3 –

H3
δkdk

– – 3 – 1

h = 4

H4
dk

– – 1 – –

H4
δk

– – – – 1

H4
dk+δk

– – – – 1

H4
δkdk

– – 1 – –Just non-trivial cohomology
groups are reported

named author. Since the Inoue surfaces of type S± are completely solvable, the Hattori
theorem [22, Corollary 4.2] applies.

Proposition 4.2 Inoue surfaces of type S0 satisfy the Mostow condition.

Proof Let S0 := S0A be the Inoue surface associated with the matrix A ∈ SL(3; Z) with
eigenvalues α > 1, β, β̄, where β /∈ R. Recall that α /∈ Q, otherwise |α| = 1 since
det A = 1.

We first claim that Gorbatsevich criterion [17, Theorem 4] for Inoue surfaces reads as
follows: S0 satisfies the Mostow condition if and only if there is no q ∈ Q such that

β = α−1/2 exp(
√−1qπ). (4.2)

Recall that Gorbatsevich criterion applies to quotients of almost-Abelian Lie groups G =
R �ϕ R

n by lattices � = Z �ϕ Z
n , where ϕ(t) = exp(t Z). Let t0 be a generator of Z in �.
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Table 3 The lcs cohomologies of the Inoue surface of type S+

Hh
�k

k = −2 k = −1 k = 0 k = 1 k = 2

h = 0

H0
dk

– – 〈1〉 – –

H0
δk

〈1〉 – – – –

H0
dk+δk

– – 〈1〉 – –

H0
δkdk

〈1〉 – – – –

h = 1

H1
dk

– 〈e2〉 〈e4〉 〈e1〉 –

H1
δk

〈e2〉 〈e3〉 〈e1〉 – –

H1
dk+δk

〈e4〉 〈e2〉 〈e4〉 〈e1〉 –

H1
δkdk

〈e2〉 〈e3〉 〈e1〉 〈e3〉 –

h = 2

H2
dk

– 〈e23, e24〉 – 〈e13, e14〉 –

H2
δk

– 〈e23, e24〉 – 〈e13, e14〉 –

H2
dk+δk

〈e24〉 〈e23, e24, e12 − e34〉 〈e14〉 〈e13, e14, e12 + e34〉 –

H2
δkdk

– 〈e23, e24, e12 + e34〉 〈e23〉 〈e13, e14, e12 − e34〉 〈e13〉
h = 3

H3
dk

– 〈e234〉 〈e123〉 〈e134〉 –

H3
δk

– – 〈e234〉 〈e124〉 〈e134〉
H3
dk+δk

– 〈e124〉 〈e234〉 〈e124〉 〈e134〉
H3

δkdk
– 〈e234〉 〈e123〉 〈e134〉 〈e123〉

h = 4

H4
dk

– – 〈e1234〉 – –

H4
δk

– – – – 〈e1234〉
H4
dk+δk

– – – – 〈e1234〉
H4

δkdk
– – 〈e1234〉 – –

Just non-trivial cohomology groups are reported

Then, [17, Theorem 4] states that �\G satisfies the Mostow condition if and only if
√−1π

is not a linear combination with rational coefficients of the elements in the spectrum of t0Z .
In our case, we look at S0 = Z � Z

3\R � (C × R) , where the action is

R × (C × R) � (t, (z, r)) �→ (β t · z, αt · r) ∈ C × R.

Here, Z
3 is the lattice generated by the eigenvectors of A. Then, we have

ϕ(1) =
⎛

⎝
Reβ Imβ 0
−Imβ Reβ 0

0 0 α

⎞

⎠ .
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Table 4 Summary of the
dimensions of the lcs
cohomologies of the Inoue
surface of type S+

dim Hh
�k

k = −2 k = −1 k = 0 k = 1 k = 2

h = 0

H0
dk

– – 1 – –

H0
δk

1 – – – –

H0
dk+δk

– – 1 – –

H0
δkdk

1 – – – –

h = 1

H1
dk

– 1 1 1 –

H1
δk

1 1 1 – –

H1
dk+δk

1 1 1 1 –

H1
δkdk

1 1 1 1 –

h = 2

H2
dk

– 2 – 2 –

H2
δk

– 2 – 2 –

H2
dk+δk

1 3 1 3 –

H2
δkdk

– 3 1 3 1

h = 3

H3
dk

– 1 1 1 –

H3
δk

– – 1 1 1

H3
dk+δk

– 1 1 1 1

H3
δkdk

– 1 1 1 1

h = 4

H4
dk

– – 1 – –

H4
δk

– – – – 1

H4
dk+δk

– – – – 1

H4
δkdk

– – 1 – –Just non-trivial cohomology
groups are reported

Since det A = α|β|2 = 1, we have that

β = 1√
α
exp(

√−1s)

for some s ∈ R. Then, we can take

Z =
⎛

⎝
− lgα

2 s 0
−s − lgα

2 0
0 0 lgα

⎞

⎠ .

The eigenvalues of Z are:

lgα, − lgα

2
+ √−1s, − lgα

2
− √−1s.
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Then,
√−1π is a linear combinationwith rational coefficients of the elements in the spectrum

of Z if and only if there exist x, y, z ∈ Q such that

x − 1

2
y − 1

2
z = 0 and (y − z)s = π,

namely, if and only if there exists q ∈ Q such that

s = qπ,

proving the claim.
We now prove that (4.2) does not hold, for any q ∈ Q. On the contrary, assume thatm ∈ Z

and n ∈ Z \ {0} satisfy
β = α−1/2 exp

(√−1
m

n
π

)
.

In particular, β2n = β̄2n = α−n . By considering the characteristic polynomial of A, that is
x3 − ax2 + bx − 1, where a = α + β + β̄ ∈ Z and b = αβ + αβ̄ + |β|2 ∈ Z, we get that
β3 = aβ2 − bβ + 1. By induction, for any k ∈ N, k ≥ 3:

βk = xkβ
2 + ykβ + zk

where

xk+1 = axk + yk, yk+1 = zk − xkb, zk+1 = xk,

with the base condition:

x3 = a, y3 = −b, z3 = 1.

Using that β �= β̄, equation β2n = β̄2n now reads as

x2n(β + β̄) + y2n = 0.

Using that a − α = β + β̄, we get

ax2n + y2n = x2nα,

where the left-hand side is x2n+1 ∈ Z and the right-hand side is the product of x2n ∈ Z and
of α ∈ R \ Q. Hence, we get that x2n = y2n = 0, and then β2n = β̄2n = α−n = z2n ∈ Z.

Consider now the polynomial x2n − z2n ∈ Z[x], and its division by the characteristic
polynomial of A in Q[x]:

x2n − z2n = Q(x) · (x3 − ax2 + bx − 1) + R(x),

where Q(x) ∈ Q[x] and R(x) ∈ Q≤2[x]. If R(x)had positive degree, then R(β) = R(β̄) = 0
would imply β + β̄ ∈ Q, which is not true since β + β̄ = a − α with α irrational. Then,
R(x) = 0. It follows that α2n = z2n , too. But this is a contradiction with α−n = z2n , since
α > 1. �	
4.4 Oeljeklaus–Toma manifolds with precisely one complex place

We now extend the above results to Oeljeklaus–Toma manifolds [38] with precisely one
complex place and s real place. Note that this is the case when the existence of lcK metrics
is known, [38, Proposition 2.9], see also [49, Theorem 3.1]. In case s = 1, we recover any
Inoue surfaces S0A of type S0 by taking K = Q(α) and U = O∗,+

K generated by α, the real
eigenvalue of the matrix A ∈ SL(3; Z).
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We briefly recall their construction (see [38]) and their structure as solvmanifolds (see
[24, Section 6]).

Let K be an algebraic number field. Consider the n = s + 2t embeddings of the field
K in C: more precisely, the s real embeddings σ1, . . . , σs : K → R, and the 2t complex
embeddings σs+1, . . . , σs+t , σs+t+1 = σ s+1, . . . , σs+2t = σ s+t : K → C. Denote by OK

the ring of algebraic integers of K , and by O∗,+
K the group of totally positive units. Let

H := {z ∈ C : Im z > 0} denote the upper half-plane. On H
s × C

t , consider the action
OK � H

s × C
t given by translations,

Ta(w1, . . . , ws, zs+1, . . . , zs+t ) := (w1 + σ1(a), . . . , zs+t + σs+t (a)),

and the action O∗,+
K � H

s × C
t given by rotations,

Ru(w1, . . . , ws, zs+1, . . . , zs+t ) := (w1 · σ1(u), . . . , zs+t · σs+t (u)).

Oeljeklaus and Toma proved in [38, page 162] that there always exists a subgroupU ⊂ O∗,+
K

such that the actionOK �U � H
s × C

t is fixed-point-free, properly discontinuous, and co-
compact. The Oeljeklaus–Toma manifold (say, OT manifold) associated with the algebraic
number field K and with the admissible subgroup U of O∗,+

K is

X (K ,U ) := H
s × C

t/OK � U.

Moreover, X (K ,U ) is called of simple type if there is no intermediate extensionQ ⊂ K ′ ⊂ K
such that U is compatible with K ′, too.

Oeljeklaus–Tomamanifolds are in fact solvmanifolds, see [24, Section 6].More precisely,
consider the map

� : O∗,+
K → R

s+t ,

�(u) = (lg σ1(u), . . . , lg σs(u), 2 lg |σs+1(u)|, . . . , 2 lg |σs+t (u)|) .

The rank s subgroup U is such that its projection on the first s coordinates is a lattice in R
s .

Consider the basis for the subspace R
s in R

s+t :

〈(1, 0, . . . , 0, b11, . . . , b1t ) , . . . , (0, 0, . . . , 1, bs1, . . . , bst )〉 . (4.3)

Note that since
∏s+t

j=1 σ j (u) = 1 being equal to the product of the roots of the minimal
polynomial of the unit u, then for any

�(u) =
⎛

⎝ξ1, . . . , ξs,

s∑

j=1

b j1ξ j , . . . ,

s∑

j=1

b jtξ j

⎞

⎠

we have
∑t

k=1
∑s

j=1 b jkξ j = −∑s
j=1 ξ j ; then, for any j ∈ {1, . . . , s},

t∑

k=1

b jk = −1.

Note in particular that if t = 1, then any b j1 = −1. Moreover, by definition, 2 lg |σs+k(u)| =∑s
j=1 b jkξ j . Set c jk ∈ R such that

σs+k(u) = exp

⎛

⎝1

2

s∑

j=1

b jkξ j + √−1
s∑

j=1

c jkξ j

⎞

⎠ .
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Then, we can represent

X (K ,U ) = R
s

�ϕ (Rs × C
t )/U �ϕ OK

where

ϕ(ξ1, . . . , ξs) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .

exp(ξh)
. . .

Ak

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.4)

where

Ak := exp

⎛

⎝1

2

s∑

j=1

b jkξ j +
√−1

2

s∑

j=1

c jkξ j

⎞

⎠ .

That is, we can identify

R
s

�ϕ (Rs × C
t ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

. . .
...

exp(ξh) xh
. . .

...

Ak zk
Āk z̄k

. . .
...

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

: . . . , ξh, . . . , xh, . . . ∈ R, . . . , zk, . . . ∈ C} .

We give conditions for which OT manifolds with t = 1 satisfy Mostow condition; then
Proposition 3.2 applies.

Theorem 4.3 Let X (K ,U ) be an Oeljeklaus–Toma manifold with precisely one complex
place. Assume that there is no field T such that Q ⊂ T ⊂ K and T is totally real. Then,
X (K ,U ) satisfies the Mostow condition.

Proof Let X = X (K ,U ) = R
s

�ϕ (Rs × C
t )/U �ϕ OK be an Oeljeklaus–Tomamanifold

with precisely one complex place, namely t = 1. In particular, note that any U when t = 1
is admissible in the sense of [38]. We use notation as described above. We want to prove that

Ad
(
Rs �ϕ (Rs × Ct )

) = Ad
(
U �ϕ OK

)
in the Zariski topology of GL(R2s+2t ), where g

is the Lie algebra of R
s

�ϕ (Rs × C
t ). In a sense, this extends the criterion of Gorbatsevich

from almost-Abelian Lie groups to semi-direct products R
s

�ϕ (Rs × C).
We first notice that

Ad(Rs �ϕ (Rs × C)) = Ad(Rs) � Ad(Rs × C) = Ad(Rs) � Ad(Rs × C)

and

Ad(U �ϕ OK ) = Ad(U ) � Ad(OK ) = Ad(U ) � Ad(OK ).

This follows by the fact that the Zariski closure of a subgroup of an algebraic group is a
subgroup by itself, see e.g. [10, Proposition I.1.3]. Moreover, since R

s × C is the nilradical
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ofR
s
�ϕ (Rs ×C

t ), then Ad(Rs ×C) is unipotent and connected, whence Zariski closed, see
e.g. [42, page 2]. Finally, Ad(OK ) is a maximal lattice in Ad(Rs × C), whence Ad(OK ) =
Ad(Rs × C) = Ad(Rs × C), see e.g. [42, Theorem 2.1]. At the end, we are reduced to show
that Ad(Rs) and Ad(U ) are equal in GL(Rs).

Notice that Ad((ξ1, . . . , ξs), 0, . . . , 0) acts trivially on the R
s-component of g and as

ϕ(ξ1, . . . , ξs) on the (Rs ×C)-component, see (4.4). Therefore, we are reduced to prove that
the subgroups ϕ(Rs) and ϕ(U ) have the same Zariski closure in GL(R2s+2t ).

We take U generated by u1, . . . , us such that

. . . , �(uh) =
(
th1 , . . . , ths ,−

(
th1 + · · · + ths

))
, . . .

with respect to the basis (4.3), where thj ∈ R. Denote by

Rh :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜⎜
⎝

0
. . .

1
. . .

0
− 1

2 ch
−ch − 1

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟⎟
⎠

where the coefficient 1 is at the intersection between the hth row and the hth column (with
respect to the notation above, ch := ch1). Note that [Rh, Rm] = 0 for any h,m ∈ {1, . . . , s}.
Denote

Gh :=
〈

exp

⎛

⎝
s∑

j=1

thj R j

⎞

⎠

〉

, Hh :=
〈

exp

⎛

⎝t ·
s∑

j=1

thj R j

⎞

⎠

〉

t∈R
.

Then

ϕ(Rs) =
s∏

j=1

Hj , ϕ(U ) =
s∏

j=1

Gh .

Arguing as before,
∏s

j=1 Hj = ∏s
j=1 H j , and the same for Gh , so we are reduced to show

that Hh and Gh have the same Zariski closure for any h ∈ {1, . . . , s}.
Each Hh is a 1-parameter subgroup in GL(Rs+2) and Gh is a discrete subgroup of Hh , so

the Gorbatsevich criterion in [17, Lemma 3] applies. We are reduced to show that, for

Bh :=
s∑

j=1

thj A j =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

. . .

thj
. . .

− 1
2

∑s
j=1 t

h
j −∑s

j=1 c j t
h
j∑s

j=1 c j t
h
j − 1

2

∑s
j=1 t

h
j

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

there is no rational linear combination of the eigenvalues of Bh equal to
√−1π .
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Hereafter, we forget the superscript h. The spectrum of B is:
⎧
⎨

⎩
t1, . . . , ts,−1

2

s∑

j=1

t j + √−1
s∑

j=1

c j t j ,−1

2

s∑

j=1

t j − √−1
s∑

j=1

c j t j

⎫
⎬

⎭
.

Let us assume that there exist λ1, . . . , λs, η1, η2 ∈ Q such that

√−1π =
s∑

h=1

λhth + η1

⎛

⎝−1

2

s∑

j=1

t j + √−1
s∑

j=1

c j t j

⎞

⎠

+η2

⎛

⎝−1

2

s∑

j=1

t j − √−1
s∑

j=1

c j t j

⎞

⎠ .

Equivalently,
{∑s

h=1 λhth − 1
2η1

∑s
j=1 t j − 1

2η2
∑s

j=1 t j = 0
(η1 − η2)

∑s
j=1 c j t j = π

which yields in particular that the argument of the complex number σs+1(uh) is
∑s

j=1 c j t
h
j =

qπ for q ∈ Q. We are reduced to show that this is not possible.
We first claim that under the assumption that there is no intermediate totally real field

Q ⊂ T ⊂ K , then K = Q(uh), for any h ∈ {1, . . . , s}. Indeed, we first notice that
σs+1(uh) ∈ C \ R: otherwise, if uh ∈ R, then Q(uh) would be a totally real intermediate
extension, so uh ∈ Q would be a positive unit; by U being admissible, this is not possible.
Recall that the characteristic polynomial fuh of uh is a power of the minimal polynomial
μuh of uh , say fuh = μk

uh for k ∈ N (see Proposition 2.6 in [35]). On the other hand,

fuh (X) = ∏s
j=1

(
X − σ j (uh)

) · (X − σs+1(uh)) ·
(
X − σs+1(uh)

)
has exactly two complex

non-real conjugate roots. Then, necessarily k = 1, that is, fuh = μuh . In particular, [Q(uh) :
Q] = degμuh = [K : Q], so K = Q(uh).

Denoteα1 := σ1(uh), . . . , αh := σs(uh), β := σs+1(uh), namely the roots of theminimal
polynomial μuh ∈ Z[X ] of uh . Assume that β has argument given by a rational multiple of
π , say, qπ with q ∈ Q. Then, there exists N ∈ N such that βN = β̄N . Since β is the root of
the monic polynomial μuh ∈ Z[X ] of degree s + 2, there exist x0, . . . , xs+1 ∈ Z such that

βN = xs+1β
s+1 + xsβ

s + · · · + x1β + x0.

Set

x := xs+1β
s+1 + xsβ

s + · · · + x1β ∈ R,

such that βN = β̄N = x+x0. In fact, x ∈ Q. Indeed, if x /∈ Q, since β /∈ R, thenQ(x)would
be an intermediate totally real extension Q ⊆ Q(x) ⊆ K = Q(β), and it is not possible
under the assumption. Consider the polynomial

XN − (x + x0) ∈ Q[X ].
Let Q(X), R(X) ∈ Q[X ] be such that

XN − (x + x0) = Q(X) · μuh (X) + R(X)

with deg R(X) < s + 2. One has that R(β) = R(β̄) = 0; then μuh (X) divides R(X), with
degμuh (X) < deg R(X); then R(X) = 0. It follows that any α j is a root of XN − (x + x0),
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that is, αN
1 = · · · = αN

s = βN = β̄N . On the other side, recall that α1 · · · · · |β|2 = 1. It
follows that

(α1 · · · · · αs)
N = (α1 · · · · · αs)

− Ns
2 .

The α j s being real, this yields

|β|2 = 1

α1 · · · · · αs
= 1,

that is, β = exp(
√−1qπ). This says that actually βN = 1, so any α j would be a real root of

XN − 1. But this is not possible, since the α j s are irrational numbers. �	

Remark 4.4 Note in particular that the assumption s + 2 prime assures that there is no
intermediate extension, and so in particular no intermediate totally real extension as required
in Theorem 4.3.

Moreover, we show now an explicit example of an Oeljeklaus–Toma manifold X (K ,U )

of type (2, 1) which satisfies the technical condition in Theorem 4.3.
Let f (X) = X4 − X − 1 ∈ Z[X ]; it is irreducible, since its reduction modulo p = 2

prime, that is, X4 − X − 1 ∈ Z2[X ], is irreducible in Z2[X ].
Claim 1: f has two real roots and two complex (conjugate) roots.
Indeed, by Darboux theorem, there is a real root between −1 and 0, so there are at least
two real roots. Let x1, x2, x3, x4 be the roots of f . By Viette’s relations, we have

∑
x2i =

(
∑

xi )2 − 2(
∑

i �= j xi x j ) = 0. If all of them were real, then, for all j , it holds x j = 0.
However, 0 is not a root of f . So, two of the roots are real and the other are complex.

Let α be one of the real roots of f . Take the algebraic number field K := Q(α). Then,
Q ⊂ K is an extension of degree 4, and X (K ,O∗,+

K ) defines an OT manifold of type (2, 1).

Claim 2: Gal( f ) � S4.
Indeed, let Q f denote the splitting field of f (i.e. the smallest field that contains all the roots
of f ). Note that Q f �= K , since Q f contains also complex numbers (namely the complex
roots of f ). We recall that Gal( f ) := { f : Q f → Q f : f (q) = q,∀q ∈ Q}. In [43,
Theorem 7.5.4], Gal( f ) is explicited for any quartic polynomial f . The resolvent of f is the
cubic polynomial q(X) = X3 + 4X + 1. As this is an irreducible polynomial over Q[X ]
and its discriminant  = −283 satisfies

√
 /∈ Q, according to the cited theorem, we have

Gal( f ) � S4.

Claim 3: There is no intermediate field Q ⊂ T ⊂ K .
Indeed, let us assume that there exists an intermediate field Q ⊂ T ⊂ K . Then, we have:
Q ⊂ T ⊂ K ⊂ Q f . Since [Q f : Q] = 24 and [K : Q] = 4, [Q f : K ] = 6 and we have, in
fact, Gal(Q f /K ) � S3. This further implies that S3 � Gal(Q f /T ) � S4. However, there is
no such intermediate group between S3 and S4, since by a known result in group theory, S3
is a maximal subgroup of S4. Therefore, there is no intermediate field between Q and K and
thus, X (K ,O∗,+

K ) satisfies the requirements imposed in Theorem 4.3.
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Table 5 Summary of the dimensions of the Morse–Novikov cohomologies of an Oeljeklaus–Toma manifold
of type (2, 1)

k dimH0
dk

dim H1
dk

dim H2
dk

dim H3
dk

dim H4
dk

dim H5
dk

dim H6
dk

k = −1 0 0 1 2 1 0 0

k = 0 1 2 1 0 1 2 1

k = 1 0 0 1 2 1 0 0

Just non-trivial cohomology groups are reported

Example 4.5 For example, for s = 2 and t = 1 we choose a co-frame of invariant 1-forms
{e1, e2, e3, e4, e5, e6} with structure equations (cf. [24, Section 6])

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

de1 = 0
de2 = 0
de3 = −e1 ∧ e3

de4 = −e2 ∧ e4

de5 = 1
2e

1 ∧ e5 + c1e1 ∧ e6 + 1
2e

2 ∧ e5 + c2e2 ∧ e6

de6 = −c1e1 ∧ e5 + 1
2e

1 ∧ e6 − c2e2 ∧ e5 + 1
2e

2 ∧ e6

,

for some c1, c2 ∈ R. The possible Lee forms of lcs structures are: e1 + e2; and, when
c1 �= c2, also −e1 − e2 (take ω = ω12e1 ∧ e2 + ω14e1 ∧ e4 + (4c1c2+9)ω25−6(c1−c2)ω26

4c22+9
e1 ∧

e5 + 6(c1−c2)ω25+(4c1c2+9)ω26
4c22+9

e1 ∧ e6 + ω23e2 ∧ e3 + ω25e2 ∧ e5 + ω26e2 ∧ e6 + ω34e3 ∧
e4 for coefficients ω jk such that

36(c1−c2)·(ω2
25+ω2

26)·ω34

4c22+9
�= 0). The almost-symplectic

form
� := 2e1 ∧ e3 + e1 ∧ e4 + e2 ∧ e3 + 2e2 ∧ e4 + e5 ∧ e6 (4.5)

is a locally conformally symplectic structure with Lee form

ϑ := e1 + e2.

It admits a compatible complex structure J :

Je1 := e3, Je2 := e4 Je3 := e6.

For suitable values of c1 and c2, by Theorem 4.3 and Proposition 3.2 one can compute the
lcs cohomologies of X (K ,U ). In Table 5, we report the dimensions of the Morse–Novikov
cohomology groups (computations have been performed with the help of Sage [44].) Notice
that for k = 0 we recover the Betti numbers of X (K ,U ) as already computed in [38,
Remark 2.8].

More in general, we show that Oeljeklaus–Toma manifolds of type (s, 1) that satisfy the
technical condition in Theorem 4.3 can be found for any s ≥ 1.

Proposition 4.6 Let s > 0 be a natural number. Then, there exists K an algebraic number
field with s real embeddings and 2 conjugate complex embeddings such that there is no
intermediate extension between Q and K .

Proof Let n = s + 2. The idea is to prove the existence of a monic irreducible polynomial
f ∈ Z[X ] of degree s + 2 such that f has s real roots, 2 conjugate complex roots and
Gal( f ) = Sn . Once proven this, take K = Q(α), where α is one of the roots of f . Like in
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the example, we would have Gal(Q( f )/K ) = Sn−1. The existence of an intermediate field
betweenQ and K would imply the existenceof a subgroupH of Sn , such that Sn−1 � H � Sn .
But this does not exist, as Sn−1 is a maximal subgroup of Sn .

A construction of a polynomial f whose Gal( f ) is Sn was given by B.L. van derWaerden.
The idea was to consider the following monic polynomial f = −15 f1 + 10 f2 + 6 f3, where
f1, f2 and f3 are degree n polynomials and f1 reduced inZ2[X ] is irreducible, f2 decomposes
in Z3[X ] as a product of a linear factor and a degree n − 1 irreducible polynomial, and f3
decomposes in Z5 as a product of an irreducible quadratic polynomial and a degree n − 2
irreducible polynomial, if n is odd, or as a product of an irreducible quadratic polynomial
and two irreducible polynomials of odd degree, if n is even. It is explained in Proposition
4.7.10 in [50] why there exist f1, f2 and f3 with these properties and why f thus defined has
Galois group Sn . Observe that f is irreducible because we have f = f1 modulo 2, which is
irreducible in Z2[X ]. Moreover, if g is any polynomial of degree n − 1, then f + 30g is also
an irreducible polynomial with Galois group Sn .

Now we use the same argument as in Remark 1.1 in [38]. Namely, let D =
{(a1, . . . , an)} ⊆ Q

n be the set of n-Tuples such that h = Xn + a1Xn−1 +· · ·+ an (not nec-
essarily irreducible) has s real roots and 2 complex roots. Then, D is a non-empty set which
contains arbitrarily large open balls, as argumented in [38]. If f = Xn + b1Xn−1 +· · ·+ bn ,
consider the set D′ = (b1, b2, . . . , bn) + 30Z

n . Then, D′ intersects D and the intersec-
tion consists of irreducible polynomials with s real roots, 2 complex roots and Galois
group Sn . �	

As a corollary, we obtain:

Corollary 4.7 For any natural number s ≥ 1, we obtain an Oeljeklaus–Toma manifold of
type (s, 1) satisfying the Mostow condition.
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