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Abstract
We study the Euler–Lagrange equation for several natural functionals defined on a
conformal class of almost Hermitian metrics, whose expression involves the Lee form
θ of the metric. We show that the Gauduchon metrics are the unique extremal metrics
of the functional corresponding to the norm of the codifferential of the Lee form. We
prove that on compact complex surfaces, in every conformal class there exists a unique
metric, up tomultiplication by a constant, which is extremal for the functional given by
the L2-norm of dJθ, where J denotes the complex structure. These extremal metrics
are not the Gauduchon metrics in general, hence we extend their definition to any
dimension and show that they give unique representatives, up to constant multiples,
of any conformal class of almost Hermitian metrics.
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1 Introduction

Let X be a compact smooth 2n-dimensionalmanifold endowedwith an almost complex
structure J . Fix an almost Hermitian metric g on (X , J ), which we will identify with
its associated (1, 1)-form Ω = g(J_, _). Consider the linear operator LΩ := Ω ∧ _
and its adjointΛΩ := L∗

Ω.We recall that Ln−1
Ω : ∧1 X → ∧2n−1X is an isomorphism,

therefore one can define the torsion one-form of Ω, also known as the Lee form, as

θΩ := ΛΩdΩ = Jd∗Ω Ω ∈ ∧1X (1)

such that

dΩn−1 = θΩ ∧ Ωn−1.

Furthermore, the Lee form can be seen to coincide with the trace of the torsion of the
Chern connection [5, Théorème 3].

In general, the recipe for defining special classes of Hermitian metrics on complex
manifolds is by imposing Ω to be in the kernel of a specific differential operator. A
well-known list of examples includes strong Kähler with torsion (SKT), also known as
pluriclosed, (ddcΩ = 0), balanced (dΩn−1 = 0), locally conformally Kähler (lcK)
(dΩ = α ∧ Ω for a closed one-form α), locally conformally balanced (dΩn−1 =
θ ∧ Ωn−1, for a closed one-form θ ), all of these being generalizations of the Kähler
condition dΩ = 0.

Another natural class of Hermitian metrics is given by the Gauduchon met-
rics, which are defined as having co-closed Lee form, or equivalently as satisfying
ddcΩn−1 = 0. These metrics turned out to be a very useful tool in conformal geom-
etry, since by the celebrated result [5, Théorème 1], any conformal class of almost
Hermitian metrics contains a Gauduchon metric, unique up to multiplication with
positive constants, provided the manifold is compact and not a Riemann surface.

On the other hand, it is reasonable to expect that interesting classes of metrics arise
as critical points of naturally defined functionals on the space of Hermitian metrics.
In the general Hermitian setting, two such functionals have been considered in the
literature. LetH1 be the set of almost Hermitian metrics on X with total volume one.

• The Gauduchon functional [6, Sect. III] is defined by

LG : H1 → R, LG(Ω) :=
∫

X
|θΩ |2Ω

Ωn

n! = 1

(n − 1)!
∫

X
θΩ ∧ JθΩ ∧ Ωn−1.

TheEuler–Lagrange equation forLG is given in [6, Eq. (48)]. For compact complex
surfaces (n = 2), it turns out that the critical points of LG are precisely the Kähler
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metrics (i.e. θΩ = 0) [6, Théorème III.4], which are in fact absolute minima. In
[6, Sect. V], the restriction of LG to a conformal class {Ω}1 := {Ω} ∩ H1 in
H1 is also considered, and the critical points Ω are characterized by the equation
|θΩ |2Ω + 2d∗Ω θΩ = k ∈ R in [6, Proposition at page 516].

• The Vaisman functional [13]:

UV : H1 → R, UV(Ω) :=
∫

X
|dθΩ |2Ω

�n

n! =
∫

X
dθΩ ∧ ∗ΩdθΩ

is conformally invariant. On compact complex surfaces, it rewrites as UV(Ω) =
− ∫

X dθΩ ∧ JdθΩ. In this case, its Euler–Lagrange equation is given in [13, The-
orem 2.1, Eq. (2.15)], and its second variation is computed in [13, Eq. (3.10)].
Clearly, locally conformally Kähler metrics for n = 2, and for arbitrary n, locally
conformally balanced metrics are critical points and absolute minima of UV.

In the present note, we investigate a few functionals of similar type, restricted to
a conformal class of normalized almost Hermitian metrics {Ω}1 ⊂ H1. The first
functional we consider is given by

G : H1 �→
∫

X
|d∗Ω θΩ |2Ω

Ωn

n! .

Clearly, Gauduchon metrics are critical points, and in fact absolute minima, for G.Our
first main result states that these are all the critical points of G:

Theorem 1 Let (X , J ) be a 2n-dimensional compactmanifold endowedwith an almost
complex structure, where n ≥ 2. Let Ω ∈ H1 and let {Ω}1 ⊂ H1 denote the set of
almost Hermitian metrics of total volume one which are conformal to Ω. Then the
following are equivalent:

(1) Ω is a critical point for G on H1;
(2) Ω is a critical point for the restriction of G to {Ω}1;
(3) Ω is Gauduchon.

Together with Gauduchon’s result, this implies that G has exactly one critical point in
every {Ω}1 ⊂ H1.

Another functional we study is given by

F : {Ω}1 �→
∫

X
|dJθΩ |2Ω

Ωn

n! .

The main motivation for considering this functional comes from the fact that the form
dJθΩ is related to the curvature of natural connections on themanifold.More precisely,
it measures the difference between the Ricci curvatures of the Chern connection and
the Bismut connection of the Hermitian metricΩ (see Remark 4). Furthermore, in the
context of lcK metrics, dJθΩ is, up to a constant multiple, the Chern curvature of the
naturally associated weight line bundle to an lcK metric.
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The critical points of F are described in Proposition 5 by the following equation:

(n − 2)|dJθΩ |2Ω − 2(n − 1)(ddc)∗Ω ΔΩΩ = k ∈ R.

When n = 2, this is equivalent to the equation:

ddcΔΩΩ = 0

and when J is moreover integrable, this is further equivalent to

ddc(ΛΩ(dJθΩ)Ω) = 0.

We show in Corollary 11 that in this case, the critical points ofF exist, are unique and
minimize F .

Motivated by this result, we introduce a new class of almost Hermitian metrics,
which we call distinguished, defined by the condition:

ddc( f n−1
Ω Ωn−1) = 0, where fΩ := |θΩ |2Ω + d∗Ω θΩ = −ΛΩ(dJθΩ).

These metrics are not in general Gauduchon (see Corollary 12). However, similarly to
Gauduchon metrics, they give rise to canonical representatives in a given conformal
class:

Theorem 10 Let (X , J ) be a compact almost complex manifold of real dimension
2n > 2, and let {Ω}1 be a conformal class of normalized almost Hermitian metrics.
Then there exists and is unique a distinguished metricΩ ∈ {Ω}1. This metric is either
balanced, i.e. θΩ = 0, or is characterized by the property that fΩ is strictly positive
on X and the metric fΩΩ is Gauduchon.

Additionally, we discuss the functional:

A : {Ω}1 �→
∫

X
|dΩ|2Ω

Ωn

n! .

Clearly almost Kähler metrics are minimizers for A. We note that A(Ω) also coin-
cides with the L2-norm of dcΩ, which is the torsion of the Bismut connection (see
Remark 15). This gives an alternative motivation for studying this functional.

The critical points ofA are described, in Proposition 18, by the following equation:

(n − 1)|dΩ|2Ω + 2d∗Ω θΩ = k ∈ R.

In particular, if {Ω}1 is an lcKconformal class or ifn = 2, the functionalA is a constant
multiple of the functional LG (see Remark 16). It follows by [6, Théorème III.4] that
the critical points of A viewed onH1, for n = 2, are precisely the Kähler metrics.

The last functional we discuss is given by

R : {Ω}1 �→
∫

X
|ddcΩ|2Ω

Ωn

n! .
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Table 1 Summary of the critical points of the functionals

Functional Critical points Reference

Restricted to {Ω}1 Complex surfaces Almost complex,
dim X ≥ 4

LG(Ω) = ∫
X |θΩ |2Ω Ωn

n! Kähler (!, min) |θΩ |2Ω + 2d∗Ω θΩ = k [6]

UV(Ω) := ∫
X |dθΩ |2Ω Ωn

n! Conformal invariant [13]

G(Ω) = ∫
X |d∗Ω θΩ |2Ω Ωn

n! Gauduchon (∃!, min) Thm 1

F(Ω) = ∫
X |dJθΩ |2Ω Ωn

n! Distinguished (∃!, min)
(ddcΔΩΩ = 0)

(n − 2)|dJθΩ |2Ω − 2(n −
1)(ddc)∗Ω ΔΩΩ = k

Cor 11, Prop 5

A(Ω) = ∫
X |dΩ|2Ω Ωn

n! Kähler (!, min) (n − 1)|dΩ|2Ω + 2d∗Ω θΩ = k Prop 18, [6]

R(Ω) = ∫
X |ddcΩ|2Ω Ωn

n! Gauduchon/SKT (∃!, min) (n − 4)|ddcΩ|2Ω +
2ΛΩ(ddc)∗Ω ddcΩ = k

Prop 23

Here, k denotes a real constant

By definition, SKT metrics minimize R. In Proposition 23 we show that the critical
points of this functional are characterized by the following equation:

(n − 4)|ddcΩ|2Ω + 2ΛΩ(ddc)∗ΩddcΩ = k ∈ R.

Furthermore, in the case n = 2, the critical points of R exist, are unique and are
precisely the Gauduchon metrics (see Corollary 24). In particular, they minimize R.

In the last section of this note, we do some explicit computations related to these
functionals on the Inoue–Bombieri surfaces of type SM. They show that, generally, the
infimumof the functionalsF andA onH1 can be 0,without it being attained (Table1).

1.1 Notation

Given an almost complex manifold (X , J ), we denote by ∧k X and by ∧p,q X the
spaces of smooth k-forms and (p, q)-forms, respectively, on X . We extend J to act as
an isomorphismon∧p,q X by Jα = √−1

q−p
α, α ∈ ∧p,q X , following [2, (2.10)]. Via

this extension, it follows that J 2 = (−1)k id, so that J−1 = (−1)k J = J ∗ on ∧k X ,

where J ∗ is the pointwise adjoint of J with respect to some (and so any) Hermitian
metric. We denote by dc the differential operator dc := −J−1dJ . For a Hermitian
metric Ω and a one-form α, we denote by α�Ω the vector field which is metric dual to
α with respect toΩ. For a vector field V ,we denote by ιV the interior product with V.

2 The FunctionalG
Let (X , J ) be a compact almost complex manifold, let H1 denote the set of almost
Hermitian metrics on (X , J ) of total volume 1, and let

{Ω}1 :=
{
φ · Ω : φ ∈ C∞(X ,R), φ > 0,

∫
X

φn Ωn

n! = 1

}
⊆ H1
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denote a conformal class of normalized Hermitian metrics. We consider the following
functional:

G : {Ω}1 → R, G(Ω) :=
∫

X
(d∗Ω θΩ)2

Ωn

n! = −
∫

X
d∗Ω θΩ · d ∗Ω θΩ. (2)

Theorem 1 Let n ≥ 2, let (X , J ) be a 2n-dimensional compact manifold endowed
with an almost complex structure and let {Ω}1 denote a conformal class of almost
Hermitian metrics with total volume one. Then Ω ∈ {Ω}1 is a critical point of the
functional G defined by (2) if and only if Ω is a Gauduchon metric.

Proof AGauduchonmetricΩ ∈ {Ω}1 satisfies d∗Ω θΩ = 0, so it is clearly aminimum
point for G.

Conversely, let us first determine the equation that Ω ∈ {Ω}1 has to satisfy in
order to be a critical point for G. We first observe some general formulas. For an
almost Hermitian metric Ω on X2n and for Ω̃ = φ · Ω in its conformal class, with
φ ∈ C∞(X ,R), φ > 0, one has

VolΩ̃ (X) :=
∫

X

Ω̃n

n! =
∫

X
φn Ωn

n! ,

θΩ̃ = θΩ + (n − 1)d logφ,

∗Ω̃�∧k X = φn−k ∗Ω �∧k X .

Consider a variation of Ω in {Ω}1,

Ω̃t = φt · Ω,

where for |t | small enough, we write

φt = 1 + t φ̇ + o(t), φ̇ ∈ C∞(X ,R).

The condition VolΩ̃ (X) = 1 implies that the function φ̇ must satisfy

∫
X

φ̇
Ωn

n! = 0. (3)

We compute

G(Ω̃t ) =
∫

X

(
d∗

Ω̃t θΩ̃t

)2 Ω̃n
t

n! =
∫

X

∣∣∣d ∗Ω̃t
θΩ̃t

∣∣∣2
Ω̃t

Ω̃n
t

n!
=

∫
X

∣∣∣d
(
φn−1

t ∗Ω

(
θΩ + (n − 1)φ−1

t dφt

))∣∣∣2
Ω

φ−2n+n
t

Ωn

n!
=

∫
X

∣∣∣d(φn−1
t ∗Ω θΩ) + (n − 1)d(φn−2

t ∗Ω dφt )

∣∣∣2
Ω

φ−n
t

Ωn

n!
=

∫
X

∣∣∣d(φn−1
t ∗Ω θΩ)

∣∣∣2
Ω

φ−n
t

Ωn

n! + (n − 1)2
∫

X

∣∣∣d(φn−2
t ∗Ω dφt )

∣∣∣2
Ω

φ−n
t

Ωn

n!
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+2(n − 1)
∫

X

〈
d(φn−1

t ∗Ω θΩ)|d(φn−2
t ∗Ω dφt )

〉2
Ω

φ−n
t

Ωn

n!
=

∫
X

∣∣d (
(1 + t(n − 1)φ̇) ∗Ω θΩ

)∣∣2
Ω

(1 − tnφ̇)
Ωn

n!
+(n − 1)2

∫
X

∣∣d (
(1 + t(n − 2)φ̇) ∗Ω tdφ̇)

)∣∣2
Ω

(1 − tnφ̇)
Ωn

n!
+2(n − 1)

∫
X

〈
d

(
(1 + t(n − 1)φ̇) ∗Ω θΩ)

)

|d (
(1 + t(n − 2)φ̇) ∗Ω tdφ̇

)〉
Ω

(1 − tnφ̇)
Ωn

n! + o(t)

= G(Ω) − tn
∫

X

(
d∗Ω θΩ

)2
φ̇

Ωn

n! + 2t(n−1)
∫

X

〈
d ∗Ω θΩ |d(φ̇ ∗Ω θΩ)

〉
Ω

Ωn

n!
+2t(n − 1)

∫
X

〈
d ∗Ω θΩ |d ∗Ω dφ̇

〉
Ω

Ωn

n! + o(t).

For the third term in the above equation we find

∫
X

〈
d ∗Ω θΩ |d(φ̇ ∗Ω θΩ)

〉
Ω

Ωn

n! =
∫

X
〈− ∗Ω d ∗Ω d ∗Ω θΩ | ∗Ω θΩ 〉Ω φ̇

Ωn

n!
=

∫
X

〈
dd∗Ω θΩ |θΩ

〉
Ω

φ̇
Ωn

n!
while for the fourth term we find

∫
X

〈
d ∗Ω θΩ |d ∗Ω dφ̇

〉
Ω

Ωn

n! = −
∫

X

〈
d ∗Ω d ∗Ω θΩ |dφ̇〉

Ω

Ωn

n!
=

∫
X

ΔΩd∗Ω θΩ · φ̇
Ωn

n! .

Now ifΩ is a critical point of G, then d
dt �t=0G(Ω̃t ) = 0 for any Ω̃t = φtΩ defined

by (3). The above computations thus imply the following equation for Ω:

ΔΩd∗Ω θΩ + 〈dd∗Ω θΩ |θΩ 〉Ω − n

2(n − 1)
(d∗Ω θΩ)2 = k, k ∈ R. (4)

Let us denote by f := d∗Ω θΩ. Integrating (4) over X with respect to Ω, we find

k =
∫

X
ΔΩ f

Ωn

n! +
∫

X
f 2

Ωn

n! − n

2(n − 1)

∫
X

f 2
Ωn

n!
= n − 2

2(n − 1)

∫
X

f 2
Ωn

n! ≥ 0.

Let now xmin ∈ X be a minimum point of f , which exists by the compactness of X .

It follows that d fxmin = 0 and ΔΩ f (xmin) ≤ 0. Moreover, as the integral of f over X
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vanishes, we have f (xmin) ≤ 0, with equality if and only if f = 0 everywhere on X .

We thus find, via (4)

0 ≤ k = ΔΩ f (xmin) − n

2(n − 1)
f 2(xmin) ≤ 0

implying that min f = f (xmin) = 0, or also that f vanishes everywhere. Thus the
critical point � is indeed a Gauduchon metric. ��
Remark 2 By [5, Théorème 1], it follows that in any normalized conformal class {Ω}1,
a critical point for G exists and is unique.

Corollary 3 On a compact almost complex manifold (X2n, J ) with n ≥ 2, a Hermitian
metric Ω ∈ H1 is critical for G on H1 if and only if Ω is a Gauduchon metric.

Proof Clearly Gauduchon metrics are critical points of G on H1. Conversely, if Ω is
a critical point for G on H1, then it is also a critical point for G on {Ω}1, hence Ω is
Gauduchon. ��

3 The FunctionalF
We consider now the following functional:

F : H1 → R, F(Ω) :=
∫

X
|dJθΩ |2Ω

Ωn

n! =
∫

X
dJθΩ ∧ ∗ΩdJθΩ, (5)

as well as its restriction to a conformal class inH1.

Remark 4 One motivation for studying the L2-norm of the form dJθΩ is the fol-
lowing. Recall that, on a Hermitian manifold (X ,Ω), there is a canonical family
{∇ t }t∈R of Hermitian connections, that we will call distinguished connections in the
sense of [12], see also [7]. It consists of the affine line through the Chern connection
(namely, the unique Hermitian connection whose (0, 1)-part is the Cauchy–Riemann
operator ∂) and the Bismut connection (namely, the unique Hermitian connection
whose torsion is totally skew-symmetric), and it is characterized by prescribed torsion
T ∇ t = 1

4 (3t − 1)(dcΩ)+ − 1
4 (t + 1)M(dcΩ)+, see [7] for notation and more details.

We recall that the Ricci form of the Chern connection can be locally expressed as

RicCh(Ω)
loc= √−1 ∂∂ log detΩ and represents the first Bott–Chern class in Bott–

Chern cohomology, cBC1 (X) = [RicCh(Ω)] ∈ H1,1
BC (X) → H2

dR(X) � c1(X). By [8,
Formula (8)], the Ricci form of any distinguished connection ∇ t is expressed in terms
of the Ricci form of the Chern connection as

Rict = RicCh + 1 − t

2
dJθ.
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Proposition 5 On a compact almost complex 2n-dimensional manifold (X , J ), the
critical points Ω for the functional F in (5) restricted to the conformal class {Ω}1 are
described by the equation

(n − 2)|dJθΩ |2Ω − 2(n − 1)(ddc)∗Ω ΔΩΩ = k (6)

for k constant.

Proof We look for the conditions to be satisfied by Ω in order to be a critical point of
F in its volume-normalized conformal class {Ω}1 ⊆ H1. Consider a variation of Ω

in its conformal class,

Ω̃t = φt · Ω, φt = 1 + t φ̇ + o(t)

for |t | small enough and φ̇ ∈ C∞(X ,R) satisfying, as before,

∫
X

φ̇
Ωn

n! = 0.

We compute

F(Ω̃t ) =
∫

X

∣∣∣dJθΩ̃t

∣∣∣2
Ω̃t

Ω̃n
t

n! =
∫

X

∣∣∣dJθΩ̃t

∣∣∣2
Ω

φn−2
t

Ωn

n!
=

∫
X

∣∣∣dJθΩ + (n − 1)d(φ−1
t Jdφt )

∣∣∣2
Ω

φn−2
t

Ωn

n!
=

∫
X

∣∣∣dJθΩ + (n − 1)dφ−1
t ∧ Jdφt + (n − 1)φ−1

t dJdφt

∣∣∣2
Ω

φn−2
t

Ωn

n!
= F(Ω) + 2(n − 1)

∫
X

〈
dJθΩ |dφ−1

t ∧ Jdφt + φ−1
t dJdφt

〉
Ω

Ωn

n!
+t(n − 2)

∫
X

|dJθΩ |2Ωφ̇
Ωn

n! + o(t)

= F(Ω) + t

(
2(n − 1)

∫
X

〈
dJθΩ |dJdφ̇

〉
Ω

Ωn

n!
+(n − 2)

∫
X

|dJθΩ |2Ωφ̇
Ωn

n!
)

+ o(t)

whence we get

d

dt
�t=0F(Ωt ) = 2(n − 1)

∫
X

〈
dJθΩ |ddcφ̇〉

Ω

Ωn

n! + (n − 2)
∫

X
|dJθΩ |2Ωφ̇

Ωn

n!
=

∫
X

(
(n − 2)|dJθΩ |2Ω + 2(n − 1)(ddc)∗ΩdJθΩ

)
φ̇

Ωn

n! .
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Therefore Ω is a critical point for F restricted to its conformal class if and only if:

(n − 2)|dJθΩ |2Ω + 2(n − 1)(ddc)∗ΩdJθΩ = k (7)

for k constant. We rewrite the second term in the last equation as follows, by using
(1)

(ddc)∗ΩdJθΩ = (dc)∗Ωd∗Ω (−dd∗Ω Ω)

= −(dc)∗Ωd∗Ω ΔΩΩ

= −(ddc)∗Ω ΔΩΩ.

Therefore Ω is a critical point for F restricted to its conformal class if and only if

(n − 2)|dJθΩ |2Ω − 2(n − 1)(ddc)∗Ω ΔΩΩ = k

for k constant, proving the statement. ��
Corollary 6 On a compact almost complex 4-dimensional manifold, the critical points
Ω for the functionalF in (5) restricted to the conformal class {Ω}1 inH1 are described
by the following equation:

ddcΔΩΩ = 0. (8)

Proof By (6), the critical points are described by the equation (ddc)∗Ω ΔΩΩ = 0 and
since on a complex surface ∗ΩΩ = Ω, this further reads as ddcΔΩΩ = 0. ��

Before specializing to the integrable case, let us first establish a formula that we
will need for the sequel:

Lemma 7 Let (X , J ) be an almost complex manifold endowed with an almost Hermi-
tian metric g. Let Ω be the corresponding fundamental form with Lee form θΩ, and
let α be a smooth one-form on X . Then one has:

ΛΩ(dJα) = −d∗Ω α − 〈α|θΩ 〉Ω. (9)

Proof Let us fix x ∈ X and let e1, . . . , e2n be a local orthonormal frame of T X which
is parallel at x with respect to the Levi–Civita connection ∇. We compute at x

2ΛΩ(dJα) =
2n∑

k=1

dJα(ek, Jek)

=
2n∑

k=1

(ek(Jα(Jek)) − Jek(Jα(ek)) − Jα([ek, Jek]))

= −2d∗Ω α + α

(
2n∑

k=1

∇Jek Jek

)
− Jα

(
2n∑

k=1

(∇ek J
)

ek

)
.

123

Author's personal copy



Variational Problems in Conformal Geometry

On the other hand, we have, at x

JθΩ = −d∗Ω Ω

=
2n∑

k=1

ιek ∇ek (g(J ·, ·)) =
2n∑

k=1

g((∇ek J )ek, ·)

=
2n∑

k=1

ιJek ∇Jek (g(J ·, ·)) = g

(
2n∑

k=1

(∇Jek J )Jek, ·
)

= −g

(
J

(
2n∑

k=1

∇Jek Jek

)
, ·

)

which implies the following:

2n∑
k=1

(∇ek J )ek = (JθΩ)�Ω ,

2n∑
k=1

∇Jek Jek = −θ
�Ω

Ω .

From this, the conclusion follows. ��
Corollary 8 On a compact complex surface, the critical points for the functional F
restricted to a conformal class {Ω}1 inH1 are characterized by the following equation:

ddc( fΩΩ) = 0, fΩ := ΛΩ(−dJθΩ) = |θΩ |2Ω + d∗Ω θΩ. (10)

Proof We find that Eq. (7) is equivalent to

∗Ωddc ∗Ω dJθΩ = 0 ⇔ ddc ∗Ω dJθΩ = 0.

On the other hand, by [6, Formula (50)], we have

∗Ω dJθΩ = ΛΩ(dJθΩ)Ω − dJθ
1,1
Ω + dJθ

(2,0)+(0,2)
Ω . (11)

Using that dimR X = 4, we obtain ddc(dJθ
(2,0)+(0,2)
Ω ) = 0, and since J is integrable

we have 0 = ddcdJθΩ = ddc(dJθ
1,1
Ω ). Thus, via Eq. (9) for α = θΩ, we have shown

that Eq. (8) is equivalent to Eq. (10). ��
In view of the above corollary, we introduce the following definition:

Definition 9 Let (X , J ) be an almost complex manifold and let Ω be an almost Her-
mitian metric. We call Ω distinguished if it satisfies the following equation:

ddc( f n−1
Ω Ωn−1) = 0, where fΩ := ΛΩ(−dJθΩ) = |θΩ |2Ω + d∗Ω θΩ. (12)

Like Gauduchon metrics, these metrics can be seen as canonical representatives in
a given normalized conformal class:
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Theorem 10 Let (X , J ) be a compact almost complex manifold of real dimension
2n > 2, and let {Ω}1 be a conformal class of normalized almost Hermitian metrics.
Then there exists and is unique a distinguished metric Ω ∈ {Ω}1. This metric is either
balanced, i.e. θΩ = 0, or is characterized by the property that fΩ := |θΩ |2Ω +d∗Ω θΩ

is strictly positive on X and the metric fΩΩ is Gauduchon.

Proof Let us fix Ω ∈ {Ω}1 and take any smooth function q ∈ C∞(X). First, we
compute

ddc(qΩn−1) = d(dcq ∧ Ωn−1 + q JθΩ ∧ Ωn−1)

= ddcq ∧ Ωn−1 − dcq ∧ θ ∧ Ωn−1 + dq ∧ JθΩ ∧ Ωn−1

+qdJθΩ ∧ Ωn−1 + qθΩ ∧ JθΩ ∧ Ωn−1

= ΛΩ

(
ddcq − dcq ∧ θΩ + dq ∧ JθΩ + qdJθΩ + qθΩ ∧ JθΩ

) Ωn

n
.

Using Eq. (9) for α = dq, we find that ddc(qΩn−1) = 0 is equivalent to

0 = ΛΩ

(
ddcq − dcq ∧ θΩ + dq ∧ JθΩ + qdJθΩ + qθΩ ∧ JθΩ

)
= −ΔΩq − 〈dq|θΩ 〉Ω + 2〈dq|θΩ 〉Ω − q fΩ + q|θΩ |2Ω

or also to

UΩq := ΔΩq − 〈dq|θΩ 〉Ω + qd∗Ω θΩ = 0 (13)

meaning that q is in the kernel of the elliptic operator U�.

However, by the proof of [6, Théorème at p. 502] using theHopfmaximumprinciple
[10], the kernel of the operator UΩ is one-dimensional and any 0 �= q ∈ kerUΩ is
either strictly positive or strictly negative. Furthermore, for a strictly positive function
q on X , q ∈ kerUΩ if and only if q1/(n−1)Ω is Gauduchon.

We infer that if Eq. (13) is satisfied for q = f n−1
Ω , then either fΩ = 0 and Ω is

balanced, or fΩ �= 0. In the second case, fΩ has constant sign and since
∫

X fΩ
Ωn

n! > 0,
then fΩ > 0 everywhere and fΩΩ is Gauduchon. Conversely, if fΩ = 0, or fΩ > 0
and fΩΩ is Gauduchon, then Eq. (12) holds. This concludes the proof of the last
statement in the theorem.

In order to show existence and uniqueness of solutions to Eq. (12) in a given
normalized conformal class, let us fix Ω0 a Gauduchon metric on (X , J ). By the
above, we need to show that there exists a unique function ϕ ∈ C∞(X ,R) and constant
k ∈ R, k ≥ 0 such that Ω := eϕΩ0 ∈ {Ω0}1 and eϕ fΩ = k.

Using that θΩ = θ0 + (n − 1)dϕ and that for any α ∈ ∧1X , we have

d∗Ω α = e−ϕ
(
d∗Ω0α − (n − 1)〈dϕ|α〉Ω0

)
,

we compute

fΩ = e−ϕ((n − 1)ΔΩ0ϕ − (n − 1)〈dϕ|θ0〉Ω0 − (n − 1)2|dϕ|2Ω0
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+|θ0|2Ω0
+ (n − 1)2|dϕ|2Ω0

+ 2(n − 1)〈dϕ|θ0〉Ω0)

= e−ϕ
(
(n − 1)ΔΩ0ϕ + (n − 1)〈dϕ|θ0〉Ω0 + |θ0|2Ω0

)
.

Hence fΩ = ke−ϕ is equivalent to

ΔΩ0ϕ + 〈dϕ|θ0〉Ω0 = 1

n − 1

(
k − |θ0|2Ω0

)
. (14)

Consider the linear elliptic operator L0 and its L2-formal adjoint L∗
0 with respect

to Ω0, acting on φ ∈ C∞(X) by

L0φ = ΔΩ0φ + 〈dφ|θ0〉Ω0

L∗
0φ = ΔΩ0φ − 〈dφ|θ0〉Ω0 .

The theory of linear elliptic differential operators tells us thatwehave an L2-orthogonal
decomposition:

C∞(X) = ker L∗
0 ⊕ L0(C∞(X)). (15)

Note that ker L0 = ker L∗
0 = R ⊂ C∞(X). Indeed, if φ ∈ ker L0 or φ ∈ ker L∗

0
then

∫
X

|dφ|2Ω0

Ωn
0

n! =
∫

X
ΔΩ0φ · φ

Ωn
0

n!
= ±

∫
X
〈dφ|θ0〉Ω0φ

Ωn
0

n!
= ±1

2

∫
X

φ2d∗Ω0 θ0
Ωn

0

n! = 0

hence dφ = 0 and φ is constant. This, together with (15), implies that a function

h ∈ C∞(X) belongs to L0(C∞(X)) if and only if
∫

X h
Ωn

0
n! = 0.

In particular, if we let

k0 :=
∫

X
|θ0|2Ω0

Ωn
0

n! ≥ 0

then we find that h := 1
n−1 (k − |θ0|2Ω0

) ∈ L0(C∞(X)) if and only if k = k0. Hence
Eq. (14) admits a solution ϕ ∈ C∞(X), unique up to addition by a constant, if and
only if k = k0.

Finally, it follows that the solution Ω to Eq. (12) is unique up to multiplication by
a constant, and thus is unique in {Ω}1. This concludes the proof. ��

In particular, we obtain
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Corollary 11 Given a compact complex surface (X , J ) and a conformal class of nor-
malized Hermitian metrics {Ω}1, there exists and is unique a critical metric Ω ∈ {Ω}1
for the functional F restricted to {Ω}1. Ω is a distinguished metric and F(Ω) is an
absolute minimum for F on {Ω}1.
Proof The first assertion is clear. Suppose that Ω is a distinguished metric and let
Ωt = φtΩ ∈ {Ω}1 be a variation of Ω, with

φt = 1 + tφ1 + t2φ2 + o(t2).

The normalization condition implies that

∫
X

φ1
Ω2

2
=

∫
X
(φ2

1 + 2φ2)
Ω2

2
= 0.

We have

dJθΩt = dJθΩ − φ−2
t dφt ∧ dcφt + φ−1

t ddcφt

= dJθΩ + tddcφ1 + t2ddc
(

φ2 − φ2
1

2

)
+ o(t2)

from which we deduce, using that (ddc)∗dJθΩ = 0 by Eq. (7):

F(Ωt ) − F(Ω)

=
∫

X

(
t2|ddcφ1|2Ω + 2

〈
dJθΩ |tddcφ1 + t2ddc

(
φ2 − φ2

1

2

)〉

Ω

)
Ω2

2
+ o(t2)

= t2
∫

X
|ddcφ1|2Ω

Ω2

2
+ o(t2)

which is positive for |t | small enough. Thus F(Ω) is a minimum of F on {Ω}1. ��
Note that, in general, the distinguished metrics are not Gauduchon:

Corollary 12 Let X be a compact almost complex manifold and let {Ω}1 be a normal-
ized conformal class of Hermitian metrics. Then a Gauduchon metric Ω ∈ {Ω}1 is
distinguished if and only if |θΩ |� is constant. In particular, any Vaisman metric (i.e.
lcK metric with ∇gθΩ = 0) is distinguished.

Proof By Theorem 10, the Gauduchon metric Ω is distinguished if and only if Ω

is balanced, so |θΩ |Ω = 0, or if |θΩ |2ΩΩ is Gauduchon. This is further equivalent
to |θΩ |2Ω being constant, by the uniqueness of normalized Gauduchon metrics in a
conformal class. ��
Corollary 13 Let X be a compact almost complex manifold and let {Ω}1 be a normal-
ized conformal class of Hermitian metrics. If Ω ∈ {Ω}1 has constant |θΩ |Ω, then Ω

is distinguished if and only if Ω is Gauduchon.
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Proof By the proof of Theorem 10, under our hypothesisΩ is distinguished if and only
if f n−1

Ω = (d∗Ω θΩ + |θΩ |2Ω)n−1 ∈ kerUΩ. Furthermore, either fΩ = 0, in which
case Ω is Gauduchon, or fΩ > 0 on X . In the second case, putting q := d∗Ω θΩ, this
further reads

(n − 1) f n−3
Ω

(
fΩΔΩq − (n − 2)|dq|2Ω

)
+ (n − 1) f n−2

Ω 〈dq|θΩ 〉Ω + f n−1
Ω q = 0

or also

(n − 1) fΩΔΩq = (n − 1)(n − 2)|dq|2Ω − (n − 1) fΩ 〈dq|θΩ 〉Ω − f 2Ωq.

Let xmin ∈ X be a point where q attains its minimum. Since
∫

X q Ωn

n! = 0, if Ω is
not Gauduchon then q(xmin) < 0, and we find, using that fΩ(xmin) > 0:

0 ≥ (n − 1) fΩ(xmin)ΔΩq(xmin) = −q(xmin) f 2(xmin) > 0

which is a contradiction, hence Ω is Gauduchon.
Conversely, if Ω is Gauduchon then it is either balanced, or the function fΩ is

constant and positive, hence fΩΩ is Gauduchon. In both cases, Ω is distinguished by
Theorem 10. ��
Remark 14 Let the complex surface X2 be a compact quotient of a solvable Lie group
endowed with an invariant complex structure. (Here, invariant means locally homo-
geneous, that is, it is induced by a structure on the universal cover that is invariant by
left-translations.) Compact complex surfaces of this type are tori, hyperelliptic sur-
faces, Inoue surfaces of type SM and of type S±, and primary and secondary Kodaira
surfaces [9,14]. Then any invariant Hermitian metric Ω is a solution of (8). This fol-
lows because ddcΔΩΩ has to be invariant, but the only invariant 4-forms are scalar
multiple of the volume form, that cannot be exact by the Stokes theorem. These dis-
tinguished metrics satisfy the hypothesis of the above corollary, i.e. are Gauduchon
and |θΩ |2Ω is constant.

4 The FunctionalA
We consider now the functional:

A : H1 → R, A(Ω) :=
∫

X
|dcΩ|2Ω

Ωn

n! =
∫

X
|dΩ|2Ω

Ωn

n! , (16)

as well as its restriction to a conformal class inH1.Notice that clearly (almost-)Kähler
metrics are critical points for this functional.

Remark 15 The motivation behind the study of the functional A lies in the fact that
dcΩ is the torsion of the Bismut connection, which is the unique connection ∇B on
a Hermitian manifold (X , J , g) such that ∇Bg = 0, ∇B J = 0 and c(X , Y , Z) =
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g(X , TB(Y , Z)) is totally skew-symmetric, where TB denotes the torsion of ∇B (see
e.g. [4]). It turns out that c = dcΩ and

g(∇B
X Y , Z) = g(∇g

X Y , Z) + 1

2
c(X , Y , Z).

Remark 16 If {Ω}1 is an (almost) lcK conformal class, then A is a constant multiple
of LG. This comes from the fact that

(n − 1)2|dΩ|2Ω = |θΩ ∧ Ω|2Ω =
〈
Ω|ι

θ
�Ω
Ω

(θΩ ∧ Ω)
〉
Ω

= n|θΩ |2Ω − ΛΩ(θΩ ∧ JθΩ) = (n − 1)|θΩ |2Ω.

Hence by [6], the critical points of A restricted to {Ω}1 in this case are the solutions
to the equation |θΩ |2Ω + 2d∗Ω θΩ = k ∈ R.

Remark 17 Similarly, if X is a compact almost complex 4-dimensional manifold, then
A coincides with LG. This is because in dimension 4 one always has dΩ = θΩ ∧ Ω,

hence as before, |dΩ|2Ω = |θΩ |2Ω. By [6, Théorème III.4], it turns out that on compact
complex surfaces, the critical points ofA are exactly the Kähler metrics, which are in
fact absolute minima.

In the general case, we have the following:

Proposition 18 On a compact almost complex 2n-dimensional manifold, the critical
points Ω for the functional A in (16) restricted to the conformal class {Ω}1 in H1 are
described by the equation

(n − 1)|dΩ|2Ω + 2d∗Ω θΩ = k (17)

for k constant.

Proof Consider a variation of Ω in its conformal class:

Ω̃t = φt · Ω,

where

φt = 1 + t φ̇ + o(t), φ̇ ∈ C∞(X ,R) such that
∫

X
φ̇

Ωn

n! = 0.

We compute

A(Ω̃t ) =
∫

X
|dcΩ̃t |2Ω̃t

Ω̃n
t

n! =
∫

X
|dΩ̃t |2Ω̃t

Ω̃n
t

n!
=

∫
X

|d(φtΩ)|2Ωφn−3
t

Ωn

n! =
∫

X
|dφt ∧ Ω + φtdΩ|2Ωφn−3

t
Ωn

n!
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=
∫

X
|dφt ∧ Ω|2φn−3

t
Ωn

n! +
∫

X
|φtdΩ|2Ωφn−3

t
Ωn

n!
+2

∫
X

〈dφt ∧ Ω|φtdΩ〉Ω φn−3
t

Ωn

n!
=

∫
X

|φtdΩ|2Ωφn−3
t

Ωn

n! + 2
∫

X

〈
tdφ̇ ∧ Ω|dΩ 〉

Ω

Ωn

n! + o(t)

=
∫

X
|dΩ|2Ω

Ωn

n! + t(n − 1)
∫

X
|dΩ|2Ωφ̇

Ωn

n!
+2t

∫
X

〈
dφ̇ ∧ Ω|dΩ 〉

Ω

Ωn

n! + o(t)

= A(Ω) + t
∫

X

(
(n − 1)|dΩ|2Ω + 2d∗Ω ΛΩdΩ

)
· φ̇

Ωn

n! + o(t)

= A(Ω) + t
∫

X

(
(n − 1)|dΩ|2Ω + 2d∗Ω θΩ

)
· φ̇ Ωn

n! + o(t)

Therefore, the equation for the critical points is

(n − 1)|dΩ|2Ω + 2d∗Ω θΩ = k

for k constant. ��
We have the following:

Corollary 19 Let X be a compact almost complex2n-dimensional manifold with n > 1.
If Ω ∈ {Ω}1 is Gauduchon, then it is critical for A on {Ω}1 if and only if |dΩ|2Ω is
constant.

Corollary 20 Let X be a compact almost complex2n-dimensional manifold with n > 1.
If Ω ∈ {Ω}1 is critical for A and |dΩ|2Ω is constant then Ω is Gauduchon.

Proof From the equation of critical points for A if |dΩ|2Ω is constant then d∗Ω θΩ is
also constant. Since

∫
X d∗Ω θΩ

Ωn

n! = 0 we get that d∗Ω θΩ = 0. ��
Recall that a Hermitian metric Ω on a compact complex manifold X of dimension

n is called strong Kähler with torsion (briefly SKT, also known as pluriclosed) if
ddcΩ = 0.When n = 2, SKTmetrics coincide by definitionwithGauduchonmetrics.
When n > 2, an SKT metric Ω is Gauduchon if and only if

|dΩ|2Ω = |θΩ |2Ω = 1

n − 1
|θΩ ∧ Ω|2Ω,

see e.g. [1, Eq. (2.13)]. As a consequence, we have

Corollary 21 Let Xn be a compact complex manifold of dimension n > 2. If Ω ∈ {Ω}1
is both Gauduchon and SKT, then it is critical for A if and only if |θΩ |2Ω is constant.

Remark 22 Note that Example5 shows that the infimum of the functional A on the
space of Hermitianmetrics of volume one can be zero even if there is no Kähler metric.
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5 The FunctionalR
We consider now the functional:

R : H1 → R, R(Ω) :=
∫

X
|ddcΩ|2Ω

Ωn

n! , (18)

as well as its restriction to a conformal class inH1.

The motivation behind the functional R is that SKT metrics on compact complex
manifolds are by definition critical points of R.

In general, we have

Proposition 23 On a compact almost complex 2n-dimensional manifold, the critical
points Ω for the functional R in (18) restricted to the conformal class {Ω}1 are
described by the equation:

(n − 4)
∣∣ddcΩ∣∣2

Ω
+ 2ΛΩ(ddc)∗ΩddcΩ = k (19)

for k constant.

Proof Consider a variation of Ω in its conformal class:

Ω̃t = φt · Ω,

where

φt = 1 + t φ̇ + o(t), φ̇ ∈ C∞(X ,R) such that
∫

X
φ̇

Ωn

n! = 0.

We compute

R(Ω̃t ) =
∫

X
|ddcΩ̃t |2Ω̃t

Ω̃n
t

n! =
∫

X
|ddc(φtΩ)|2Ωφn−4

t
Ωn

n!
=

∫
X

∣∣ddcΩ + tddc(φ̇Ω)
∣∣2
Ω

(1 + t(n − 4)φ̇)
Ωn

n! + o(t)

= R(Ω) + t
∫

X

(
(n − 4)

∣∣ddcΩ∣∣2
Ω

· φ̇ + 2〈ddc(φ̇Ω)|ddcΩ〉
) Ωn

n! + o(t)

= R(Ω) + t
∫

X

(
(n − 4)

∣∣ddcΩ∣∣2
Ω

+ 2ΛΩ(ddc)∗ΩddcΩ
)

· φ̇
Ωn

n! + o(t).

Therefore, the equation for the critical points is

(n − 4)
∣∣ddcΩ∣∣2

Ω
+ 2ΛΩ(ddc)∗ΩddcΩ = k

for k constant. ��
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Corollary 24 Let (X , J ) be an almost complex compact surface and let {Ω}1 be a
conformal class of normalized almost Hermitian metrics. Then Ω ∈ {Ω}1 is critical
for R if and only if Ω is Gauduchon.

Proof Let us first note that in the case n = 2, Eq. (19) is equivalent to

|ddcΩ|2Ω = ΛΩ(ddc)∗ΩddcΩ. (20)

Indeed, this follows by integrating Eq. (19) over X :

k · volΩ(X) = −2R(Ω) + 2
∫

X
〈Ω|(ddc)∗ΩddcΩ〉Ω Ω2

2
= 0.

Furthermore, note that since n = 2, we have ddcΩ = −d∗Ω θΩ · Ω2

2 . Denoting by
q := −d∗Ω θΩ, we find

ΛΩ(ddc)∗ddcΩ =
〈
Ω| − ∗Ωddc ∗Ω

(
q

Ω2

2

)〉
Ω

= 〈∗ΩΩ| − ddcq〉Ω
= −ΛΩ(ddcq)

= ΔΩq + 〈dq|θΩ 〉Ω,

where for the last equality, we used Eq. (9) for α = dq. Thus, Eq. (20) is equivalent
to

q2 = ΔΩq + 〈dq|θΩ 〉Ω. (21)

Now clearly Gauduchon metrics satisfy Eq. (21) and minimizeR. Conversely, sup-
pose that Ω satisfies Eq. (21), and suppose by contradiction that Ω is not Gauduchon.
Then at a minimum point xmin ∈ X of q we have q(xmin) < 0, from which it follows:

0 < q2(xmin) = ΔΩq(xmin) ≤ 0

which is impossible. Hence Ω is Gauduchon. ��

6 An Example: The Inoue–Bombieri Surface

We consider an Inoue–Bombieri surface of type SM [3,11]. As described in [9,14], it
can be viewed as a compact quotient of a solvable Lie group. Consider the complex
structure described by the coframe of invariant (1, 0)-forms {ϕ1, ϕ2} with structure
equations:

dϕ1 = 1

2
√−1

ϕ1 ∧ ϕ2 − 1

2
√−1

ϕ1 ∧ ϕ̄2, dϕ2 = −√−1ϕ2 ∧ ϕ̄2.
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Any invariant Hermitian metric has associated (1, 1)-form:

Ω = √−1r2ϕ1 ∧ ϕ̄1 + √−1s2ϕ2 ∧ ϕ̄2 + uϕ1 ∧ ϕ̄2 − ūϕ2 ∧ ϕ̄1, (22)

where the parameters r , s ∈ R and u ∈ C satisfy r2 > 0, s2 > 0, r2s2 − |u|2 > 0.
Let c := ∫

M −ϕ1 ∧ ϕ̄1 ∧ ϕ2 ∧ ϕ̄2. Then any choice of r , s, u with r2s2 − |u|2 = 1
c

gives a metric inH1.

We compute

dΩ = r2ϕ1 ∧ ϕ2 ∧ ϕ̄1 +
√−1

2
uϕ1 ∧ ϕ2 ∧ ϕ̄2

+r2ϕ1 ∧ ϕ̄1 ∧ ϕ̄2 −
√−1

2
ūϕ2 ∧ ϕ̄1 ∧ ϕ̄2.

We get that the corresponding Lee form is

θ = 3 r2u

2
(
r2s2 − |u|2)ϕ1 + √−1

2 r2s2 + |u|2
2

(
r2s2 − |u|2)ϕ2

+ 3 r2u

2
(
r2s2 − |u|2) ϕ̄1 − √−1

2r2s2 + |u|2
2

(
r2s2 − |u|2) ϕ̄2.

• Of course, since d∗θ is an invariant function, then d ∗ θ = 0, whence

G(Ω) = 0

for any invariant metric Ω.

• We compute

dJθ =
(

3 r2u

4
(
r2s2 − |u|2)

)
ϕ1 ∧ ϕ2 +

(
3 r2u

4
(
r2s2 − |u|2)

)
ϕ̄1 ∧ ϕ̄2

+
(

− 3 r2u

4
(
r2s2 − |u|2)

)
ϕ1 ∧ ϕ̄2 +

(
3 r2u

4
(
r2s2 − |u|2)

)
ϕ2 ∧ ϕ̄1

+
(
2
√−1 r2s2 + √−1 |u|2

2
(
r2s2 − |u|2) − −2

√−1 r2s2 − √−1 |u|2
2

(
r2s2 − |u|2)

)
ϕ2 ∧ ϕ̄2.

Thus, we infer

dJθ ∧ ∗dJθ

ϕ1 ∧ ϕ2 ∧ ϕ̄1 ∧ ϕ̄2

= 9 r4|u|2
8
(
r2s2 − |u|2)2 + 3

(
11 r4s2u + 7 r2|u|4)r2u

16
(
r2s2 − |u|2)3
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+3
(
11 r4s2 + 7 r2|u|2)r2|u|2

16
(
r2s2 − |u|2)3

+2
(−4

√−1 r6s2 − 5
√−1 r4|u|2)(2√−1 r2s2 + √−1 |u|2)
4

(
r2s2 − |u|2)3 .

For example, when u = 0, we find

dJθ = 2
√−1ϕ2 ∧ ϕ̄2, |dJθ |2 = 4

1

s4
.

Thus, making s go to ∞ and taking r2 = 1
cs2

, we conclude that the infimum for
the functionalF onH1 is 0.However, 0 is not a minimum, since dJθΩ = 0 would
give dd∗Ω Ω = 0 whence |d∗Ω Ω|2Ω = |dΩ|2Ω = 0, but SM does not admit any
Kähler metric.

• We compute

|dcΩ|2Ω
Ω2

2
= |dΩ|2Ω

Ω2

2
= dΩ ∧ ∗ΩdΩ

=
(

3 r2|u|2
2

(
r2s2 − |u|2) + 2

(
2 r2s2 + |u|2)r2
2(r2s2 − |u|2)

)
ϕ121̄2̄

=
(
5 r2|u|2 + 4 r4s2

2
(
r2s2 − |u|2)

)
ϕ121̄2̄,

which for example for u = 0 gives

|dcΩ|2Ω
Ω2

2
= 2r2ϕ121̄2̄.

Thus, making r go to ∞ and taking s2 = 1
cr2

, we conclude again that the infimum
of A onH1 is 0 and is not attained.

• As for the last functional, any invariantmetric isGauduchon by the Stokes theorem,
whence

ddcΩ = 0.
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