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Linking annuity benefits to the longevity
experience: Alternative solutions

Annamaria Olivieri∗ and Ermanno Pitacco

Abstract

The uncertainty regarding financial returns and the life expectancy, joint to the re-
duced social security benefits, increasingly expose individuals to the risk of outliving
their post-retirement assets. However, the demand for longevity guarantees remains
low, due to high costs. The providers, on their side, may be reluctant to offer non-
adjustable longevity guarantees, as the risk is long-term and difficult to predict.

It is therefore convenient to reconsider the design of longevity guarantees. In par-
ticular, a participating structure, providing a link to some longevity experience, could
allow a sharing of losses, and possibly profits, resulting in a reduction of the cost of the
retained guarantee.

The literature review suggests a number of alternatives to define a longevity linking
arrangement, but the topic is not yet completely explored. It is useful, in particular, to
have a common framework, under which the various solutions can be interpreted and
compared, also with a view to the trade-off between the retained risk and the cost of
the guarantee.

Developing a general structure describing longevity-linked post-retirement bene-
fits is the main purpose of this paper. Allowing for aggregate longevity risk, we then
examine suitable solutions for insurance products.

Keywords: Longevity-linked annuities; Longevity risk participating annuities; Aggregate
longevity risk; Longevity guarantee.
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1 Introduction

The guarantees traditionally provided by life annuities, protecting an individual from the
financial cost of living longer than expected, have become expensive in the latest decades,
due to the dynamics of financial markets and the decreasing trend in mortality rates. The
possibility of unanticipated reductions in mortality rates, in particular, charges the annuity
provider with the so-called aggregate longevity risk, which motivates this paper.

As is well-known, despite being an insurance risk, the aggregate longevity risk is not
subject to risk pooling; as such, it cannot be diversified inside the traditional insurance-
reinsurance process. Innovative risk management solutions are rather required.

In principle, we can figure out a number of ways to cope with the aggregate longevity
risk, including premium loadings, capital allocation, hedging through longevity-linked
reinsurance or through longevity-linked securities, or setting some form of risk sharing
between the provider and the individual. In practice, each of these solutions has some
drawbacks. Indeed, charging higher loadings can make life annuities even less attrac-
tive than how currently perceived by potential customers. Allocating more capital (if not
matched by higher loadings) reduces shareholders’ value, making the business less ap-
pealing to potential investors. Hedging the aggregate longevity risk is not yet possible at
a convenient price or in an efficient way. Indeed, while longevity-linked reinsurance is
usually expensive, the market for longevity-linked securities is still underdeveloped; fur-
ther, hedging transactions can involve counterparty and basis risk, partially offsetting the
benefits from the risk transfer. Finally, sharing the risk with the individual involves a pos-
sible adjustment, even downward, of the benefit amount, and this could have an adverse
impact on the demand.

Despite the drawbacks, longevity-linked reinsurance, longevity-linked securities and
longevity risk sharing arrangements currently represent the most innovative risk man-
agement solutions in respect of the aggregate longevity risk, and the ones that is worth
investigating. In this paper, we focus on risk sharing solutions.

Longevity risk sharing effects can be achieved either indirectly or directly. An indirect
effect, namely a natural hedging across time, can be obtained by including a rider death
benefit to the annuity. The exposure of the provider to longevity risk is reduced because,
thanks to the death benefit, the mortality credits are reduced. As a result, however, the an-
nuity becomes more expensive, as the annuity rate decreases; nevertheless, the reduction
of the annuity rate is limited, as death benefits included as riders to annuities are usually
restricted to a range of ages (say, up to age 75) in which the mortality level is not high.
For the same reason, the risk reduction gained this way by the annuity provider is not
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significant.
A direct sharing of the longevity risk can be attained by linking the annuity benefit

to the mortality/longevity experienced in a chosen population: unanticipated mortality
improvements should result in a reduction of the benefit amount, thus offsetting (at least
partially) the possible loss suffered by the provider. Conversely, higher mortality rates
could support an increase of the benefit amount, and then the profit possibly gained by
the provider would be shared with annuitants. The main drawback for annuitants is clear:
in the future, the benefit amount may decrease. However, this risk could be balanced by an
immediate advantage, namely a higher annuity rate. For the provider, a trade-off between
the default probability and the business value is involved, which must be examined.

Annuity designs in which the benefit amount is subject to updating based on the mor-
tality/longevity experience have been named in different ways in the literature: adaptive
algorithmic annuities by Lüthy et al. (2001), longevity-indexed life annuities by Denuit et
al. (2011), longevity-contingent life annuities by Denuit et al. (2015), mortality-indexed
annuities by Richter and Weber (2011), longevity-linked life annuities by Bravo and de
Freitas (2018). Also, different adjustment coefficients of the benefit amount have been
considered. Lüthy et al. (2001) consider the ratio between the actuarial values of the annu-
ity based on the initial and the latest mortality forecast. A similar choice is made by Denuit
et al. (2015), who consider the expected lifetime, that is to say the actuarial value of the an-
nuity at a 0% discount rate. Denuit et al. (2011) and Bravo and de Freitas (2018) adopt
the ratio between the expected survival probability and the proportion of survivors ob-
served in a reference population. Richter and Weber (2011) consider the ratio between the
available reserve and the actuarial value of the annuity updated to observed mortality. An
adjustment based on the ratio between reserves is discussed also by Maurer et al. (2013),
dealing with Variable Investment-Linked Deferred Annuities (VILDAs). Deferred living
benefits are also considered by Hanbali et al. (2019), who investigate longevity risk shar-
ing arrangements, based on the number of survivors, under which the provider is allowed
to revise not only the benefit amount, but also the pricing basis, by charging additional
premiums. To this purpose, they focus on a pure endowment.

Forms of participation to the longevity experience were already present in tontine an-
nuities. These arrangements, dating back to the Seventeen century, were designed as fi-
nancial annuities in which the annual or final amount were increased thanks to the funds
released by the deceased. Originally developed for speculative purposes, tontine annu-
ities have recently been revised as a form of longevity risk management. See, for example,
McKeever (2009), Baker and Siegelman (2010), Sabin (2010), Milevsky (2014), Milevsky
and Salisbury (2015), Milevsky and Salisbury (2016), Weinert and Gründl (2016), Chen et
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al. (2019).
Examples of non-insurance arrangements in which the longevity risk is shared among

the individuals are provided by Group-Self Annuitization pools (see, for example, Pig-
got et al. (2005), Valdez et al. (2006), Qiao and Sherris (2012)), Pooled Annuity Funds
(see Stamos (2008), Donnelly et al. (2013)), and Annuity Overlay Funds (see Donnelly
et al. (2014), Donnelly (2015)). The common idea here is that liabilities must always be
funded; this target is reached by letting the benefit amount decrease, if required by the
available asset amount. Such arrangements rely on pooling arguments; they do not pro-
vide explicit longevity guarantees, and they are unable to absorb systematic losses caused
by unanticipated mortality improvements.

We see that the literature review suggests a number of alternatives to define a longevity
linking arrangement, but others could be designed. It is therefore useful to have a common
framework, under which the various solutions can represent specific cases. A common
framework could facilitate the interpretation of the various alternatives in view of the pos-
sible targets of the provider and the individual, as well as of the features of the guarantees
that may be offered. Understanding the trade-off between risk and cost of the guarantees
is important, from both the point of view of individuals and providers.

Developing a general structure describing longevity-linked post-retirement benefits is
the main contribution of this paper. Allowing for aggregate longevity risk, we then ex-
amine suitable solutions for insurance products, that we will name longevity-linked annu-
ities. To this purpose, we analyse their features and value from both the point of view of
the insurer and the individual, considering different levels of the longevity guarantee.

The paper is organized as follows. In Sect. 2 we make some preliminary remarks
on a longevity-linked arrangement, while in Sect. 3 we describe a general structure for
longevity-linked post-retirement benefits, and discuss some particular cases of interest in
insurance applications. The valuation in the insurer’s and individual’s perspective is ex-
amined in Sect. 4. A numerical experiment is developed in Sect. 5. Finally, in Section 6 we
conclude with some final comments.

2 Designing a longevity-linked arrangement: Preliminary
remarks

2.1 The alternative targets of the provider and individuals

In a linking arrangement, insurers share profits or losses with policyholders, with the aim
of reducing some risks, and ultimately the default probability, while trying to reach a satis-
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factory business value. The variables involved in a linking arrangement impact differently
on the default probability and business value, which indeed move quite often in opposite
directions. On the other hand, policyholders usually have conflicting objectives with those
of insurers. When designing a linking arrangement, it is therefore appropriate to examine
preliminarily what could be the resultant risk-return trade-off, for the provider and for the
individual as well.

A very well-known example of a linking arrangement, which can serve as a reference
guide, is provided by participating policies: at policy issue, the technical interest rate is
set low (or even zero); the realized return above the technical interest rate (or possibly
above an additional guaranteed return) is then assigned periodically to the policy account
value, resulting in an increase of the benefit amount. This way, the insurer waves part of
the profits (and this affects negatively the business value), but offers the policyholders a
return in line with the market, leaving a significant part of the financial risk to them (with
a positive impact on the default probability). In turn, the policyholder is charged a higher
premium rate (because of the size of the technical interest rate), still receives a financial
guarantee, but may also have a reasonable expectation of adequate returns. The success of
participating policies witnesses that a good balance between the alternative targets of the
insurer and the policyholder has been achieved.

A similar arrangement can be developed for longevity risk. We first make clear that we
only refer to the aggregate longevity risk, i.e. the risk of unanticipated mortality improve-
ments. This is because the idiosyncratic longevity risk, which is subject to pooling effects,
should be managed by the insurer with traditional tools, namely traditional reinsurance
arrangements. Conversely, the systematic nature of the aggregate longevity risk requires
innovative management solutions, as we mention in Sect. 1.

While a financial linking arrangement is designed primarily to distribute profits, a
longevity linking arrangement responds mostly to the need to share possible losses. This
can have at first a negative impact on the demand, as it is psychologically easier to agree
to share a profit than a loss. On the other hand, the possibility of sharing losses should
be offset by a more favourable rating to the policyholder. Maurer et al. (2013) suggest
that individuals should be willing to accept such a deal. Furthermore, a longevity linking
arrangement can be designed so to also share (at least partially) profits.

Intuitively, under a longevity linking arrangement the default probability of the provider
should decrease. Conversely, the impact on the business value is not so clear, due to the
different rating conditions, and the possible distribution of profits. This is an aspect that
requires further investigation.

A lower default probability and a higher business value are multi-period targets for the
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insurer. Annual targets may relate to the annual payout, annual profit or the comparison
between the portfolio reserve and the available assets. From the point of view of the in-
dividual, the premium loading, and therefore the annuity rate, are significant components
in the choice whether or not to underwrite the contract. Leaving apart bequest preferences
(we assume that the individual has already decided to underwrite an annuity), further
components can be the features of the longevity guarantee, in particular with regard to the
possible duration of the annuity (which should be lifelong, in an insurance contract) and
the possible sequence of benefit amounts (which should not present too large fluctuations).
In Sect. 4 appropriate quantities are introduced so to assess the alternative longevity-linked
annuity designs considering the main targets for providers and individuals.

2.2 The basic items of a longevity-linking rule

A linking of annuity benefits to the longevity experience requires to choose on one side a
mortality data set (or mortality/longevity index) in which to measure the longevity expe-
rience, on the other side the type of adjustment coefficient of the benefit amount.

The longevity experience can be measured: (i) in a portfolio, (ii) in a reference popula-
tion, (iii) with a (projected) life table. Solution (i) is usually referred to as indemnity-based,
as it depends on the mortality reported in the portfolio of the provider, and then on the
loss/profit realized by the provider itself. An indemnity-based solution avoids basis risk
for the provider, as the benefits are adjusted in line with the mortality experienced by the
provider itself, but it is subject to random fluctuations, due to the (presumably not large)
portfolio size. Further, individuals could suspect possible data manipulations, with a con-
sequent lack of trust. Solution (ii) is usually referred to as index-based, as it depends on
an external experience for the provider, namely and index. The reference population is
typically a representative sample of the population of a country (e.g., Italy), or a region
(e.g., England and Wales). When the purpose is to measure longevity, a specific cohort can
be addressed (e.g., people born in 1948). An index-based solution involves basis risk for
the provider, as the mortality experienced by the provider is not necessarily in line with
that referred to for the benefit adjustment, but it is less exposed to random fluctuations,
due to the larger size of the population with respect to a portfolio. The confidence of indi-
viduals in the quality of data should be higher, as data are usually collected and processed
by an independent institution. Also solution (iii) is index-based; in this case, the longevity
experience is measured in terms of updated mortality projections. Being a life table, the
risk that data are affected by random fluctuations is low. The confidence of individuals
should be high, as life table are usually developed by independent institutions; however,
a prediction of future mortality trends is involved, which is exposed to uncertainty risk.
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Indemnity-based Index-based

Number of survivors (ob-
served vs expected)

In the portfolio In a reference population

Actuarial quantities Required portfolio reserve vs
Available assets

Actuarial value of the annuity
with updated life tables

Table 1: Quantities used to define the adjustment coefficient.

When defining the adjustment coefficient of the benefit amount, the longevity experi-
ence can be expressed in terms of numbers of survivors (or, equivalently, survival proba-
bilities), or in terms of actuarial quantities (such as, for example, the actuarial value of the
annuity, the portfolio reserve and the portfolio assets). Table 1 provides an overview of the
main alternatives, distinguishing between indemnity- and index-based solutions. A more
detailed description is provided in Sect. 3.

3 Benefit structure: From a general expression to particular
solutions

3.1 Basic assumptions and notation

In this Section we develop a general structure describing longevity-linked benefits. Specific
solutions are obtained with appropriate choices of the parameters involved. We mainly
refer to insurance arrangements; this justifies some terminology (for example, we refer to
annuities, policy conditions, policyholders, the insurer, and so on). However, the structure
is suitable to represent also cases in which no guarantee is provided, that can be adopted
in self-insured arrangements, as we mention in some examples.

What follows refer to a discrete-time annuity immediate in arrears, i.e. with payments
at the end of the year. For simplicity, one cohort only is addressed, aged x at entry time 0.
We denote with S the initial amount paid by each policyholder.

As far as notation is concerned, the best-estimate assumption at time h is denoted as
i(h) for the interest rate, qx+t(h) for the mortality rate (at age x + t) and px+t(h) for the
survival probability (at age x + t). The actuarial value at time t, age x + t, of a unitary
discrete-time annuity in arrears, conditional on the best-estimate assumptions at time h,
0 ≤ h ≤ t, is denoted as ax+t(h), and is computed as follows

ax+t(h) =
ω−(x+t)

∑
s=1

(1 + i(h))−s · s px+t(h) , (1)
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where Kx+t is the curtate lifetime at age x + t and ω is the maximum attainable age (note
that, for simplicity, in writing the expression for ax+t(h) in (1) we have assumed a flat
term structure). Since it is based on best-estimate assumptions, we mean that no loading
is included in ax+t(h). Variables that, depending on the assumption, can be either deter-
ministic or stochastic, are denoted with a tilde on the top when assumed to be stochastic;
for example, p̃x+t is the survival probability at age x + t observed in a given population,
while ı̃t is the return on investments realized in year (t− 1, t). Further quantities and the
relevant notation will be introduced in the following, step by step.

3.2 A general expression for the updated benefit amount

We assume that the initial benefit amount is assessed as follows:

b0 = S · 1
ax(0) · (1 + π)

, (2)

where π represents the premium loading, whose size is assumed to be defined at time 0,
depending on the risk retained by the provider, as we discuss in detail in Sect. 4.

If the annuity is fixed-amount, the benefit amount at time t, t = 1, 2, . . . , is simply
bt = b0.

Let adj(t′,t′′), t′ < t′′, denote the adjustment coefficient based on the longevity experi-
ence in the time-interval (t′, t′′).

If the benefit is subject to annual adjustments, the benefit amount at time t is assumed
to be assessed alternatively as follows:

bt = bt−1 · adj(t−1,t) ; t = 1, 2, . . . ; (3)

bt = b0 · adj(0,t) ; t = 1, 2, . . . . (4)

Considering that the longevity trend can be captured better over a period of several
years, rather than year by year, it is reasonable to consider the case of adjustments every
k years (say, k = 3 or 5), instead of every year. In this case, alternative definitions of the
benefit amount at time t are as follows:bt = bt−k · adj(t−k,t) ; t = k, 2k, . . . ;

bt = bt−1 ; t 6= k, 2k, . . . ;
(5)

bt = b0 · adj(0,t) ; t = k, 2k, . . . ;

bt = bt−1 ; t 6= k, 2k, . . . .
(6)
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In order to work out possible expressions of the adjustment coefficients, we now as-
sume that the update occurs annually. The case of multi-period adjustments is discussed
in Sect. 3.6.

Refer to a policy in-force at time t − 1. According to policy conditions, the following
actuarial balance must be fulfilled for year (t− 1, t):

bt−1 · ax+t−1(τ) · (1 + gt) = bt · (1 + ax+t(τ
′)) · p̃x+t−1 , (7)

where:

– τ, 0 ≤ τ ≤ t− 1, and τ′, τ ≤ τ′ ≤ t, are the times when the technical basis for the
assessment at times t− 1 and t of the insurer’s liabilities are respectively set;

– gt represents the financial return credited to the policy account value for year (t −
1, t), which is based on the return realized on investments, possibly including mini-
mum guarantees (some examples are provided below and, in more detail, in Sect. 3.3);

– p̃x+t−1 represents the survival probability measuring the mortality credit assigned to
the policy account value for year (t− 1, t). The probability p̃x+t−1 is set depending
on the mortality observed in a chosen population, with possible guarantees. Some
examples are discussed below and, in more detail, in Sect. 3.4.

We point out that whenever gt and p̃x+t−1 are not fixed, but depend (respectively) on
the realized investment return and the observed mortality, the parameters of Eq. (7) are
random and the balance between the right and left hand side of (7) is ensured by the benefit
bt, which will be adjusted accordingly. Indeed, as a result of the linking arrangement, the
annuity benefit amount is random, and (part of) the risk is kept by the annuitant.

Under a fixed-benefit arrangement, Eq. (7) becomes the well-known:

b0 · ax+t−1(0) · (1 + i(0)) = b0 · (1 + ax+t(0)) · px+t−1(0) , (8)

where the interest rate i(0) and the survival probability px+t−1(0) are set at time 0, and
guaranteed over the whole life of the annuity. Under a linking arrangement, the financial
return gt or the survival probability p̃x+t−1 can depend, respectively, on the return real-
ized on investments or the survival probability observed in a given population. Similarly,
the actuarial value of the annuity at time t could be based on an updated best-estimate
assumption compared to that adopted at time t− 1. If gt = i(τ), p̃x+t−1 = px+t−1(τ) and
τ′ = τ, the actuarial balance (7) is preserved with bt = bt−1. Otherwise, an adjustment of
the benefit amount bt compared to bt−1 is required. Alternative choices of the parameters
of Eq. (7) are discussed in Sect. 3.3–3.6.
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Starting from Eq. (7), it is useful to obtain an explicit expression for the adjustment
coefficient. We can easily write:

bt = bt−1 ·
ax+t−1(τ) · (1 + gt)

(1 + ax+t(τ′)) · p̃x+t−1
, (9)

where the adjustment coefficient can be interpreted as a ratio between the unitary value
of the assets assigned to the policy, namely ax+t−1(τ) · (1 + gt), and the unitary value of
the liability in its respect at the end of the year, namely (1 + ax+t(τ′)) · p̃x+t−1. This recalls
how benefits are adjusted in self-insured arrangements, such as Group-Self Annuitiza-
tion plans, where no guarantee is provided. In this case, τ = t − 1, τ′ = t, gt = ı̃t and
p̃x+t−1 = p̃[pool]

x+t−1, where p̃[pool]
x+t−1 denotes the survival probability observed in the pool, i.e.

the proportion at time t of survivors in the pool aged x + t − 1 at the beginning of the
year. In this regard, it is important to note that equation (9), as well as the following (11),
resemble what discussed for GSA arrangements by Piggot et al. (2005).

For arrangements providing some guarantees, it is convenient to further develop (9).
First, consider that:

ax+t−1(τ) = (1 + ax+t(τ)) · (1 + i(τ))−1 · px+t−1(τ) . (10)

We can then rearrange Eq. (7) as follows:

bt = bt−1 ·
1 + gt

1 + i(τ)
· px+t−1(τ)

p̃x+t−1
· 1 + ax+t(τ)

1 + ax+t(τ′)
, (11)

which suggests specific alternative solutions for the adjustment coefficient adj(t′,t′′), that
we are now going to discuss.

3.3 Financial linking

As we mention in Sect. 1, in this paper we deal with the longevity risk only, while we
disregard financial risk. However, Eq. (11) also provides the case of participating policies,
which is therefore interesting to discuss briefly, also to get a first insight into the choice of
some parameters.

Assume that only a financial linking is realized, with a guaranteed technical basis at
time 0. Then:

– τ = τ′ = 0, ax+t(τ) = ax+t(τ′) = ax+t(0) and px+t−1(τ) = px+t−1(0), due to the
guaranteed technical basis;

– p̃x+t−1 = px+t−1(0), as there is no longevity linking.
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Eq. (11) reduces to:

bt = bt−1 ·
1 + gt

1 + i(0)
(12)

If gt = i(0), the arrangement is with fixed-return, and fixed-benefit. If gt = ı̃t, no guarantee
is provided, and the benefit amount can either increase or decrease (or keep unchanged),
depending on whether ı̃t R i(0). Usually, a financial guarantee is provided. For example,
gt ≥ imin in the traditional participating arrangements, that offer an annual minimum
guaranteed rate. More recently, the annual rate is guaranteed just on average, every k years
(k = 3 or 5, typically). Then gt = ı̃t for t 6= k, 2k, . . . , while ∏t

h=t−k(1 + gh) ≥ (1 + imin)
k

for t = k, 2k, . . . .
In what follows, we no longer consider a possible financial participation, as we focus

on the longevity linking only. Then, in the following we assume that the interest rate is
fixed, at the initial level i(0) and that gt = i(τ) = i(0). We point out that this choice for
the financial parameters implies that no financial profit is realized by the provider; on the
other hand, in a deterministic financial setting no profit should emerge from interest rates.
Conversely, an asset management fee is admissible, but we omit it, as it would not affect
significantly the results that we discuss in Sect. 5.

3.4 Longevity linking by means of the survival probability

As we mentioned above, we exclude financial participation. Further, we assume that the
technical basis for the assessment of the policy account value is guaranteed at time 0; then
ax+t(τ) = ax+t(τ′) = ax+t(0). In this case, Eq. (11) reduces to:

bt = bt−1 ·
px+t−1(τ)

p̃x+t−1
. (13)

Let p̃[pop]
x+t−1 and p̃[ptf]

x+t−1 denote, respectively, the survival probability observed in a reference
population or in the portfolio i.e. the proportion at time t of survivors aged x + t− 1 at the
beginning of the year, respectively in a chosen reference population or in the portfolio of
the insurer.

If p̃x+t−1 = px+t−1(τ) = px+t−1(0), there is no longevity linking, and the benefit is
guaranteed. If p̃x+t−1 = p̃[pop]

x+t−1, there is an index-based longevity linking, without guar-

antees, whereas if p̃x+t−1 = p̃[ptf]
x+t−1 the linking is indemnity-based (still without guaran-

tees). Whatever is the choice, whether it is index-based or indemnity-based, if p̃x+t−1 >

px+t−1(τ) the benefit amount is reduced, while if p̃x+t−1 < px+t−1(τ) the benefit amount
is increased. The probability px+t−1(τ) represents the benchmark survival probability,
which is set at time τ, 0 ≤ τ ≤ t − 1. If τ = 0, the benchmark survival probability is
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never changed; otherwise, it is updated to more recent mortality projections. In any case,
px+t−1(τ) is known at the latest at the beginning of the year, i.e. at time t− 1.

To get an initial idea of what the different choices of parameters may imply, Figures 1
and 2 show a sample of paths of the benefit amount, for an initial unitary benefit amount,
b0 = 1. We have considered both index-based solutions (where the realized survival prob-
ability is observed in a large population) and indemnity-based solutions (where the real-
ized survival probability is observed in a small population). With reference to the large
population, a purely deterministic path has been assumed for mortality rates. In particu-
lar, Figure 1 refers to the case of a mortality moderately higher than expected (implying
increasing benefit), while a mortality moderately lower than expected is considered in Fig-
ure 2 (where benefits tend to decrease). In both cases, the best-estimate life table at each
time is updated (deterministically) according to the emerging trend (simply applying to
future mortality rates the ratio between the observed and the expected mortality rate real-
ized in the current year). The small population share the same longevity trend as the large
population, apart from random fluctuations (whose effect has been included, once again
choosing a deterministic path). When comparing indemnity to index-based solutions, the
impact of random fluctuations clearly emerges. Both in Figure 1 and 2, the benchmark
survival probability to be compared to the observed one is set alternatively at the time 0
(τ = 0) or at the beginning of each year (τ = t− 1). Some comments concerning the choice
of τ are provided below.

Appropriate bounds to the survival probability p̃x+t−1 can be used to introduce partial
guarantees, to avoid excessive changes or to avoid the transfer of random fluctuations (in-
deed, when p̃x+t−1 6= px+t−1(τ) it is not immediately clear whether this is due to random
fluctuations or systematic deviations; in any case, the insurer must be able to cover small
fluctuations on its own). Thus, we can require:

px+t−1,min ≤ p̃x+t−1 ≤ px+t−1,max , (14)

or  p̃x+t−1 = px+t−1(τ) if p′x+t−1,min ≤ p̃[·]x+t−1 ≤ p′x+t−1,max ,

p̃x+t−1 = p̃[·]x+t−1 otherwise ,
(15)

where, for example: px+t−1,min = 0.8 · px+t−1(τ), px+t−1,max = 1.2 · px+t−1(τ), p′x+t−1,min =

0.95 · px+t−1(τ) ; p′x+t−1,max = 1.05 · px+t−1(τ).
In respect of the choice τ = 0 or τ > 0, we can make the following remarks. The choice

τ = 0 is simpler to explain to the policyholder, as the benchmark survival probability is
never changed. However, in the case of a mortality trend different from that predicted at
time 0, major and iterated adjustments would be necessary. Conversely, when τ > 0, the
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Figure 1: Linking by means of the survival probability: A path of the benefit amount for alternative choices
of the parameters. Index-based: the mortality is observed in a large population. Indemnity-based:
the mortality is observed in a small population. Experienced mortality is on average higher than
expected, with major random fluctuations in the small population. τ is the time at which the bench-
mark probability is set.

benchmark survival probability is based on a more recent best-estimate assumption, such
as the latest projected life table, the processing of which should account for the information
gained in the meantime on the mortality trend. Then, we should expect values for the ratio
px+t−1(τ)

p̃x+t−1
farther from 1 when τ = 0 than when τ > 0. Thus, setting τ > 0 can respond

to the aim of containing the change of the benefit amount. However, such a choice can be
harder to explain to the policyholder, as both the numerator and the denominator of the
adjustment coefficient are subject to update after the issue of the contract.

Concerning the choice τ = 0, we point out the following result:

bt = bt−1 ·
px+t−1(0)

p̃x+t−1
(16)

= b0 · t px(0)
t p̃x

, (17)

where t px(0) is the probability for an individual age x to be alive after t years, based on the
best-estimate assumptions at time 0, while t p̃x is the proportion of survivors at age x + t
out of a cohort initially aged x, in a given population. Note that (17) provides an example
of benefit structure (4). Model (17) has been investigated by Denuit et al. (2011) and Bravo
and de Freitas (2018), who also consider bounds like (14).

Concerning the choice of the population, we note that index-based solutions are more
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Figure 2: Linking by means of the survival probability: A path of the benefit amount for alternative choices
of the parameters. Index-based: the mortality is observed in a large population. Indemnity-based:
the mortality is observed in a small population. Experienced mortality is on average lower than
expected, with major random fluctuations in the small population. τ is the time at which the bench-
mark probability is set.

suitable for insurance arrangements. A basis risk may follow for the provider, but the
adjustment coefficient should be less subject to random fluctuations.

In the above discussion we explicitly refer to one cohort, and the survival probabilities
p̃[·] are meant to be observed on a specific cohort. As an alternative, the survival proba-
bilities p̃[·] could be obtained from cross-sectional observations; for example, the general
survival probability of (a subgroup of) a population could be considered, summarizing the
longevity experience over several age-classes (instead of only one). This is to compensate
possible fluctuations originated by the size or the specific features of a particular cohort.
Clearly, the basis risk for the insurer can worsen, to the benefit of a greater stability of the
linking parameters. This solution will not be further addressed in this paper.

3.5 Longevity linking by means of the actuarial value of the annuity

Assume now that 1+gt
1+i(τ) = 1, px+t−1(τ)

p̃x+t−1
= 1, while the actuarial value of the annuity is

subject to update. Then, Eq. (11) reduces to:

bt = bt−1 ·
1 + ax+t(τ)

1 + ax+t(τ′)
. (18)

14



If τ′ 6= τ, the actuarial values ax+t(τ) and ax+t(τ′) could be based on different best-
estimate assumptions (clearly, if such assumptions have changed in the time-interval (τ, τ′)).
We note that the best-estimate assumptions adopted for the assessment of actuarial values
involve both a discount rate and survival (or death) probabilities; as we mentioned, we
disregard financial issues. Thus, we discuss only possible changes of the survival proba-
bilities.

If, because of a higher expected lifetime, we find ax+t(τ′) > ax+t(τ), according to (18)
the benefit amount is reduced. Vice versa, the benefit amount is increased if
ax+t(τ′) < ax+t(τ). The quantity ax+t(τ) represents the benchmark actuarial value, set
at time t− 1 at the latest, i.e. 0 ≤ τ ≤ t− 1. The quantity ax+t(τ′) is the value updated at
time τ′, with 0 ≤ τ′ ≤ t.

To get an initial idea of what the different choices of parameters may imply, Figures 3
and 4 show a sample of paths of the benefit amount, for an initial unitary benefit amount,
b0 = 1. The mortality trajectories are the same as for Figures 1 and 2. For comparison,
the scale of the y-axis is the same as Figures 1 and 2. In the denominator of (18), reference
is to the latest lifetable (τ′ = t). The benchmark life table to be compared to this one is
set alternatively at time 0 (τ = 0) or at the beginning of each year (τ = t − 1). The life
table is based on data obtained from a large population, so the solution is by construction
index-based (that is why here we do not provide an indemnity-based example).
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Figure 3: Linking by means of the actuarial value of the annuity: A path of the benefit amount for alternative
choices of the parameters. Updated life tables predict on average a lower expected lifetime. τ′ = t
is the time at which the latest life table is set. τ is the time at which the benchmark life table is set.
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Figure 4: Linking by means of the actuarial value of the annuity: A path of the benefit amount for alternative
choices of the parameters. Updated life tables predict on average a higher expected lifetime. τ′ = t
is the time at which the latest life table is set. τ is the time at which the benchmark life table is set.

As we noted in Sect. 3.4, the choice τ = 0 is easier to explain to the policyholder. On the
other hand, we could expect more changes in the benefit amounts than in the case τ > 0,
for similar reasons to those commented in Sect. 3.4.

Variants of (18) have been addressed by Richter and Weber (2011), Maurer et al. (2013),
Lüthy et al. (2001) (they actually make a comparison between the required and the avail-
able reserve, which can be interpreted in terms of (18)). Denuit et al. (2015) also adopt a
variant of (18); they refer to the expected lifetime, which is an actuarial value assessed with
a 0% discount rate.

3.6 Mixed solutions and additional conditions

In Sect. 3.4 and 3.5 we discuss longevity linking solutions in which the adjustment coeffi-
cients depend only on the survival probability or only on the actuarial value of the annuity.
Clearly, an adjustment coefficient depending on both quantities can be defined, namely as
follows:

bt = bt−1 ·
px+t−1(τ)

p̃x+t−1
· 1 + ax+t(τ)

1 + ax+t(τ′)
. (19)

Solution (19) is perhaps preferred by the insurer, whose profits are exposed to changes in
both the survival probabilities and the actuarial value of the annuity. However, within an
insurance arrangement, choice (19) is critical, since the items subject to change are several,
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making it perhaps difficult to understand the policy conditions by the potential policy-
holders.

Variants of model (19) can be found in arrangements in which all the risks are borne by
the individuals, such as Group Self-Annuitization (GSA) funds. In these arrangements, as
we have briefly recalled in Sect. 3.2, also the financial risk is retained by the participants,
and then the benefit adjustment can be obtained from (11) (or equivalently from (7)), with
no guarantee embedded; see, for example, Piggot et al. (2005) or Qiao and Sherris (2012).

Conversely, in an insurance arrangement it is appropriate to include policy conditions
safeguarding the policyholder. For example:

– bounds to the benefit amount:

bmin ≤ bt ≤ bmax ; (20)

for example: bmin = 0.75 · b0, bmax = 1.25 · b0. This provides a guaranteed mini-
mum benefit (bmin); on the other hand, bmax avoids too large increases, which are not
strictly required by the policyholder and could impact negatively on the premium
loading.

– A maximum age xmax to apply the benefit adjustment:

bt = bxmax−x for t > xmax − x ; (21)

for example: xmax = 95. This prevents the individual from having to worry about
downward fluctuations of the benefit amount at a stage in life where it can be difficult
to obtain additional income.

– Partial participation:

bt = (1− ψ) · b0 + ψ · bt−1 · adj(t−1,t) , (22)

where ψ represents a participation proportion, 0 ≤ ψ ≤ 1, which must be chosen
at policy issue. This solution clearly provides a minimum guaranteed benefit, while
offering a premium loading reduction and the possibility to gain a higher benefit
amount in case of lower longevity than expected.

Some policy conditions overlap: for example, (14), (20) and (22). Clearly, one or the
other must be chosen, as suggested by the features of the longevity index referred to, hedg-
ing opportunities or market practice.
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Finally, we mention an expression of the adjustment coefficient alternative to (11). In-
stead of (10), we can consider the following relation:

ax+t−1(τ
′) = (1 + ax+t(τ

′)) · (1 + i(τ′))−1 · px+t−1(τ
′) . (23)

The structure of relation (23) is obviously the same of (10). The difference stands in the
best-estimate assumption, which in (23) is chosen at time τ′, with 0 ≤ τ′ ≤ t, instead of
time τ, which can be set at time t− 1 at the latest (since 0 ≤ τ ≤ t− 1). Replacing (23) into
(7), we obtain the following expression for the adjusted benefit amount:

bt = bt−1 ·
1 + gt

1 + i(τ′)
· px+t−1(τ

′)

p̃x+t−1
· ax+t−1(τ)

ax+t−1(τ′)
, (24)

which is alternative to (11). Note that in case of a longevity linking by means of the survival
probability, Eq. (24) admits that the benchmark survival probability is set at time t. This
could introduce too much uncertainty from the point of view of the policyholder. That is
why we prefer to discuss model (11). We also note that model (11) can be generalized to
the case of adjustments on a k-years basis, as we describe in the next Sect. 3.7.

3.7 Multi-period adjustments

Let us now examine the case of adjustments every k years. Refer to a policy in-force at time
t− k; the benefit amount is kept unchanged over the next k years, while it is subject to an
update at time t. Following the discussion in Sect. 3.2, we can write the following actuarial
balance relating to period (t− k, t) and based on policy conditions:

bt−k · ax+t−k(τ) = bt−k · ãx+t−k:k−1 + bt · (1 + ax+t(τ′)) · k p̃x+t−k ·
t

∏
h=t−k+1

(1 + gh)
−1 , (25)

where ãx+t−k:k−1 represents the actuarial value at time t− k of a unitary annuity in arrears
temporary k− 1 years, assessed with the survival probabilities p̃ and the financial returns
g (the expression of ãx+t−k:k−1 is similar to (1), with a duration limited to k− 1 terms, and
the discount rate and the survival probabilities set as mentioned above). For a policy in-
force at time t − k, on the left-hand side of Eq. (25) we have the value of the annuity at
age x + t− k, when the benefit amount is bt−k, assessed according to the parameters set at
time t− k. The benefit amount is kept at the level bt−k for the next k years, i.e. until time
t, when an update can occur. The quantity bt−k · ãx+t−k:k−1 expresses the value at time
t− k of the payments made during the time-interval (t− k, t), which is assessed according
to the interest rate and survival probabilities credited to the policy account value during
this time. The quantity bt · ax+t(τ′) is the value at time t of the future payments, based on
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updated parameters, which is then discounted (joint to the benefit currently due) back to
time t− k. The benefit at time t is adjusted so to reach the balance described by (25).

Now we note that:

ax+t−k(τ) = ax+t−k:k−1 (τ) + (1 + ax+t(τ)) · k px+t−k(τ) · (1 + i(τ))−k , (26)

(where ax+t−k:k−1 (τ) represents the actuarial value of a temporary annuity, based on best-
estimate assumptions at time τ), and we can rewrite:

bt−k · (ax+t−k:k−1 (τ)− ãx+t−k:k−1 )

+ bt−k · (1 + ax+t(τ)) · k px+t−k(τ) · (1 + i(τ))−k

= bt · (1 + ax+t(τ′)) · k p̃x+t−k ·∏t
h=t−k+1(1 + gh)

−1 .

(27)

Within an insurance arrangement, it is difficult to justify a value ãx+t−k:k−1 6= ax+t−k:k−1 (τ),
in particular given that such a quantity concerns past benefits; thus, we assume that policy
conditions state that ãx+t−k:k−1 = ax+t−k:k−1 (τ). Therefore, Eq. (27) can be rewritten as:

bt = bt−k ·
∏t

h=t−k+1(1 + gh)

(1 + i(τ))k · k px+t−k(τ)

k p̃x+t−k
· 1 + ax+t(τ)

1 + ax+t(τ′)
, (28)

which is a clear generalization of Eq. (11). It is now redundant to discuss the choice of the
parameters. We only note that if the adjustment is based only on the survival probabilities
and τ = 0, we find model (17) again.

4 Valuation

4.1 Quantities of interest to both the insurer and the individual

A basic assessment of a longevity-linked annuity, which is of interest both to the insurer
and the individual, consists in the present value of future benefits. We assess it at time t,
per individual, as follows:

PVFB[·]
t =

∞

∑
h=1

bt+h · h p̃[·]x+t · v(t, t + h) , (29)

where v(t, t + h) is an appropriate discount factor, while h p̃[·]x+t is measured either in the
portfolio or in a reference population, depending on the purpose of the assessment. In
particular, while the probabilities h p̃[ptf]

x+t lead to an indemnity-based or entity-specific as-

sessment, the probabilities h p̃[pop]
x+t lead to an index-based valuation. Entity-specific valua-

tions are useful, for example, to perform a realistic assessment of the insurer’s liabilities.
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Conversely, an index-based valuation avoids accounting for risks which are specific to the
insurer (for example, because of a small portfolio size or a portfolio composition negatively
affected by adverse-selection).

As we mentioned several times, we do not address financial issues; therefore, we as-
sume a deterministic value for v(t, t + h), and we do not allow for any financial margin to
the insurer.

A quantity expressing the risk-return trade-off of the linking arrangement is the pre-
mium loading π. We follow a VaR-like approach, and we refer to the possible loss suffered
by the insurer. Parameters are index-based, so that possible insurer’s inefficiencies are not
charged to the policyholders.

Setting to S the initial amount paid by each policyholder, we assume that the premium
loading π must satisfy the following requirement:

Pr[S < PVFB[pop]
0 ] = λ , (30)

where λ (say, λ = 0.1) is the accepted loss probability. Given S, the size of λ will impact on
the initial benefit amount b0.

It is important to stress that the pricing rule (30) only focusses on losses; then, consis-
tently, the longevity-linking parameters must be set so to imply a possible participation
to losses only (while possible profits are retained by the insurer). The definition of pric-
ing rules in the presence of a participation to both profits and losses deserves a specific
research.

4.2 Valuation in the insurer’s perspective

As we mentioned in Sect. 2, the main targets for the insurer are the business value and the
default probability. The business value is given by the present value of future profits net
of the cost of capital (see, for example, Blackburn et al. (2017)). In this paper, we do not
address capital allocation, so we are unable to assess the cost of capital; however, we can
assess the present value of future profits.

For the sake of brevity, we omit the expression of the annual profits, and we define
directly the Present value of Future Profits at time t (per policy in-force), as follows:

PVFPt = Vt − PVFB[ptf]
t , (31)

where Vt is the individual reserve at time t. We assume that the insurer is required by
the supervisor to assess the technical provision adopting the latest best-estimate assump-
tion, and including a proportional risk margin, in the proportion defined by the premium
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loading π. Thus, we assume that the individual reserve at time t is defined as follows:

Vt = bt · ax+t(t) · (1 + π) . (32)

In particular: V0 = b0 · ax(0) · (1 + π) = S, and then: PVFP0 = S− PVFB[ptf]
0 .

We note that PVFPt is affected by basis risk, due to the mortality assumption adopted
for the assessment of the premium loading (see (30)) and to the indexing rule as well.

Since we do not consider capital allocation, we are unable to perform the assessment
of the default probability, while we can assess the loss probability, namely Pr[PVFPt < 0].
Given the pricing rule (30), such a probability (even if affected by basis risk) will have a
magnitude in line with the probability λ, so its investigation is not very significant.

4.3 Valuation in the individual’s perspective

We assume that the individual is mainly concerned with the premium loading, and with
the amount that he/she will cash in total from the life annuity. Clearly, a basic valuation of
the sequence of benefit amounts is provided by PVFB[pop]

0 , but perhaps this is a value of not
immediate understanding by the individual, being based on an actuarial assessment. We
then prefer to address a more pragmatical quantity, namely the Cumulative Cash Balance
(to the individual), defined as follows:

CBt =
t

∑
h=1

bh − S . (33)

We stress that CBt is a naive measure, as discounting is disregarded. However, not all
individuals are familiar with discounting, as suggested by empirical evidence about finan-
cial literacy; see, for example, Lusardi (2019). For such individuals, a basic comparison
concerns how much they pay in respect of how much they cash, independent of when
cashflows are due. This is why, in the individual’s perspective, we address this kind of
assessment.

In the case of a fixed-benefit, CBt follows a deterministic trajectory, while the path of
CBt is random in the case of longevity-linked annuities. We note that negative values for
CBt mean that so far (i.e. up to time t) the individual has cashed less money than the
initial amount, vice versa if CBt > 0. It is interesting to examine the value of CBt at a time
t which represents a significant duration, such as the expected lifetime according to the
best-estimate life table (at issue) or around the Lexis point (i.e., the modal value – at adult
ages – of the curve of deaths; see, e.g., Pitacco et al. (2009)), when most of the aggregate
longevity risk is expected to arise.
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We are aware that a traditional theoretical measure expressing the value of the annuity
to the individual is the expected utility (which, in the framework of longevity-linked struc-
tures, has been considered, for example, by Valdez et al. (2006), Stamos (2008), Donnelly et
al. (2013), Maurer et al. (2013), Milevsky and Salisbury (2015), Bravo and de Freitas (2018),
Chen et al. (2019)). We do not perform an assessment in this respect because we prefer to
address quantities which are easier to understand by the individual. On the other hand,
we do not deal with an optimization problem, which is usually convenient to solve by
maximizing the utility of the individual.

5 Numerical implementation

5.1 Mortality model

In order to perform a thorough comparison of alternative longevity-linking solutions, we
clearly need a stochastic mortality model. The model must be suitable to project mortal-
ity at every time (i.e., not just at time 0), to simulate the numbers of survivors, to update
the mortality projection, as well as the simulated numbers of survivors, according to the
gained experience. As is well-known, several stochastic mortality models are discussed
in the literature. After the seminal paper by Lee and Carter (1992), several models have
been described, either suggesting variants and extensions of the Lee-Carter model (among
the earlier contributions, we recall Brouhns et al. (2002), Renshaw and Haberman (2003),
Renshaw and Haberman (2006), Cairns et al. (2006)), as well as alternative approaches;
particularly interesting are the applications of affine stochastic models, first suggested by
Biffis (2005) and Schrager (2006), and further developed by many others, as for example
Blackburn and Sherris (2013). The more sophisticated models ensure higher accuracy, but
they can present computational complexity. Thus, they are mainly used to perform pro-
jections at the initial time only. In view of computational tractability, we prefer to use a
simpler model, which quickly updates future forecasts according to the emerging experi-
ence.

The model is described in Olivieri and Pitacco (2009). With reference to a given cohort
consisting of nx individuals at time 0, we assume that the random mortality rate at age
x + t, t = 0, 1, . . . , can be expressed as follows:

q̃x+t = qx+t(0) · Zx+t , (34)

where qx+t(0) is the best-estimate mortality rate at time 0, while Zx+t is a (positive) random
coefficient (such that 0 ≤ q̃x+t ≤ 1), expressing a deviation of the mortality rate in respect
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of the best-estimate one, i.e. a deviation in aggregate mortality. We assume

Zx+t ∼ Gamma(αx+t, βx+t) , (35)

from which it follows

q̃x+t ∼ Gamma
(

αx+t,
βx+t

qx+t(0)

)
. (36)

Let nx+t denote the observed number of survivors at age x+ t. For the (random) number of
deaths at age x + t, Dx+t, we accept the Poisson approximation, given nx+t and conditional
on a given value for the mortality rate qx+t:

[Dx+t|qx+t; nx+t] ∼ Poi(nx+t · qx+t) . (37)

Using (34) and (35), we obtain a Negative Binomial unconditional distribution for the num-
ber of deaths:

[Dx+t|nx+t] ∼ NBin
(

αx+t,
θx+t

θx+t + 1

)
, (38)

where θx+t =
βx+t

nx+t·qx+t(0)
.

As far as the parameters in (35) are concerned, which drive the aggregate deviations in
mortality, we adopt the following inferential procedure. At time 0, when no experience on
the cohort is available, we assume

Zx+t ∼ Gamma(α0, β0) (39)

for all ages x+ t, t = 0, 1, . . . . At time 1, a specific information on the mortality of the cohort
is gained, namely the observed number of deaths dx. Then, we can assess the posterior
distribution of q̃x conditional on the information Dx = dx as follows:

[q̃x|dx] ∼ Gamma
(

α0 + dx,
β0

qx(0)
+ nx

)
. (40)

Thanks to (34) it then follows:

[Zx+t|dx] ∼ Gamma(α1, β1) , (41)

where α1 = α0 + dx, β1 = β0 + nx · qx(0). These steps can be repeated recursively in
time, so that at time h, once the numbers of deaths dx, dx+1, . . . , dx+h−1 and the numbers
of survivors nx, nx+1 = nx − dx, . . . , nx+h−1 = nx+h−2 − dx+h−2 have been observed, the
parameters of the probability distribution of Zx+t are updated as follows:

αh = α0 + dx + dx+1 + · · ·+ dx+h−1 ;
βh = β0 + nx · qx(0) + nx+1 · qx+1(0) + · · ·+ nx+h−1 · qx+h−1(0) .

(42)

23



Note that this way a correlation is (naturally) introduced among the coefficients Zx+t’s.
Obviously, at any time h the parameters of the distribution of the number of deaths are
also updated. Fur further details we refer to Olivieri and Pitacco (2009).

In this paper, we consider a cohort initial age x = 65. We set α0 = β0, so that at time 0
we have the following expected values for the aggregate deviation in mortality and for the
mortality rates: E0[Zx+t] = 1 and E0[q̃x+t] = qx+t(0). We assume that the best-estimate
mortality rates at time h are given by Eh[q̃x+t] =

αh
βh
· qx+t(0), where the parameters αh, βh

are update to the mortality observed (i.e., simulated) in a reference (large) population. The
best-estimate mortality rates qx+t(0) are obtained from a Gompertz law with parameters
as in Bacinello et al. (2018). The expected lifetime at age 65 is almost 20 years; to avoid
the impact of major random fluctuations at the highest ages, the maximum age is set at
100. Two alternative values for α0 are considered: α0 = 100, α0 = 1000, expressing (re-
spectively) a major and a moderate aggregate longevity risk (as at time 0 the coefficient of
variation of Zx+t is 0.1 in the former case, 0.0316 in the latter).

Basis risk is included by addressing a portfolio with a much reduced size in respect of
the reference population; otherwise, the portfolio follows the same trend as the reference
population (which means that basis risk is only attributable to random fluctuations).

5.2 Benefit structures examined

We compare the following benefit structures:

1. Fixed benefit (FB): bt = b0.

2. GSA-like benefit (GSA): bt = bt−1 · ax+t−1(t−1)·(1+ı̃t)
(1+ax+t(t))· p̃

[pool]
x+t−1

.

3. Linking by means of the survival probability, with benchmark probability set at time
0 (L-SP(0)): bt = b0 · t px(0)

t p̃[pop]
x

.

4. Linking by means of the survival probability, with benchmark probability set at time
at time t− k (L-SP(t− k)): bt = bt−k · k px+t−k(t−k)

k p̃[pop]
x+t−k

.

5. Linking by means of the actuarial value of the annuity, with benchmark life table set
at time 0, to be compared to the latest life table (L-AV(0, t)): bt = b0 · 1+ax+t(0)

1+ax+t(t)
.

6. Linking by means of the actuarial value of the annuity, with benchmark life table
set at time t − k, to be compared to the latest life table (L-AV(t − k, t)): bt = bt−k ·
1+ax+t(t−k)

1+ax+t(t)
.
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Arrangement 2 (GSA), which can be adopted in self-insured schemes, is implemented ev-
ery year, with no guaranteed minimum benefit amount. Arrangements 1 and 2 represent
two opposite cases, and they are used as references to interpret the results of the other
linking solutions. For arrangements 3–6 some guarantees are introduced: a minimum
benefit amount, namely 0.75 · b0 ≤ bt ≤ b0, and a maximum age for the benefit adjust-
ment, xmax = 95. Further, annual or multi-period adjustments are considered, assuming
alternatively k = 3 or k = 5 in the latter case. We think that this way we have a fairly
significant comparison of a number of possible linking solutions that could be adopted in
insurance products.

As we have already mentioned, we disregard financial risk and we adopt a determin-
istic financial setting. Given that at present risk-free rates are very low, we set a 0 interest
rate at any time. Obviously, present values are affected by this choice, but only in a de-
terministic way. Taking a positive (but still deterministic) interest rate would not affect
significantly the main conclusions of the numerical assessment.

5.3 Numerical assessments and discussion

We perform an assessment of the quantities described in Sect. 4, namely the safety loading,
the present value of future profits at time 0 (including basis risk or not) and the cumulative
cash balance. The latter is examined at time 20, which almost corresponds to the expected
lifetime at issue. We note that from the present value of future profits we obtain informa-
tion also about the present value of future benefits, as PVFP0 = S−PVFB[ptf]

0 (see (31)). All
assessments are performed simulating the numbers of survivors in a reference (large) pop-
ulation and in an annuity portfolio. The mortality experience in the reference population
is also used to update the best-estimate life table at all times.

Table 2 quotes the premium loadings, assessed adopting an accepted loss probability
λ = 0.1. We recall that the case of moderate longevity risk is represented by setting α0 =

1000 in the probability distribution describing the possible deviations in mortality rates,
while we set α0 = 100 to represent the case of major longevity risk.

Considering Table 2, we first see that, as it is reasonable, higher loadings are required
when major aggregate deviations in mortality are expected. Second, the size of the pre-
mium loading is affected by the extent of the possible benefit adjustment. Indeed, the
premium loading is lower when the benefit is more reactive to an adverse experience. The
highest loading is required for fixed benefits, where the risk is fully retained by the insurer.
On the contrary, no loading is required for a GSA-like linking, where all the risks are borne
by the individuals.

The magnitude of the loading required for the arrangement L-SP(t− k), k = 1, which
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is similar to the case of fixed benefits, is justified by the fact that we do not have to expect
values far from 1 in the adjustment coefficient px+t−1(t−1)

p̃[pop]
x+t−1

, given that both the numerator

and the denominator reflect the same experience. This is undeniably a consequence of the
mortality model; however, in general (whatever the model) it is reasonable to assume that
numerator and denominator take similar values, given that both the latest best-estimate
assumptions and the current number of deaths reflect the latest mortality trend. There is
a trade-off between the frequency of benefit adjustment and the time at which the bench-
mark probability is updated, in respect of the current time. In particular, under arrange-
ment L-SP(t− k) the loading reduces when k > 1; this can be explained considering that
the numerator of the adjustment coefficient, namely k px+t−k(t− k), is updated to the ex-
perience k years ago (k > 1), while the denominator, namely k p̃[pop]

x+t−k, is the result of the
experience until the current time. Thus, with respect to the case k = 1, it is easier that the
ratio between the two probabilities is farther from 1.

When the benchmark best-estimate assumption is set at time 0, i.e. in the arrangements
L-SP(0) and L-AV(0, t), it is more probable (in respect of the cases in which the benchmark
is chosen at time t− k) that the adjustment coefficient takes value far from 1. As a result,
lower loadings are required for such arrangements. The lowest loadings (even negative)
are required for the arrangement L-AV(0, t); this is due to the fact that actuarial values
are aggregate values and, contrarily to survival probabilities, they incorporate already the
effect of an expected change in the future mortality trend, based on the recent experience.
When the benchmark best-estimate is set at time 0, the premium loading is lower if k > 1,
because of the reduced adjustment frequency. Conversely, as we have commented for L-
SP(t− k), when the benchmark best-estimate is updated, namely under the arrangements
L-SP(t − k) and L-AV(t − k, t), there is a trade-off between the frequency of adjustment
and the distance between the reference information in the numerator and the denominator.
While, as noted above, under L-SP(t− k) the trade-off is dominated by the latter aspect,
under arrangement L-AV(t− k, t) prevails the former.

The higher loading for the arrangement L-AV(t − k, t) in respect of L-AV(0, t) can be
justified because of the different distance between the reference information in the numera-
tor and the denominator. Conversely, the lower magnitude of the loading for arrangement
L-AV(t− k, t) in respect of L-SP(t− k) can be explained by the fact that actuarial values are
aggregate values, and (as already commented) they incorporate the effect of an expected
change in the future mortality trend as suggested by the recent experience.

Table 3 quotes the present value of future profits at time 0 (per policy issued and for an
initial amount S = 100 monetary units). In the assessment of PVFP0 we include no basis
risk, by assuming that the mortality in the portfolio is exactly the same as in the reference
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Arrangement Moderate longevity risk Major longevity risk

FB 1.731% 5.647%

L-SP(t− k), k = 1 1.654% 5.472%
L-SP(t− k), k = 3 1.572% 5.158%
L-SP(t− k), k = 5 1.481% 4.848%

L-AV(t− k, t), k = 1 0.092% 0.219%
L-AV(t− k, t), k = 3 0.185% 0.539%
L-AV(t− k, t), k = 5 0.293% 0.892%

L-SP(0), k = 1 0.052% 0.169%
L-SP(0), k = 3 0.227% 0.714%
L-SP(0), k = 5 0.384% 1.208%

L-AV(0, t), k = 1 −0.034% −0.136%
L-AV(0, t), k = 3 0.017% −0.027%
L-AV(0, t), k = 5 0.144% 0.404%

GSA 0.000% 0.000%

Table 2: Premium loading π = b0·ax(0)
S − 1, ensuring an accepted 0.1 loss probability to the provider.
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Arrangement
Moderate longevity risk Major longevity risk

Exp. value 99% Conf. int. Exp. value 99% Conf. int.

FB 1.677 (−1.394, 4.683) 5.131 (−4.379, 14.087)

L-SP(t− k), k = 1 1.656 (−1.355, 4.651) 5.052 (−4.267, 13.990)
L-SP(t− k), k = 3 1.595 (−1.273, 4.568) 4.856 (−4.023, 13.729)
L-SP(t− k), k = 5 1.529 (−1.197, 4.476) 4.663 (−3.788, 13.463)

L-AV(t− k, t), k = 1 0.674 (−0.080, 3.243) 1.794 (−0.183, 9.569)
L-AV(t− k, t), k = 3 0.683 (−0.148, 3.271) 1.951 (−0.418, 9.785)
L-AV(t− k, t), k = 5 0.737 (−0.235, 3.351) 2.166 (−0.676, 10.072)

L-SP(0), k = 1 0.553 (−0.042, 3.083) 1.645 (−0.820, 9.388)
L-SP(0), k = 3 0.672 (−0.181, 3.252) 2.010 (−1.101, 9.878)
L-SP(0), k = 5 0.779 (−0.305, 3.404) 2.336 (−1.352, 10.318)

L-AV(0, t), k = 1 0.557 (−0.076, 3.000) 1.661 (−0.147, 9.112)
L-AV(0, t), k = 3 0.551 (−0.063, 3.049) 1.585 (−0.083, 9.211)
L-AV(0, t), k = 5 0.620 (−0.119, 3.173) 1.827 (−0.337, 9.600)

GSA 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Table 3: Expected value and 99% confidence interval of the present value of future profits at time 0, PVFP0.
Values per policy issued and for an initial amount S = 100. No basis risk.

population, so that PVFB[ptf]
0 = PVFB[pop]

0 . In general, the magnitude of the expected
present value of future profits is highly affected by the size of the premium loadings (which
are those of Table 2). In effect, in Table 3 we find results in line with those of Table 2. It is
interesting to note the possible range of values of PVFP0, in terms of the 99% confidence
interval, which is much reduced (in particular downwards) when the linking arrangement
implies a significant possible adjustment of the benefit amount. Clearly, no profit emerges
under a GSA-like arrangement, as the risk is retained by individuals.

Table 4 quotes similar values, but we have included basis risk, by assuming that be-
cause of a lower portfolio size, the mortality in the portfolio is not exactly the same as in
the reference population. Basis risk is therefore simply attributable to random fluctuations.
Results in Table 4 are in line with those of Table 3, with a lower expected profit and a higher
variability, due to basis risk.

Table 5 quotes the cumulative cash balance at time 20. Such a time is chosen as it
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Arrangement
Moderate longevity risk Major longevity risk

Exp. value 99% Conf. int. Exp. value 99% Conf. int.

FB 1.616 (−3.778, 7.007) 5.114 (−8.430, 18.602)

L-SP(t− k), k = 1 1.645 (−2.992, 6.273) 5.041 (−5.075, 14.575)
L-SP(t− k), k = 3 1.583 (−3.062, 6.211) 4.839 (−5.296, 14.399)
L-SP(t− k), k = 5 1.517 (−3.134, 6.142) 4.640 (−5.544, 14.222)

L-AV(t− k, t), k = 1 0.656 (−4.243, 5.658) 1.703 (−9.579, 13.280)
L-AV(t− k, t), k = 3 0.664 (−4.217, 5.635) 1.856 (−9.344, 13.196)
L-AV(t− k, t), k = 5 0.718 (−4.140, 5.643) 2.068 (−9.021, 13.083)

L-SP(0), k = 1 0.523 (−4.386, 5.505) 1.460 (−9.740, 12.326)
L-SP(0), k = 3 0.643 (−4.225, 5.546) 1.838 (−9.193, 12.404)
L-SP(0), k = 5 0.751 (−4.078, 5.591) 2.176 (−8.682, 12.502)

L-AV(0, t), k = 1 0.536 (−4.461, 5.751) 1.550 (−10.070, 13.933)
L-AV(0, t), k = 3 0.530 (−4.423, 5.631) 1.474 (−9.992, 13.335)
L-AV(0, t), k = 5 0.599 (−4.306, 5.601) 1.717 (−9.535, 13.104)

GSA 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

Table 4: Expected value and 99% confidence interval of the present value of future profits at time 0, PVFP0.
Values per policy issued and for an initial amount S = 100. Basis risk included.

29



Arrangement
Moderate longevity risk Major longevity risk

Exp. value 99% Conf. int. Exp. value 99% Conf. int.

FB 3.091 (3.091, 3.091) −0.730 (−0.730,−0.730)

L-SP(t− k), k = 1 3.125 (3.025, 3.164) −0.636 (−0.849,−0.571)
L-SP(t− k), k = 3 3.187 (2.959, 3.253) −0.428 (−1.064,−0.268)
L-SP(t− k), k = 5 3.255 (2.890, 3.346) −0.221 (−1.265, 0.027)

L-AV(t− k, t), k = 1 4.152 (1.716, 4.766) 2.847 (−4.736, 4.633)
L-AV(t− k, t), k = 3 4.143 (1.808, 4.683) 2.684 (−4.440, 4.314)
L-AV(t− k, t), k = 5 4.086 (1.910, 4.570) 2.462 (−4.103, 3.948)

L-SP(0), k = 1 4.476 (2.865, 4.821) 3.634 (−0.993, 4.699)
L-SP(0), k = 3 4.342 (2.954, 4.639) 3.218 (−0.765, 4.132)
L-SP(0), k = 5 4.213 (2.990, 4.475) 2.822 (−0.679, 3.625)

L-AV(0, t), k = 1 4.271 (1.259, 4.912) 2.987 (−6.082, 5.018)
L-AV(0, t), k = 3 4.280 (1.558, 4.858) 3.073 (−5.103, 4.904)
L-AV(0, t), k = 5 4.210 (1.784, 4.725) 2.829 (−4.419, 4.454)

GSA 4.873 (1.699, 8.160) 4.838 (−4.790, 15.551)

Table 5: Expected value and 99% confidence interval of the cumulative cash balance at time 20, CB20. Values
for an initial amount S = 100.

roughly corresponds to the expected lifetime at age 65, according to the best-estimate life
table at time 0. The larger magnitude of CB20 under the assumption of moderate longevity
risk is a consequence of the lower premium loading (see Table 2), while the different size of
the 99% confidence interval is a consequence of the linking rule. Under a given longevity
scenario, the different expected values for the various arrangements are in particular due
to the premium loading (and then to the initial value of the benefit amount). Leaving
aside arrangement L-SP(t− k), which does not seem very competitive compared to a fixed
benefit (neither for the insurer nor for the individual), arrangement L-SP(0) seems to be
preferable to L-AV(t − k, t) and L-AV(0, t) because, while the expected cumulative cash
balances are similar, the range of variation is narrower for L-SP(0). On the other hand,
Tables 3 and 4 suggest that this solution could be convenient also for the insurer.
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6 Concluding remarks

This paper addresses annuity designs in which the benefit amount is updated to the mor-
tality experience. We develop a general structure that allows us to interpret the different
features of a number of particular solutions in comparative terms. Linking the annuity
benefit amount to the mortality experience implies a new definition of the longevity guar-
antee, which can be convenient both to the individual and the provider. Individuals, in
particular, can benefit from a reduction in premium loadings. Providers, conversely, do
not need to underwrite a fixed guarantee in respect of a long-term risk, which is difficult
to predict. Understanding the risk-return trade-off of a new design of the longevity guar-
antees is important, from both the point of view of individuals and providers.

In this respect, we perform an assessment of longevity-linked arrangements in the per-
spective both of the individual and the provider. We identify a solution which seems more
satisfactory for both parties, namely a linking involving a comparison between the sur-
vival probability based on best-estimate assumption at time 0 and the observed proportion
of survivors. But certainly this is just a first insight, which suggests further research.

The investigation can be carried out further following several lines of study. From the
point of view of the individual, the comparison of the several solutions could be developed
modelling individual’s preferences. From the point of view of the provider, the assessment
of the business value can be analyze more in-depth, addressing the cost of capital and the
default probability. While in this paper we have considered an aggregate value of the
business performance, namely the present value of future profits at time 0, annual targets
could also be analysed. The case of multiple cohorts should also be examined.

A topic which deserves further research is the pricing of the guarantees. It is worth
developing pricing models of the options embedded in the arrangements, admitting a
participation also to possible profits. The possibility to introduce flexibility by charging
annual fees for the guarantees is also a solution which could be explored. Finally, the
joint presence of financial and longevity linking is a problem of theoretical and practical
importance.
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