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Estimation of Correlated Gaussian Samples in
Impulsive Noise

Armando Vannucci, Giulio Colavolpe, and Luca Veltri

Abstract—We consider the estimation of correlated Gaussian
samples in (correlated) impulsive noise, through message-passing
algorithms. The factor graph includes cycles and, due to the mix-
ture of Gaussian (samples and noise) and Bernoulli variables (the
impulsive noise switches), the complexity of messages increases
exponentially. We first analyze a simple but suboptimal solution,
called Parallel Iterative Scheduling. Then we implement both
Expectation Propagation — for which numerical stability must be
addressed — and a simple variation thereof (called Transparent
Propagation) that is inherently stable and simplifies the overall
computation. Both algorithms reach a performance close to ideal,
practically coinciding with the lower bound on the mean square
estimation error.

Index Terms—Factor graphs; Impulsive noise; Variational
Bayesian inference.

I. INTRODUCTION

The estimation of a Gaussian source from noisy obser-
vations is a classical task, yet a challenging one when the
additive noise is non-Gaussian. In power-line communication
(PLC) systems, as in other environments subject to elec-
tromagnetic interference, impulsive noise is often the domi-
nant impairment, with strong power fluctuations occurring in
bursts, such that the sequence of noise samples has mem-
ory. In a recent work [1], the simplified two-state Markov
process of [2] is adopted to model bursty impulsive noise
affecting a memoryless Gaussian source. From the system
model viewpoint, the introduction of memory in the noise
source brings about an augmentation of the state-space, that
makes the signal estimation problem much more difficult. In
[1], signal samples are estimated in a two-step process: a
forward/backward message-passing algorithm (BCJR) [3] is
applied after detecting the binary impulsive noise states of the
channel. When the Gaussian source has memory, however,
this strategy cannot be pursued. In [4], the observed signal
sequence is assumed to follow a simple autoregressive model
and the resulting estimation problem is modelled with a factor
graphs (FG) that includes cycles, so that exact inference
through the sum-product algorithm (SPA) [3] is not feasible.
Moreover, the joint presence of discrete (the impulsive noise
switches) and continuous (signal) variables generates messages
with exponentially growing complexity, so that even approxi-
mate inference through the standard SPA is intractable [5].

We adopt here the same bursty impulsive noise model in
[1], assuming in general that the signal source has memory,
as in [4], and resorting to approximate variational inference
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techniques for the joint estimation of signal samples and im-
pulsive noise channel states. First, we discuss an approximate
solution, called parallel iterative scheduling (PISch) [4], that
is based on hard decisions on the impulsive noise states, thus
extending the results of [1] to a much broader scenario. The
autoregressive model for the source signal that we consider
here (or, even worse, the memoryless model of [1]) is of
course too simplistic for a real PLC channel. Modulation
formats like OFDM and long-memory channel taps might
give rise to densely connected FGs [6] for which more
powerful approximate inference algorithms are demanded,
such as GAMP (generalized approximate message passing)
[7]. The AR(1) model that we adopt in the following can
however be straightforwardly generalized to AR(n), still using
the same FG.

Although the considered system model belongs to the
general class of switching linear dynamic systems (SDLS) [5],
it falls within a special subclass for which the related FG has
remarkable symmetry properties that can be exploited as we
discuss. In fact, whenever either the noise sequence or the
signal sequence is memoryless, the problem degenerates into
the classical Kalman smoother or into the BCJR algorithm (the
second case occurs in [1]). These are — in terms of FGs and
involved messages — the mirror image of each other, so that
PISch is a proper merging of them.

Taking hard decisions on impulsive noise states is however
a suboptimal approach [8] that limits performance in both
system models in [1], [4] as well as in a furher general-
ized Markov-Middleton noise model [9]. We then show that
a smarter variational inference technique that exploits soft
information, like expectation propagation (EP) [10], is able
to reach a performance close to optimality, despite numerical
stability problems. In order to overcome them, we propose
an alternative to EP, based on a projection of individual
messages, called transparent propagation (TP), that is shown
to achieve the same results of EP, close to optimality, in a
more effective way, involving less computations and ensuring
numerical stability.

II. SYSTEM MODEL AND FACTOR GRAPH

We consider the observation of a frame of K samples {yk}
obtained by the following channel model:

yk = sk + nGk + ikn
I
k (k = 0, 1, · · · ,K − 1)

sk = a1sk−1 + wk (1)

where the signal sequence s, obtained by filtering w through
a stable single-pole filter, forms an autoregressive model of
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order one (AR(1)). The signal is observed through a sequence
y, that is affected by background noise nGk only or by extra
additive impulsive noise nIk, depending on the binary values
ik ∈ {0, 1} of a two-state Markov process i. The sequences
w, nG and nI are independent of each other and are made of
independent and identically distributed (i.i.d.) real Gaussian
samples with zero mean: nGk ∼ N (0, σ2

G); nIk ∼ N (0, σ2
I );

wk ∼ N (0, (1−a21)σ2
s), where the signal variance σ2

s is taken
as a reference.1

Depending on ik, the impulsive noise channel can be in a
“good” condition (only background noise nGk ) or in a “bad”
one. In the "bad" channel condition, the sum of background
plus impulsive noise accounts for a single, more powerful,
noise sequence nBk = nGk + nIk ∼ N (0, σ2

B), with variance
σ2
B = σ2

G + σ2
I = (R + 1)σ2

G, where R , σ2
B/σ

2
G is often

much larger than one.
The Markov process i is characterized by the [2×2] one-step

transition probabity matrix Π, with entries πr,c = P{ik+1 =
c − 1 | ik = r − 1}, (r, c ∈ {1, 2}). All of the properties of
the sequence {ik} can be derived from Π. In particular, the
probability that the channel is in the “bad” condition is pB =
P{ik = 1} = γπ12, where, in agreement with [2], we defined
the parameter γ , (π12 + π21)

−1 that quantifies the memory
of the Markov process. In fact, the average duration of 1’s
sequences, i.e., the duration of impulsive noise events, is TB =
γ/pG, whereas it would be TB = 1/pG for a memoryless
process, where pG = 1− pB.

Signal estimation through the SPA [3] requires the expres-
sion of the joint probability distribution function2 of the signal
samples s = {sk} and parameters i = {ik}, given the observed
samples y = {yk}. Thus, the conditional marginals of sk and
ik can be employed for their minimum mean square error
(MMSE) or maximum a posteriori (MAP) estimation.

Following the usual approach and disregarding the constant
p(y) of the observations, we seek to evaluate the marginals of

p(s, i | y) ∝ p(s, i,y) = p(y | s, i)p(s)P (i) (2)

=

[
K−1∏
k=1

p(yk | sk, ik)p(sk | sk−1)P (ik|ik−1)

]
×p(y0 | s0, i0)p(s0)P (i0)

The FG representing the joint distribution in (2) is sketched
in Fig. 1, where the k-th stage is highlighted along with the
labels of the factor-to-variable node messages.

Tab. I shows the expression of messages according to the
rules of the SPA [3], where subscripts “u,d,f,b” denote their
(up, down, forward, backward) direction in Fig. 1. Denoting
by g(x− η, σ2) a Gaussian pdf with mean η and variance σ2,
the conditional probabilities that appear in Tab. I are:

p(yk | sk, ik) = g(yk − sk, σ2
G + ikσ

2
I ) (3)

p(sk | sk−1) = g
(
sk − a1sk−1, (1− a21)σ2

s

)
(4)

P (ik | ik−1) = π(ik−1+1),(ik+1) (5)

1The extension to the case of complex processes and/or processes with
possible nonzero mean value is straightforward.

2We use the notation P (·) to identify a probability mass function (pmf) for
a discrete random variable and p(·) to denote a probability density function
(pdf) or a continuous distribution with some discrete probability masses.

Table I
FACTOR- TO VARIABLE-NODE MESSAGES FOR THE SPA APPLIED TO THE

FG IN FIG. 1 (SUBSCRIPTS DENOTE MESSAGE DIRECTION).

pf(sk) =
´
pf(sk−1)pu(sk−1)p(sk | sk−1)dsk−1

Pf(ik) =
∑

ik−1
Pf(ik−1)Pd(ik−1)P (ik | ik−1)

(k = 1, · · · ,K − 1)
pb(sk) =

´
pb(sk+1)pu(sk+1)p(sk+1 | sk)dsk+1

Pb(ik) =
∑

ik+1
Pb(ik+1)Pd(ik+1)P (ik+1 | ik)

(k = K − 2, · · · , 0)
pu(sk) =

∑
ik

Pf(ik)Pb(ik)p(yk | sk, ik)
Pd(ik) =

´
pf(sk)pb(sk)p(yk | sk, ik)dsk

(k = 0, · · · ,K − 1)

where (3) models the pdf of the observed samples, with vari-
ance σ2

n,k = σ2
G + ikσ

2
I ∈ {σ2

G, σ
2
B}, while (4)-(5) model the

one-step transition probabilities of the Markov processes sk
and ik. In Fig. 1, the factor nodes p(s0) = pf(s0) = g(s0, σ

2
s)

and P (i0) = Pf(i0) = pGδ(i0) + pBδ(i0 − 1) set the prior
distributions of the initial samples, for k = 0 in Tab. I, while
pb(sK−1) = 1 and Pb(iK−1) = 1 are the identity messages
to the last variable nodes.

III. MESSAGE PASSING AND PARALLEL ITERATIVE
SCHEDULING

Contrary to [1], the system considered here is modelled
by a FG including cycles. Therefore, the estimation of the
channel state ik cannot be solved by a forward-backward
message-passing algorithm. Indeed, the system (1) falls within
the broad category of SDLS, for which exact inference is
computationally intractable [5]. The basic reason is the joint
presence of two time-series of latent variables of different
nature, the discrete switches ik and the continuous (Gaussian)
samples sk, which generates Gaussian mixture messages with
complexity increasing exponentially with time [5]. In our case,
for instance, each message pu(sk) is a linear combination of
two Gaussians (with identical mean yk and different vari-
ances σ2

G,B), weighted by the masses of the message/pmf
Pf(ik)Pb(ik). Propagation of pu(sk) along the upper line of
the FG thus makes the number of Gaussian components, in
the mixture messages pf,b(sk) of Tab. I, double at each time
step. The general approach to perform approximate variational
inference, in these cases, is to evaluate the message with
increased (squared) complexity, at each time step, and collapse
it into a simpler distribution (e.g., a mixture with a limited
number of components), as done in the assumed density
filtering methods [5], [10].

There is, however, one remarkable feature of our system
model that makes it more tractable than the general SLDS: the
impact of the switches ik is only on the noise affecting the
observations yk and not on the evolution of the signal samples.
This feature is clearly reflected onto the structure of the FG in
Fig. 1, where the time-series s and i are unconditionally inde-
pendent (although, as per (2), they are conditionally dependent,
given y). It is this feature that allowed the simple algorithmic
solution known as parallel iterative scheduling (PISch) in [4]
to be applied to the present problem.

The rationale behind PISch can be easily illustrated starting
from the system discussed in [1], to which our system reduces
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Figure 1. FG modelling the joint probability distribution function p(s, i | y). The k-th stage is highlighted along with messages sent from factor nodes to
variable nodes. The initial (k = 0) stage is driven by the priors, Pf(i0) = P (i0) and pf(s0) = p(s0) , while Pb(iK−1) = pb(sK−1) = 1 for the last
(k = K − 1) stage.

when a1 = 0 in (1). In this case, the signal samples sk
are independent of each other and are characterized by their
known prior distributions p̃(sk). For the i.i.d. sequence s
assumed in [1], these are all equal to the same Gaussian prior
but, no matter if the priors p̃(sk) are all equal or not, still
an optimal estimation of the switching sequence i is realized
by the BCJR algorithm [1]. This is known to be an instance
of the SPA [3, Sec. IV-A], as applied to the FG in [3, Fig.
12(d)], which is equivalent to the lower half of the FG in Fig.
1, when the sk are independent. After the forward-backward
iteration of the BCJR is complete, a hard decision is taken on
ik = m (m ∈ {0, 1}), so that its pmf is approximated as a
deterministic P̃ (ik) = δ(ik − m). Suppose, on the contrary,
to have a genie aided receiver that provides the true values
of ik as a channel state information (CSI). The system in
(1) would thus reduce to a correlated sequence of Gaussian
samples (sk), to be estimated in the presence of (possibly
non-stationary) additive white Gaussian noise (AWGN) with
known variance per sample. This is the classical problem of
Kalman smoothing, that is again implemented as an instance
of the SPA [3, Sec. IV-C], as applied to the cycle-free FG in
[3, Fig. 15], to which the FG in Fig. 1 reduces in the case
of deterministic ik. Its outcomes are the optimal Gaussian
estimates p̃(sk) for each sample.

The strategy of PISch relies on an iteration of the above
two forward/backward algorithms: the BCJR and the Kalman
smoother are implemented (in parallel) by the SPA passing
messages ’horizontally’ along the upper and lower halves
of the FG in Fig. 1. After a forward/backward pass is
completed, their outputs, i.e., the (temporary) hard decisions
Pu(ik) , Pf(ik)Pb(ik) = P̃ (ik) = δ(ik − m) and the
Gaussian estimates pd(sk) , pf(sk)pb(sk) = p̃(sk), are sent
as ’vertical’ messages (variable- to factor-node, not shown in
Fig. 1) to the other FG half.

IV. EXPECTATION PROPAGATION (EP) AND
TRANSPARENT PROPAGATION (TP)

The results of the PISch algorithm [4], as further shown in
Sec. V, are however limited by the hard decisions on ik, that
impose a too strict constraint on the messages Pu(ik). In fact,
as pointed out in [8], the adoption of a hard decision on the

state of impulsive noise, followed by the MMSE estimation
of the source signal, results in a suboptimal strategy. This
is true both when applying the single-pass solution in [1]
and during the PISch iterations in [4]. In order to exploit
the soft information provided by the lower half of the FG
in Fig. 1, we can replace the marginal densities that arise
from the Gaussian mixtures pu,f,b(sk) discussed above by their
’nearest’ projection onto a given approximating (exponential)
family. If the metrics to compute the ’nearest’ pdf q(sk) is
the Kullbach-Leibler divergence KL(p ‖ q), this approach
reduces to the EP algorithm [10].

According to the rules of EP, the message pu(sk) in Tab. I
(here renamed pSPAu (sk) for clarity), that is the one responsible
for the increase in message complexity, is substituted by

pEP
u (sk) =

1

pd(sk)
proj

[
pd(sk)pSPAu (sk)

]
(6)

where the projection operation is implemented as a matching
of the expectations [10].

Since our problem involves Gaussian priors for sk and
Gaussian noise for the observations yk, the Gaussian ap-
proximating family seems a natural choice, when computing
the above projection. The resulting gaussianity of pEP

u (sk)
further implies that all of the messages pf,b(sk) in the upper
half of the FG in Fig. 1 are themselves Gaussians, hence
pd(sk) , pf(sk)pb(sk) = g(sk − ηs,k, σ2

s,k) is Gaussian too.
Therefore, no other message than (6) needs projecting onto
the approximating family, with consistent time savings during
the algorithm. We shall limit the application of EP with a
Gaussian approximating family to the upper half of the FG,
that involves continuous variables sk, while messages to and
from the discrete variables ik are still modelled by Bernoulli
pmfs. Using standard Gaussian product rules, the projection
operation in (6) is performed by matching the moment pa-
rameters, as prescribed by EP, to produce a Gaussian result,
proj

[
pd(sk)pSPAu (sk)

]
= g(sk − ŝk, σ̂

2
k), where ŝk is the

signal estimate produced by EP. Hence, pEP
u (sk) is a ratio

of Gaussian pdfs hence is Gaussian too, provided that the
necessary condition σ̂2

k < σ2
s,k is satisfied.

However, when the variance σ̂2
k of the numerator in (6), i.e.,

that of the product between pSPAu (sk) and pd(sk), exceeds
the variance σ2

s,k of pd(sk) alone (which could not occur
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Figure 2. Comparison between Parallel Iterative Scheduling, Expectation
Propagation and Transparent Propagation algorithms, at convergence. The
experimental lower bound (Kalman smoother with CSI) is reported for
comparison. 102 frames of 103 samples each have been considered, for each
SNR value.

if pSPAu (sk) were a simple Gaussian), the division operation
leads to an improper distribution for pEP

u (sk), i.e., one with a
negative variance. This is a well known problem of EP, that
generates numerical instabilities and hinders the convergence
of the algorithm [11].

An alternative solution, to circumvent the problem of nu-
merical stability in EP, is to implement a message-passing
algorithm that directly projects onto the selected Gaussian
family only the mixture pSPAu (sk). This way, the EP com-
putation rule (6) is substituted by a different one, i.e., by the
following

pTP
u (sk) = proj

[∑
ik

Pf(ik)Pb(ik)p(yk | sk, ik)

]
(7)

as if the message pd(sk) were extracted from the projection
operation in (6) and simplified with the denominator, thus
avoiding the critical division operation. This operation is not
allowed in EP, since it is not the individual messages that are
constrained to belong to the exponential approximating family,
rather it is the estimated marginals p̃(sk | y) ∝ pu(sk)pd(sk).
In our problem, however, the Gaussian projection in (7) en-
sures the Gaussianity of pd(sk) as well as that of the estimated
pdf p̃(sk | y) ∝ pTP

u (sk)pd(sk)= g(sk − ŝk, σ̂2
k) (where ŝk is

the related signal estimate, for the new TP algorithm), and of
any other message sent through the edges of the upper half of
the FG in Fig. 1.

This is a simple and novel approach, that we call Transpar-
ent Propagation (TP), that can be applied to a whole class of
problems, including the present one. It should be noted that,
despite the apparently minimal symbolic differences between
(6) and (7) (and the fifth eq. in Tab. I ), EP and TP
implement different paradigms, due to the different application
of the projection operator (we defer the reader to [12] for
a thorough discussion of its properties and implementation).
In EP, projection introduces an approximation onto the pos-
terior conditional estimates of variables, while in TP it is

the individual messages that are projected onto the selected
(here Gaussian) approximating family. We show next that, at
least in the present problem, TP achieves the same virtues as
EP (constrained pdfs) with less computation, and guarantees
numerical stability.

V. SIMULATION RESULTS

Fig. 2 shows the MSE E
[
e2k
]

of the signal estimate obtained
by the algorithms discussed in Secs. III and IV, where the error
signal is ek , sk − ŝk. We considered the system parameters
a1 = 0.9 and σ2

s = 1, for the AR(1) signal samples, while we
set γ = 100, pB = 0.1, and R = 100, for the impulsive noise
with memory.

As seen in Fig. 2, the performance of PISch tends to follow
a waterfall shape, with a breakpoint (around SNR = 5 dB,
for the present choice of system parameters) where the slope
changes. This is not a numerical artifact, but rather an intrinsic
feature of a two-states system, that is implied by the hard
decisions taken on ik.3 As a result, the PISch algorithm in [4]
significantly deviates from the ideal performance.

As a reference, Fig. 2 reports the MSE of a Kalman
Smoother with perfect CSI on the impulsive noise states,
which implements an optimal genie aided estimator that
knows the noise statistics at each time epoch, hence acts as
an experimental lower bound.

As opposed to the simpler PISch algorithm, which relies on
’hard messages’, i.e., hard decisions on the impulsive noise
swithes ik, both EP and TP rely on a Gaussian projection of the
(mixture) messages containing soft information on the channel
state, so that their performance is inherently superior. This
is especially true at moderate-to-high SNR values, where the
benefits of exchanging soft information are more evident. In
fact, as seen in Fig. 2 , the results of both EP and TP practically
coincide with the lower bound, hence are close to optimality,
with a maximum deviation of 1.25 dB (at SNR = 25 dB).

In addition to the results in Fig. 2, we implemented other
simple two stages estimation strategies (e.g., a threshold
detection of impulsive noise, followed by a Kalman filter or
smoother). Results are not reported here since, far from being
optimal, they are outperformed by EP and TP. In addition,
their performance is worse than the PISch algorithm at its
second iteration, which corresponds to a BCJR impulsive
noise state estimation followed by a Kalman smoother for
signal estimation (see Sec. III). When the signal process is
memoryless, this coincides with [1].

Regarding convergence, PISch quickly converged in 3 iter-
ations while, as discussed in Sec. IV, numerical instabilities
caused by improper distribution prevented the convergence
of the EP algorithm. At the first iteration, negative vari-
ances occurred for about 2% of samples sk and propagated
their destructive effect on signal estimates so as to spoil
the convergence of the algorithm. To ensure the numerical
stabilization of EP, we implemented the simple accept/reject
strategy suggested in [11]. This strategy prescribes that the es-
timation updates of a message/pdf are rejected, if the moment

3A theoretical justification can be given for this behavior, which however
falls outside the scope of the present work.
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Figure 3. Comparison between the investigated algorithms, at convergence,
in a strongly impulsive noise scenario (pB = 0.03, R = 1000).

parameters fall outside their allowed region, and substituted
with a message identical to that of the previous iteration (an
identity message pEP

u (sk) = 1 is sent if rejection occurs at
the first iteration). The accept/reject strategy thus implemented
made the percentage of improper message rejections drop from
2.22%, at the first iteration, to 0.46% at the second, then
settling to 0.08%, at the following iterations, possibly due to
the stabilization of messages, since the algorithm converged in
4 iterations. The TP algorithm, instead, is inherently stable and
spontaneously converged in 4 iterations. All of the algorithms
are stable, and the MSE curves did not change appreciably
after convergence (as we numerically checked, until the 10th
iteration).

Since a careful application of EP to the present problem
yields a (close-to-)optimal performance, no further improve-
ment in performance can be expected from the TP algorithm.
The purpose of introducing TP here is to demonstrate a novel,
viable alternative to EP, that is inherently stable and that
performs equally well, at least with the system considered
here.

A. Further Simulation Results

In order to support our conclusions with more numerical
examples, we considered two other scenarios, with different
system parameters, that are opposite with respect to the one in
Fig. 2. The first is that of weakly impulsive noise, characterized
by frequent (pB = 1/3) “bad” channel states with noise power
comparable to that of background noise (R = 4); the other
system parameters are as in Sec. V. We found that all of
the considered algorithms reached an optimal performance
in four iterations (despite EP still needed improper message
rejections in 0.29% of cases), hence we do not report the
MSE graphically. As a matter of fact, when noise is weakly
impulsive, any decent estimation algorithm performs well,
although not designed for impulsive noise.

The other scenario is instead that of strongly impulsive
noise, characterized by rare (pB = 0.03) “bad” states with
much larger power (R = 1000). The MSE reported in Fig. 3

shows a behavior qualitatively similar to that of Fig. 2, so that
the same conceptual conclusions apply. The PISch algorithm
took 4 iterations to converge and its loss in performance is
still considerable. As expected, EP and TP converged in four
iterations to the optimal performance of a genie-aided estima-
tor, where EP still showed instabilities to be handled (0.08%
improper messages) while TP required less computation and
was inherently stable.

VI. CONCLUSIONS

The estimation of a correlated Gaussian sequence affected
by bursty impulsive noise, considered in this work, is a
problem of remarkable complexity and symmetry. As typical
of systems with mixed discrete and continuous variables,
the direct implementation of the sum-product algorithm is
computationally intractable, so that approximate solutions are
demanded. We implemented the recently proposed Parallel
Iterative Scheduling (PISch) algorithm [4], that achieves com-
plexity reduction by taking a hard decision on the impulsive
noise state, as in [1], that is shown to lead to suboptimal
performance. Expectation Propagation (EP), instead, is shown
to achieve a performance close to optimality, although with
numerical stability problems. We finally proposed a variation
on EP, called Transparent Propagation (TP), that achieves the
same performance as EP, with lower complexity and avoiding
numerical instabilities.
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