
11 October 2022

University of Parma Research Repository

A Scalable and Secure Publish/Subscribe-based Framework for Industrial IoT / Amoretti, M.; Pecori, R.;
Protskaya, Y.; Veltri, L.; Zanichelli, F.. - In: IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. - ISSN
1551-3203. - 17(2021), pp. 6.1-6.3815. [10.1109/TII.2020.3017227]

Original

A Scalable and Secure Publish/Subscribe-based Framework for Industrial IoT

Publisher:

Published
DOI:10.1109/TII.2020.3017227

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2881679 since: 2021-11-08T11:31:59Z

IEEE Computer Society

This is a pre print version of the following article:



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 1

A Scalable and Secure Publish/Subscribe-based
Framework for Industrial IoT

Michele Amoretti , Senior Member, IEEE, Riccardo Pecori , Yanina Protskaya , Luca Veltri , and
Francesco Zanichelli , Member, IEEE

Abstract—In the emerging Industrial Internet of Things (IIoT)
scenario machine-to-machine communication is a key technol-
ogy to set up environments wherein sensors, actuators, and
controllers can exchange information autonomously. However,
many current communication frameworks do not provide enough
dynamic interoperability and security. Hence, we propose a novel
communication framework, based on MQTT broker bridging,
which, in an Industrial IoT scenario, can foster dynamic inter-
operability across different production lines or industrial sites,
guaranteeing, at the same time, a higher degree of isolation and
control over the information flows, thereby increasing the overall
security of the whole scenario. The solution we propose does
also support dynamic authentication and authorization and has
been practically implemented and evaluated in a proper small-
scale IIoT testbed, encompassing PLCs, IIoT gateways, as well
as MQTT brokers with novel and extended capabilities. The
evaluation results demonstrate a linear time complexity for all the
considered implementations and bridging modes of the extended
brokers. Moreover, all considered access token encapsulation
techniques demonstrate a minimum overhead in comparison with
standard MQTT brokers.

Index Terms—MQTT; Industrial IoT; Broker Bridging; Secu-
rity; Authentication; Authorization.

I. INTRODUCTION

The concepts of Internet of Things (IoT), Industrial Internet
of Things (IIoT) and Cyber-Physical Systems (CPSs) are often
overlapping when the definition of Industry 4.0 is concerned
[1]. Indeed, IIoT is a subset of IoT, regarding the application of
traditional IoT principles to the manufacturing industry. More
precisely, an IIoT system involves networked smart objects,
cyber-physical assets, and optional Cloud or edge computing
platforms, to enable real-time, intelligent, and autonomous
access, collection, analysis, communications, and exchange of
processes, products and services, in the industrial environment
[2]. Thus, IIoT focuses on the integration of operational tech-
nology with information technology, on machine-to-machine
(M2M) communications between modern and legacy isolated
plants, on a very high number of interconnected devices, and
on mission critical requirements. Therefore, IIoT generally
results into a peculiar distributed system [3], which has to
address a series of challenges and issues such as: interoperabil-
ity, scalability, and dependability, inflected as reliability, safety

M. Amoretti, L. Veltri, and F. Zanichelli are with the Dept. of Engineering
and Architecture, University of Parma, Italy (email: name.surname@unipr.it).

R. Pecori is with the Dept. of Engineering, University of Sannio, Benevento,
Italy (email: rpecori@unisannio.it). His work has been supported by the PON
R&I 2014-2020 AIM project.

Y. Protskaya is with Maps Group, Parma, Italy.

against potential catastrophes, availability over very long peri-
ods, self maintainability and cybersecurity, to guarantee secure
and reliable communications, as well as sophisticated identity
and access management of machines and users. However, the
constrained and heterogeneous nature of IoT devices, as well
as the peculiarities of industrial environments, make it very
difficult to apply well-known standard security solutions.

On the other hand, Message Queuing Telemetry Transport
(MQTT) [4], is becoming the de facto standard messaging
protocol for many M2M communications in IIoT scenarios,
due to its lightweight overhead, publish/subscribe (pub/sub)
model, and bidirectional capabilities. A standard MQTT sys-
tem consists of one or more publishers and one or more
subscribers communicating via a broker node performing
message dispatching. Brokers can be also connected together:
i) either grouped in a cluster, exchanging data according to
their current clients’ subscriptions and publications, or ii)
linked by a sort of bridging [4], wherein a broker is instructed
to connect to another broker, acting as a fictitious MQTT
client. However, these solutions require manual configuration,
thus hindering scalability; furthermore, they do not provide
standard security mechanisms, and cannot cope with highly
dynamic and mutable IIoT scenarios.

In the light of the aforementioned limitations, this paper
introduces the following contributions:

• a novel MQTT-based framework making the M2M mes-
saging secure and scalable, by leveraging an extended
broker bridging mechanism also exploiting new authen-
tication and authorization schemes;

• the application of the novel MQTT-based framework
to an IIoT scenario, providing better manageability and
isolation of information flows across different industrial
sites and production lines;

• a practical implementation of the proposed framework
in a small-scale industrial testbed, featuring PLCs, IIoT
gateways and brokers endowed with the novel extended
capabilities;

• the evaluation and comparison of different implementa-
tions of the extended brokers and of the various bridging
modes therein, as well as of the overhead introduced by
the novel extended capabilities of the brokers with that
of standard MQTT-based brokers.

The rest of this paper is organized as follows. In Sec-
tion II, we present a review of a few MQTT approaches
for IIoT scenarios, and a few techniques to secure MQTT.
In Section III, a high-level description of the organization

https://orcid.org/0000-0002-6046-1904
https://orcid.org/0000-0002-5948-5845
https://orcid.org/0000-0002-7005-1474
https://orcid.org/0000-0003-2245-4823
https://orcid.org/0000-0002-5802-8343


IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 2

of IIoT production systems based on a pub/sub paradigm is
provided. In Section IV, we present the new dynamic bridging
mechanism, how to secure it and its authorization capabilities.
In Section V, a practical implementation of the proposed
messaging framework, together with some experimental evalu-
ations, are described. Section VI draws some conclusions and
shows possible future works.

II. RELATED WORK

In this section, we briefly review some recent usages of
MQTT in IIoT scenarios, classifying them in those involving
MQTT but neither broker bridging nor security, those involv-
ing only MQTT broker bridging or only MQTT security, and
finally those encompassing both.

Regarding solutions which apply MQTT in an IIoT scenario
without featuring neither broker bridging nor security, we
can find the work of Peralta et al. [5], wherein MQTT
brokers, acting also as edge gateways, are used together
with Fog Computing in an IIoT architecture. The brokers
perform local predictions to save transmission energy, but
they do not perform any action with respect to security nor
bridging capabilities are considered. In [6], an MQTT broker
is used as an IIoT gateway for a CPS in an Industry 4.0
scenario. The author proposes an 8-component architecture
for improving horizontal integration in the overall framework.
However, the proposed architecture still lacks security, left as
a future work, and broker bridging is not considered at all.
The application of MQTT to manufacturing factories is also
testified by the studies in [7] and [8]. In the former, MQTT
is used to extend the Manufacturing Message Specification
for controlling multiple devices in an IIoT real-time platform,
while in the latter, a framework for the integration of IoT
technologies into industrial systems of small and medium
enterprises is presented. The framework encompasses 5 layers
and MQTT is employed in both the communication and mid-
dleware layers to manage data communications. However, both
works completely disregard any consideration about security
or broker bridging.

On the other hand, we can find solutions considering secu-
rity, but no broker bridging, like the contribution in [9] which
does not even consider MQTT, but proposes a lightweight au-
thentication mechanism for M2M IIoT communications, based
only on hash and XOR operations. The procedure prevents
devices from revealing their real identities in authenticating
to the routers, and is based on authentication servers. A
secure communication scheme named MQTT-Auth has been
recently proposed in [10], [11]. It is a distributed solution,
based on the AugPAKE algorithm for setting up a session
key and on authentication and authorization tokens, which
are used to publish on a certain topic and to grant access
to a specific topic, respectively. Even if tackling security
aspects, this solution does not consider broker bridging at
all. In [12] the authors design and implement secure versions
of MQTT and MQTT-SN, in which security is based on
Key/Ciphertext Policy-Attribute Based Encryption (KP/CP-
ABE). This solution supports broadcast encryption that allows
an entity to deliver a message to multiple intended users

performing only one encryption; however, broker bridging
is not taken into account. Finally, in [13] an access control
system to manage the authentication of a publisher using
an authentication server for communication over MQTT has
been described. The assumed network architecture is based
on Fog computing and publishers obtain tokens from the
authentication server via HTTPS.

Regarding dynamic MQTT bridging, but with no focus onto
security capabilities, we can name EMMA [14], a middleware
that migrates clients to brokers, by means of edge gateways
and according to the average latency and load balancing of
connections. Another possible solution featuring broker bridg-
ing can be found in [15], wherein an overlay of brokers and
bridging manager servers are employed. This solution provides
a great overhead in terms of exchanged control messages.
Finally, in [16] the authors analyze different distributions of
brokers, but only in a shallow way. Moreover, some solutions
are static, while the dynamic ones involve numerous other
entities, i.e., rendez-vous nodes, or rely onto very invasive
solutions such as Information Centric Networking.

As regards contributions dealing with both broker bridging
and security in MQTT, we can name [17], where the authors
exploit dynamic bridging, but in the anonymization context,
with no focus onto authentication and authorization. In [18]
the authors exploit, in a dynamic and distributed way, the usage
control some of them had previously presented in [19]. The
brokers can share attributes or retrieve the values of remote
attributes, but they need to exploit a modified Chord hashtable
[20]; moreover, the brokers and all devices need to be endowed
with proper software modules, which perform a continuous
and ongoing re-verification of the authorization attributes,
considering also the context. This may lead to an overhead in
the number of exchanged messages for continuously verifying
attributes. In [21], Schmitt et al. tackle the broker bridging
topic by taking advantage of an agents’ system. However,
the proposed solution does not employ a standard MQTT
mechanism, it is not clear which clients can modify the
bridging topology, and the security aspect is demanded to a
very weak ACL-based solution.

In the light of what said above, our solution is one of the
few that feature both security and dynamic broker bridging
capabilities. Moreover, it exploits standard non-invasive secu-
rity mechanisms and is perfectly tailored for an IIoT scenario
as described in the following.

III. MQTT-BASED FRAMEWORK FOR PRODUCTION
SYSTEMS

In this section, we introduce a general organization of the
production resources of a manufacturing company, as well as a
commonly used communication framework. The notation used
in all the following figures is described in Table I. In Fig. 1, we
depict a company, supposed to have one or more production
sites (Sitei) and headquarters. Each site i may include one or
more production lines (Lineij), formed of different machines
(Mk

ij).
PLCs, SCADAs, and distributed sensing systems, formed

of IoT devices and organized as wireless sensor networks,



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 3

Fig. 1. General organization of machines in a manufacturing company.

TABLE I
DESCRIPTION OF THE NOTATION USED IN THE CONSIDERED

COMMUNICATION FRAMEWORKS.

Symbol Description
Sitei Industrial Site i
Lineij Production Line j of site i
Mk

ij kth Machine of line j of site i

Mmk
ij kth Machine of manufacturer m in line j in site i

Bm
ij Broker of manufacturer m in line j in site i

MBm Manufacturer Broker aggreg. all machines of manufacturer m
LBij Line Broker aggreg. all machines of line j in site i
SBi Site Broker aggreg. all machines of site i

are used to monitor and control manufacturing machines.
These systems are interconnected to per-line and per-site
remote controllers. These may also be interconnected to the
headquarters and/or to an external Cloud system to enable
cross-site monitoring and control. All these devices and nodes
form a complex IIoT network, which, in some cases, should
be also interconnected to external entities, e.g., to the machine
manufacturers or to third-party maintenance companies, for
monitoring purposes.

With respect to the communication technology, either pro-
prietary ad-hoc solutions or standard protocols are currently
used in Industry 4.0. Obviously, the latter option has advan-
tages of interoperability, scalability, and long-term maintain-
ability. The most promising standard communication paradigm
is the one based on the pub/sub scheme, wherein data are
published to a server by producers (sources) and relayed to
different consumers (receivers). In the industrial IoT scenario,
MQTT is becoming a de facto standard when adopting the
pub/sub paradigm, which is used for either collecting data
from different data sources, such as PLCs and sensors, or
for sending commands from controllers to the target devices.
The pub/sub mechanism is usually implemented through a
central node that receives the published data and selectively
relays them to the proper subscribers. According to the MQTT
notation, we denote this node as a broker.

Generally, we can suppose that machines of the same man-
ufacturer may share the same communication system based on
a single broker. This leads to having one or more brokers per

line, and thus various brokers may be present on one site.

Fig. 2. A general IIoT MQTT-based framework.

In Fig. 2, we show, on the left side, some production lines
with their machines and one or more broker per line (Ba

ij ,
Bb

ij , etc.). On the right side, we depict entities that may
interact with the production lines via those brokers. In general,
at least a per-line control system is present, together with a
possible per-site control system (not in the figure), and an
overall control system. Data may also be collected on an
external Cloud system or by third parties, e.g., to outsource
maintenance.

In order to provide a suitable level of protection and of
isolation of the different information flows, a proper dynamic
authentication and authorization system must be implemented.
Unfortunately, this is complicated by the high number of
possible M2M interactions to be considered separately. More-
over, at a lower level, those interactions have to be explicitly
configured onto intermediate network nodes (NATs and fire-
walls). Hence, the overall framework may result into a very
complex network, lacking in scalability and proving difficult
to configure and administrate. These are the main motivations
that led us to propose the novel pub/sub framework described
in the following, and to apply it to the above described IIoT
scenario.

IV. PROPOSED MQTT-BASED MESSAGING FRAMEWORK
FOR IIOT

As discussed in Sec. III, an IIoT system based on the classic
pub/sub paradigm may lead to a complex, undependable and
non-scalable framework, due to the high number of M2M
interactions that have to be separately managed at both the
application level, for properly configuring authentication and
authorization functions, and the network level, for selectively
enabling the traversal of intermediate nodes like NATs and
firewalls. In this section, we try to solve these issues by
proposing a new, flexible, and scalable framework, still based
on the pub/sub paradigm, enhanced by a multi-stage broker
system. Although this approach could be mapped on different
types of pub/sub communication systems, for the sake of



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 4

simplicity and of interoperability, the following description
will consider the use of MQTT (as M2M protocol).

Starting from the original framework depicted in Fig. 2,
which suffers from scalability and security problems, our idea
is to try to group several client-to-broker interactions and
map them into a new multi-stage framework, where different
stages of brokers are used to enable clients to separately access
different groups of devices.

The resulting framework is depicted in Fig. 3. On the left
side of the figure the production machines are grouped by line.
By supposing that different machine manufacturers connect
their machines to (different) manufacturer brokers (regardless
of whether they use the same pub/sub protocol or not), the
machines are also grouped by manufacturer.

Fig. 3. Proposed framework showing different tiers of brokers aggregating
data for different entities.

Rather than connecting the controllers and data consumers
(represented at the right side) directly to the brokers that man-
age the devices/topics they are interested into, a second level
of brokers is introduced, which groups machines according to
different access classes. For example there could be:

i. brokers associated to production lines, with one broker
for each line (brokers LBij in Fig. 3),

ii. brokers associated to different machine manufacturers,
one broker per manufacturer (MBm in Fig. 3).

Of course, other types of classes and corresponding brokers
can be added.

There could be some data aggregation functions, associated
to each broker, that are in charge of processing input data
and re-publishing them processed and (possibly) aggregated
according to the profiles of some consumers. For example, per-
line data can be aggregated providing overall measurements,
mean values, new alarms, as a function of a given sequence
of events, etc.

Similarly, a third stage of brokers can be introduced for
further grouping different types of M2M interactions and for
providing enhanced aggregation functions. For example, in
the case of a multiple-site factory, per-site brokers can be
introduced (brokers SBi in Fig. 3).

The resulting communication framework has the following
advantages:

1) it groups M2M interactions, allowing for a great simpli-
fication of client-to-broker relations that have to be taken
into account for the authentication and authorization
function, as each user client interacts only with second
and higher stage brokers;

2) it reduces the number of network level relations that have
to be considered in NAT and firewall configurations (from
as many relations as the number of brokers that manage
the devices/topics, to as many relations as the number of
second level brokers, i.e., access classes), simplifying net-
work administration, and drastically reducing the chance
of vulnerabilities due to misconfiguration of network-
level intermediate boxes;

3) it is more scalable, since it reduces the total number of
flows that each broker has to manage. Assuming c entities
on the right of the figures, d devices per broker, m brokers
connected to the devices (first layer), m′ second-level
brokers (m′ < c and m′ < m < d) and that no third-
level brokers are present, in the traditional scenario (Fig.
2), each broker has to manage c × d flows, while in the
proposed framework (Fig. 3) the brokers connected to
the devices (first layer) have to manage m′ × d flows
and the second-level brokers have to manage c × m
flows, hence fewer information flows per broker given
the aforementioned inequalities;

4) it simplifies the implementation of new data processing
functions, fully integrated within the multistage pub/sub
framework; indeed, second stage brokers can feature and
gather data processing functions.

A simple way for implementing the framework described
above is by using MQTT as messaging protocol, and the
“bridging” mechanism offered by most of the current MQTT
broker implementations as multi-hop relay mechanism. A
broker is configured as a “bridge” when, in addition to its
normal broker functions, it acts like a client by: i) subscribing
to some pre-configured topics on another broker (or multiple
brokers), ii) relaying PUBLISH requests targeted to those
topics to the selected broker(s). As a result, the given topics are
shared among two (or more) brokers. This, in turn, enables i)
the creation of clusters of brokers, with the same topic shared
amongst clients connected to different brokers of the cluster,
and ii) the creation of an MQTT proxying mechanism, with
clients subscribing to a topic via a broker different from the
one the publishers send messages to.

However, since this mechanism is currently based on man-
ual and static (platform-specific) configuration, it lacks in
flexibility and scalability. Moreover, this may possibly lead
to security flaws due to erroneous, or not updated, bridging
configurations. To overcome these issues and to create a
fully flexible and scalable broker network, a new dynamic
bridging mechanism and novel multi-stage authentication and
authorization functions are desirable. They are described in
the following Sec. IV-A and Sec. IV-B, respectively.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 5

A. Dynamic Broker Bridging

In this subsection, we detail our proposal for transforming
the static bridging into a dynamic and flexible multi-broker
routing. The idea is to let a client subscribe or publish
messages into topics handled by brokers different from the
broker to which the client is connected to. To allow the client
to specify the remote broker that is in charge of handling the
topic, in which the client is interested, at least two different
approaches could be used:

1) the definition of a new MQTT header field that carries
this information;

2) the exploitation of the current MQTT protocol at the ap-
plication level, possibly overloading some header fields.

Although the former approach may be simpler, the latter
has the advantage that it does not require any modification
of the MQTT protocol specification and implementations. For
this reason, we decided to follow the second approach. In
particular, we use the Topic Name string to encode both the
identifier of a remote broker and the real topic name. As a
result, the new Topic Name string is transformed into a URL-
like topic-at-broker field. Different formats could be used to
encode this information. A simple solution could be using
the ‘@’ character as a separator between the topic name and
the identifier of the broker in charge of this topic. Thus, the
resulting MQTT Topic Name is constructed as follows:

Topicnew = Topicactual @ Broker (1)

When a broker receives a SUBSCRIBE or UNSUBSCRIBE
request, in which the Topic Name value (or one of the topic
names, in case a list of topics has been received) corresponds
to the template Topicx @ Brokery , the broker has to perform
the following actions:

1) subscribe/unsubscribe the sender of the request to/from
topic Topicx;

2) send a subscription or a subscription cancellation request
to broker Brokery with Topic Name equal to Topicx.

When a broker receives a publication request, in
which Topic Name value corresponds to the template
Topicx @ Brokery , it forwards the message to Brokery
setting the Topic Name value to Topicx.

The proposed mechanism can be further
extended by allowing multi-broker topics, like
Topicx @ Brokern @ Brokern−1 @ ... @ Broker1,
which will allow a message to be forwarded through (n− 1)
intermediate brokers until it reaches the destination broker
Brokern. An example of this case is depicted in Fig. 4. In
the example, client C1 subscribes to topic T1 on broker B3.
However, rather than sending the request directly to B3, it
exploits the sequence of intermediate brokers B1 and B2.
Then client C2 publishes a message M1 in topic T1 on broker
B3 using B4 as an intermediate broker toward B3. Hereafter,
we describe in detail the steps of these subscription and
publication procedures:

1) Client C1 starts by sending to B1 a SUBSCRIBE request
with Topic Name equal to T1 @ B3 @ B2.

2) When broker B1 receives the request, it follows the
following procedure: i) it saves the subscription of C1 to

Fig. 4. An example of multi-broker communication.

topic T1 @ B3 @ B2 in its database, and ii) it forwards
the request to B2 changing Topic Name value to T1 @ B3.

3) When broker B2 receives this request, it: i) stores a record
that B1 has subscribed to topic T1 @ B3, ii) sends a
request to broker B3 to subscribe to topic T1.

4) Broker B3 receives the new request and processes it as a
standard subscription request.

5) When client C2 wants to publish a message M1 to topic
T1 on broker B3, it sends a PUBLISH request to broker
B4, setting Topic Name value to T1 @ B3.

6) Broker B4 receives the request and forwards it to broker
B3, changing Topic Name value to T1.

7) B3 receives the request and processes it as a standard
publication request. In particular: i) it retrieves the list of
subscribers to topic T1; in this example the list includes
(only) B2, ii) it sends message M1 to the subscribers
(B2).

8) When B2 receives the PUBLISH message, it retrieves
the list of clients subscribed to that topic (T1), together
with the original Topic Name values, and sends the new
request to those clients using the proper Topic Name. In
the provided example it sends the PUBLISH message to
B1 with topic name equal to T1 @ B3.

9) Similarly, when broker B1 receives the request, it re-
trieves the list of subscribers and Topic Name values,
and forwards the message accordingly. In the example,
it sends message M1 to client C1 with Topic Name equal
to T1 @ B3 @ B2.

Generally, broker bridging can be used for: i) security
reasons, for example when only selected brokers are allowed
to forward messages in and out of a network domain, ii) inter-
domain routing, for creating a hierarchy of brokers capable of
interconnecting two or more different network domains, iii)
scalability, for creating a larger and scalable pub/sub distribu-
tion framework. In this context, dynamic broker bridging can
be useful to dynamically let the clients route messages through
one or more intermediate brokers, without requiring any static
pre-configuration of the brokers themselves.

The reliability of the broker chain could be an issue, yet
current MQTT implementations can be easily clustered on
different virtual machines on the same physical hardware [16],
thus providing some sort of fault tolerance should overloads
or failures take place. In such situations, a load balancer can



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 6

be exploited as a unique entry point for all communications,
thus creating a single logical broker from the points of view
of clients and fostering vertical scalability in addition to
reliability.

B. Authentication and Authorization

Regarding authentication and authorization, MQTT supports
both basic authentication and enhanced authentication, exploit-
ing the payload of CONNECT messages in MQTT v3.1.1 [22]
or using the AUTH packets in MQTT v5.0 [4], respectively.
These methods are quite limited and currently they are going
to be further extended by the IETF ACE working group,
by adding third party authentication and authorization dele-
gation. This is achieved by porting the well-known OAuth
2.0 framework into an IoT constrained environment [23],
and mainly assuming that access to resources takes place
using CoAP protected by DTLS. An MQTT-TLS profile of
ACE [24] has also been specified to enable authorization in
an MQTT-based pub/sub system. It uses an authentication
server that releases access tokens to the clients and relies on
TLS for providing confidentiality and integrity. Considering
the constraints normally featured by IoT nodes, exploiting a
trusted third party, e.g., an authorization server, is useful to
decrease the load of the nodes. This approach, used in our
proposal as well, eliminates the devices' need to be acquainted
with all the other participants of the network.

In this section, we further extend the authentication and
authorization schemes introduced in [23] and [24], by consid-
ering the scenario of multiple brokers previously described,
and we define a new third party-based authentication and
authorization mechanism, encompassing the presence of a
single trusted Authentication and Authorization Server (AS).
In all considered cases, the AS is in charge of the clients’
authentication and of the generation of authorization/access
tokens, used by the clients to prove rights to subscribe to
a topic or to publish a message in a topic on one or more
brokers. Depending on the type of used scheme, the access
token could be a simple opaque token (explicitly verified by
the broker by interacting with the AS), or a fully self-contained
cryptographic token, allowing the broker to verify directly the
access rights.

Considering authentication/authorization with multiple
MQTT brokers, different cases could be considered:
• client-to-all-brokers authorization - The AS, after having

successfully authenticated the client, releases to the client
different access tokens, one token for each broker through
which the client wants to route the request. The client
includes all these tokens in the request sent to the first
broker. The tokens are then used and verified hop-by-hop
by all brokers the request is routed through.

• hop-by-hop authorization - The AS releases an access
token valid only for the first broker the client will
communicate with. All other brokers relaying the request
have to explicitly communicate with the AS in order to
obtain a new token to forward the message further.

In the first approach, the access is directly granted by the
AS to the client, and it has the advantages of minimizing

the interactions with the AS and the number of exchanged
messages. Conversely, in the second approach, the grant is
provided only for single interactions. In this case, the inter-
mediate brokers implement a sort of authorization delegation
chain, and, although the interactions with the AS increase, the
amount of authorization data to be included in each request
reduces, resulting in a smaller packet size. Hereafter, these two
approaches are separately described.

Note that, when the number of brokers reduces to 1, both
approaches are the same, and they also correspond to the
standard IETF ACE for MQTT [23] [24]. This consideration
will help us in Sec. V to compare the performance of our
solution to the IETF standard one.

C. Client-to-All-Brokers Authorization

In Fig. 5 an example of this scenario is depicted. Client C1

wants to subscribe to a topic T1 on broker BN or to publish a
message M1 into topic T1 on broker BN . Client C1 wants to
route this request through the sequence of intermediate brokers
B1, B2, . . . , BN -1, before reaching BN .

Fig. 5. Client-to-all-brokers authorization scheme.

The complete authentication and authorization procedure is
as follows:

1) Before sending the request to the first broker, C1 authenti-
cates with the AS and obtains a set of valid access tokens
authz1, authz2, . . . , authzN , for the corresponding
sequence of brokers, granting the access to a given topic
T1. The request may include the list of brokers, one or
more topics (in this example T1), and the action to be
performed (pub/sub). The request is authenticated through
C1's credentials (e.g., username and password), or by
using a different authentication scheme, e.g., based on
C1's secret key or private/public keys.
If C1's request is successfully authenticated, the AS
matches the request parameters to the authorization policy
stored in the policy database. In case of success, the
AS returns a list of access tokens authz1, authz2, . . . ,
authzN , for the corresponding brokers B1, B2, . . . , BN .
A standard way for obtaining the access token can be the
one described in [25] for OAuth2.0, or the one currently
proposed in [23] for constrained environments.

2) C1 sends the request to B1, where the Topic Name value
is set to T1 @ BN @ BN -1 @ . . . @ B2 (see Sec. IV-A).
The request contains the access tokens obtained from the
AS as well. How the access tokens can be attached to the
request is discussed in Sec. IV-E.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 7

3) B1 receives and processes the request, checking if the
request contains a valid token authz1 for this broker.
If this is the case, the broker removes it from the list.
The request message is then processed according to the
procedure described in Sec. IV.

4) The same operations are performed by all other brokers
until BN -1.

5) When the request reaches destination broker BN , it ver-
ifies the last access token authzN and finally processes
the request as a standard MQTT broker.

D. Hop-by-Hop Authorization

In Fig. 6 an example of this scenario is shown. Like in the
previous case, client C1 wants to subscribe to topic T1 on
broker BN or to publish a message M1 into topic T1 on that
broker, through the sequence of intermediate brokers B1, B2,
. . . , BN -1.

Fig. 6. Hop-by-hop authorization scheme.

Differently from the previous case, the client obtains an
access token valid only for the first broker B1, which is
in charge of requesting a new access token to relay the
request message to broker B2. The same must happen for the
following brokers until BN -1, as hereafter described:

1) Client C1 authenticates with the AS and requests an
access token for granting the access to B1 for topic T1

in BN . In case of success, the requested token authz1 is
returned to C1.

2) C1 sends the request to B1 with Topic Name value equal
to T1 @ BN @ BN -1 @ . . . @ B2 (see Sec. IV-A). The
request contains also the access token authz1.

3) B1 processes the received request and checks if the
authorization token is valid. In case, B1 authenticates
with AS and requests an access token to forward the
request for T1@BN to B2. After receiving the token
authz2, B1 adds authz2 to the request and sends it to
B2 (see Sec. IV).

4) The same operations are repeated until reaching BN -1.
5) When the request arrives at broker BN , it verifies the

access token authzN and processes the MQTT request.

E. Access Token Request and Validation

When requesting an access token, the client sends to the
AS a request with the type of desired permissions, in terms
of scope and duration. In case of MQTT, the scope may be
specified by:
• the target broker id;

• a topic filter, specifying one or more topic names;
• a lifetime, i.e., the expiration time or validity interval;
• the action to be performed: SUBSCRIBE or PUBLISH.

The access token could be either: i) an opaque identifier, or
ii) a self-contained and cryptographically verifiable authoriza-
tion token. In the first case, the target broker asks the AS to
validate the token and to return the actual authorization infor-
mation (client id, broker id, topic name(s), action, expiration
time). Instead, in the latter case the token will contain the
aforementioned information and either a signature, computed
through the AS private key, or a MAC, computed by means of
a symmetric key shared between the AS and the client.

A standard format to encode the token could be CBOR Web
Token (CWT) [26]. It is a compact mechanism for representing
claims to be transferred between two parties and where data
are encoded in the Concise Binary Object Representation
(CBOR) [27].

Using MQTT, there are two standard methods for the client
to send the access token to the broker. In particular, in MQTT
v3.1 the client can use the username field in the CONNECT
packet to carry the token, while in MQTT v5, used in the
current IETF proposal [24], the specific packet type AUTH can
be employed. However, in both cases the client is requested
to provide a valid access token during the client-to-broker
connection setup, and not when the request (SUBSCRIBE and
PUBLISH) is actually sent.

This per-connection authorization has the drawback that a
broker cannot share the same connection toward a bridged
broker to send requests from different clients and for different
topics with their own access tokens.

For this reason we explored additional methods to associate
an access token to a standard MQTT SUBSCRIBE or PUB-
LISH message.

In case of a SUBSCRIBE message, a possibility is to exploit
the topic name field, by encapsulating the access token in place
of the actual topic (the real topic name can be also attached
or retrieved from the access token when explicitly included).
In our implementation (see Sec. V) we called this method as
‘topic’-access token mode.

The same method can be used to authorize PUBLISH
requests. In addition, in case of a PUBLISH request, the
payload field of the MQTT message can be also exploited, by
encapsulating both the access token and the original payload in
the payload field. In our implementation we called this method
as ‘payload’-access token mode. Using this latter method in
case of PUBLISH requests has the advantage of simplifying
the implementation and integration in existing MQTT brokers,
since the analysis of the topic name and the subscriber lookup
can be performed by the broker without any code modification.

In case of a “Client-to-All-Brokers Authorization” scenario,
a practical alternative for the client to use a list of access
tokens is to let the AS provide only a single token with a multi-
recipient audience, including the authorization information for
all brokers. In case of cryptographic tokens, they must include
either a single signature provided through the private key of
the AS, or multiple MAC values computed with the different
secret keys shared with the N listed brokers.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 8

V. TESTBED AND EXPERIMENTS

In order to prove the feasibility of the proposed architecture,
a small-scale implementation has been carried out and tested.

One of the main requirements of our implementation was
the compatibility with current industrial systems; thus, no ad-
hoc PLC or SCADA systems are required. Standard off-the-
shelf PLCs, namely Siemens Simatic S7-300, have been used
instead. In order to make our implementation work with dif-
ferent devices, an IIoT gateway entity, capable of connecting
to different types of PLCs, has been included, using an off-
the-shelf system (Alleantia ISC1). This provides a very large
set of standard PLC interfaces and simple interfaces to make
queries or receive PLC data, by either accessing outgoing data
collected in standard formats (e.g., xls, csv), or using a proper
REST API. In our system, the REST API has been exploited
to get PLC data in almost real-time. This is done by a HTTP-
to-MQTT adapter that reads data from the IIoT Gateway,
and publishes them on the first MQTT X-Broker (eXtended
MQTT broker, i.e., a broker with the functionalities described
in Sec. IV). For implementing such an adapter, although some
open-source HTTP/MQTT gateways are available, like Ponte2,
we preferred to develop it in Java language using the Paho
MQTT library3, for the MQTT client side, and standard Java
libraries for the HTTP client side. The adapter has been
designed to periodically retrieve data from the IIoT Gateway,
by using the Alleantia ISC REST API through the HTTP
client, and to publish them to the X-Broker. In accordance with
our proposed framework, data are then relayed to next stage
brokers depending on the subscribed clients (data consumers)
and on the enforced security policies. The resulting testbed is
depicted in Fig. 7.

If an IIoT gateway with MQTT output or PLCs that
natively support MQTT are used, the adapter or the IIoT
gateway+adapter cascade can be removed, respectively. To
emulate an MQTT-native PLC, a Raspberry Pi with an MQTT
client (implemented using the Paho MQTT library) has been
also used.

Fig. 7. Implemented testbed.

For the realization of the X-Broker, two different Java-based
third-party brokers have been used: the Moquette broker4 and
the Jmqtt broker5. They both guarantee high performance

1https://www.alleantia.com/products/isc-software/
2https://www.eclipse.org/ponte/
3https://www.eclipse.org/paho/
4https://moquette-io.github.io/moquette/
5https://github.com/Cicizz/jmqtt

thanks to Netty6 as underlying network framework. With
respect to reliability, both Moquette and Jmqtt support MQTT
standard Quality of Service (QoS) levels 0, 1, and 2. QoS 0
means that each message is delivered at most once, i.e., best
effort delivery. QoS 1 means that each message is delivered
at least once. QoS 2 means that each message is delivered
exactly once.

Both MQTT types of brokers (Moquette and Jmqtt) have
been properly extended as described in Sec. IV, by adding
a new bridge module. Two different bridging modes, called
‘spiral’ and ‘straight’, have been designed and implemented
in both brokers. The two modes are sketched in Fig. 8. When
a SUBSCRIBE message reaches an X-Broker with a topic
name targeting a different broker, this is passed to the bridge
module that processes it according to the mechanism described
in Sec. IV. The mapping between the requested topic and the
client is stored locally, together with the mapping between
the incoming and outgoing topic names. Then the topic name
is updated, and the message is forwarded to the next broker.
This mechanism applies for both bridging modes, spiral and
straight (messages 1, 2, and 3 in Fig. 8-a and 8-b). The only
difference is that, in the case of straight mode, the subscribers
are registered in a table within the bridge module, while, in the
case of spiral mode, they are registered in the standard broker
table. When a PUBLISH message reaches the X-Broker, this
message is also passed to the bridge module. In case of spiral
bridging mode, the module modifies the message according to
the registered topic mapping and passes it back to the broker
that processes and forwards it toward the registered subscribers
(messages 4, 5, and 6 of Fig. 8-a). On the other hand, in case of
straight bridging mode, the message is processed, updated and
forwarded to the registered subscribers directly by the bridge
module (messages 4 and 5 of Fig. 8-b).

Fig. 8. Bridge module operation modes: a) ‘spiral’, b) ‘straight’.

The two bridge modules have been implemented using two
different MQTT libraries (Paho and Jmqtt), leading to two
different versions that have been compared. For integrating
the bridge module into the two brokers, only few classes had
to be slightly modified (MQTTConnection, NewNettyAcceptor,
and PostOffice for the Moquette broker, and ConnectProcessor,
PublishProcessor, SubscribeProcessor, BrokerController, and
BrokerStartup for the Jmqtt broker). All the implemented
software is publicly available open source7.

6https://netty.io
7https://github.com/mqtt-dbb/mqtt-dbb



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 9

To provide an on-the-way processing function of the PLC
data, a particular MQTT client (the Data processor, in Fig. 7),
connected to the first broker, has also been added. The proces-
sor subscribes for some PLC topics, receives the corresponding
data, processes them, and then publishes the resulting data on
a new topic on the same broker.

Two different MQTT clients have been added and con-
nected to two different brokers. Both clients subscribe to
some topics and present the received data (possibly processed
and aggregated) to the users, through two different HTTP-
based interfaces, acting as HTTP servers (the MQTT-to-HTTP
Gateways 1 and 2 in Fig. 7). In particular, the first entity
provides a server-side REST API to client applications (in our
implementation a simple mobile app), while the second entity
presents aggregated data through a standard web interface,
accessible through standard browsers. In order to emulate the
client-to-broker networks, the NEMO [28] network emulator
has been used between the various clients and their brokers.

We have also carried out a performance evaluation campaign
in order to test the applicability of the proposed framework
in terms of end-to-end real-timeliness. In particular, we have
analyzed and compared the performance of an X-Broker under
different functional modes and implementations. All presented
results refer to the X-Broker based on Jmqtt, since preliminary
tests showed that it exhibited better performance in terms of
forwarding delay. The brokers have been run on standard PCs
with Intel Core i7 2.70 GHz processor, 16 GB RAM, and
Windows 7 64-bit OS.

In Fig. 9 the time spent by a PUBLISH message to be
properly processed and to cross n X-Brokers is reported versus
n. The two bridge implementations are compared. In the case
of the Paho-based implementation, the three MQTT QoS types
(0=‘at most one’, 1=‘at least one’, 2=‘exactly one’), are shown
as well. The results, an average over 50 packets, show a linear
increase of time with the number of crossed brokers and an
increase of time according to the required QoS.

Fig. 9. Comparison of different X-Broker implementations.

In Fig. 10 the two different bridging modes are compared,
in terms of forwarding delay, varying the number of crossed
brokers (n). The broker and the bridge modules are both
implemented in Jmqtt and the considered QoS level is 0.
The results, an average over 50 messages, confirm a greater
increase of time in the case of the spiral implementation.

Finally, different access token encapsulation methods have
been tested. In all cases, a cryptographic access token, signed
through a 2048-bit RSA private key of the AS is used. In a

Fig. 10. Comparison of different bridging modes.

first set of tests, the ‘topic’ method has been used, and the
access token is processed and removed by the first broker. In
a second set of tests, the ‘payload’ method has been used,
by letting all broker process and explicitly validate the access
token. The results shown in Fig. 11, which are an average over
150 messages and consider an implementation through Jmqtt
of both the broker and the bridge, with QoS = 0 and spiral
forwarding, demonstrate that the overhead introduced by the
verification of the access token is still manageable, with an
additional delay of 1.2 ms per single broker on average in the
case of the ‘payload’ method.

Fig. 11. Comparison of different access token encapsulation modes.

The results in Fig. 11 allow also the comparison of our
solution with the standard authentication and authorization
approach defined in [23] and [24] for a single broker. In
fact, as observed in Sec. IV-B, the proposed multi-broker
authentication and authorization mechanism, in case of a
single broker corresponds to the standard ACE for MQTT
mechanism. Since the delay grows linearly with the number
of the brokers, and the delay introduced for processing the
authorization token is low, especially in all practical IIoT
scenarios with a limited number of broker stages (2 or 3),
the overall delay will remain low and of the same order of
magnitude of that of the standard one-broker solution.

To summarize, the experimental results have shown that
i) the time spent by a PUBLISH message to be properly
processed and to cross n X-Brokers is linear in n and increases
according to the required QoS, as expected; ii) the forwarding
delay with the spiral bridging mode is almost double than the
delay resulting when the bridging mode is straight; iii) the
verification of the access token introduces a small overhead.
For applications that may settle for QoS 0, the forwarding
overhead is acceptable even with spiral bridging. When QoS
2 is required, straight bridging should be considered, in order



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 10

to keep the forwarding overhead small.

VI. CONCLUSIONS

In this paper, we have introduced a novel dynamic multi-
broker framework to relay secure and scalable M2M com-
munications based on a pub/sub paradigm. Our MQTT-based
framework can help securely managing and isolating the
large number of information flows present in complex IIoT
deployments. An authorization and authentication mechanism
has been designed specifically for the scheme we proposed:
all requests contain authorization tokens released by an au-
thorization server, so only authorized entities can subscribe or
publish in a particular topic. The solution we proposed has also
been implemented practically and evaluated in a small-scale,
yet realistic IIoT testbed. In order to assess the performance of
the proposed framework in terms of end-to-end real-timeliness,
we have tested different functional modes and implementations
of its core component, i.e., the X-Broker. In general, QoS
requirements determine the X-Broker configuration to use for
achieving a small forwarding overhead.

As future works, we plan to evaluate the effectiveness of this
scheme against different cyber-physical attacks, concerning
mainly authentication and authorization issues between the
communicating machines and third parties. Additionally, we
intend to put the proposed framework through its paces in the
context of challenging real-world IIoT application scenarios,
such as predictive maintenance and cloud manufacturing.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Antonio Enrico Buono-
core for his help in carefully proofreading the paper. The work
of Riccardo Pecori has been supported by the Italian Ministry
of University and Research (MUR), in the framework of
the PON R&I 2014-2020 “AIM: Attraction and International
Mobility” project.

REFERENCES

[1] E. Sisinni et al., “Industrial Internet of Things: Challenges, Opportuni-
ties, and Directions,” IEEE Trans. on Ind. Inform., vol. 14, no. 11, pp.
4724–4734, Nov 2018.

[2] H. Boyes et al., “The Industrial Internet of Things (IIoT): An analysis
framework,” Computers in Industry, vol. 101, pp. 1 – 12, 2018.

[3] K. Iwanicki, “A Distributed Systems Perspective on Industrial IoT,” in
IEEE Int. Conf. ICDCS, July 2018, pp. 1164–1170.

[4] A. Banks et al., “MQTT Version 5.0,” OASIS, Standard, March 2019.
[5] G. Peralta et al., “Fog computing based efficient IoT scheme for the

Industry 4.0,” in 2017 IEEE Int. Workshop ECMSM, 2017, pp. 1–6.
[6] J.-R. Jiang, “An improved cyber-physical systems architecture for In-

dustry 4.0 smart factories,” Adv. in Mech. Eng., vol. 10, no. 6, pp. 1–15,
May 2018.

[7] D. Kim, H. Lee, and D. Kim, “Enhanced industrial message protocol
for real-time IoT platform,” in Int. Conf. ICEIC, Jan 2018, pp. 1–2.

[8] A. Vakaloudis and C. OLeary, “A framework for rapid integration of IoT
systems with industrial environments,” in IEEE WF-IoT, April 2019, pp.
601–605.

[9] A. Esfahani et al., “A Lightweight Authentication Mechanism for
M2M Communications in Industrial IoT Environment,” IEEE Internet
of Things Journal, vol. 6, no. 1, pp. 288–296, Feb 2019.

[10] M. Calabretta, R. Pecori, and L. Veltri, “A Token-based Protocol for
Securing MQTT Communications,” in SoftCOM 2018, Sep. 2018, pp.
1–6.

[11] M. Calabretta et al., “MQTT-Auth: a Token-based Solution to Endow
MQTT with Authentication and Authorization Capabilities,” J. Comm.
Software and Systems, vol. 14, Dec. 2018.

[12] M. Singh et al., “Secure MQTT for Internet of Things (IoT),” in Int.
Conf. CSNT, April 2015, pp. 746–751.

[13] A. A. Wardana and R. S. Perdana, “Access Control on Internet of Things
based on Publish/Subscribe using Authentication Server and Secure
Protocol,” in Int. Conf. ICITEE, July 2018, pp. 118–123.

[14] T. Rausch, S. Nastic, and S. Dustdar, “EMMA: Distributed QoS-Aware
MQTT Middleware for Edge Computing Applications,” in Int. Conf.
IC2E, April 2018, pp. 191–197.

[15] V.-N. Pham and E.-N. Huh, “An efficient edge-cloud publish/subscribe
model for large-scale iot applications,” in Proc. 13th Int. Conf. on
Ubiquitous Information Management and Communication (IMCOM)
2019, S. Lee, R. Ismail, and H. Choo, Eds. Cham: Springer International
Publishing, 2019, pp. 130–140.

[16] A. E. C. Redondi, A. Arcia-Moret, and P. Manzoni, “Towards a Scaled
IoT Pub/Sub Architecture for 5G Networks: the Case of Multiaccess
Edge Computing,” in 2019 IEEE 5th World Forum on Internet of Things
(WF-IoT), 2019, pp. 436–441.

[17] Y. Protskaya and L. Veltri, “Broker Bridging Mechanism for Providing
Anonymity in MQTT,” in 2019 10th Int. Conf. on Networks of the Future
(NoF), 2019, pp. 110–113.

[18] A. Rizos, D. Bastos, A. Saracino, and F. Martinelli, “Distributed UCON
in CoAP and MQTT Protocols,” in Computer Security. Cham: Springer
International Publishing, 2020, pp. 35–52.

[19] A. La Marra et al., “Improving MQTT by Inclusion of Usage Control,”
in Security, Privacy, and Anonymity in Computation, Communication,
and Storage. Cham: Springer International Publishing, 2017, pp. 545–
560.

[20] A. L. Marra, F. Martinelli, P. Mori, and A. Saracino, “Implementing
usage control in internet of things: A smart home use case,” in 2017
IEEE Trustcom/BigDataSE/ICESS, 2017, pp. 1056–1063.

[21] A. Schmitt, F. Carlier, and V. Renault, “Data Exchange with the MQTT
Protocol: Dynamic Bridge Approach,” in 2019 IEEE 89th Vehicular
Technology Conference (VTC2019-Spring), 2019, pp. 1–5.

[22] A. Banks and R. Gupta, “MQTT Version 3.1.1,” OASIS, Standard,
October 2014.

[23] L. Seitz et al., “Authentication and Authorization for Constrained
Environments (ACE) using the OAuth 2.0 Framework (ACE-OAuth),”
IETF, Internet-Draft draft-ietf-ace-oauth-authz-24, Mar. 2019.

[24] C. Sengul, A. Kirby, and P. Fremantle, “MQTT-TLS profile of ACE,”
IETF, Internet-Draft draft-ietf-ace-mqtt-tls-profile-00, May 2019.

[25] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, Oct.
2012. [Online]. Available: https://rfc-editor.org/rfc/rfc6749.txt

[26] M. Jones et al., “CBOR Web Token (CWT),” RFC 8392, May 2018.
[27] C. Bormann and P. Hoffman, “Concise Binary Object Representation

(CBOR),” RFC 7049, Oct. 2013.
[28] L. Veltri et al., “NEMO: A flexible and highly scalable Network

EMulatOr,” SoftwareX, vol. 10, p. 100248, 2019.

Michele Amoretti (S’01–M’06–SM’19) received
his PhD in Information Technologies in 2006 from
the University of Parma, Parma, Italy. He is As-
sociate Professor of Computer Engineering at the
University of Parma. In 2013, he was a Visiting
Researcher at LIG Lab, in Grenoble, France. He
authored or co-authored over 100 research papers in
refereed international journals, conference proceed-
ings, and books. He serves as Associate Editor for
the journals: IEEE Trans. on Quantum Engineering
and International Journal of Distributed Sensor Net-

works. He is involved in the Quantum Information Science (QIS) research and
teaching initiative at the University of Parma, where he leads the Quantum
Software research unit. He is the CINI Consortium delegate in the CEN-
CENELEC Focus Group on Quantum Technologies. His current research
interests are mainly in High Performance Computing, Quantum Computing,
and the Internet of Things.

https://rfc-editor.org/rfc/rfc6749.txt


IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, AUGUST 2020 11

Riccardo Pecori received his Ph.D. in Information
Technologies from University of Parma in 2011.
He has been an Assistant Professor of Computer
Engineering at eCampus University, Italy, since 2015
to 2019, and at University of Sannio, Italy, since
August 2019 until now. His main research interests
regard network security, Internet of Things, machine
and deep learning applications, analysis of complex
systems as well as educational Big Data mining.
He has been leading organizer and program chair
of computer science-related special sessions and

workshops at international conferences and has published more than 40 papers
in refereed international journals and conferences. He is currently in the
editorial board of Future Generation Computer Systems and SoftwareX.

Yanina Protskaya got her master degree in System
Analysis, Control, and Processing of Information
from the Belarusian-Russian University, Mogilev,
Belarus in 2016, and her Ph.D. in Information
Technologies from the University of Parma, Italy,
in 2020. Her main research interests regard security
in the Internet of Things and novel anonymity pro-
tocols. She currently works as Analyst Programmer
at Maps Group in Parma, Italy.

Luca Veltri received his Master degree in Telecom-
munication Engineering and the Ph.D. degree in In-
formation and Telecommunication Engineering from
University of Rome “La Sapienza” in 1994 and
1999, respectively. From 2002 he is Assistant Profes-
sor at University of Parma, where he teaches classes
in Network Security and Communication Networks.
From 1999 to 2002 he has been with CoRiTeL, a
research institute funded by Ericsson Telecomuni-
cazioni, where he leaded research projects in net-
working and multimedia communications. He has

participated in several research projects funded by the European Commission
by the European Space Agency, and by the Italian Ministry of University and
Research. His current research interests include Internet of Things, Network
Security, and Cyber Security.

Francesco Zanichelli received the Dr.Eng. degree in
Electronic Engineering at the University of Bologna
where he also obtained a research grant from IBM
Italy in the area of industrial robotics. Later he spent
a research period at the University of Florida to
work on mobile robotics and in 1994 he received
his Ph.D. degree in Information Technologies at the
University of Parma. He is currently an Associate
Professor with the Department of Engineering and
Architecture of the University of Parma. Current
research interests are related to distributed systems

and to middleware for service oriented peer-to-peer systems, to cloud plat-
forms for the Internet-of-Things and predictive maintenance as well as to
blockchain-based security applications. The research activity, resulting into
over 80 international journal and conference papers, has been carried out
in the framework of several regional, national and international research
programmes, such those funded by region Emilia-Romagna, the national
Research Ministry, NATO and the European Commission.


