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Abstract: Systemic sclerosis (S5c) is a severe autoimmune disorder characterized by vasculopathy
and multi-organ fibrosis; its etiology and pathogenesis are still largely unknown. Herpesvirus
infections, particularly by human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6), have
been suggested among triggers of the disease based on virological and immunological observations.
However, the direct impact of HCMV and/or HHV-6 infection on cell fibrosis and apoptosis at the
cell microenvironment level has not yet been clarified. Thus, this study aimed to investigate the
effects of HCMV and HHV-6 infection on the induction of pro-fibrosis or pro-apoptosis conditions in
primary human dermal fibroblasts, one of the relevant SSc target cells. The analysis, performed by
microarray in in vitro HCMV- or HHV-6-infected vs. uninfected cells, using specific panels for the
detection of the main cellular factors associated with fibrosis or apoptosis, showed that both viruses
significantly modified the expression of at least 30 pro-fibrotic and 20 pro-apoptotic factors. Notably,
several recognized pro-fibrotic factors were highly induced, and most of them were reported to be
involved in vivo in the multifactorial and multistep pathogenic process of SSc, thus suggesting a
potential role of both HCMV and HHV-6.
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1. Introduction

Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by immunological
abnormalities, vasculopathy, and excessive extracellular matrix deposition, which leads to vascular
involvement, apoptosis, and fibrosis of the skin and internal organs [1-7].

Although SSc patients can present extremely heterogeneous clinical pictures, two well-recognized
subgroups have been identified according to the extent of skin involvement: patients with widespread
skin involvement (diffuse cutaneous subset; dcSSc) and patients with limited skin involvement (limited
cutaneous subset; 1cSSc) [8]. DcSSc patients develop very quickly fibrosis of the skin, lungs, and other
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internal organs (e.g., heart, gastrointestinal tract, kidneys, tendons, and ligaments); specifically, dcSSc
is responsible for a higher mortality rate, although the course of the disease is extremely variable.
On the contrary, 1cSSc patients mainly present vascular abnormalities and the disease often has a more
favorable outcome.

The pathogenesis of SSc remains largely unknown, however accumulating evidence suggests
that the disease could be the result of a multistep and multifactorial process. Among the involved/
predisposing factors, several genes have been associated with distinct SSc phenotypes and a positive
family history represents a strong risk factor [9,10]. Additionally, oxidative stress has been evoked
as an important element in the pathogenesis of SSc [11,12], as well as environmental factors [13,14].
Moreover, persistent/latent viral infections, such as human cytomegalovirus (HCMV) and human
herpesvirus 6 (HHV-6) infections, have been evoked as possibly involved in the pathogenesis of
SSc [13,15,16]. Both viruses belong to the Betaherpesvirinae subfamily, are genetically related, and have
a worldwide distribution, sustaining primary infection usually early in life and then establishing a
latent infection lifelong in the host.

A possible role of HCMYV in the etiopathogenesis of SSc has been postulated on the basis of
several lines of evidence [17-23]. First of all, HCMYV is able to infect in vivo the “hallmark” cells of SSc,
represented by fibroblasts and endothelial cells [24,25]. Another piece of evidence supporting HCMV
involvement in the pathogenesis of SSc is the detection of viral transcripts in endothelial cells from
skin biopsy of a woman with SSc diagnosed after an acute HCMYV infection [26].

Moreover, with respect to humoral immunity, significantly higher levels of anti-HCMYV antibodies
were detected in SSc patients compared to the healthy subjects, in particular directed against the
immunodominant viral antigens, such as the tegument phosphoprotein pp65, the major immediate-early
protein IE1 and the product of the viral UL94 gene [22,27-30].

It has also been hypothesized, evoking a mechanism of molecular mimicry, a role of antibodies
directed against HCMV UL94 gene product (among those most frequently detected in the serum of SSc
patients) in the recognition of membrane receptors of fibroblasts and endothelial cells with subsequent
expression of genes functionally associated with clinical signs of SSc [27,31,32].

Asregards cell-mediated immunity, a relevant role of T lymphocyte responses and pro-inflammatory
cytokine aberrant production in the pathogenesis of SSc has been highlighted, with their possible
contribution in the modulation of fibrosis and vascular damage [17,33—40]. Recent data from our
group support the importance of HCMV specific CD8+ T cells, demonstrating a statistically significant
association of HCMV-antigen driven CD8+ T cell responses in SSc patients with some of the most
relevant disease parameters [16].

On the other hand, HHV-6 infection has been repeatedly reported as a possible triggering agent in
SSc development, although there is still little information about the possible mechanisms underlying its
role in the disease [41]. Two species are recognized, HHV-6A and 6B, showing high genome homology
but dissimilar tropism and pathogenic associations [42]. Similarly to HCMV, HHV-6 has a tropism
for endothelial cells [43], where it was found in an active replicative state in vivo [43], and can infect
endothelial cells of different origin in vitro, inducing secretion of pro-inflammatory cytokines [44].
Of note, HHV-6 infection can impair the pro-angiogenetic ability of vascular and lymphatic endothelial
cells, thanks to the action of the virus U94 gene product [45]. This is of particular note, since endothelial
injury is one of the first steps in the pathogenesis of SSc, mostly affecting microcirculation [46].
Besides, HHV-6 was detected with high frequency in thyroid cells of subjects affected by Hashimoto’s
autoimmune thyroiditis, a condition often preceding SSc disease [47], and its infection/reactivation has
been associated to several autoimmune pathologies, including multiple sclerosis, Sjogren syndrome,
rheumatoid arthritis, systemic lupus erythematosus, Purpura fulminans, severe autoimmune acquired
protein S deficiency, and severe autoimmune hepatitis [48-55]. More recently, HHV-6 was also detected
with high frequency in the blood and skin tissue of SSc patients [15], who also exhibited an anti-U9%4
antibody titer significantly higher than controls, suggesting that SSc subjects may undergo multiple
virus reactivations. Notably, HHV-6A, and not HHV-6B, was detected at the tissue level, confirming
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the different tropism and pathogenic action of the two species. Furthermore, HHV-6A was shown to
induce the expression of pro-fibrosis factors in infected vascular endothelial cells [15], suggesting its
possible role in endothelial injury during SSc.

Based on these observations, this study aimed to assess the impact of HCMV and HHV-6A infection
on the expression of pro-fibrotic and pro-apoptotic factors in primary human dermal fibroblasts, since
they are among the specific target cells of SSc.

2. Results

2.1. HCMV and HHV-6A DNA Quantitative Evaluation in Primary Human Dermal Fibroblasts at Different
Times Post-Infection In Vitro

Primary human dermal fibroblasts were infected with HCMV TB40E strain ata MOI of 0.1. At 0, 4,
7,10, and 14 days post-infection (p.i.) cells were harvested and processed for DNA extraction and the
efficiency of HCMV infection was evaluated by q-Real-Time PCR targeting HCMV immediate-early
(IE)1 gene at the aforementioned times. The results show that HCMV DNA copies/mL gradually
increased from day 4 to day 14 p.i. in parallel with the characteristic cytopathic effect (Table 1).

Table 1. Human cytomegalovirus (HCMV) DNA quantitation in infected primary human dermal
fibroblasts at the indicated times post-infection (p.i.).

Times of Infection DNA Copies/mL * DNA Copies/mL (log1o) Standard Deviation
0 days - - - - -
4 days 1.11 x 10° 1.16 x 10° 5.057 5.063 0.004
7 days 2.93 x 10° 297 x 10° 5.466 5.473 0.005
10 days 5.95 x 10° 6.01 x 10° 5.775 5.780 0.003
14 days 1.36 x 107 1.38 x 107 7.135 7.141 0.004

* Mean values of HCMV genome copy number per mL with related standard deviations (SD) from two independent
experiments are shown.

Human dermal fibroblasts were in parallel infected with HHV-6A strain U1102 at a MOI of 1.
Samples of infected cells were collected at the same times p.i. described for HCMV (namely 0, 4, 7,
10, and 14 days p.i.) and total DNA was extracted. Efficiency of HHV-6A infection was evaluated
by a specific qPCR targeting U94 virus gene. The results showed, as expected, an initial increase of
HHV-6A DNA (from day 4 to 7 p.i.) followed by a gradual decrease till the end of the experiment
(14 days p.i.), suggesting the initial establishment of an active replication rapidly followed by a latent
infection (Table 2). No cytopathic effect was observed as a result of virus infection.

Table 2. Human herpesvirus 6A (HHV-6A) DNA quantitation in infected primary human dermal
fibroblasts at the indicated times p.i.

Times p.i. DNA Copies/ug * DNA Copies/ug (logio) Standard Deviation
0 days - - - - -
4 days 5.56 x 10° 5.68 x 10° 5.745 5.754 0.006
7 days 9.85 x 10° 9.72 x 10° 5.993 5.987 0.004
10 days 5.63x10°  5.65x 10° 5.750 5.752 0.001
14 days 8.74x10* 890 x 10* 4.941 4.949 0.006

* Results are expressed as mean values of genome copy number per ug of total DNA (corresponding to about
10° cells) from two independent experiments + SD.
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2.2. Induction of Fibrosis-Associated Transcripts in HCMV- or HHV-6A-Infected Primary Human
Dermal Fibroblasts

Analysis of the expression of pro-fibrosis transcripts, performed by gPCR microarray on RNA
extracted from HCMYV infected cells, shows that several factors involved in the development of fibrosis
are up- or downregulated in infected fibroblasts (Figure 1).
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Figure 1. Scatterplot representation of the fibrosis-associated factors altered by human cytomegalovirus
(HCMV) infection in primary human dermal fibroblasts. At each time p.i. (d.p.i. = days post-infection),
cell samples were collected and analyzed by specific qPCR microarray. The significance threshold was
put at 3-fold expression change in infected vs. uninfected control cells. Red dots: upregulated factors;
blue dots: downregulated factors; black dots: not significantly altered factors. Results represent mean
values of duplicate samples from two independent experiments, and are expressed in a logarithmic
scale (Logig HCMYV = logarithmic values in HCMYV infected cells; Log;y CTR = logarithmic values in
control uninfected cells).

In particular, already after the adsorption period (day 0 p.i.), four factors out of the 84 analyzed
resulted to be significantly altered in HCMV-infected fibroblasts compared to uninfected cells. At this
time point, a strong expression of the pro-inflammatory cytokine Tumor Necrosis Factor-oc (TNF-«;
186.37 fold compared to uninfected cells) and a significant upregulation of Plasminogen Activator
Inhibitor-1 (PAI-1 or SERPINA1; 11.99 fold), Chemokine (C-C motif) ligand 2 (CCL2; 9.08 fold),
and Interleukin 1 beta (IL-1 or IL-1B; 9.36 fold) was observed.

Other induced factors, although to a lesser extent, included Chemokine (C-C motif) ligand 11
(CCL11; 3.9 fold), Matrix Metalloproteinase-9 (MMP9; 4.39 fold), and Bone Morphogenic Protein 7
(BMP7; 3.44 fold). Atday 4 p.i., 15 transcripts associated with fibrosis were highly upregulated. In detail,
CCL11 (43.1 fold), CCL2 (39.13 fold), IL-1$3 (41.08 fold), TNF«x (30.6 fold), and Plasminogen (PLG;
26.29 fold) transcripts resulted strongly upregulated, followed by SERPINA1 (22.53 fold), Interleukin 13
(IL-13; 21.39 fold), Matrix Metalloproteinase-3 and -13 (MMP3, 5.8 fold; MMP13, 21.51 fold), Chemokine
Receptor type 4 (CXCR-4; 15.82 fold), Hepatocyte Growth Factor (HGF; 11.59 fold), Fas ligand (FASLG
or CD95L; 9.48 fold), Matrix Metalloproteinase-1 (MMP1; 9.51 fold), Chemokine (C-C motif) ligand
3 (CCL3; 7.96 fold), and BMP7 (6.65 fold). In the following days p.i., CCL2 transcript continued
to be significantly upregulated at days 7 and 10 p.i. (23.1 and 9.29 fold, respectively); BMP7 and
CXCR-4 resulted the most upregulated factors at day 10 p.i. (261.31 and 123.08 fold, respectively)
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with CCL3 (48.74 fold), TNF«x (34.21 fold), SERPINA1 (13.67 fold), and IL-13 (9.61 fold). At day 14
p.i., a significantly high expression was observed for BMP7 (61.34 fold), CXCR-4 (59.15 fold), MMP13
(15.94 fold), SERPINA1 (7.69 fold), and TNF«x (6.92 fold). Finally, the expression of IL-13 receptor
subunit alpha 2 (IL13RA2) resulted gradually downregulated at day 4 p.i. (13.42 fold), at day 7 p.i.
(17.57 fold), and at day 10 p.i. (138.44 fold), with a strong decrease observed at day 14 p.i. (776.73 fold).

The expression kinetics of the most HCMV-induced fibrosis-associated factors are shown in

Figure 2.
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Figure 2. Expression kinetics of fibrosis-associated factors most significantly modulated by human
cytomegalovirus (HCMYV) infection in primary human dermal fibroblasts. Ateach time p.i. (d.p.i. =days
post-infection), cell samples were collected and analyzed by specific qPCR microarray. Results are
expressed as mean values of fold change (infected cells vs. controls) + SD of duplicate samples from
two independent experiments. * pc < 0.01; ** pc < 0.001.

Similar to what was detected in HCMYV infected cells, the analysis of pro-fibrosis factors expression
in HHV-6A infected cells showed a significant modulation by virus infection compared to uninfected
control cells, although the number of modulated factors and the extent of the altered expression was
lower compared to what was observed with HCMV (Figure 3).



Int. ]. Mol. Sci. 2020, 21, 6397 6 of 20

0d.p.i. 4d.p.i. 7 d.p.i.
o
4
® ® i °
z H s o) z
T * s o T
- - s -
k) k) ey k)
>
o
P
e
e
Log,, CTR Log,, CTR
10 d.p.i. 14 d.p.i.
‘,/../4
@ oA @
z ot z
x s / T
E] / '/“'// o
§° /,:'} /’5/./ §°
”
SRyt g
e _/
Log,, CTR Log,, CTR

Figure 3. Scatterplot representation of the fibrosis-associated factors altered by human herpesvirus 6A
(HHV-6A) infection in primary human dermal fibroblasts. Ateach time p.i. (d.p.i. = days post-infection),
cell samples were collected and analyzed by specific qPCR microarray. The significance threshold was
put at 3-fold expression change in infected vs. uninfected control cells. Red dots: upregulated factors;
blue dots: downregulated factors; black dots: not significantly altered factors. Results represent mean
values of duplicate samples from two independent experiments, and are expressed in logarithmic
scale (Logig HHV-6 = logarithmic values in HHV-6A-infected cells; Log;y CTR = logarithmic values in
control uninfected cells).

Immediately after virus adsorption to fibroblasts, some factors appeared modulated, although
to a limited extent compared to HCMV. In detail, virus binding/entry induced the upregulation of
CXCR4 (4.66 fold), IL-13 (3.21 fold), and the matrix metalloproteinases MMP1, 3, and 9 (respectively,
4.63, 6.32, and 4.63 fold), whereas IL-1ax was downregulated (—12.75 fold). At the subsequent
times, the upregulated expression of such genes was confirmed and even increased. CXCR4 was
hyper-expressed at all times p.i. (36.81 fold at 4 days p.i., 10.1 at 7 days p.i., 5.29 at 10 days p.i., and 3.48
at 14 days p.i.); IL-1p was upmodulated at all times p.i. as well (5.41, 3.27, 6.84, and 7.66 fold at 4, 7,
10, and 14 days p.i.) and MMPs were similarly maintained upregulated (MMP1 9.47 fold, MMP13
17.3 fold, MMP3 21.55 fold, MMP9 6.14 fold). In addition, the expression of IL-10 was constantly
upregulated from 4 to 14 days p.i. (up to 20.7 fold), that of IL-4 (up to 51.02 fold). Instead, IL-1x
was downmodulated at all times p.i. (—64.75, —33.28, —31.37, and —33.98 fold at 4, 7, 10, and 14 days
p-i.). Additionally, the Integrin av36 (ITGB6) expression increased at 4, 7, and 14 days p.i. (9.12, 4.15,
and 18 fold, respectively), and a significant upregulation of TNFx was detected at 7 and 10 days p.i.
(28.0 and 17.10 fold, respectively).

Similar to HCMYV, also HHV-6A induced the expression of BMP7 very early, starting just after
adsorption (5.56 fold), and at the following times p.i. (16.46, 11.97, 4.93, and 8.61 fold at 4, 7, 10,
and 14 days p.i., respectively). Figure 4 shows the expression kinetics of the most HHV-6A induced
fibrosis-associated factors.

Of note, among the most induced factors, six were up- or downmodulated by both HCMV and
HHV-6A, namely CXCR4, IL-13, MMP1, MMP13, TNF«, and BMP?7.
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Figure 4. Expression kinetics of fibrosis-associated factors modulated by human herpesvirus 6A
(HHV-6A) infection in primary human dermal fibroblasts. Ateach time p.i. (d.p.i. = days post-infection),
cell samples were collected and analyzed by specific qPCR microarray. Results are expressed as mean
values of fold change (infected cells vs. controls) + SD of duplicate samples from two independent
experiments. * pc < 0.01; ** pc < 0.001.

2.3. Altered Expression of Apoptosis-Associated Transcripts in HCMV- or HHV-6A-Infected Primary Human
Dermal Fibroblasts

A number of apoptosis-associated genes were identified by qPCR microarray analysis as
differentially expressed in HCMV-infected fibroblasts compared to uninfected cells (Figure 5).

Among the most altered factors, Caspase 4 and 9 (CASP4, CASP9) resulted upregulated (19.09 and
108.10 fold) at days 4 and 7 p.i., respectively; the same trend was observed for the expression of TNF
Superfamily Member 10 (TNFSF10; 6.24 fold) at day 4 p.i.; TNF Receptor Superfamily Member 25
(TNFRSE25) expression was significantly increased at days 0, 7, and 10 p.i. (9.02, 16.48, and 24.29 fold,
respectively); Receptor-interacting protein kinase 2 (RIPK2) was upregulated at all infection time points
(30.88,16.79, 6.64, 10.53, and 15.66 fold at 0, 4, 7, 10, and 14 days p.i., respectively). The over-expression
of CD27, Cytochrome C (CYCS), Direct IAP-Binding Protein with Low PI (DIABLO), and Tumor Protein
73 (TP73) was observed at day 7 p.i. (14.42,9.61,9.11, and 8.17 fold, respectively) and at day 10 p.i. (7.06,
4.84, 4.64, and 5.59, respectively. Additionally, at day 7 p.i., the expression of Myeloid Cell Leukemia 1
(MCL1; 7.35 fold), Nuclear Factor Kappa B Subunit 1 (NFKB1; 5.96 fold), Cell Death Inducing DFFA
Like Effector B (CIDEB; 5.15 fold), and TNFRSF1A (5.21 fold) was significantly increased, as was BCL2
Like 1 (BCL2L1; 7.59 fold) at day 14 p.i. and IL-10 at days 7, 10, and 14 p.i. (5.88, 10.21, and 5.68 fold,
respectively). BH3 Interacting Domain Death Agonist (BID) was the most upregulated transcript at
day 10 p.i. (86.10 fold) and at day 14 p.i (90.51 fold), followed by Tumor Protein P53 Binding Protein 2
(TP53BP2; 37.11 fold at day 10 p.i. and 17.08 fold at day 14 p.i.).

In summary, most of the apoptosis-associated factors were modulated by HCMYV infection between
7 and 10 days p.i.
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Figure 5. Scatterplot representation of the apoptosis-associated factors altered by human
cytomegalovirus (HCMYV) infection in primary human dermal fibroblasts. Ateach time p.i. (d.p.i. =days
post-infection), cell samples were collected and analyzed by specific qPCR microarray. The significance
threshold was put at 3-fold expression change in infected vs. uninfected control cells. Red dots:
upregulated factors; blue dots: downregulated factors; black dots: not significantly altered factors.
Results represent mean values of duplicate samples from two independent experiments, and are
expressed in logarithmic scale (Log;g HCMV = logarithmic values in HCMYV infected cells; Logjg
CTR = logarithmic values in control uninfected cells).

On the other hand, while the expression of TNFRSF9 increased at day 4 p.i. (15.17 fold) and at
day 7 pi. (5.73 fold), a significant decrease was observed at day 10 p.i. (—6.43 fold) and at day 14
p-i. (—145.30 fold); also BRAF resulted significantly downregulated at day 10 p.i. (—8.52 fold) and at
day 14 p.i. (-123.60 fold), as well as the expression of Baculoviral Iap Repeat-Containing protein 3
(BIRC3) at day 7 p.i. (—39.45 fold). Similarly, at day 14 p.i., several transcripts found upregulated at
previous times (e.g., CYCS, DIABLO, TP73, MCL1, NFKB1, CIDEB, TNFRSF1A, TNFSF10, BCL2L1),
were no more significantly altered by HCMYV infection compared to uninfected control cells or even
downregulated, such as CASP4, CASP7, CASP6, CASP3, and CASP9 (-6.45, —4.16, —4.02, —3.64, and
-3.9 fold, respectively). A comprehensive summary of the pro-apoptotic factors mostly altered by
HCMYV infection at the different times p.i. is shown in Figure 6.

By contrast, HHV-6A infection induced a less evident modulation of apoptosis-associated factors
in infected cells, compared to HCMYV, as displayed in Figure 7.

In particular, the only upregulated factor at all times p.i. was B-Cell Lymphoma 2 gene (BCL2;
19.6,9.31, 15.42, and 14.49, respectively, at 0, 4, 7, and 14 days p.i.). BIRC3 was upregulated at 0 and
14 days p.i. (3.21 and 5.73 fold), whereas it was downregulated at 7 and 10 days p.i. (5.78 and 3.82 fold,
respectively). CASP4 was induced only at 7 days p.i. (8.05 fold), while CASP9 was upregulated at 0, 4,
and 10 days p.i. (4.52, 3.25, and 5.13 fold) and downregulated at 7 days p.i. (6.53 fold). CFLAR was
downmodulated at days 0, 7, and 10 p.i. (9.94, 10.51, and 6.95 fold respectively); RIPK2 resulted induced
only at times 7 and 14 days p.i. (6.91 and 6.21 fold). Finally, in contrast to what was observed with
HCMYV, TNFRSFD25 appeared mostly downregulated by HHV-6A infection (14.34, 15.68, and 10.37 fold
respectively at 4, 7, and 10 days p.i.). Figure 8 summarizes the expression kinetics of the HHV-6A
induced factors associated with cell apoptosis.
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Figure 6. Expression of the apoptosis-associated factors altered by human cytomegalovirus (HCMV)
infection in primary human dermal fibroblasts. At each time p.i. (d.p.i. = days post-infection), cell
samples were collected and analyzed by specific qPCR microarray. Results are expressed as mean
values of fold change (infected cells vs. controls) + SD of duplicate samples from two independent
experiments. * pc < 0.01; ** pc < 0.001.
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Figure 7. Scatterplot representation of the apoptosis-associated factors altered by human herpesvirus
6A (HHV-6A) infection in primary human dermal fibroblasts. At each time p.i. (d.p.i. = days
post-infection), cell samples were collected and analyzed by specific gqPCR microarray. The significance
threshold was put at 3-fold expression change in infected vs. uninfected control cells. Red dots:
upregulated factors; blue dots: downregulated factors; black dots: not significantly altered factors.
Results represent mean values of duplicate samples from two independent experiments, and are
expressed in logarithmic scale (Logyg HHV-6 = logarithmic values in HHV-6A-infected cells; Log
CTR = logarithmic values in control uninfected cells).
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Figure 8. Expression kinetics of apoptosis-associated factors modulated by human herpesvirus 6A
(HHV-6A) infection in primary human dermal fibroblasts. Ateach time p.i. (d.p.i. = days post-infection),
cell samples were collected and analyzed by specific qPCR microarray. Results are expressed as mean
values of fold change (infected cells vs. controls) + SD of duplicate samples from two independent
experiments. * pc < 0.01; ** pc < 0.001.
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3. Discussion

Systemic sclerosis (SSc) is a severe autoimmune disease whose causal agents and pathogenetic
mechanisms are still unresolved. The past literature has often associated the infection by human
herpesviruses with the onset/development of SSc [19,55-58], but no definitive data are yet available,
especially concerning the possible mechanisms underlying a postulated role of herpesvirus infection
in the course of the disease. In particular, beta-herpesviruses HCMV and HHV-6 have been considered
possible triggering agents [26,55].

Recent studies have confirmed the high prevalence of beta-herpesvirus infection in SSc subjects,
testified by both presence of the viruses at the tissue and/or blood level and by the detection of
a significantly higher immune response against HCMV and HHV-6 in SSc patients compared to
controls [15,16,26,59]. Furthermore, HHV-6A was shown to be capable of inducing the expression of
pro-fibrotic factors in endothelial cells [15], but no information are available about the ability of both
HHV-6 and HCMYV to induce the expression of fibrosis- and apoptosis-associated factors in human
dermal fibroblasts, that are one of the main target cells of the disease.

Since it is widely accepted that the microenvironment plays a significant role in the disease
outbreak and progression, the present study aimed to clarify the capacity of such herpesviruses to
interfere with the normal metabolism of the infected cells in a way possibly leading to cell fibrosis
and/or apoptosis. This aspect was analyzed by in vitro infection assays, using quantitative real-time
PCR microarray to detect and quantify simultaneously 84 fibrosis- or apoptosis-associated factors.

Following infection of primary human dermal fibroblasts, both viruses evidenced the ability to
induce a potent expression of fibrosis-associated factors, with 22 factors, out of the 84 factors analyzed,
altered by the infection of one or both viruses. In detail, HCMV appeared most powerful compared to
HHV-6A, inducing a higher number of factors and at a higher extent than HHV-6A.

In particular, HCMYV infection led mainly to the over-expression of CCL2, CCL3, CCL11, CXCR4,
IL-1B, IL13, MMP1, MMP3, MMP9 and MMP13, SERPINA1, TNFx, and BMP7, and the gradual and
constant downregulation of IL13RA2 (up to almost 800-fold at 14 days p.i.).

Additionally, HHV-6A exhibited a profound modulating effect on several fibrosis-associated
factors. In particular, CXCR4 resulted highly upregulated at 4 and 7 days p.i. (up to >36 fold), IL-13
was constantly upmodulated (up to >7 fold), four MMPs were overexpressed (MMP1-3-9-13, up to
21 fold), and also IL-4 (>51 fold), IL-10 (>20 fold), and TNF« (>28 fold) were upregulated by the virus,
together with BMP7 (>16 fold), similarly to HCMV.

Notably, most of the analyzed pro-fibrotic factors were found to be overexpressed upon infection
by HCMV and/or HHV-6A, suggesting that the viral infection (and likely coinfection) might have
a significant impact on the cell microenvironment. Considering that virus-infected cells were not
selected by cell-sorting or other methods before RNA analysis, and thus could not represent 100% of the
analyzed cells, the observed high fold-change values and significance might be even underestimated,
further supporting a strong effect of both viruses on fibrosis modulation. In addition, some key
inducers of cell fibrosis were significantly upregulated by both viruses, suggesting that in coinfections
they may synergize and have an even higher effect on infected cells. Such factors included CXCR4,
IL-13, MMP1, MMP13, and TNFa.

Among them, CXCR4 (upmodulated by both viruses) is overexpressed the skin of SSc patients [60]
and is known to contribute to fibrosis [60,61].

IL-1pB is induced upon toll-like receptor activation and exerts pro-fibrotic effects by inducing
other pro-inflammatory cytokines, release of fibrosis markers, TGF-f3 synthesis, and fibroblasts
proliferation [62-64]. To this regard, recent findings show that the expression of most IL-1 family
cytokines, such as IL-1f3, are abnormal in many autoimmune diseases including SSc. In patients with
SSc, there is an increase of IL-1(3 in the serum and bronchoalveolar lavage fluid [65]; furthermore,
in the lesion skin tissue of SSc patients, the expression levels of IL-1f3 are significantly upregulated and
there is a positive association between dermal fibrosis severity evaluated by modified Rodnan skin
score (mRSS) and IL-1(3 expression [66].
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A dysregulated expression of MMPs has been observed in subjects with pulmonary fibrosis [67],
where they have been shown to have a profound impact on the mechanisms involved in fibrosis
development. In particular, MMP1 overexpression has been associated to the pathogenesis of fibrosis,
MMP3 is induced in epithelial to mesenchymal transition, MMP9 is induced by TGF-f3 and has a
pro-fibrotic action, and MMP13 has a controversial pro- and anti-fibrotic action on fibroblasts [68].

TNF« has a well-recognized role in the induction of SSc and TNF« blockage has anti-fibrotic
therapeutic effect; intriguingly the TNF superfamily member lymphocyte T-related inducible ligand
LIGHT, competing for gD binding for herpesvirus entry on T cells, is overexpressed in SSc [69].

Another factor induced by both viruses is BMP7, which however possesses a prevalently recognized
anti-fibrotic role, although somehow controversial [70,71].

Besides, other factors affected individually by the two viruses are of note. IL-13 (upregulated by
HCMYV > 21 fold) has been shown to play a role in many inflammatory and fibrotic diseases, including
SSc, and appears to be necessary in the effector phase of inflammation and fibrosis [72,73]. In particular,
IL-13 is significantly expressed in skin biopsies of SSc patients and its levels were found markedly
increased in parallel with the progression of cutaneous fibrosis in bleomycin-induced SSc¢ murine
model [74,75]. CCL2, CCL11, and SERPINA1 transcripts were also upregulated by HCMV (up to 39,
43, and 22 fold, respectively). CCL2 was strongly expressed in skin biopsy samples from patients with
early dcSSc and a number of studies have confirmed the upregulation of both protein and mRNA in
SSc [76,77]; its levels were found higher in dSSc and they correlated with mRSS [78]. CCL11 was found
to be significantly altered in the serum of preclinical/early SSc patients [79]. SERPINAL1 gene expression
has been reported as associated to pulmonary fibrosis and regulation of immune response [80].

CCL3 (upregulated by HCMV > 48 fold) has been demonstrated to play a role in dermal and
pulmonary fibrosis in a murine sclerodermatous disease model [81] and, recently, CCL3 transcripts
were found increased in skin biopsies of SSc patients [74].

Intriguingly, overexpression of IL-13 receptor alpha 2 (IL13RA2) protects against fibrosis [82];
instead, it was strongly downmodulated by HCMYV, up to almost 800 fold.

IL-4 (induced by HHV-6A, >51 fold) is a recognized pro-fibrotic factor, identified since over
20 years as a critical cytokine, increased in the blood, bronco-alveolar lavage cells and skin of SSc
patients [83]. It is also known that IL-4 is a potent activator, more active than TGF-f3, in inducing
collagen synthesis in human skin fibroblasts [84,85], and can drive fibroblast differentiation and
promote pro-fibrotic macrophages activation [86]. Interestingly, the IL-4/IL-13 axis exerts a key role in
skin fibrosis and scarring [87], again suggesting a possible cooperation of the two herpesviruses in
fibrosis induction. Furthermore, HHV-6A specifically induced ITGB6, whose expression is restricted to
epithelial cells and associated with fibrosis [88].

The pattern of pro-fibrotic factors induced by HHV-6A in fibroblasts was similar but not completely
superimposable with that observed in endothelial cells, where IL-4, TNF«, and MMP9 were similarly
induced [15], but IL-5 was also increased, in contrast to what was detected in fibroblasts, suggesting
that viral strategies depend, at least partly, on the cell type and microenvironment.

By summarizing the results obtained in this in vitro study on the modulation of several pro-fibrotic
factors induced by HCMV and/or HHV-64, it is worthy to note that although a number of them are
often altered in different autoimmune diseases [89], most of them have been described to be up- or
downregulated in SSc, as already highlighted above [15,60-88].

Further factors described in the literature, such as CXCL10, IL8, and IL6, not included in the
panel analyzed here, might deserve future investigation, as also involved in SSc onset and fibrosis
progression [90-94].

Differently from fibrosis-associated factors, the impact on apoptosis-related factors was quite
different for the two viruses, with a clear potent and significant upregulation effect caused by HCMYV,
less evident for HHV-6A. Namely, HCMYV infection altered significantly the expression of 20 factors
out of the total 84 factors tested, whereas HHV-6A affected significantly only seven factors.
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Among the most HCMV-altered factors were CASP4, CASP9, TNFRSF25, RIPK?2, BID, TP53BP2,
CD27. Other HCMV-modulated factors, although to a lesser extent, were CYCS, DIABLO, TP73, MCL1,
NFKB1, CIDEB, TNFRSF1A, TNFSF10, BCL2L1, IL-10, BIRC3; notably, all these transcripts were no
longer significantly altered by HCMYV infection compared to uninfected control cells at day 14 p.i,;
moreovet, at this time p.i. CASP4, CASP7, CASP6, CASP3, and CASP9 resulted downregulated.

As to HHV-6A, only BCL2 was constantly upregulated (>19 fold), whereas the other factors
exhibited a bi-phasic trend, with upregulation at certain times p.i. and downregulation at the others.
Altered factors included BIRC3, CASP4, CASP9, CFLAR, RIPK2, and TNFRSF25 (mostly downregulated
by the virus).

The observed more effective HCMV capacity of modulating pro-fibrotic and pro-apoptotic factors
compared to HHV-6A could be connected, for instance, to the recent ex vivo investigations from our
group showing significant correlations between HCMV-specific T cell responses in SSc patients and
clinical parameters of worse disease outcome (longer duration and higher values of mRSS) [16].

To date, the involvement of apoptosis in the development of dermal sclerosis is unclear.
As apoptosis plays an important role in the normal resolution process, its alteration may lead
to pathologic conditions. In a murine model of bleomycin-induced fibrosis, it has been speculated
that at sufficiently high levels of apoptosis, the skin clearance system may be impaired by the need to
remove apoptotic cells. This interference on the resolution of the inflammation may lead to secondary
necrosis of apoptotic cells, inducing skin tissue damage and a fibroproliferative response [95].

Overall, several factors are shared by the two viruses, suggesting a common pattern of action,
as expected being both beta-herpesviruses with common tropism and pathogenetic characteristics.
However, some actions are peculiar of HCMV or HHV-64, indicating that they may have also different
actions, likely potentiating each other, as already known for other diseases [96-100].

It is known that HCMV and HHV-6 can interact by reactivating each other, thus one virus
may potentiate the effect of the other virus in co-infected patients [96-100]. Since both HCMV
and HHV-6 are highly prevalent in the human population, the coinfection is a very probable event
in one subject. Thus, it might be hypothesized that in subjects with impaired ability to control
herpesvirus infection/reactivation, the simultaneous presence of both viruses might lead to even
worse effects compared to those resulting from a single infection. This aspect should deserve future
investigation, including simultaneous infection by the two viruses, using also different types of cells
and suboptimal virus concentration, in order to observe a postulated effect of virus cooperation with
likely potentiating effects.

Although establishing a causal role in complex diseases such as SSc is always very difficult,
especially for widespread viruses such as HCMV and HHV-6, the data collected here suggest that both
viral agents might have a relevant role in the induction of cell fibrosis at the tissue level, and open new
perspectives about the potential therapeutic use of anti-herpetic drugs able to block the progression of
SSc, especially in the very early stages of the disease.

4. Materials and Methods

4.1. Cell Culture

Primary human dermal fibroblasts (adult skin) (Lonza, Basel, Switzerland) were seeded in
25 cm? flasks and maintained in complete fibroblast cell medium (Fibroblast Cell Basal Medium),
supplemented with 2% fetal bovine serum, 0.1% r-human fibroblast growth factor-B, 0.1% insulin, 0.1%
gentamicin sulphate/amphotericin-B (“Bullet Kit”) (Lonza, Basel, Switzerland). Sub-cultivation was
performed at approximately 80% confluence using the “ReagentPack Subculture Reagent Kit” (Lonza,
Basel, Switzerland), according to the manufacturer’s instructions.
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4.2. Virus Strains and Titration

HCMYV TB40E reference strain (kindly provided by Prof. Thomas Mertens, Institute of Virology,
Ulm University, Ulm, Germany) was propagated in MRC5 cells; the viral infectious titer was determined
as previously described [101]. The same stock was used for all the infections (viral titer: 10° PFU/mL).

HHV-6A (U1102 strain) was obtained in J-Jhan T cells as previously described and contained
about 1010 genome equivalents per mL. The same stock was used for all the infections [102].

4.3. Viral Infection

Primary human dermal fibroblasts at 90% confluence were infected with the TB40E strain of
HCMYV at a multiplicity of infection (MOI) of 0.1, or with the U1102 strain of HHV-6A at a MOI of
1.0. The infected cells were incubated at 37 °C for 2 h. At the end of the adsorption period, the virus
inoculum was removed and replaced with complete fibroblast cell medium. Cells were incubated at
37°Cfor0,4,7,10, and 14 days. At the indicated times, cells were collected by scraping, washed in
cold PBS, and pelleted by centrifugation for 10 min at 1000x g. Cell pellets were instantaneously frozen
in liquid nitrogen and kept at —80 °C until use. Two aliquots per sample were prepared, for respective
extraction of total DNA and RNA.

4.4. DNA Extraction and Quantitative Real-Time PCR (gPCR) Assay

Total DNA was extracted from infected cells using the NucliSENS® EasyMAG® platform
(bioMérieux, Marcy-1'Etoile, Francia). The DNA was subjected to qPCR amplification using the CMV
ELITe MGB® Kit (ELITechGroup, Turin, Italy) for the detection and quantification of the human HCMV
DNA exon 4 region of the immediate-early (IE)1 gene. The assay was performed according to the
manufacturer’s instructions using the 7500 Real-time PCR system (ABI PRISM, Applied BioSystem:s,
Foster City, Canada, USA). The results were expressed as DNA copies/mL (logarithmic scale).

For HHV-6A quantification, a specific qPCR amplifying the U94 viral gene was used, as previously
described [103]. The assay was performed in a 7500 Real-time PCR system (ABI PRISM, Applied
BioSystems, Foster City, Canada, USA) and the results were expressed as DNA genome copy number
per ug of total DNA, corresponding to about 10° cells.

4.5. RNA Extraction

Total RNA was extracted from infected and uninfected cell pellets by the mirVana™ PARIS™ RNA
and Native Protein Purification kit, following the manufacturer’s instructions (Invitrogen, Thermo
Fisher Scientific, Milan, Italy). Extracted RNA was checked and quantified by spectrophotometric
reading at 260 and 280 nm wavelength, using a Nanodrop. Elimination of contaminant DNA was
assured by DNase I digestions (Thermo Fisher Scientific, Milan, Italy) and absence of contaminating
DNA was assessed by amplifying an aliquot of extracted RNA for human (3-actin gene. After verifying
that the samples were devoid of contaminating DNA, 1 ug aliquots of total RNA were retrotranscribed
by RT2 First Strand kit (Qiagen, Hilden, Germany) according to manufacturer’s instructions. Briefly,
RNA template was mixed with reverse-transcription master mix and incubated for 15 min at 42 °C,
and then 5 min at 95 °C for enzyme inactivation. Following retrotranscription, 500 ng of cDNA were
used for subsequent analysis by qPCR microarray.

4.6. gPCR Microarray Analyses

The expression of factors associated with fibrosis or apoptosis in infected cells was analyzed by
qPCR microarray. In detail, two different microarrays were used, one targeted to fibrosis-associated
factors and the other to apoptosis-associated factors (both by Qiagen, Hilden, Germany), both
simultaneously detecting and quantifying 84 cellular factors respectively associated with fibrosis or
apoptosis. Results represent up- or down-modulation of each factor in infected vs. uninfected control
cells, and are expressed as fold-change values compared to control values after normalizing for six
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housekeeping genes (Bactin, f2microglubulin, GAPDH, HPRT1, RPLP0, and HGDC), as calculated by
the specific Qiagen software (https://geneglobe.qiagen.com/ca/analyze/). Reported results are expressed
as mean fold value + SD of duplicate samples from two independent experiments. Analysis threshold
was put at 3-fold change of up- or down-modulation.

4.7. Statistical Analyses

Student’s t-test was used for statistical analyses (p < 0.05 was considered significant). For multiple
comparisons (microarray data), the Bonferroni correction was applied, and a corrected p value (pc) < 0.05
was considered significant.
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