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Abstract
We study the quantum tunneling of two one-dimensional quasi-condensates made of alkali-metal
atoms, considering two different tunneling configurations: side-by-side and head-to-tail. After
deriving the quasiparticle excitation spectrum, we discuss the dynamics of the relative phase
following a sudden coupling of the independent subsystems. In particular, we calculate the
coherence factor of the system, which, due to the nonzero tunneling amplitude, it exhibits
dephasing–rephasing oscillations instead of pure dephasing. These oscillations are enhanced by a
higher tunneling energy, and by higher system densities. Our predictions provide a benchmark for
future experiments at temperatures below T � 5nK.

1. Introduction

The interference of incoherent waves and the emergence of beats are fundamental physical phenomena,
which can be observed both in classical and in quantum systems. Due to their high coherency, and for the
reduced occupation of excited states, atomic Bose–Einstein condensates (BECs) are an ideal platform to
study the dephasing and resynchronization of noninteracting modes with commensurate frequencies.

Indeed, since their first experimental realization [1, 2], BECs have represented a paradigmatic setup to
probe the dynamics of macroscopic quantum observables. Besides being one of the hallmarks of the
transition, phase coherence is the key property one aims to preserve and it is an ongoing issue for quantum
technologies and devices [3–5]. Thus, the question of how long coherence can be sustained is relevant for
practical applications. At the same time, the qualitative and quantitative understanding of the concept of
phase coherence addresses a fundamental problem of many body systems made of interacting constituents
[6].

The first theoretical analyses on this topic were devoted to the investigation of the tunneling dynamics
between independently-formed condensates [6–8]. By drawing an electrostatic analogy, an effective
(semiclassical) theory can effectively describe the Josephson tunneling between the two atomic systems
[7, 9]. A refined description in terms of quasiparticles can also account for damped oscillations and
eventual decoherence effects due to the presence of an external potential [10, 11].

Throughout the last two decades, key advancements have been obtained by focusing on atomic
interferometers in lower dimensionalities, and adopting refined field-theoretical techniques [15–23].
Following these works, we consider the paradigmatic experimental setup of a pair of one-dimensional
parallel quasicondensates [12, 13]. This configuration is produced by a fast and coherent splitting of a single
superfluid with radiofrequency-induced adiabatic potentials [14, 15]. Some notable works on this
configuration have also shown the emergence of a prethermalized stationary state during the relaxation of
the closed system [24–27].

Here we discuss the out-of-equilibrium dynamics of parallel quasicondensates in which, after the initial
splitting, a nonzero tunneling between the subsystems is restored. In this context, recent works have
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Figure 1. Sketch of the system configurations studied in the paper. Depending on the external potential U(�r ), the
one-dimensional quasicondensates can be put in a side-by-side, or in a head-to-tail configuration. In (a) the atomic tunneling
takes place along the whole length of the system, while in (b) it only occurs at the center.

analyzed the role of a Josephson coupling between the parallel superfluids, considering in particular the
rephasing dynamics [28, 29] and the relaxation of the system [30] after a quench of the tunneling energy.
Interestingly, a recent experiment has found a relaxation of the Josephson oscillations to a phase-locked
equilibrium state [31], an effect which may crucially depend on the harmonic confinement [32, 33]. In our
paper, we investigate both the usual experimental configuration of side-by-side parallel quasicondensates
with uniform tunneling (figure 1(a)), and the arrangement of head-to-tail parallel superfluids with a
delta-like Josephson junction (figure 1(b)) [34]. In both configurations, due to the similar structure of the
quasiparticle energy, we find that the coherence factor oscillates in time, proving the partial decoherence
and resynchronization of the noninteracting modes of the coupled quasicondensates. This phenomenon is
the outcome of the competition between the quantum fluctutations of the single quasicondensates, and the
coherence-inducing Josephson coupling, which introduces a mass gap in the quasiparticle spectrum.
Previous works on side-by-side superfluids did not predict explicitly the oscillations of the coherence factor
[30], and our work analyzes the configuration of head-to-tail quasicondensates for the first time. The
experimental observation of these phase oscillations requires a low initial temperature of the
quasicondensate (∼ nK range), to avoid the intrinsic dephasing induced by thermal fluctuations.

The paper is organized as follows: in section 2 we introduce our model for parallel quasicondensates.
Then, we reformulate the dynamics of the relative variables in terms of quasiparticle excitations in section 3,
considering both the head-to-tail and the side-by-side system configurations. Finally, section 4 explores the
phase dynamics of the parallel superfluids after a quench in the tunneling amplitude.

2. The model and the relative dynamics

In systems of ultracold atoms the tunneling dynamics is strongly dependent on the specific configuration
and on the spatial dimension, i.e. on the details of the confining potential U(�r ). Here we discuss the phase
dynamics of one-dimensional tunneling quasicondensates, which are obtained by confining the atoms with
radiofrequency-induced adiabatic potentials [14, 15]. By properly tuning the trap parameters and the
radiofrequency field detuning, parallel condensates can be prepared either in a side-by-side, or in a
head-to-tail configuration. In both cases, we describe each one-dimensional superfluid with the
complex-valued field ψj(x, t), where j = 1, 2 labels each subsystem, x is the coordinate in the longitudinal
direction, and t is time.

The real-time Lagrangian L of the system can be written as

L =

∫ L

0
dxL, L = Ltun +

∑
j=1,2

L0,j. (1)

Here L0,j is the Lagrangian density of the uncoupled quasicondensates, namely

L0,j = i�ψ∗
j ∂tψj −

�
2

2m
|∂xψj|2 −

g

2
|ψj|4, (2)

where m is the mass of each atom, g is the one-dimensional interaction strength [35], and � is the reduced
Planck constant. Note that in our effective one-dimensional approach we omit the external potential,
assuming that the transverse degrees of freedom are not excited. Moreover, in the absence of a longitudinal
potential, the atomic density along x will be approximately uniform. The Lagrangian density Ltun in
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equation (1) describes the tunneling of atoms between the two superfluids, namely

Ltun =
J

2

(
ψ∗

1ψ2 + ψ∗
2ψ1

)
, (3)

where the specific expression of the tunneling energy J ≡ J(x) depends on the configuration considered. In
the side-by-side configuration (figure 1(a)) we express it as J = J⊥, with J⊥ uniform and constant. In the
head-to-tail configuration (figure 1(b)) we choose J = 2J‖L δ(x), since tunneling will occur only at the
origin of the system4.

To describe the hydrodynamic properties of the system, we rewrite the complex field as
ψj(x, t) = [ρj(x, t)]1/2eiφj(x,t) , where ρj(x, t) is the local density of the bosonic atoms in the subsystem j and
φj(x, t) is the phase angle [36]. Substituting this field parametrization into the Lagrangian density of
equation (1), we find

L =
∑
j=1,2

[
−�ρjφ̇j −

�
2ρj

2m
(∂xφj)

2 − �
2

8mρj
(∂xρj)

2 − g

2
ρ2

j

]
+ J

√
ρ1ρ2 cos(φ1 − φ2). (4)

The tunneling dynamics, as can be seen from the last term of equation (4), is triggered by a nonzero relative
phase φ1 − φ2 between the superfluids: our goal is to derive an effective Hamiltonian description of the
relative phase dynamics. Indeed, phase correlators are the main observable quantities in cold atom
interferometry and decoherence experiments [13, 26, 37]. We thus define the total phase φ̄ and relative one
φ as

φ̄ = φ1 + φ2, φ = φ1 − φ2, (5)

and we define the total density ρ̄ and the density imbalance ζ as

ρ̄ =
ρ1 + ρ2

2
, ζ =

ρ1 − ρ2

2 ρ̄
. (6)

After these new variables are substituted in equation (4), different terms will appear in the new Lagrangian
density: those which contain only the total (or center of mass) fields, those of the relative fields, and the
couplings between relative and total fields. The latter terms can be neglected under the assumption that the
total density takes the mean field value of ρ̄(x, t) = ρ̄, namely that the fluctuations of the total density are
negligible, and assuming a uniform and constant value of φ̄. If the couplings between total and relative
modes are neglected, we can focus only on the Lagrangian density of the relative modes Lrel, which reads

Lrel = −�ρ̄ζφ̇− �
2ρ̄

4m
(∂xφ)2 − �

2ρ̄

4m

(∂xζ)2

1 − ζ2
− gρ̄2ζ2 + Jρ̄

√
1 − ζ2 cos(φ). (7)

By considering only the relative fields, we are neglecting in particular the anharmonic terms which couple
the density fluctuations with the phase modes. These contributions are unimportant in the
zero-temperature quantum regime that we consider [17], but can have a relevant role in the dynamics of a
system at a finite temperature [17], and for zero interaction between the subsystems [38, 39]. In this regard,
a discussion of the validity of our scheme for the typical experimental parameters will be given in the
conclusions.

Our Lagrangian, equation (7), extends the usual two-mode description of quantum tunneling by
including the contribution of the longitudinal excitations of the system. This is particularly evident from
the Euler–Lagrange equations for equation (7), which read

�φ̇ = −J
ζ√

1 − ζ2
cos(φ) − 2gρ̄ ζ +

�
2

2m

[
∂2

xζ

1 − ζ2
+

ζ(∂xζ)2

(1 − ζ2)2

]
, (8)

�ζ̇ = J
√

1 − ζ2 sin(φ) − �
2

2m
∂2

xφ. (9)

These equations reproduce the Josephson–Smerzi equations [40, 41] for bosons in a double well potential if
J = J0, with J0 uniform and constant, and the spatial dependence of the fields is removed. At the same time,
our equations (8) and (9) describe the complex dynamics in which the tunneling of the zero momentum
mode couples with the Bogoliubov excitations of the superfluids.

In the linear regime, for a small amplitude of the relative phase field and of the imbalance, equations (8)
and (9) can be simplified as

4 Strictly speaking, in the head-to-tail configuration the superfluid with label 1 occupies the region −L � x � 0. The invariance under
reflection of x in −x of L0,j allows to write equation (1).
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�φ̇ = −(J + 2gρ̄) ζ +
�

2

2m
∂2

xζ, (10)

�ζ̇ = Jφ− �
2

2m
∂2

xφ. (11)

These equations can be obtained as the Euler–Lagrange equations of the following low-energy effective
Lagrangian

Lrel = −�ρ̄ ζφ̇− �
2ρ̄

4m
(∂xφ)2 − �

2ρ̄

4m
(∂xζ)2 − (2gρ̄2 + Jρ̄)

2
ζ2 − Jρ̄

2
φ2, (12)

which is quadratic in the relative fields.

3. Reformulation in terms of quasiparticles

In this section, we derive the excitation spectrum of the coupled superfluids in the side-by-side
configuration, and in the head-to-tail one. For both configurations, we reformulate the complex dynamics
of interacting tunneling quasicondensates in terms of noninteracting quasiparticle excitations.

3.1. Side-by-side parallel quasicondensates
To describe the side-by-side tunneling configuration (figure 1(a)), we consider a uniform and constant
tunneling energy J = J⊥. Let us introduce the Fourier representation of the relative phase φ(x, t) and of the
imbalance ζ(x, t), namely

φ(x, t) =

√
2

L

∑
k�0

φk(t) cos(kx), φk(t) = αk

∫ L

0
dxφ(x, t) cos(kx), (13)

ζ(x, t) =

√
2

L

∑
k�0

ζk(t) cos(kx), ζk(t) = αk

∫ L

0
dx ζ(x, t) cos(kx), (14)

where we have imposed open boundary conditions, i.e. ∂xφ(0, t) = ∂xφ(L, t) = 0, ∂xζ(0, t) = ∂xζ(L, t) = 0,
at any time t. The wavevector k is given by k = πn/L, with n = 0, 1, 2, . . . .and we define the parameter
αk =

√
2 for k �= 0, while α0 = 1/

√
2.

We now substitute these Fourier field decompositions into the real space Lagrangian Lrel associated to
the Lagrangian density Lrel of equation (12). Thereafter, the Euler–Lagrange equation for φk yields an
explicit expression of the imbalance mode ζk: substituting it in the Lagrangian Lrel, we get an effective
Lagrangian for the phase modes only. With the usual Legendre transform, we can write the corresponding
effective Hamiltonian as

H =
∑

k

[
p2

k

2Mk
+

Mk

2
ω2

kφ
2
k

]
, (15)

where pk = Mkφ̇k are the linear momenta associated to the generalized coordinates φk. In this way, we have
reformulated the low-energy description of tunneling quasicondensates as a sum of noninteracting
harmonic oscillators, or quasiparticles. Each oscillator has a wavevector-dependent effective mass Mk,
namely

Mk =
�

2ρ̄

L

1

(J⊥ + 2gρ̄) + �2k2/(2m)
, (16)

and a quasiparticle energy given by

�ωk =

√
J⊥(J⊥ + 2gρ̄) +

�2k2

2m

(
�2k2

2m
+ 2(J⊥ + gρ̄)

)
. (17)

This quasiparticle energy is a gapped Bogoliubov-like spectrum, and the zero-mode term reproduces the
usual Josephson tunneling energy. Indeed, for k = 0, the excitation energy of equation (17) reads

�ω0 =
√

J2
⊥ + 2gρ̄J⊥, (18)

and ω0 is exactly the Josephson oscillation frequency in the absence of spatial dependence of the fields [41].
At the same time, in the absence of tunneling among the subsystems, i.e. setting J⊥ = 0, we get

4
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�ωk,B =

√
�2k2

2m

(
�2k2

2m
+ 2gρ̄

)
, (19)

that is the familiar Bogoliubov spectrum of elementary excitations along the longitudinal direction [42]. For
small wavevectors, the Bogoliubov spectrum can be approximated by the phonon spectrum �ωk = cs�k,
with the speed of sound given by cs = (gρ̄/m)1/2. We emphasize that, in this low-energy non-tunneling
regime the quasiparticle mass is wavevector independent, namely M = �

2/(2gL), and our procedure
reproduces the results of reference [21]. Moreover, for a nonzero tunneling energy J⊥ between the
quasicondensates, and in the Josephson regime of gρ̄ 	 J⊥, our excitation spectrum of equation (17) is
consistent with the one derived in references [29, 30]. With respect to these works, therefore, we obtain a
more general excitation spectrum, which includes the free-particle behavior of the Bogoliubov spectrum for
large wavevectors.

3.2. Head-to-tail parallel quasicondensates
In head-to-tail parallel superfluids (figure 1(b)) we model the tunneling energy as J(x) = 2J‖Lδ(x). We
implement a low-energy effective description of this system configuration by neglecting the spatial
derivatives of the imbalance in equation (10). For consistency with this approximation, we work in the
Josephson regime of gρ̄ 	 J‖, in which the experiments are usually performed [31, 37]. In this case,

equation (10) can be easily solved as ζ = −�φ̇/(2gρ̄), and, substituting it into equation (12), we get an
effective Lagrangian density for the relative phase

Lrel =
�

2

4g
φ̇2 − �

2ρ̄

4m
(∂xφ)2 − J‖ρ̄Lδ(x)φ2. (20)

In analogy with the previous subsection, here we decompose the phase field as

φ(x, t) =
1√
L

∑
n

qn(t) φn(x), (21)

where the φn(x) are real and orthonormal eigenfunctions of the eigenvalue problem[
− �

2

2 m
∂2

x + 2J‖Lδ(x)

]
φn(x) = εn φn(x); (22)

with open boundary conditions ∂xφn(0) = ∂xφn(L) = 0. The eigenvalues εn of equation (22) are
determined by the following equation for ε√

2mL2ε

�2
tan

(√
2mL2ε

�2

)
=

2mL2J‖
�2

, (23)

which admits an infinite set of solutions, labelled by the integer number n [43].
These solutions may either be obtained numerically or well approximated by the following analytical

approximations, holding when n 
 J̃‖ or n > J̃‖, where J̃‖ = J‖π/(�2π2/(2mL2)). First of all, in the regime
of n > J̃‖, the solutions εn of equation (23) are well approximated by

εn =
1

4

(√
4J‖ +

�2π2n2

2mL2 +

√
�2π2n2

2mL2

)2

, (24)

which, essentially, is the energy of a free particle with a mass gap. Actually, provided that J̃‖ � π/16,
equation (24) holds also for n = 0. In the opposite case of n 
 J̃‖ the solutions of equation (23) are instead
well approximated by:

εn =
�

2π2

2mL2

J‖

J‖ +
�2

2mL2

(
n +

1

2

)2

. (25)

which holds also for n = 0 when J̃‖ � 1/π. Finally, we emphasize that in the intermediate range of values of
J̃‖, namely for π/16 � J̃‖ � 1/π, the lowest solution (n = 0) of equation (24) may be written as
ε0 = �

2π2/(32mL2).
In analogy with the the previous subsection, we insert the decomposition of equation (21) into the

effective Lagrangian density Lrel of equation (20). Then, calculating the corresponding Hamiltonian with a
Legendre transformation, we get

5
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H =
∑

n

[
P2

n

2M
+

M

2
Ω2

nφ
2
n

]
, (26)

where Pn = Mφ̇n are generalized momenta associated to the phase modes φn. Again, we are describing the
dynamics of the relative degrees of freedom for head-to-tail parallel quasicondensates as noninteracting
harmonic oscillators with the effective mass M = �

2/(2gL), and the harmonic frequency
Ωn = (2gρ̄ εn/�

2)1/2. From the knowledge of the eigenvalues εn, obtained from equation (23), one
immediately derives the frequencies Ωn. In the following section we will discuss the relative phase dynamics
of this system in a regime of very small Josephson tunneling J‖, where equation (24) is reliable even for
n = 0. In this case, the quasiparticle energies can be expressed as

�Ωk =

√
2gρ̄J‖ +

gρ̄

2

�2k2

2m
+

√
gρ̄

2

�2k2

2m
, (27)

where, as in the previous subsection, we have introduced the wavevector k = nπ/L.

4. Phase oscillations in one-dimensional tunneling quasicondensates

We now discuss the phase dynamics after a quantum quench of the tunneling amplitude, describing a
procedure which can be implemented both for tunneling side-by-side and head-to-tail quasicondensates.

The time evolution of the relative phase and of its correlation functions is crucially dependent on the
experimental protocol adopted to prepare the initial state, and on the Hamiltonian under which the system
evolves. Here we suppose that the atomic system, initially confined in a one-dimensional single
quasicondensate, is symmetrically split into a couple of parallel superfluids. In the experiments, the splitting
procedure consists in tuning a radiofrequency field to create a double well adiabatic potential for the
parallel condensates [15]. For a large enough number of atoms in the system, as argued in references
[17, 21, 30], the splitting procedure leads to a Gaussian probability distribution of the imbalance, with zero
mean and a variance proportional to the mean-field density ρ̄. Hence, assuming a minimum uncertainty for
the relative phase φ, canonically conjugated to the imbalance ζ , the initial wavefunction in the relative phase
representation is given by [21]

Ψ[{φk}, t = 0] �
∏

k

Ψk(φk, t = 0), (28)

where the single phase wavefunction reads

Ψk(φk, t = 0) =
1

π1/4σ1/2
e
−φ2

k
2σ2 , (29)

with σ2 = L2/N = L/ρ̄, since φk is dimensionally a length. Note that, in order to have small fluctuations in
the relative phase field, the splitting time τ s must be very short. In particular, τ s must satisfy the condition
of τ s 
 ξ/cs, with ξ = (�2/mgρ̄)1/2 the healing length, and cs the speed of sound of the single superfluid
[21]. At the same time, τ s must be long enough to avoid the excitation of the transverse modes of the
one-dimensional superfluids.

Given the Gaussian initial state in terms of the phase modes φk, we want to calculate its time evolution
under the harmonic Hamiltonians of the tunneling quasicondensates, namely equations (15) and (26).
Experimentally, the time evolution under these Hamiltonians can be implemented by lowering the barrier
which separates the superfluids. This procedure must take place in a finite but quick enough time τ J ≈ τ s,
to avoid excessive dephasing on one hand [21], and to keep the system near the initial state, equation (29),
on the other.

In the Schrödinger picture, the quantum dynamics of the system of oscillators with Hamiltonians of
equations (15) and (26), follows the Schrödinger equation

i�∂tΨk(φk, t) =

[
− �

2

2Mk

∂2

∂φ2
k

+
Mkω

2
k

2
φ2

k

]
Ψk(φk, t), (30)

where the mass Mk and the oscillator frequency ωk are those calculated previously in the side-by-side, and
in the head-to-tail configurations. For each oscillator, the wavefunction remains Gaussian during the time
evolution, but the standard deviation evolves with time. In particular, the probability density of the mode k
at time t becomes [44]

|Ψk(φk, t)|2 = 1

π1/2σk(t)
e
−

φ2
k

σ2
k

(t) (31)

6
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Figure 2. Recurrent dephasing–rephasing dynamics of side-by-side tunneling quasicondensates for different system lengths:
L = 50μm (blue solid line), L = 100μm (red long-dashed line). Differently from uncoupled superfluids, which dephase
exponentially [21] (orange dashed line), in the tunneling configuration a clear oscillation of the phase coherence appears, as a
result of the partial resynchronization of the quasiparticle oscillators (see also figure 3). The parameters adopted here are
J⊥/� = 5/(2π)Hz, ρ̄ = 50 μm−1, 87Rb mass, g = g3D/(2πl2), with l =

√
�/(mΩ), and Ω = 2π × 2.1 kHz.

with σ2
k (t) given by

σ2
k (t) = σ2 cos2(ωkt) +

(
�

2

M2
kω

2
kσ

2

)
sin2(ωkt). (32)

Thus, during the time evolution, the standard deviations of the various modes evolve differently one from
the other, since their frequencies ωk and effective masses Mk are different.

The phase coherence of the system is quantified by the coherence factor [21, 23]

C(t) = 〈cos(φ)〉t = e
− 1

2L2
∑

k
〈φ2

k〉t

= e
− 1

4L2
∑

k
σ2

k (t)
(33)

where the averaging is calculated over the wavefunction at time t, namely Ψ[{φk}, t] in the φk

representation, and the second equality holds for Gaussian distributed variables [21, 46]. As equation (33)
shows, the coherence factor evolves in time as a function of the sum over all σ2

k (t). Depending on the
specific form of the excitation spectrum ωk and on the oscillator mass Mk, C(t) will show a different
qualitative behavior. For non-tunneling parallel quasicondensates with a phononic spectrum, and a
k-independent mass, the coherence factor decays exponentially to zero due to the dephasing of the modes
[21]. The dephasing of C(t) is however absent in tunneling superfluids, where the nonzero tunneling energy
J introduces a mass gap in the excitation spectrum [29]. This is exactly what happens in our case, as can be
seen in the quasiparticle spectra of equations (17) and (27).

In the next subsections we will explicitly discuss our results for C(t), obtained in the side-by-side, and in
the head-to-tail configurations. Before of that, let us briefly remind how the coherence factor is measured.
In the experiments, after releasing the external potential which confines the quasicondensates, one can
measure the distribution of the relative phase φ from the interference pattern between the subsystems.
Knowing the relative phase profile allows to calculate the coherence factor of equation (33), by integrating
eiφ over the length of the imaging system [23, 45].

4.1. Side-by-side parallel quasicondensates
The phase coherence C(t) of side-by-side quasicondensates is shown in figure 2. It is obtained from
equations (32) and (33) using the gapped Bogoliubov-like spectrum of equation (17), and the quasiparticle
mass of equation (16). Differently from non-tunneling superfluids (orange dashed line), we find a clear
rephasing phenomenon, which is more evident in longer systems (red line, L = 100μm) than in shorter
ones (blue solid line, L = 50μm). We find that the oscillations of C(t) become more frequent and with
higher amplitude if the atomic density ρ̄ is increased. A similar behavior is obtained also if the value of J⊥ is
increased, signalling that the phase coherence is enhanced by a stronger tunneling between the subsystems.

The substructures around 2ms, and 4ms in the curves of figure 2 are due to the incoherent sum of the
Gaussian standard deviations σ2

k (t), which appear at the exponential of the coherence factor C(t). This can
be seen in figure 3, where we plot the normalized standard deviations σ2

k (t)/σ2 of the Gaussian
wavefunctions Ψk(φk, t), for k = {0, 1, 2}π/L (we use k instead of n with a slight abuse of notation). Due to
the different quasiparticle energy �ωk for each mode, the deviations σ2

k (t)/σ2 oscillate with different
frequencies, and with smaller amplitudes for larger values of k. The sum over all these modes produces the
dephasing–rephasing oscillations shown in figure 2. This behavior of the system is completely different
from that of uncoupled condensates, in which, since σ2

0(t) ∝ t2 (orange dashed line of figure 3), the
coherence factor decays exponentially to zero [21].

7
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Figure 3. Time evolution of the Gaussian standard deviations σ2
k (t), rescaled with the σ2 of the initial state, in the side-by-side

configuration. In the absence of Josephson tunneling, the σ2
0 (t) increases quadratically with time (orange dashed line), producing

dephasing [17]. If tunneling occurs the mode σ2
0 (t) does not diverge in time, and dephasing does not occur. Note that the modes

here represented (blue solid lines) have different frequencies, and decreasing amplitudes for increasing k = {0, 1, 2}π/L. In this
plot, we use the same parameters of the blue solid line in the previous figure.

Figure 4. Oscillations of the coherence factor C(t) in head-to-tail parallel quasicondensates, where J‖/� = 8/(2π)Hz (blue solid
line), and J‖/� = 2/(2π)Hz (red dashed line). Note that a higher value of the tunneling energy J‖ enhances the frequency of the
oscillations, and increases the overall coherence. The coherence factor is calculated by using equation (33), with the excitation
spectrum ωk given by the numerical solution of equation (23). For both curves, we use L = 30μm, ρ̄ = 100 μm−1, and the other
parameters as in figure 2.

We point out that, following references [21, 29, 30], in the evaluation of the sum over the wavevectors k
of equation (33) we have introduced a natural cutoff Λ = π/ξ, where ξ = �/

√
mgρ̄ is the healing length.

Considering that the σk(t) strongly decrease in amplitude if k is increased, the cutoff does not introduce any
spurious unphysical behavior.

We emphasize that, while our zero-temperature theory predicts the phase oscillations to continue
indefinitely, a high phase coherence cannot be observed in the experiments for very long times. This is due
to the intrinsic presence of thermal excitations, and the conditions under which our theory is valid are
highlighted in the conclusions.

4.2. Head-to-tail parallel quasicondensates
The low-energy excitation spectrum of head-to-tail parallel superfluids, equation (27), is qualitatively
similar to that of side-by-side ones, equation (17). Due to this formal analogy, we expect to observe a
similar qualitative picture in the relative phase dynamics of the system. Indeed, after a sudden coupling of
the quasicondensates with a delta-like Josephson junction with tunneling energy J‖, the coherence factor
C(t) of equation (33) oscillates in time. As in the previous section, the oscillation is a result of the partial
dephasing and rephasing of the quasiparticle modes. In figure 4 we plot C(t) as a function of time for
different tunneling energies: J‖/� = 8/(2π)Hz (blue solid line) and J‖/� = 2/(2π)Hz (red dashed line).
Thus, for higher values of J‖ the oscillations of C(t) are more frequent, and with a higher baseline, signalling
a higher phase coherence. As we stress in the conclusions, and similarly to the case of head-to-tail
quasicondensates, our zero-temperature approach does not describe the thermal decoherence processes
which could dissipate these oscillations at long times. Thus, in the experiments, a sufficiently high value of
J‖ is needed, to observe the phase oscillations before of the onset of thermal dephasing.

Let us finally note that a single quasicondensate can be split into a couple of parallel head-to-tail
superfluids by superimposing an optical potential to the longitudinal magnetic trap [47]. The tunability of
this configuration and the possibility to engineer a box-like potential along x are useful tools to satisfy the
hypothesis of a constant density ρ̄, and to implement our open boundary conditions.
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5. Conclusions

We have derived the excitation spectrum of tunneling quasicondensates in two distinct experimental
configurations: side-by-side, and head-to-tail superfluids. We find that the sudden coupling of the
independent quasicondensates produces an interesting nonequilibrium dynamics of the relative phase
between the subsystems. In both system configurations, due to the formal similarities in the excitation
spectrum, the coherence factor oscillates in time, driven by a nonzero tunneling between the
quasicondensates. The coherence and the frequency of the oscillations are enhanced for higher atomic
densities and for higher tunneling energies.

The unavoidable thermal fluctuations of temperature T setup a typical time τ above which our
zero-temperature results are no more reliable and a thermal-induced dephasing is expected. The
microscopic source of the decoherence is the coupling between the center of mass modes, constituting a
thermal bath, and the collective modes of the relative phase [17]. We estimate the typical time τ as
τ = �/(kBT), where kB is the Boltzmann constant [17]. Thus, our analytical and numerical dynamical
results become unreliable for a time duration t such that t 	 τ . Considering this criterion, the experimental
observation of the phase oscillations shown in figures 2, and 4, requires that the temperature before the
splitting is in the nK range. Indeed, assuming that the oscillations are dissipated only in part on a time
interval up to 10τ , an initial temperature of 5nK would allow to observe 15ms of the dynamics. By properly
tuning the tunneling energy, this time should be sufficient to observe at least a partial rephasing of the
system.

We are fully aware that reaching these conditions of temperature in our setup poses a real experimental
challenge, since analogous experiments in atom chips are currently performed at a temperature of 18nK
[31]. At the same time, considering the huge experimental developments of the last decades, we believe that
the implementation of these experimental conditions will be soon technically feasible.
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