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A real-time 3D reconstruction of staircases for rehabilitative
exoskeletons

Marina Raineri, Student Member, IEEE, Riccardo Monica, Member, IEEE, and
Corrado Guarino Lo Bianco, Senior Member, IEEE

Abstract—In medical contexts, the use of assistive exoskeletons
for the rehabilitation of people with impaired mobility represents
a common practice. Recent advances suggest that, soon, such
mechatronic systems will also be used to assist people in their
everyday life. In order to reach such target, exoskeletons must
become able to perceive the environment. To this purpose, a
system for the parametric identification of a staircase is proposed
in this paper. More precisely, given a staircase of unknown
geometry, the system identifies its 3D shape. Furthermore, it
also estimates the reciprocal orientation and distance between the
exoskeleton and the staircase. Differently from other approaches,
this result is achieved by means of low cost devices: an inertial
measurement unit, two ranging sensors, and an Arm-Cortex
processor. Starting from the ranging sensors acquisitions, the
staircase model is identified in real time, during the execution
of a step. The proposed procedure is based on an extended
recursive total least squares strategy, in order to fully exploit
the computational capabilities of the Arm processor, and it
is characterized by execution times smaller than 10−3 s. The
estimation algorithm has been tested on an actual exoskeleton
and the resulting experimental outcomes are compared with the
results obtained through alternative methods.

Index terms—Staircases 3D reconstruction, ranging sensor,
lower-limb exoskeleton.

I. INTRODUCTION

Exoskeletons are assistive devices which can be used in
different contexts. In particular, they can be adopted to reduce
the physical efforts of workers but, more frequently, they
represent powerful instruments for rehabilitation of injured
people or the assistance of patients with limited motion
capabilities. An exhaustive review on the actual therapeutic
uses and performances of lower limb exoskeletons is proposed
in [1]. The Authors underline that almost all the studies in the
field neglect the system dynamics. This is probably motivated
by the fact that commercial exoskeletons are currently not
equipped with self-balancing systems. Apart from possible
technical reasons which could motivate such choice, another,
practical one, can be emphasized. At the moment, commercial
exoskeletons are not directly driven by patients but, conversely,
they are operated by specialized physiotherapists who activate,
depending on the therapy, proper pre-programmed gaits. The
motion is balanced by the patient, assisted by the operator,
through the use of crutches. Consequently, at a control level,
only kinematics problems need to be handled.
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Large part of the papers mentioned in [1] focus on straight
walking movements, while other human activities are poorly
covered. In particular, the ability to ascend and descend
staircases is addressed in a few works and, due to the pre-
viously mentioned reasons, it is handled through the adoption
of repetitive movements. Such choice, which does not pose
particular problems on flat surfaces, complicates the staircases
climbing motion. In fact, steps geometry changes depending
on the architectonic context and, moreover, the approach to the
first tread must be adapted depending on the initial distance
between the exoskeleton and the staircase: with commercial
devices, such uncertainties are handled, through relevant phys-
ical efforts, by means of the crutches.

This considerations suggest equipping the exoskeleton with
sensors, so as to detect the surrounding environment and,
consequently, to adapt its gait. In recent years, a branch of the
research activity in this field focused on the gait identification
problem, managed through the use of different sensors like, for
example, Inertial Measurement Unit (IMU) and force-sensitive
resistor. On the basis of the acquired data the Authors of
[2], [3] were able to determine if the exoskeleton is walking
on a straight ground, on a ramp, or on a staircase. In [4],
the actual gait phase was identified. The common aim of
these studies was to compute, depending on the obstacle, the
most appropriate exoskeleton reaction. For example, in [5]–[7]
different methodologies have been developed in order to help
people to climb staircases of known geometry.

When the environment is unknown, two alternative strate-
gies can be adopted. In the first, the perception capabilities of
the person who wears the exoskeleton – acquired for exam-
ple by means of electrophysiological measurements sensors,
such as electromyography or electroencephalography sensors
– are used to directly drive the unit [8]. In the second, the
environment must be perceived through devices which are
typically based on Time-of-Flight (ToF) technologies. Laser
scanners are the most frequently used devices. They allow
one obtaining, with a single sweep, a complete point cloud
of the environment. Such point cloud needs to be post-
elaborated in order to convert it into parametric surfaces.
The resulting elaboration represents a challenging task, which
requires specific computational resources.

Early works concerning the plane fitting problem appeared
in [9], [10]. The first paper estimates both the best fitting
plane and its reliability, while the second one proposes a
model which also considers the noise in range data. In the
subsequent years, alternative works addressed the same prob-
lem by using data obtained from different laser sensors. In
[11], 3D georeferenced data were used and two algorithms,
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based on the planar regression and the moment of inertia,
were proposed; a SICK laser scanner was used in [12] and a
probabilistic plane fitting concept was suggested for the point
cloud elaboration. An alternative method, which still requires
a high computational burden, appeared in [13]. It was based
on the recognition of common primitives, such as cuboids or
cylinders, and on a neighboring technique. A cheaper solution
was adopted in [14]. In that paper a 2D laser scanner, driven
by a stepper motor so as obtain a 3D reconstruction, was
used for the acquisition of the point cloud. In a recent work,
focused on the estimation of the environmental features for
an exoskeleton application [15], an IMU and a depth camera
were used to generate a 3D point cloud. Such point cloud was
then processed through a neural network, so as to classify the
surrounding objects. A survey concerning the known plane
fitting methods can be found in [16]. Such paper underlines
that, in practical applications, a trade-off between speed and
quality must be reached.

Other works in the literature specifically address the stair-
case identification problem. A visual system was implemented
in [17] for a humanoid robot, while in [18] a NAO robot
was additionally equipped with a laser range finder. A stepper
motor and a 2D laser scanner were mounted in [19] on a
hexapod robot in order to acquire 3D point cloud of a staircase.
Finally, an exoskeleton application was considered in [20]: the
staircase was identified by means of a depth camera mounted
on the patient chest.

All the mentioned techniques can be divided into two main
categories: those based on visual systems and those adopting
laser scanners. The use of such identification systems in com-
mercial exoskeletons is prevented, in part, by cost reasons. For,
example, laser scanners are typically expensive – the cheapest
ones cost some hundred dollars – and their dimensions are
inadequate for the slim structures of the exoskeletons: the
dimension of the smallest Sick sensor is equal to 6.0 x 6.0
x 8.6 m−2. Approaches based on visual systems may admit
reduced sensor costs, but they still assume the acquisition of
a point cloud, which is later elaborated by means of dedicated
boards with sufficient computational capabilities.

This paper proposes a solution to the plane fitting problem
for an exoskeleton, based on low cost devices. In particular,
the target is represented by the parametric identification of a
staircase posed in front of the exoskeleton. The identification
methods proposed in the literature – see, for example, the
above mentioned ones – hypothesize that (a) a point cloud is
acquired, (b) the point cloud is partitioned, so as to associate
points belonging to the same surface to a single cluster, and
(c) an appropriate identification algorithm is used on each
cluster in order to identify the parameters of the associated
surface. Such working schema can not be adopted in a low
cost architecture with limited computational capabilities and,
for this reason, in this paper an alternative strategy is proposed.
It fuses the three previously mentioned phases into a single
one, which is recursively executed at each sampling time.
Practically, the point cloud is obtained during the motion of the
exoskeleton, by acquiring a sequence of single points and by
immediately processing them in real time through a recursive
method characterized by a limited computational burden.

The surfaces points are acquired by means of a VL53L1X
ranging sensor whose current cost is close to 4 dollars.
Such ranging sensor has already been used in a collaborative
environment. Tests made in [21], [22] confirm that it can be
successfully used in real-time contexts. It is a solid state minia-
turized sensor, which emits a single laser beam. Every time a
new point is acquired, it is tentatively associated to one of the
possible surfaces, whose parameters are immediately updated
through a Recursive Total Least Squares (RTLS) approach
[23], [24]. The resulting staircase identification algorithm is
characterized by a limited computational burden, so that it
has been implemented, as a task, in the exoskeleton control
board: the additional hardware, required for the staircase
identification, is limited to 2 ranging sensors.

The paper is organized as follows. Section II describes the
exoskeleton and the proposed acquisition system. Section III
reports the equations of the adopted RTLS, while Section IV
proposes the recursive algorithm used to identify the stair-
case surfaces. Experimental results obtained with an actual
exoskeleton are presented in Section V. In the same section,
comparisons are proposed with the outcomes of alternative
methods. Final conclusion are drawn in Sec. VI.

II. THE SYSTEM

The perceptual system developed in this work was con-
ceived for a commercial exoskeleton. Consequently, much
attention was paid to the cost of the acquisition system. Three-
dimensional environments are typically acquired by means
of stereoscopic cameras or lidar scanners but, for economic
reasons, in this work a totally different approach is followed
and staircases are detected by means of an economic ranging
sensor named VL53L1X produced by STMicroelectronics.
Such sensor has reduced dimensions (4.9×2.5×1.56 m−3) and
can acquire distances up to 4 m at a frequency of 50 Hz. While
lidar scanners and camera sensors can instantly acquire an
entire point cloud, ranging sensors can only measure a single
distance at each sampling instant. Necessarily, the point cloud
is not acquired as a whole, but it grows during the exoskeleton
motion. In particular, when the exoskeleton faces a staircase,
it begins hinting a step and, at the same time, it progressively
estimate the geometry of the staircase itself. When the next
touch down tread is identified, the leg trajectory is modified
in order to correctly conclude the step.

The exoskeleton considered in this work has a structure like
the one shown in Fig. 1. It has two degrees of freedom for
each leg, which are used for the movement of the hip and
the knee, respectively. An IMU is mounted on the torso and
measures the exoskeleton orientation w.r.t. a world reference
frame. Two ranging sensors are located on the calf of each leg
(see Fig. 2). Such sensors measure the distance between the
calf and the staircase surfaces. The surface estimation system
proposed in this paper is based on the knowledge of positions
pl and pr, corresponding to the points in which the laser rays
intercept the staircase surfaces (see also Fig. 1), measured w.r.t.
an inertial frame located on the supporting foot. Both positions
can be calculated from the knowledge of

• the kinematic parameters of the exoskeleton,
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Fig. 1. Schematic representation of the exoskeleton. Two ranging sensors
measure the distance (red dashed lines) between the calf and the staircase
surfaces. Positions of pl and pr w.r.t. inertial frame {W} are obtained by
solving a forward kinematic problem.

ranging sensors

Fig. 2. The two ranging sensors mounted on the exoskeleton calf.

• the 4 joint variables (θl1 , θl2 , θr1 , θr2 ),
• the torso orientation,
• the distances acquired by the ranging sensors.
When one of the two legs starts climbing the staircase, a

point cloud is progressively built and analyzed in order to
identify the step surfaces. During the motion, each sensor
draws an approximately linear segment on each surface (see
Fig. 1). Since an infinite number of planes passes through
a single linear segment, a second one is required in order to
uniquely define the surface: this motivates the use of 2 ranging
sensors for each leg.

The exoskeleton is governed by a Arm Cortex-M4 32bit pro-
cessor running at 168MHz, with a sampling rate of the control
loop equal to 1 kHz. The limited computational capabilities
of such processor imposed developing a stair identification
approach based on a lightweight strategy. The identification
method proposed in this work exploits the incremental acqui-

sition of the point cloud. Practically, surfaces are identified by
means of an iterative procedure which progressively updates
the surfaces parameters. Such approach, which drastically
reduces the number of operations that must be executed at
each sampling instant, will be described in next Section III.

III. THE PROPOSED RECURSIVE TOTAL LEAST SQUARES
APPROACH

Surface identification problems are typically solved by
means of least squares approaches or their orthogonal coun-
terpart, i.e., Total Least Squares (TLS) strategies. TLS ap-
proaches are applied in different contexts, from the robot
localization problem [25], to the estimation of parameters
[26], [27]. Furthermore, they are used for signal processing
applications and FIR filtering [28], [29], but also for the
estimation of the batteries capacity [30], [31]. Mentioned
works propose several recursive TLS techniques, but the
emphasis is always posed on a recursive formulation of the
Singular Value Decomposition (SVD) problem which must be
internally solved. Conversely, for the problem at hand, the
SVD problem, due to the dimension of the involved matrices,
has a negligible computational impact, but the sequential
acquisition of the point cloud requires to continuously update
the internal matrices of the algorithm: an iterative procedure
is used in order to reduce the computational burden of the
update process.

In this work, the staircase surfaces are identified by means
of a RTLS approach similar to the one proposed in [23], [24].
Similarly to the standard TLS method [32], [33], each plane
is identified from an over-determined system of equations.
Such equations are obtained by assuming that all the points
associated to the same surface are actually contained by the
same point cloud but, since acquisitions are affected by noise,
the plane coefficients need to be estimated through a best
fitting approach.

Unfortunately, due to the acquisition procedure adopted, it
may happen that points are assigned to the wrong surface. The
RTLS algorithm has been consequently modified, in order to
update surfaces by adding new points or by removing wrongly
assigned ones.

This section will briefly recall the basic concepts of the TLS
strategy and, then, it will show how it can be reformulated into
a recursive form.

Any planar surface can be analytically represented as fol-
lows

vx(x− x̄) + vy(y − ȳ) + vz(z − z̄) = 0, (1)

where v := [vx vy vz]T is a generic vector which is orthogonal
to the plane and p̄ := [x̄ ȳ z̄]T is a generic point lying on the
plane. A point p := [x y z]T belongs to the plane if it satisfies
(1). Thus, a plane is defined through the knowledge of vectors
v and p̄.

Given a cloud of points pi = [xi yi zi]
T , i = 1, 2 . . . , n,

the corresponding best fitting plane can be found by means of
several methods, among which the TLS is the most commonly
used one. The plane coefficients are obtained by minimizing



(c) 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

4

the squared distances between the given points and the plane
itself, i.e., by minimizing the following cost index

J =

n∑
i=1

[vx(xi − x̄) + vy(yi − ȳ) + vz(zi − z̄)]2

v2x + v2y + v2z
. (2)

Any cloud of points admits a centroid defined as follows

e :=
1

n

n∑
i=1

pi, (3)

or, alternatively,

e :=
PoT

n
, (4)

where P := [p0 p1 . . .pn] ∈ R3×n is a matrix which contains
the points and o := [1 1 . . . 1] is a row vector containing n
ones.

As shown in [34], the centroid associated to the point cloud
belongs to the best fitting plane, so that p̄ can be assumed as
follows

p̄ = e. (5)

Bearing in mind (5), (2) can be rewritten into the following
form

J = ‖Mpn̂‖2 = n̂TMT
p Mpn̂ , (6)

where Mp ∈ Rn×3 and n̂ ∈ R3 are defined as follows

Mp := (P− p̄o)T =

 x1 − ex y1 − ey z1 − ez
...

...
...

xn − ex yn − ey zn − ez

 , (7)

n̂ =
1√

v2x + v2y + v2z

 vxvy
vz

 . (8)

Evidently, n̂ is an unit vector which is orthogonal to the
estimated plane and can be obtained by minimizing J, i.e.,
by solving the following optimization problem

n̂∗ = arg min
n̂

{
n̂TMT

p Mpn̂
}

(9)

Since matrix MT
p Mp ∈ R3×3 is real, symmetric and positive

semi-definite, the solution of (9) is well known and can be
obtained through an SVD decomposition of the same matrix.
In particular, MT

p Mp can always be written as follows

MT
p Mp = [û1 û2 û3]

 λ1 0 0
0 λ2 0
0 0 λ3

 ûT
1

ûT
2

ûT
3

 , (10)

where û1, û2 and û3 are the vectors of an orthonormal basis
of R3 composed by the eigenvectors of Mp and λ1 ≥ λ2 ≥
λ3 ≥ 0 are the corresponding eigenvalues. According to [34],
the solution of (9) is given by n̂∗ = û3, where û3 is the
eigenvector associated to λ3, i.e., to the smallest eigenvalue.

The SVD decomposition of matrix MT
p Mp, owing to its

reduced dimension, is not time consuming and can be effi-
ciently obtained in real time even through processors with
reduced computational capabilities. However, as anticipated in
Section II, the point cloud is continuously updated, so that the
dimension of Mp continuously grows and the re-evaluation of
MT

p Mp can become time consuming.

The mentioned problem has been overcome by implement-
ing an iterative procedure for the estimation of the plane
coefficients.

Bearing in mind (5) and (7), as well as the definition of
vector o, product MT

p Mp can be expanded as follows

MT
p Mp = (P− p̄o)(P− p̄o)T ,

= PPT − eoPT −PoTeT + eooTeT ,

= PPT − eoPT −PoTeT + neeT .

By further recalling (4), the following equation is obtained

MT
p Mp = PPT − neeT − neeT + neeT = PPT − neeT .

(11)
Equation (11) can be used for the recursive update of MT

p Mp.
Let us suppose that at step n, product MT

pn
Mpn

has been
obtained by means of the following equation

MT
pn
Mpn

= PnP
T
n − neneTn , (12)

and that terms Vn := PnP
T
n ∈ R3×3 and en ∈ R3 have been

stored into 2 variables. At step n+ 1, product MT
pn+1

Mpn+1

necessarily assumes the following form

MT
pn+1

Mpn+1 = Pn+1P
T
n+1 − (n+ 1)en+1e

T
n+1, (13)

where
Pn+1 := [Pn|pn+1]. (14)

Evidently, term Pn+1P
T
n+1 in (13) can be obtained, with

a limited computational burden, by means of the following
expression

Vn+1 = Pn+1P
T
n+1 = PnP

T
n+pn+1p

T
n+1 = Vn+pn+1p

T
n+1.

(15)
Similarly, en+1 can be updated by means of the following

mean recursion formula

en+1 :=
Pn+1o

T
n+1

n+ 1
=

Pno
T
n + pn+1

n+ 1
=
nen + pn+1

n+ 1
.

(16)
As shown in next Section IV, the acquired points may

also be assigned to the wrong surface due to the incremental
acquisition of the point cloud. As a consequence, it is impor-
tant to have the possibility to remove a point pA, which has
been erroneously assigned to a plane, from that surface, in
order to discard it or to assign it to a new plane. The same
reasoning followed for the synthesis of (15) and (16) leads
to the following recursive equations, which can be used to
remove point pA erroneously assigned to a plane

Pn−1P
T
n−1 = Vn − pAp

T
A, (17)

en−1 :=
nen − pA

n− 1
. (18)

IV. PLANE FITTING ALGORITHM

As explained in previous sections, the staircase steps are
identified by means of economic ranging sensors, so that the
point cloud grows, point by point, during the motion. As a
consequence, when a new point pr or pl is acquired, its
membership to a given surface is not known in advance. For
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such reason, the first problem to be solved is the identification
of the surface on which acquired points are located.

A staircase is made of a sequence of planar surfaces. A
structure Sid = {n, B, V, e, n̂∗, σ, ok } is defined for each
of them. It contains all the elements required for the analytical
representation of the surface. Each structure is defined as
follows:

• id, surface IDentification number. 0 indicates the ground
plane;

• n = [nr, nl], number of points assigned to Sid, deriving
from the right and the left ranging sensors, respectively;

• B ∈ Rb×3, First Input First Output (FIFO) register which
stores the last b points associated to Sid;

• e := [ex ey ez]T ∈ R3, centroid of Sid;
• V ∈ R3×3, matrix PPT used by the RTLS (see Sec-

tion III);
• n̂∗ ∈ R3, normal vector of Sid;
• σn, standard deviation of the distances between the

acquired points and Sid;
• ok, Boolean variable which indicates if the plane estimate

is reliable or not.
Structures are collected into a vector of five elements S :=
[S0, S1, . . . , S4]T , since during a standard climbing step the
acquired points belong to a maximum of 5 surfaces. Even ids
correspond to horizontal surfaces, while odd ids are relative
to vertical ones.

It is natural to assume that, while climbing, the first acquired
points are located on S0, immediately followed by other points
falling on the first riser, S1, then by others lying on the first
tread, S2, and so on.

The functions proposed in Algorithm 1 exploit such idea
for the identification of the planes. The first one, i.e., Assign,
associates the acquired point to the correct surface, while
the second one, i.e., SurfUpdate, updates the corresponding
surface equations through the recursive technique proposed
in Section III. Details of both functions are given in Sub-
sections IV-A and IV-B respectively, while the workflow of
the algorithm is proposed in Algorithm 1. The calling main
program is omitted for conciseness. At each sampling time,
the main program computes the coordinates of a new point
through a forward kinematic function, and then passes it
to Assign. Furthermore, the calling program keeps track of
an index, id, which identifies the surface currently under
investigation. During the motion, the first points will certainly
belong to S0, so that, initially, id = 0.

The standard version of the algorithm does not make
assumptions concerning the surfaces orientations. However,
in case of regular staircases, even and odd planes can be
assumed horizontal and vertical, respectively. Such assump-
tions simplify the RTLS procedure: for horizontal planes the
normal vector is perpendicular to the ground, while for the
vertical ones, matrix V becomes 2-dimensional, so that the
SVD procedure is faster.

A. Phase I: points are assigned to the proper surface

Each time a new point p := [px py pz]T is acquired, function
Assign is called. As previously asserted, points are preliminary

Algorithm 1: The algorithm which assigns the point
to the correct surface and updates its information.
Data: pi, acquired point, Qi, FIFO queue which

stores q points from a single ranging sensor
Result: Sid, id ∈ [0, s], structure for the s surfaces

identified
1 Function Assign(p,Q,S, f, id)
2 if Q is full then
3 Compute z̄ and σz;
4 q← Extract(Q);
5 if IsEven(id) & (σz < thz) & (|qz − z̄| < σz)

then
6 SurfUpdate(q, Sid, f );
7 else if IsEven(id) & (σz ≥ thz) &

(qz > Sid.ez + 1.5 thz) then
8 id← id+ 1;
9 SurfUpdate(q, Sid, f );

10 else if IsOdd(id) & (σz ≥ thz) then
11 SurfUpdate(q, Sid, f );
12 else if IsOdd(id) & (σz < thz) then
13 if (qz > Sid−1.ez + thpl) then
14 id← id+ 1;

15 SurfUpdate(q, Sid, f );

16 Q← Insert(p);

17 Function SurfUpdate(q, Sid, f )
18 if B is full then
19 r← Extract(Sid.B);
20 d = Dist(r, Sid);
21 if not(|d| ≤ Sid.σn) then
22 RemoveFromSurf (r, Sid, f );

23 Sid.B← Insert(q);
24 AddToSurf (q, Sid, f );
25 if Sid.nr ≥ N & Sid.nl ≥ N then
26 Sid.ok ← 1;

27 if id > 0 & Sid.ok = 1 then
28 Shift(Sid−1, Sid);

analyzed in order to allocate them on the correct surface. To
this purpose, they are not immediately assigned to a surface
but, conversely, they are initially stored into a (First Input First
Output) FIFO queue, named Q := [p0 p1 · · ·pq−1] ∈ R3×q ,
which contains the last acquired positions. The queue dimen-
sion, i.e., q, is kept small, so as to guarantee that Q contains
points belonging to a maximum of two adjacent planes. Two
different FIFOs are used, one for the left laser sensor, Ql, and
the other for the right one, Qr. The correct FIFO is passed to
Assign by the calling program, together with a flag f which
is equal to “r” for the right sensor and to “l” for the left one.
Since the two FIFOs are managed with the same strategy, from
now on, Q will be used to indifferently indicate one of them.

The algorithm starts assigning points to a surface only when
Q is full. Conversely, new points are simply stored into the
FIFO (line 16). When Q is full (line 2), i.e., when it contains
q elements, stored points are analyzed in order to assign
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the oldest one to its corresponding plane. The basic idea is
that points belonging to horizontal surfaces have similar pz
components. As a consequence, if all the points in Q belong
to the same plane, then the standard deviation of their pz
component, i.e.,

σz =

√√√√1

q

q−1∑
k=0

(pzk − z̄)2,

with

z̄ =
1

q

q−1∑
k=0

pzk ,

must be smaller than a given threshold, thz > 0. Such
threshold depends on the acquisition noise.

Bearing in mind such idea, the oldest point in Q is extracted
and placed in q := [qx qy qz]T (line 4). If the current id is even,
and σz < thz , i.e., the points in Q belong to a horizontal
surface, and qz ∈ [z̄− σz, z̄+ σz], then point q is assigned to
the plane identified by the current id (lines 5, 6).

Still considering an even id – which means that the current
plane is horizontal – if σz > thz , then Q also contains
points belonging to a vertical surface: q may belong to
the horizontal plane or to the subsequent vertical one. If
Sid.e := Sid. [ex ey ez]

T is the centroid associated to the
current horizontal plane and the analyzed point has a qz
component which is larger than Sid.ez + 1.5 thz , then id is
incremented and q is consequently assigned to the subsequent
vertical plane (lines 7–9).

If function Assign is called with an odd id (the current
plane is vertical), until condition σz ≥ thz applies, points
are assigned to the vertical surface (lines 10, 11). Conversely,
if σz < thz a further test is made in order to check if qz
is higher than a minimum value given by the elevation of
the past horizontal plane (Sid−1.ez) plus a threshold thpl.
Such threshold corresponds to the minimum height which is
expected for a riser and has been introduced in order to avoid
false switches to the subsequent horizontal plane. If the test is
passed, id is increased and q is correctly assigned (lines 12–
15).

Any other situation is considered unacceptable and q is
consequently discarded, since it is probably affected by too
much noise.

B. Phase II: the surfaces equations are updated

When a point is finally assigned to a plane by the Assign
function, the corresponding surface structure Sid must be
updated. Hence Assign calls SurfUpdate(q, Sid, f ), which acts
on the plane data. It should be noticed that points q are
assigned to a given surface on the basis of considerations
deriving from the analysis of a short FIFO (Q), so that it
may happen that points are assigned to the wrong surface.
Therefore, function SurfUpdate(q, Sid, f ) re-elaborates them
by exploiting the entire point cloud assigned to each surface:
some points will be discarded, others will be removed from a
surface to be assigned to another.

Let us deeper analyze function SurfUpdate(q, Sid, f ). Any
new point q, associated to a surface through its id, is stored

into FIFO Sid.B (line 23) for future elaborations and, simul-
taneously, it is used to update the plane equations (line 24).
In particular, AddToSurf (q, Sid, f ) updates matrix Sid.V and
vector Sid.e through (15) and (16), respectively. Furthermore,
it calculates Sid.n̂

∗ from the eigenvectors of MT
p Mp.

A surface is declared “reliable” when its point cloud con-
tains at least N samples for each one of the two ranging sen-
sors (lines 25 and 26). For such reason, AddToSurf (q, Sid, f )
keeps track of the number of samples obtained from the left
and the right ranging sensors by properly updating field Sid.n.

The remaining lines of the code are conceived to improve
the surface identification. In the literature, surface outliers
are usually managed through techniques based on Random
Sample Consensus (RANSAC) algorithm [15], [35] or on
Least Trimmed Squares and Principal Component Analysis
[36]. Such methods cannot be adopted in this context due to
their computational burden, so that an alternative strategy has
been adopted. In particular, if FIFO B is full, lines 18–22
extract from it the oldest point, i.e., r, and verify its distance
from the plane: if such distance is higher than the standard
deviation of all the points associated to the plane, i.e., Sid.σn,
r is removed from the surface by means of RemoveFrom-
Surf (q, Sid, f ), which uses equations (17) and (18). Sid.n is
updated accordingly. It should be noticed that, as mentioned
before, if the assumption of perpendicular planes can be made,
functions AddToSurf and RemoveFromSurf simplifies since the
problem involves a single dimension for the horizontal planes
and two for the vertical ones.

A final refinement is eventually performed through function
Shift(Sid−1, Sid). If Sid is “reliable”, such function checks if
some of the points of Sid−1 are actually closer to the current
surface. In that case, such points are removed from Sid−1 and
added to Sid.

V. RESULTS

The proposed algorithm has been tested by means of the
experimental exoskeleton shown in Fig. 3. The first experi-
ments involved a single staircase which was approached from
different angles. Generic surfaces were assumed in Subsec-
tion V-A, while regular surfaces – with perfectly horizontal
treads and vertical risers – were considered in Subsection V-B.
An extensive set of experiments, involving three different
staircases, was then executed to verify the reliability and the
efficiency of the whole algorithm. The corresponding results
are compared in subsection V-C with the analogous ones
achieved through three alternative methods proposed in the
literature.

A. Identification of staircases with generic surfaces

The first tests considered the following three cases. Case A
is relative to a nominal operating condition: the exoskeleton
is posed in front of a staircase whose risers are 0.162 m
high and whose treads are 0.28 m depth. The rising foot
is posed at an initial distance L = 0.305 m from the first
riser, so as to execute a regular climbing step. Case B and
Case C consider two unusual working conditions. As shown
in Fig. 4b, in Case B the exoskeleton is counterclockwise
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Fig. 3. The experimental exoskeleton used for the tests. A yellow circle points
out the ranging sensors positions.

turned around its vertical axis by 23 deg, so as to see the
staircase on its right side. Furthermore, the climbing foot is
initially located closer to the staircase, more precisely at a
distance L = 0.27 m from the first riser. Conversely, in Case C
(see Fig. 4c) the exoskeleton is clockwise turned by 23 deg
around its vertical axis and its foot is posed at a distance
L = 0.49 m from the staircase. Cases B and C are unusual
in real operating conditions since, for evident reasons which
also include safety, therapists who assist the patient activate
the climbing procedure only when the exoskeleton is placed
exactly in front of the staircase. Both cases were considered
so as to verify the robustness of the approach. Indeed, they
admit different distances between the two sensors and the first
step of the staircase and different incidence angles between
the laser beams and the steps surfaces. In facts, both variables
influence the sensors precision and, consequently, may affect
the estimate accuracy. Furthermore, in both configurations,
points acquired at the same sampling instants by the 2 sensors
may belong to different surfaces, thus complicating their
assignment to the right plane. In all the three cases, a trajectory
was planned for the right leg, so as to make it climb the first
step. The acquired points were processed in real time by means
of a Arm Cortex-M4 32bit processor running at 168 MHz.
The following thresholds were assumed for Algorithm 1:
thz = 8 · 10−3 m and thpl = 13 · 10−2 m.

Figure 4 shows the outcomes of the three experiments.
Since this work focuses on the staircase estimation, a simple
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Fig. 4. Staircase reconstruction obtained through Algorithm 1 when (a)
the exoskeleton is located frontally w.r.t. the staircase, (b) it is turned
anticlockwise or (c) clockwise around its vertical axis. Light blue solid
segments are used for the actual profile of the staircase, while the estimated
surfaces are represented through magenta dashed lines. The thick green dashed
segment points out the exoskeleton orientation w.r.t. the staircase, while the
black dotted curve is the foot trajectory. A red asterisk along such trajectory
indicates the position in which the estimate of S2 is considered reliable.
Colors of the acquired points change depending on the surface to which they
are assigned: blue points have been used for treads, while green ones have
been used for risers. Discarded points are highlighted in red.

parabolic trajectory was used, and the same was not updated
after the steps were identified. A red asterisk along the
trajectory points out the position in which S2 is first identified.
As can be noticed, the surface is known when the foot is
still far from its final destination, so that the trajectory can be
promptly modified in order to obtain the best foot placement.

Table I makes it possible to evaluate quantitatively the
outcomes of the three test cases. Columns 2, 4, and 6 show, for
each id, angle α between the normal vectors of the actual and
the estimated surfaces (see also Fig. 5). Similarly, columns 3,
5, and 7 list distances d between the centroids of the estimated
surfaces and the actual planes. In all the test cases, a good
matching between identified and actual surfaces was obtained.
The sole exceptions are represented by surfaces S3 for Cases A
and B and S2 for Case C. The reason of such performance
deterioration is given by the vibrations in the exoskeleton
structure, which appear at the end of each transient. Due to
such vibrations, the acquisition precision reduces and points
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Fig. 5. The blue surface with its normal vector n̂ represents a plane of
the actual staircase, while the red surface is identified through the strategy
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contact point elevation error.
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for Figure 4.

are spread on the corresponding surface (see Fig. 4).

The most important row in Table I is the one relative to
S2, i.e., the touch down surface. For Cases A and B, α is
always smaller than 3 deg and the centroids associated to the
surfaces are closer than 3 millimeters to the actual staircase.
Such tolerances make it possible to reasonably select the final
touch down position for the foot. In such position, the height
of the estimated tread is equal to 0.1579 m for Case A, i.e.,
the estimated tread was roughly 4 · 10−3 m lower than the
actual one (see error e in Fig. 5), while for Case B it is
equal to 0.1603 m, i.e., the step was 2 · 10−3 m lower than
the real one. As anticipated, Case C returned the worst tread
estimation. However, in the touch down position the height
of the estimated tread is equal to 0.1551 m, i.e., the error
is similar to the one obtained for Case A. It is important
to point out that such precisions have been achieved with
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Fig. 7. Case B: staircase identification under the hypothesis of horizontal
treads and vertical risers. (a) top view (b) side view. Colors are the same used
for Figure 4.
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TABLE I
ANGLE α BETWEEN NORMAL VECTOR n̂ OF THE ACTUAL SURFACE AND
n̂∗ OF THE ESTIMATED ONE, AND DISTANCE d BETWEEN POINT CLOUD

CENTROIDS p̄ = e AND THE STAIRCASE SURFACES.

ID Case A, Fig. 4a Case B, Fig. 4b Case C, Fig. 4c
α (deg) d (m) α (deg) d (m) α (deg) d (m)

0 2.104 −9.30 · 10−5 4.340 −6.82 · 10−4 2.295 4.90 · 10−3

1 1.999 1.10 · 10−3 5.287 −1.30 · 10−5 3.916 2.10 · 10−3

2 2.607 −3.64 · 10−4 2.350 2.50 · 10−3 6.744 1.32 · 10−2

3 10.749 −5.90 · 10−3 8.147 −1.62 · 10−2 - -

TABLE II
RESULTS OBTAINED BY ADMITTING HORIZONTAL TREADS AND VERTICAL

RISERS. DATA ARE REPORTED IN THE SAME WAY OF TABLE I. ANGLE α
BETWEEN NORMAL VECTOR n̂ OF THE ACTUAL SURFACE AND n̂∗ OF THE

ESTIMATED ONE, AND DISTANCE d = e BETWEEN POINT CLOUD
CENTROIDS p̄ = e AND THE STAIRCASE SURFACES.

ID Case A, Fig. 4a Case B, Fig. 4b Case C, Fig. 4c
α (deg) d (m) α (deg) d (m) α (deg) d (m)

0 - −1.64 · 10−3 - −2.91 · 10−3 - −1.76 · 10−3

1 0.214 1.47 · 10−3 2.541 −0.72 · 10−3 1.096 4.12 · 10−3

2 - −6.36 · 10−3 - −4.22 · 10−3 - 1.65 · 10−3

3 3.139 −3.50 · 10−3 5.979 −1.50 · 10−2 - -

ranging sensors whose acquisition noise, measured under static
conditions, is equal to ±1.5 · 10−3 m.

B. Identification of staircases with horizontal treads and ver-
tical raisers

So far, the proposed algorithm hypothesized the identifi-
cation of staircases whose surfaces may be generically ori-
ented in the space. However, it is almost always possible
to assume that treads are horizontal and risers are vertical.
The identification algorithm considerably simplifies: the treads
estimation process becomes one-dimensional, while the risers
one becomes two-dimensional. Algorithm 1 can also manage
such simplified problems. In particular, the complexity of
functions AddToSurf and RemoveFromSurf reduces.

The same points acquired for Cases A, B, and C have
been re-elaborated by admitting such hypothesis. The obtained
results are visually shown in Figs 6, 7, and 8, while numerical
errors are listed in Table II. Due to the imposed parallelism,
errors d and e coincides, and α is always 0 for all the treads.
A comparison with the homologous results listed in Table I
shows that, due to the reduced degrees of freedom, slightly
higher errors are obtained. However, the maximum errors for
S2, i.e., the foot contact surface, is equal to −6.36 · 10−3 m.

In terms of computational time, the proposed algorithm
meets the expectations. With the adopted processor, i.e. a
Cortex-M4 32bit running at 168 MHz, the average compu-
tational time for the general purpose algorithm was equal
to 0.685 ± 0.437 · 10−3 s. For the horizontal treads version,
computational times reduce to 0.427 ± 0.132 · 10−3 s. Prac-
tically, the identification algorithm is sufficiently fast to be
executed between two subsequent acquisitions of the laser
sensors, whose sampling time is equal to 50 · 10−3 s.

C. Reliability tests on different staircases

The approach reliability has been tested through a set of
additional experiments involving 3 different staircases. For
each of them, 20 different positions and orientations of the
exoskeleton were considered. The experimental results are
summarized in the first 3 rows of Table III and have been
obtained by assuming Horizontal Treads and Vertical Risers
(HTVR). In the same table, they are compared with the
outcomes of the following alternative systems:

• [18] a NAO robot, additionally equipped with a laser
range finder (Hokuyo URG-04LX);

• [19] a hexapod robot, equipped with a stepper motor
and a 2D laser range finder (Sick LMS111) in order to
acquire 3D point cloud of a staircase;

• [20] an exoskeleton, equipped with a depth camera
(Percipio FM830).

In terms of accuracy, the performance of the novel method is
comparable with the ones achieved in [18] and [19]. Better
results are obtained in [20], which however use a dense
point cloud, which is elaborated offline by means of Matlab.
As shown by the last two columns of Table III, different
conclusions can be drawn in terms of computational times
and implementation costs: despite the low power processor
adopted, the novel method is evidently the fastest and its
implementation cost is very small.

Summarizing, for all the experiments, the elevation error
associated to the touch down position of the foot was lower
than 10−2 m. Such tolerance is acceptable for the application
at hand, since minor errors are compensated by the patient who
wears the exoskeleton. Furthermore, if required, additional
ranging sensors could be added to the system, in order to
improve the final approach to the step.

VI. CONCLUSIONS

The algorithm proposed in this work was conceived to
identify in real time the 3D shape of a staircase, so as to
allow an exoskeleton to consequently adapt its gait. Differently
from other strategies in the literature, the target is reached by
means of a low cost system based on an IMU, two ranging
sensors, and an Arm Cortex processor. Despite the architec-
tural simplicity, the 3D shape of the staircase is reconstructed
with a precision which is sufficient for the correct planning
of a climbing step. Furthermore, the computational time of
the algorithm is fully compatible with the cycle time of the
system.

A possible drawback of the method proposed in this work
is related to the incremental acquisition of the point cloud. In
fact, each new sample point is obtained at a different instant
and its Cartesian position is computed by solving a forward
kinematics problem. As a consequence, an accurate knowledge
of the kinematic parameters of the system is required in order
to properly build the point cloud: the mentioned accuracy
was achieved through a careful identification of the system
parameters. Such accuracy can also be affected by unmeasured
deformations of the structure. As previously reported, good
estimates have been obtained despite the system vibrations.
This result was possible because the exoskeleton structure is
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TABLE III
A COMPARATIVE ANALYSIS BETWEEN THE EXPERIMENTAL RESULTS OBTAINED IN THIS WORK WITH THE HTVR METHOD, AND THE ONES ACHIEVED

WITH THE ALTERNATIVE TECHNIQUES PROPOSED IN [18], [19], AND [20]. THE STATISTICS OF THE FIRST 3 ROWS REFER TO 3 DIFFERENT STAIRCASES.

Laser Camera Ranging Accuracy Acquisition and Sensors
scanner Sensors Risers Treads computation time cost

actual (m) mean (m) std (m) error (%) actual (m) mean (m) std (m) error (%) (s) ($)
HTVR � 0.153 0.157 2.8 · 10−3 2.61± 1.83 0.294 0.290 3.0 · 10−3 1.36± 1.02
HTVR � 0.162 0.169 3.4 · 10−3 4.32± 2.10 0.280 0.272 3.2 · 10−3 2.86± 1.14 (4.3± 1.3) · 10−4 8
HTVR � 0.175 0.179 3.2 · 10−3 2.29± 1.83 0.270 0.264 3.5 · 10−3 2.22± 1.30

[18] � � 0.070 0.074 3.1 · 10−3 6.00± 4.43 0.180 0.192 6.2 · 10−3 6.50± 3.44 (2.5± 0.1) · 10−2 ≥ 800
[19] � 0.050 0.053∗ – 6.00∗ 0.180 0.186∗ – 3.33∗ 16 ≥ 2000
[20] � 0.115 0.115 1.2 · 10−3 0.0087± 1.04 0.280 0.278 8.24 · 10−4 0.893± 0.29 – ≥ 300

sufficiently rigid and thanks to the angular sensors located
on the joint axes, which compensate for possible backslashes
along the actuation chains.

The limited computational burden of the proposed method
will allow, in the future, to improve the identification precision
by processing the signals of additional sensors. Currently, the
on-line gait planning problem is under investigation: once the
staircase has been identified, the exoskeleton step must be
adapted, so as to smoothly and correctly reach the final touch
down position.
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