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A B S T R A C T   

Non-dilute dispersed phase systems, such as foams, emulsions, and suspensions, are an important class of final 
formulations and chemical process intermediates in a variety of industries. The utility of these systems hinges on 
their stability over the lifetime of use, and therefore an accurate assessment of chemical and physical dynamics, 
asformulated, is required. We describe a unified treatment of diffusing wave spectroscopy (DWS) data using a 
range of optical path length with a goniometric instrument. DWS correlation data from multiple angles and 
robust Monte Carlo simulations are used to determine accurate values of the photon transport mean free path 
length. The variance on each correlation function is used to determine the physical time range that the mean 
squared displacement can be analyzed. Using standard solid particle suspensions of polystyrene and SiO2, we 
determine the average particle size with accuracy comparable to dynamic light scattering.   

1. Introduction 

Disperse systems, such as emulsions, foams, and suspensions, are 
important intermediate and final formulations in a variety of science and 
technology applications. For example, emulsions are used in applica-
tions ranging from the food and pharmaceutical industry to paints and 
coatings [1,2]. Likewise, particle suspensions are the basis of latex paints 
and can be used to enhance pharmaceutical bioavailability in liquid dose 
forms [3]. The stability of these formulations is often inferred from 
idealized measurements of the evolution of the mean size or from the 
overall rheology of the system. 

In the dilute limit, the behavior of a dispersion can be probed directly 
using dynamic light scattering (DLS) or microscopy to determine 
average droplet sizes [4,5]. However in concentrated dispersions, in-situ 
droplet or particle size measurements are difficult to obtain without 
compromising sample integrity. Diffusing wave spectroscopy (DWS) 
offers a potential solution to this challenge. DWS is a photon correlation 
spectroscopy technique which approximates light traveling through the 
sample as a diffusion process. This method has been successfully applied 
to study relative changes in structure as well as the rheology of optically 
dense systems, including particle suspensions, foams, and emulsions 
[6–10]. However, it commonly asserted that DWS performs poorly at 
particle sizing [11]. 

In a typical DWS experiment, coherent laser light impinges on a 
highly multiple-scattering sample. Scattered light is then detected in the 
far field and the intensity fluctuations (caused by the motion of scat-
tering of centers, e.g., droplets, bubbles, or solid particles) are tempo-
rally correlated yielding the intensity autocorrelation function, g2(τ) 
[11]. 

The collection optics used are predominantly avalanche photodiodes 
(APDs) or photomultiplier tubes (PMTs) (for single-speckle detection), 
though a camera can also be used to determine g2(τ) (multi-speckle) as 
well [12]. Before yielding interprable information on the scattering 
centers, the intensity autocorrelation function, g2(τ) must be trans-
formed to the electric field autocorrelation function, g1(τ) via the Siegert 
relation, assuming Gaussian statistics [13]: 

|g1(τ) |2 =
1
β
(g2(τ) − 1 ) (1) 

The parameter β is the contrast and depends on the experimental 
setup. The light propagation is treated as a diffusion process, it is 
assumed to undergo a random walk through the sample. Each photon 
can thus take a path of length s with an average step length of l*, called 
the transport mean free path [14]. g1(τ) is then the sum of all autocor-
relations corresponding to all possible path lengths, s, weighted by the 
probability, P(s), of a photon taking a path of that length [14]: 
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g1(τ) =
∫ ∞

0
P(s)e− k2

0〈Δr2(τ) 〉 s
3l* ds (2) 

Where k0 is the incident wave vector, given by k0 = 2πn∕λ, and 
〈Δr2(τ)〉 is the mean squared displacement over all scattering centers 
illuminated by the impinging beam at a lag time τ. 

Both the transport mean free path, l*, and the mean squared 
displacement offer insights into the physical nature of the dispersed 
system. For example, Sun et al., was able to discern the relative differ-
ences in elasticity of two emulsion formulations by analyzing the mean 
squared displacement [15]. By studying the trends in mean squared 
displacement over ageing for the two formulations, the authors could 
conclude the main factors impacting storage stability. Likewise, l* can 
also be used to discern physical processes in dispersed phase systems. In 
a study on the effects of pH on the dynamics of association in emulsions, 
l* was used to confirm disruption of micelles upon re-equilibration after 
the pH was altered [16]. 

While the physical interpretations of l* and the mean squared 
displacement are useful in understanding dispersed phase systems, the 
extraction of these parameters is not straightforward. For example, Eq. 
2, shows they are fully confounded. Furthermore, in order to extract any 
parameters from g1(τ), the path length distribution must be known. 
Therefore, utilizing DWS to study a system requires the solution to those 
two key problems. 

The path length distribution, P(s) is a function of both l* and the 
experimental geometry of the DWS apparatus, namely the location of the 
detector relative to the incident light, the shape of the sample cell, and 
the distribution of light on the surface of the cell. The two most frequent 
locations of detectors are across the sample, opposite of the impinging 
beam, (transmission, Scheme 1A2) or on the same side of the sample as 
the impinging beam (backscattering, Scheme 1A1). 

Commonly, a sample cell with a semi-infinite domain is used, where 
the cell is rectangular in shape and the dimensions perpendicular to the 
incident light are much larger than the thickness, L, of the cell, lying 
parallel to the incident beam, shown in Scheme 1A. In this case, the light 
is assumed to diffuse finitely in only one direction, and can be easily 
described by the diffusion equation [11]. If the impinging beam is 
expanded to cover the entire incident surface, called the ‘plane wave 

approximation’, and the detector is in the transmission orientation, P(s) 
takes the form [17]: 

P(s)=
̅̅̅
3

√

̅̅̅̅̅̅̅̅̅̅̅
4πsl*

√
∑∞

n=− ∞

{

exp

[
− 3((2n − 1)L − 2l* )2

4sl*

]

− exp

[
− 3

(
(2n − 1)L2

)2

4sl*

]}

(3) 

Eq. 3 can be substituted into Eq. 2 to yield an analytical expression 
for g1(τ) dependent only upon L, l*, and the mean squared displacement. 
Similar solutions can be found for an incident point source and Gaussian 
beam, as well as corresponding backscattering detector orientations [6]. 
For geometries that cannot be approximated as 1D diffusion, a general 
analytical solution to Eq. 2 has not been achieved. An example of a non- 
conforming geometry is shown in Scheme 1B, where the sample cell is 
cylindrical and the detector is located at an angle θ from the normal. 
Despite this, researchers have utilized stochastic simulations to deter-
mine P(s) for their specific experimental geometry with good agreement 
between theoretical and experimentally determined g1(τ) [18,19]. 
Typically, numerical simulations are performed where photons undergo 
a 3D random walk through a volume approximating the sample cell or 
through a 2D random walk in a planar projection of the sample cell. In 
the latter case, used by Fahimi et al. all to determine P(s) for a cylindrical 
sample cell, an ideal probabilistic contribution is added to account for 
the diffusion in the dimension lost by projection [19]. 

After determining the path length distribution, either by the diffu-
sion equation or by simulation, l* and the mean squared displacement, 
〈Δr2(τ)〉, can be extracted. The extraction process of these parameters 
requires careful consideration, however, since they are fully 
confounded. If the classical semi-infinite sample cell is utilized, both 
transmission and back-scattering data can be collected and used to 
separate them via the two independent equations [20]. Similarly, the 
temporally averaged intensity for transmission and back scattering can 
allow independent determination of l* [21]. Calibration techniques have 
also been used to determine l* in both classical geometries (e.g., finite 
light diffusion in a single dimension) and non-standard experimental 
setups. In the case of the commercially available DWS Rheolab instru-
ment, manufactured by LS instruments, the average intensity of a cali-
bration sample with a similar transport mean free path to that expected 

Scheme 1. DWS experimental setups. A) Classic semi-infinite domain DWS setup B) DWS performed on a cyclindrical sample cell  
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by the test sample is used to locally extrapolate an l*. However, this 
method introduces an error between five and 10 % [21]. Lastly, for a 
non-standard DWS measurement in the ALV CGS-3 dynamic light scat-
tering instrument, Fahimi et al. used an intensity calibration technique 
coupled with simulated l* intensities [19]. The calibration was then used 
to determine l* while using the same calibration particles as tracer 
particles to probe the microrheology of a non-Newtonian viscous 
medium. 

Due to the variation of experimental setups, the different approaches 
to data analysis, and the range of sample features that can be studied, 
most analyses of DWS data are reported to perform poorly in particle 
sizing. This is due to the lack of a refined method focusing on the use of 
DWS for particle sizing. Herein, we report a standardized DWS data 
handling framework (shown in Fig. 1) to probe particle dynamics and 
determine particle size of dispersed systems on a non-standard gonio-
metric DLS instrument. In this light, we propose systematic de-
terminations of correlation error, contrast (β) determination, and 
statistically relevant regions of the mean squared displacement. We also 
introduce a robust calibration technique to determine l* independently 
of sample dynamics combining methods from Fahimi et al. and Zhang 
et al. [19,21] Finally, we test our process on polystyrene and SiO2 dis-
persions, achieving sizing accuracy typically exhibited by dedicated DLS 
instruments and microscopy, which may range from <1% to ~3% 
[22–24]. 

2. Experimental materials and methods 

2.1. Solid suspensions 

Polystyrene suspensions were prepared by diluting 514 nm, 1.02 μm, 
and 3.03 μm diameter 10 vol% size standards, obtained from Millipore 
Sigma, to final concentrations of 5%, 2.5%, 1.25%, and 0.625% in water. 
SiO2 suspensions were prepared by dispersing dry 500 nm (General 
Engineering and Research), 1.0 μm (General Engineering and Research), 

and 4.3 μm (Cospheric) diameter spheres in water at 13, 10.8, 8.7, 6.5, 
and 4.3 wt% in water, followed by sonication for 5 min. In all cases, 
Ultrapure water (18.2 MΩ at 25 ◦C) was used from a MilliQ dispenser. 
Percent transmittance of the highest particle conentration (lowest l*), 
lowest particle concentration (largest l*), and mid point sample are 
shown in Section S5, verifying the optical density (0.06 < %T < 0.35%) 
for range of samples analyzed. 

2.2. Diffusing wave spectroscopy experiments 

Diffusing wave spectroscopy experiments were conducted on an 
ALV/CGS-3 Compact Goniometer from ALV-GmbH, equipped with a 
vertically polarized 633 nm 22 mW laser, two APD single-photon 
counters, an optical attenuator, and an ALV/LSE-5004 multiple τ 
correlator. Sample cuvettes for the instrument had an outer diameter of 
~10 mm and an inner diameter of ~8.66 mm. The βexp calibration ex-
periments utilized the 514 nm and 1.02 μm polystyrene suspensions and 
the 500 nm and 1.0 μm SiO2 suspensions at all concentrations. Each 
sample was run for a total collection time of 20 s at ten degree in-
crements from 20 degrees to 150 degrees, for a total of 14 data sets per 
concentration and size. The test sets were conducted similarly with the 
4.3 μm SiO2 and 3.03 μm polystyrene spheres, however, they were only 
analyzed at 30, 90, and 150 degrees. The output of each light scattering 
experiment includes average intensity, an intensity time series, and in-
tensity autocorrelation functions for each detector, and an attenuator 
value (as expressed via a monitor diode), used to correct intensity. 

2.3. Data handling workflow 

The goniometric instrument (ALV/CGS-3, ALV GmbH) allows the 
detectors to move in less than one degree increments around a cylin-
drical sample cell. Utilizing this feature, the input to our process is 
temporally averaged intensity, 〈I(t)〉θ, and intensity autocorrelation 
cuves, g2(τ)θ, for multiple angles. The raw g2(τ) is converted to g1(τ) and 

Fig. 1. Schematic overview of algorithmic treatment of DWS data to probe scattering center properties. A) From g2(τ), the contrast and baseline are obtained in order 
to yield the electric field autocorrelation function, g1(τ), as well as standard error B) l* is determined after intensity calibration with ideal scattering centers, followed 
by a multi-angle simultaneous fit, and C) g1(τ) data is filtered based upon its standard error to obtain a statistically relevant region of the mean squared displace-
ment, 〈Δr2(τ)〉. 

R.E. McMillin et al.                                                                                                                                                                                                                             



Colloid and Interface Science Communications 49 (2022) 100641

4

standard errors are calculated for all valid τ following the process out-
lined in Schätzel and Orsi et al., shown in Fig. 1A and described with an 
example in Section S2 [25,26]. Simultaneously, using the average in-
tensity data, an l* is determined through fitting to a multi-angle simu-
lation intensity curve, shown in Fig. 1B and elaborated on in Section S3. 
The resulting g1(τ) data is filtered based upon the standard error at each 
τ and a region is selected where the correlation function is statistically 
different than one and zero. This region defines the portion of the curve 
where statistically significant physical results can be extracted. 

Using the l* determined in Fig. 1B and g1(τ), the nominal mean 
squared displacement, 〈Δr2(τ)〉 is extracted. The standard error from 
g1(τ), σg1(τ), is similarly propagated through the numerical extraction 
yielding σMSD(τ), described in more detail in Section S4. Shown in 
Fig. 1C., the region identified by the error on g1(τ) is fit to an anomalous 
diffusion model, 〈Δr2(τ)〉 = 6Kατα, where the value of α describes the 
motion of the dispersed phase as being Brownian (α = 1), super-diffusive 
(α > 1), or sub-diffusive (α < 1). Depending on this value, a more 
appropriate model of the mean squared displacement is used to extract 
physical parameters associated with the sample, such as particle/droplet 
size [27]. 

3. Results and discussion 

3.1. Stochastic simulations 

In order to determine P(s) for a cylindrical sample cell, we utilized 
stochastic simulations similar to Lorusso et al. and Fahimi et al. [18,19] 
Photons were numerically simulated in a 3D Cartesian coordinate space 
with a cylindrical bounding surface approximating the cuvettes radius 
(R) and height (zmax), shown in Fig. 2A, where P(s) must be determined 
for all detection angles, nθ, of interest. The photons were assumed to 
undergo an ideal random walk in all dimensions with an average step 
length of l*. The laser impinges on the sample cell ~5 mm (zmin) from the 
base of the cuvette without beam expansion. Thus, the numerical 
simulation starts each photon at (x = − R + l*,y = 0,z = 0) and photons 
are allowed to randomly walk until x2 + y2 ≥ R2 or z ≤ zmin ∨ z ≥ zmax. 
Similar to Fahimi et al., we set a z detection limit corresponding to the 
number of angular detection bins, ∣z∣ < π

2nθ 
[19]. In all simulations we set 

a one degree angular resolution for a total nθ = 180. If a photon reaches 
the surface of the cylinder within the z detection criteria, the angle and 
total number of steps, N, is recorded. Any photon exiting that does not 
meet the z criteria is discarded. Photons that reach the zmin or zmax 
criteria are assumed to exit the sample without detection and also go 
unrecorded. 

In an unrestricted random walk, the number of expected steps is 
equal to Nexp = L2/l*2, where L is the magnitude of displacement and 
shown in Fig. 2A. We determine the distribution of N by binning 
detected photons in 400 linearly spaced bins beginning at Nmin =

Nexp∕100 and extending to 400 * Nmin. P(s) is then calculated by multi-
plying the bins by l* and normalized such that 

∫
0
∞P(s)ds = 1. Example P 

(s) curves for a simulated l* of 500 μm are shown in Fig. 2B alongside 
corresponding ideal calculated P(s) curves from Eq. 3 using the calcu-
lated L. The simulated path length distributions are distinctly different 
than those calculated from Eq. 3. Fig. 2C shows L (left axis, red), as well 
as N (right axis, blue) for an ideal random walk (solid line, Nexp) and the 
simulated photons (symbols, calculated by (Nsim =

∫
0
∞P(s)sds/l*)). Due 

to the differences in calculated and simulated probabilities, it is evident 
that simulations are required to adequately describe the diffusion of 
light through a cylindrical sample cell. Interestingly, for angles θ < 120o 

the calculated average number of scattering events is less than Nexp, 
however at θ = 120o, where L = R, a cross over occurs and Nsim > Nexp. In 
contrast to Fahimi et al., we did not find that P(s) could be scaled by the 
average path length to yield a ‘master curve [19].’ To mitigate this, we 
created a library of simulated P(s) series at all angles with l*∕R ranging 
from 5 × 10− 4 to ~0.35 in increments of 5 × 10− 4. This gave us 2.5 μm 
resolution on calculated values of l*, which we found more than 
adequate given experimental uncertainty with respect to particle 
concentration. 

3.2. Variance on autocorrelation functions 

In order to use the Siegert relation, Eq. 1, to obtain g1(τ) from g2(τ) 
the values of the baseline and contrast, β, should be obtained as accu-
rately as possible. Importantly, the parameter β has implications on the 
signal to noise ratio in a DWS experiment where a larger value of β 
corresponds to a decrease in the signal-to-noise ratio. Incorrectly 
determining β can distort the variance, and therefore accuracy, of the 
correlation functions. 

In Fig. 3A, we schematically show the values of the baseline, inter-
cept, and contrast on a typical g2(τ) curve. The intercept is the short-time 
limiting value of the curve, the baseline is the long-time limiting value of 
the curve, and the contrast, β, is the difference between the intercept and 
baseline. To determine the intercept value, a model exponential decay 
function is fit to g2(τ) [26]. Baseline determination, however, can be 
more difficult. Often, the average value of g2(τ) is taken at the final lag 
times measured, however, for samples exhibiting slow dynamics, it is 
difficult to determine where stationarity in g2(τ) has been reached. 
Rather than taking an average over a prescribed range, we instead model 

Fig. 2. Stochastic simulations were performed in order to obtain the path length distribution, P(s) for each possible angle of detection. A) 2D cross section of the 3D 
stochastic simulations in a cylindrical sample cell, B) simulated and calculated (via the diffusion approximation for a semi-infinite domain) path length distributions 
for detection angles of 30, 90, and 120 degrees. The corresponding sample thickness (L) was used for the calculated path length distribution and all curves utilize an 
l* of 500 μm. C) Geometrically calculated L equivalent as a function of detection angle shown on the left axis. The expected number of average scattering events 
(line), N = L2∕l*2 is shown on the right axis, as well as the simulated average number of scattering events (squares). 
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the first differences of g2(τ) as a convergent geometric series, i.e. g2(τ)i− 1 
− g2(τ)i− 1 = ari, beginning at the 50% decay point. The series approxi-
mation has a well-defined convergent sum which can then be used to 
calculate the long time limiting value of g2(τ), reducing the impact of 
noise at large lag times. 

With the baseline and intercept values the contrast is calculated and 
used to determine the variance on g2(τ) as shown by Orsi et al. [26] In 
short, the variance is estimated as a function of photon noise and signal 
noise. Both sources of noise may contribute to the total variance and are 
functions of the average photon counts per frame and the number of 
correlated pairs. A more in depth discussion of the variance can be found 
in Schätzel and Orsi et al. [25,26] The variance is calculated and con-
verted to standard error for all lag times in g2(τ), shown in Fig. 3B. Once 
the error on g2(τ) is determined, we use Eq. 1 to convert g2(τ) ± σg2(τ) to 
g1(τ) ± σg1(τ), shown in Fig. 3C. g1(τ) is further filtered based upon its 
error. The intercept and baseline for g1(τ) are unity and zero, respect-
fully, therefore, we consider any value g1(τ) < σg1(τ) or |g1(τ) - 1| < σg1(τ) 
to be statistically indistinguishable from the short and long time limiting 
values. In Fig. 3 the vertical lines denote where these cut offs occur and 
the highlighted regions represent the range of error. Any g1(τ) within the 
red vertical lines can therefore be utilized to extract physical informa-
tion with statistical certainty. 

3.3. Transport mean free path (l*) calibration 

To obtain physical information about the dynamics of a sample from 
Eq. 2, l* must be known. Likewise, if the dynamics of a sample are 
known, then l* can be determined. We, similar to Fahimi et al., approach 
this confounding of optical and physical properties in two steps [19]. 
First, we determine l*, using Eq. 2 and simulated P(s), on model sus-
pensions (e.g. 〈Δr2(τ)〉 = 6Dτ) with various particle concentrations, sizes, 
and refractive indexes. We then compare the simulated intensity for the 
best fit l* with the measured intensity to determine an experimental 
constant, βexp, which can be used to determine l* from a sample with 
unknown dynamics from intensity alone. 

The calibration samples were made as outlined in Section 2.1 using 
514 nm and 1.02 μm polystyrene particles and 500 nm and 1.0 μ SiO2 
particles. The concentrations of each sample were varied to span a large 
range of possible l* values. For each sample, g2(τ) and the average in-
tensity was obtained for angles spanning 20o to 150o in 10o increments. 
Thus a single calibration measurement consisted of 14 angles with two 
measurements at each angle. For each angle, g2(τ) was converted to g1(τ) 
and fit using Eq. 2 with the corresponding P(s) distribution. During 
fitting, the particles were assumed to freely diffuse, thus the mean 
squared displacement could be approximated as 〈Δr2(τ)〉 = 6Dτ, and the 

only adjustable parameter was l*. In Fig. 4A we show experimental g1(τ) 
(symbols) along with fitted curves using Eq. 2 for θ = 90o. The data 
corresponds well to theory, showing our simulated P(s) can adequately 
describe correlation functions in goniometric DWS. Furthermore, the 
agreement between theory and experiment is uniform across the SiO2 
(circles) and polystyrene (squares) dispersions, indicating both sets of 
particles exhibited Brownian motion. The value of l* determined at each 
angle is relatively constant and therefore we take the numerical average 
across all angles as the best fit l* for each calibration sample. 

Fig. 3. Determination of στ for g2(τ) and g1(τ). A) Graphical representation of the baseline, intercept, and contrast values that are required to transform g2(τ) to g1(τ) 
via the Siegert relation. B) g2(τ) and σg2(τ) calculated via the Siegert relation and corresponding baseline and contrast values determined from A. C) g1(τ) shown with 
σg1(τ) determined via the propagation of error from g2(τ) in the Siegert relation. The region between the vertical red bars represents the region where g1(τ) is 
statistically different from 1 and 0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Intensity calibration from ideal scattering centers. A) g1(τ) for five 
calibration samples measured at 90 degrees with fitted curves using Eq. 2. 1.02 
μm polystyrene particles (squares) at 2.5, 1.25, and 0.625 vol% and 1.0 μm SiO2 
particles at 8.7 and 6.5 wt% B) Intensity as a function of detector angle for the 
suspensions utilized in A. C) βexp as a function of fitted l* for all calibration 
samples and βexp grouped by particle radius and particle refractive index (inset). 
D) Measured intensity at 30, 90 and 150 degrees for 4.3 μm SiO2 suspensions 
(check samples on calibration) at 13, 10.8, and 8.7 wt% (symbols) and simu-
lated intensity scaled by the average βexp determined from C at l* values of 300 
μm, 579 μm, and 1425 μm (lines). 
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From the stochastic simulations, an angular intensity is determined 
as the number of simulated photons exiting at a given angle as a fraction 
of the total photons simulated. The shapes of the simulated intensity, 
Isim, and the measured intensity, 〈I(t)〉θ, as a function of angle are similar, 
despite differences in magnitude. Similar to Fahimi et al., we determine 
an experimental constant βexp to scale the simulated intensity to match 
the measured intensity for the calibration samples [19]. To do this, we 
minimize the total mean squared error between each simulated and 
measured intensity curve in log-space and take the average across all 
calibration samples, obtaining a value of βexp~1.1 × 108 Hz. Fig. 4B 
shows measured and simulated intensity curves scaled by βexp as a 
function of angle for five calibration samples. As shown, the average 
value of βexp adequately scales simulation intensities to match measured 
intensities for both polystyrene and SiO2 suspensions. In Fig. 4C, we plot 
the determined values of βexp for all calibration samples as a function of 
l* and grouped by size and refractive index of the particles used (inset, 
Fig. 4C). βexp showed no statistical dependence on any of these factors 
and implied that over these ranges of particle sizes and refractive in-
dexes it was a function of the experimental apparatus only. 

The statistical independence of βexp on l*, particle size, and particle 
refractive index suggested that it could be used to determine l* from 
intensity data alone for dispersions with characteristics outside of those 
used in calibrations. To test this, we measured the intensity at three 
different angles (30, 90, and 150 degrees) for suspensions made with 
4.30 μm SiO2 and 3.0 μm polystyrene. These suspensions represented a 
fourfold and threefold increase in size over the largest used in calibra-
tion. We then scaled the entire library of simulated intensity curves for 
each l* by βexp and determined l* to be the intensity curve that mini-
mized the squared error between simulated intensity and measured in-
tensity. Results from this fitting procedure are shown in Fig. 4D. Despite 
the dispersed particles lying outside the range of calibration particle 
sizes, the scaled intensity curves align well with the measured intensity 
curves. We theorize that the multi-angle fitting approach approximates 
generating an intensity curve over differing sample thicknesses in the 
classical semi-infinite experimental geometry, which has been used to 
obtain robust estimates for l* given a calibration transmission intensity 
[20]. In contrast, however, the multi-thickness approach requires mul-
tiple sample cuvettes, whereas we only require a single sample cell and 
instead change the location of the detector. 

3.4. Extracting and analyzing MSD 

In a previous study, we showed how DWS could be employed to 
disentangle Brownian and ballistic creaming motions in emulsions, 
utilizing realistic Monte Carlo simulations [18]. Here we show a more 
general approach to extract the mean squared displacement of scattering 
centers: once l* is determined from the intensity curve for a sample, it 
can be used in Eq. 2 and the mean squared displacement, 〈Δr2(τ)〉, can be 
numerically solved for. Importantly, the error originating from g2(τ) is 
propagated to the mean squared displacement and is incorporated into 
the fitting routines. Physical properties exhibited by scattering centers 
are found by utilizing a model for the extracted mean squared 
displacement. Using an improper model, however, can cause incorrect 
conclusions to be drawn about the dynamics of the system. To circum-
vent this, the extracted mean squared displacement is fit in successive 
stages. 

First, only the physically relevant region, found as shown in Fig. 3C, 
of the field autocorrelation function is used to fit the anomalous diffu-
sion equation, 〈Δr2(τ)〉 = 6Kατα. Depending on the value of the exponent, 
α, the major regime of scattering center motion can be determined. 
Fig. 5A shows the expected shape of the anomalous diffusion curve 

exhibiting super-diffusive (top line, α > 1), Brownian (middle line, α =
1), and sub-diffusive (bottom line, α < 1) motion. Thus, only if α con-
tains 1 within its 95% confidence interval can the Brownian diffusion 
model be used. Elsewhere, a better suited model must be used. In Fig. 5B, 
the extracted mean squared displacement of an 8.7 wt% 4.3 μm SiO2 
suspension is shown, along with fit lines constrained for different values 
of α. The dashed line represents the best fit Brownian curve, where 
significant deviations from the determined data can be seen. Similarly, 
the sub-diffusive line with α = 0.85 also shows significant deviation to 
the data. Finally, an unconstrained fit of the anomalous diffusion 
equation yields a value of α = 1.48. 

3.5. Particle sizing in dense suspensions 

We conclude by validating our approach on SiO2 and polystyrene 
suspensions, prepared as described in Section 2.1. Additionally, we 
compare the results obtained by approximating the cylindrical cuvette 
as a semi-infinite slab using the analytical form of g1(τ). The extracted 
mean squared displacement from both Eq. 2 and the analytical form are 
shown in Fig. 6 for an 8.7 wt% 4.3 μm SiO2 dispersion (A) and a 2.5 v% 
3.0 μm polystyrene dispersion (B), both at 90o.l* was determined using 
the multiple angle intensity fit as described in Section 3.3. For the 
analytical g1(τ), the thickness, L, was calculated geometrically and is 
shown in Fig. 2A. 

Mean squared displacements were fit using Eq. 6 in Bellour et al. to 
capture all ranges of possible dynamics, since both samples exhibited 
non-Brownian dynamics due to their large size [28]. To assess the val-
idity of of our approach, we compare the diameter of dispersed particles 
determined by the mean squared displacement fit to manufacturer 
specifications and the diameter determined by microscopy, shown in 
Fig. 6C and D. The SiO2 dispersions show an upward sloping curve at 
long lag times due to the density contrast with waster and had α values 
ranging from 1.40 to 1.50. While the polystyrene suspensions exhibited 
less pronounced upward curvature, the dynamics were still faster than 
Brownian diffusion, with α values ranging between 1.08 and 1.10. In 
both instances, the transmission approximation shows relatively good 
agreement with Eq. 2 at short lag times, before positive divergence at 
long lag times. The divergence at later times is likely due to the differ-
ences in the path length distribution shown in Fig. 2B. 

Fig. 5. Dynamic regimes of the mean squared displacement. A) theoretical 
shapes of the anomalous diffusion curve for α > 1, α = 1, α < 1 corresponding to 
super-diffusive, Brownian, and sub-diffusive motion, respectively. B) Extracted 
mean squared displacement of an 8.7 wt% 4.3 μm SiO2 suspension (symbols). 
The lines show different theoretical fits to the anomalous diffusion equation by 
constraining the value of α, where the solid black line is the best-fit value of α. 
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Despite the comparable shapes exhibited by the transmission 
approximation to Eq. 2, there are significant deviations in the particle 
sizes determined by mean squared displacement fitting. In Fig. 6C and D, 
the particle size from fitting to each curve is shown compared to mi-
croscopy sizing. The average sizes from each method are summarized in 
Table 1, as well as manufacturer specifications. Using the stochastically 
modeled P(s), the particle sizes are in good agreement with microscopy 
and manufacturer specifications. The transmission approximation, 
however, yielded particle sizes much lower in comparison, likely due to 
the increased curvature of the extracted mean squared displacement 
curves. 

4. Conclusion 

Diffusing wave spectroscopy (DWS) offers a powerful technique to 
analyzing optically dense systems. Herein, we report a method of 
analysis offering significant accuracy in determining particle dynamics 
on a non-standard DWS instrument. Specifically, our approach stan-
dardizes a work flow for extracting and analyzing the mean squared 
displacement of dispersed phase systems, yielding accurate particle 
sizing in dense suspensions. The method utilizes a multi-angular fitting 
approach to determine l* independent of particle dynamics. Addition-
ally, the standard error from photon correlation is calculated and 
propagated through the analysis to provide statistical bounds on all 
extracted parameters. The error is further used to determine a physically 
significant region of the mean squared displacement, insuring noise does 
not influence interpretation of results. The method proposed exhibits 
accuracy that is not typically observed in DWS measurements, which 
ranges between ±5–8%, allowing extension to particle sizing in dense 
systems [21,29]. We anticipate that the workflow exemplified on sus-
pensions can be utilized in analyzing other dispersed systems, such as 
emulsions, with greater precision than other standard analysis 
techniques. 

CRediT authorship contribution statement 

Robert E. McMillin: Conceptualization, Methodology, Visualiza-
tion, Data curation, Writing – original draft, Writing – review & editing, 
Formal analysis, Software, Investigation. Davide Orsi: Software, 
Conceptualization, Methodology. Luigi Cristofolini: Conceptualiza-
tion, Methodology, Writing – review & editing. James K. Ferri: 
Conceptualization, Methodology, Formal analysis, Investigation, 
Writing – original draft, Writing – review & editing, Supervision, Project 
administration, Funding acquisition. 

Declaration of Competing Interest 

James K. Ferri reports financial support was provided by NASA 
(Grant 80NSSC18K0453). Luigi Cristofolini reports financial support 
was provided by European Space Agency (Contract 4000128643/19). 

Data availability 

Data will be made available on request. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.colcom.2022.100641. 

References 

[1] P.T. Wong, S.H. Wang, S. Ciotti, P.E. Makidon, D.M. Smith, Y. Fan, C.F. Schuler, J. 
R. Baker, Mol. Pharm. 11 (2014) 531–544. 

[2] I.A.M. Appelqvist, M. Golding, R. Vreeker, N.J. Zuidam, in: J.M. Lakkis (Ed.), In 
Encapsulation and Controlled Release Technologies in Food Systems, 2nd ed., John 
Wiley and Sons Ltd, 2019, p. 177. Chapter 6. 

[3] S.A. Rizvi, A.M. Saleh, Saudi Pharm. J. 26 (2018) 64–70. 
[4] F. Gambinossi, S.E. Mylon, J.K. Ferri, Adv. Colloid Interf. Sci. 222 (2015) 332–349. 
[5] C. Grapentin, S. Barnert, R. Schubert, PLoS One 10 (2015) 1–12. 
[6] D. Pine, D.A. Weitz, J.X. Zhu, E. Herbolzheimer, Dynamic Light Scattering te 

Method and Some Applications 51 (1990) 2101–2127 0199000510180. 
[7] N. Isert, G. Maret, C.M. Aegerter, Colloids Surf. A Physicochem. Eng. Asp. 473 

(2015) 40–45. 
[8] A.D. Gopal, D.J. Durian, Phys. Rev. Lett. (1995) 75. 
[9] A.J. Liu, S. Ramaswamy, T.G. Mason, H. Gang, D.A. Weitz, Phys. Rev. Lett. 76 

(1996) 3017–3020. 
[10] F. Salerni, D. Orsi, E. Santini, L. Liggieri, F. Ravera, L. Cristofolini, Colloids Surf. A 

Physicochem. Eng. Asp. (2019) 580. 
[11] D.A. Weitz, D.J. Pine, Dynamic Light Scattering: The Method and Some 

Applications, 1st ed., Clarendon Press, 1993 (Chapter 16). 
[12] J. Xu, A.K. Jahromi, C. Yang, APL Photon. (2021) 6. 

Fig. 6. Determining size of suspension particles using the systematic workflow. 
A) Extracted mean squared displacement using the stochastically simulated P 
(s), s in g1(τ) at 90 degrees (diamonds) and the analytical form of g1(τ) with the 
90 degree L equivalent for an 8.7 wt% 4.3 μm SiO2 particle dispersion. B) 
Extracted mean squared displacement using the stochastically simulated P(s), s 
in g1(τ) at 90 degrees (diamonds) and the analytical form of g1(τ) with the 90 
degree L equivalent for a 2.5 v% 3.0 μm polystyrene particle dispersion. All 
lines are fit using Eq. 6 in Bellour et al. C) Size histogram of the 4.3 μm SiO2 
particles determined via microscopy. D) Size histogram of the 3.0 μm poly-
styrene determined via microscopy. In both C and D, black vertical dashed lines 
represent the average size determined via microscopy, the orange vertical lines 
are the size extracted by fitting the mean squared displacement extracted from 
the P(s), s simulated g1(τ), and the green vertical lines are the extracted size of 
the particles by fitting the mean squared displacement of the analytical form of 
g1(τ). Finally, both histograms have a red Gaussian curve overlaid to show 
uniformity. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Table 1 
Values of extracted size of SiO2 and polystyrene suspensions. DLS determined 
size of the polystyrene particles was 3.09 ± 0.19 μm. The SiO2 particles were not 
able to be analyzed by conventional DLS because of the sedimentation velocity.  

Material P(s), s 
Simulation 

Transmission Microscopy Manufacturer 
Specification 

SiO2 

〈a〉 = 4.26 
± 0.14μm 

〈a〉 = 3.41 ±
0.08μm 

〈a〉 = 4.29 ±
0.15μm 

〈a〉 = 4.30 ±
0.05μm 

Polystyrene 
〈a〉 = 3.05 
± 0.25μm 

〈a〉 = 2.63 ±
0.29μm 

〈a〉 = 2.98 ±
0.07μm 

〈a〉 = 3.03 ±
0.03μm  

R.E. McMillin et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.colcom.2022.100641
https://doi.org/10.1016/j.colcom.2022.100641
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0005
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0005
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0010
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0010
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0010
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0015
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0020
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0025
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0030
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0030
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0035
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0040
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0040
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0045
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0045
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0050
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0050
http://refhub.elsevier.com/S2215-0382(22)00058-9/rf0055


Colloid and Interface Science Communications 49 (2022) 100641

8

[13] D. Ferreira, R. Bachelard, W. Guerin, R. Kaiser, M. Fouché, Am. J. Phys. 88 (2020) 
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