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Abstract: This work deals with the wave propagation analysis in functionally graded carbon nan-
otubes (CNTs)-reinforced composite beams lying on an elastic medium. Despite the large amount
of experimental and theoretical studies in the literature on the mechanical behavior of composite
structures strengthened with CNTs, limited attention has been paid to the effect of an axial graduation
of the reinforcing phase on the mechanical response of CNTs-reinforced composite beams. In this
paper, CNT fibers are graded across the beam length, according to a power-law function, which
expresses a general variation from a linear to parabolic pattern. An Euler-Bernoulli beam theory is
considered herein to model the CNTs-reinforced composite structure resting on a Winkler–Pasternak
foundation, whose governing equations are derived from the Hamiltonian principle. The theoretical
solution of the problem checks for the sensitivity of the mechanical response to different parameters,
i.e., the wave number, power index, Winkler and Pasternak coefficients, that could serve for further
computational/experimental studies on the same problem, even from a design standpoint.

Keywords: axially CNT-reinforced; composite beam; elastic foundation; Euler-Bernoulli beam theory;
wave dispersion analysis

1. Introduction

The performance of structures mainly depends on their constitutive materials whose
proper selection represents one of the most challenging subjects in manufacturing pro-
cesses. Accordingly, engineers and researchers have performed great efforts to find and use
composite materials with optimal physical and chemical properties, depending on their
structural applications in marine, automotive and building constructions [1–5]. To obtain a
performing structure in terms of dynamic behavior, the use of laminates and composite
materials is widely proposed in many contexts. This kind of technical solution, indeed,
can tailor the local and global stiffness as well as the weight of structures according to a
desired loading and design demand. In the last years, a novel class of reinforced composite
materials relies on carbon-based materials, where CNTs, graphene, graphene platelets
(GPLs), and graphene oxide, represent outstanding possibilities of reinforcement with even,
uneven, and/or functionally graded distributions within the matrix [6,7].

In such a context, different studies on composites/nanocomposites have been per-
formed by researchers, even focusing on hybrid nanocomposites reinforced by a combi-
nation of fillers, such as GPLs, CNTs, and carbon fibers (CFs) within the matrix [8–10].
Among different problems, the dynamic behavior of composite structures represents a key
aspect for a proper selection of the reinforcement phase during a design process. More
specifically, due to the large use of composite materials in structural members with different
geometries, several higher-order formulations have been proposed in the literature to study
their linear and/or nonlinear behavior, including vibration and buckling problems. Except
for classical plate theories (CPTs), higher-order shear deformation theories (HSDT) are
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more appropriate for studying complicated geometries, especially for structural elements
with increased thicknesses. Among the recent literature, Han et al. [11] used a hybrid
analytical/two-dimensional finite element method (FEM) to solve the wave propagation
problem of fluid-conveying composite pipes. In addition, Ghadiri et al. [12] analyzed the
influence of a non-ideal support on the vibrational behavior of laminated composite classic
beams carrying a mass-spring-damper system subjected to an axial force; Amabili [13]
applied a third-order shear deformation theory (TSDT) to explore geometrically the nonlin-
ear bending and vibration analysis of laminated doubly curved shells. Among coupled
problems, Nguyen et al. [14] explored the dynamic and buckling properties of laminated
composite beams exposed to thermomechanical loading in the framework of HSDTs.

Heydarpour et al. [15] studied the free vibrational behavior of CNT-reinforced compos-
ite truncated conical shells considering the effect of centrifugal and Coriolis forces based on
an FSDT. Similarly, Zhang et al. [16] used the FSDT and element-free IMLS-Ritz method to
solve the dynamic problem of functionally graded CNT-reinforced composite (FG-CNTRC)
triangular plates; the same FSDT-based approach was applied by García-Macías et al. [17]
to study the bending and dynamic behavior of thin and moderately thick FG-CNTRC skew
plates with uniaxially aligned reinforcements. A post-buckling analysis of FG-CNTRC
beams in thermal environment was performed by Wu et al. [18] always based on an FSDT.
The same basics were also applied in Refs. [19–21] to investigate the frequency response of
elliptical plates made of FG-CNTRC, the dynamics of FG-CNTRC beams under arbitrary
boundary conditions, and the effect of thermal loading on the vibrational response of
temperature-dependent FG-CNTRC cylindrical porous shells with the help of a generalized
differential quadrature method (GDQM).

In the last years, Ebrahimi et al. [22–24] examined the effect of the reinforcement
agglomeration on the wave propagation in multiscale hybrid nanocomposite beams, plates,
and shells. Additionally, Qaderi et al. [25] studied the free dynamic properties of GPLs-
reinforced sandwich composite beams lying on a viscoelastic medium based on HSDTs;
whereas Ebrahimi et al. [26] analyzed the dispersion of waves in GPLs-reinforced composite
porous shells based on a FSDT. Furthermore, Javani et al. [27] probed thermal buckling
of GPLs-reinforced composite annular plates based upon FSDT and GDQM. The same
computational approach has been applied, recently, in [28] to analyze the axially FG-
CNTRC beams lying on an elastic medium. A similar analysis can be also found in [29]
to examine the thermal post-buckling response of FG-CNTRC curved panels lying on
an elastic substrate with elastic restrained edges. Ebrahimi et al. [30] applied a refined
HSDT to study the wave dispersion characteristics of plates reinforced with graphene oxide
powder immersed in a thermal environment. Among nonlocal formulations, a nonlocal
strain gradient theory was implemented by Merzouki et al. [31] to solve the bending
problem of porous GPL-strengthened nanocomposite beams based on finite elements. A
nonlinear frequency analysis of thin-walled CNTRC shells was also performed recently by
Mahmure et al. [32], accounting for the effect of an elastic medium; whereas Ebrahimi and
Seyfi [33] studied the effect of agglomeration and waviness factors of nano-reinforcements
on the wave propagation behavior of embedded nanocomposite beams strengthened with
multi-walled carbon nanotubes, as provided by HSDTs.

Despite the large literature on the topic, to date, there is a general lack of works
analyzing the wave propagation of longitudinally CNTs-reinforced composite beams lying
on an elastic medium. A complete investigation about the problem, indeed, should include
different environmental, loading, and boundary conditions. In the last case, we have to
account for the possible interaction between a structural component and the surrounding
elastic medium or foundation, whose properties can vary linearly and/or nonlinearly.

This aspect is analyzed herein from a theoretical perspective for CNTs-reinforced
composite beams resting on elastic media. The CNTs distribution is modeled according
to a power-law function that can embrace from linear to parabolic reinforcement pat-
terns. A numerical investigation is repeated systematically to check for the influence of
various input parameters (i.e., wave number, power index, foundation parameters) on
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the overall response that could serve as benchmarks for design purposes and further
computational/experimental analyses on the same problem.

2. Theory and Formulation
2.1. CNTs-Reinforced Composite Structures

Various methods of mixtures can be employed to define the main mechanical prop-
erties of composite structures such as plates, beams and shells reinforced with CNTs.
According to such homogenization techniques, the volume fraction of CNTs plays a key
role in the variation of mechanical properties of composite structures. For CNT-reinforced
on dimensional structures, the equivalent material properties read as [20]

E(x) = EmVm(x) + e1E11,CNTVCNT(x) (1)

ν(x) = vCNTVCNT(x) + vmVm(x) (2)

ρ(x) = ρCNTVCNT(x) + ρmVm(x) (3)

where E, ν, and ρ denote the Young’s modulus, Poisson’s ratio, and density, respectively,
e1 is a coefficient, which refers to the manufacturing efficiency of the CNT-matrix mixture.
In addition, x refers to the arbitrary coordinate between 0 and L, subscripts m and CNT
stand for properties related to the CNT matrix and fibers, respectively. This means that
VCNT and Vm is the volume fraction of CNTs and matrix, respectively, which satisfy the
following laws [34]

VCNT(x) =
(

1− x
L

)k
VCNT−L −

((
1− x

L

)k
− 1
)

VCNT−R (4)

Vm(x) = 1−VCNT(x) (5)

k being a power term. Moreover, VCNT−R and VCNT−L represents the volume fraction of
CNT fibers on the right and the left sides of the structure, respectively. The total volume
fraction of the CNT fibers in the whole structure is expressed in the following form

VCNT−Total =
VCNT−L + kVCNT−R

k + 1
(6)

Note that the CNTs volume fraction at the left side of the beam can be obtained using
k = 0 in the last relation.

2.2. Problem Description and Fundamental Equations

The structural model relies on the following constitutive relations [35]

{σ} = [Q]{ε} (7)

where Qij = Qij(x), i, j = 1, . . . , 6 stands for the stiffness properties, and

{σ}T =
{

σxx σyy σzz σxy σxz σyz
}T , {ε}T =

{
εxx εyy εzz εxy εxz εyz

}T refer to the stress
and strain vector, respectively. For orthotropic structures, the constitutive relations read
as follows [36]

σxx
σyy
σzz
σxy
σxz
σyz


=



Q11 Q12 Q13 0 0 0
Q21 Q22 Q23 0 0 0
Q31 Q32 Q33 0 0 0

0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66





εxx
εyy
εzz
εxy
εxz
εyz


(8)
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Based on a classic Euler-Bernoulli beam theory, the displacement field for a CNTs-
strengthened composite beam is defined as

u1 = η(x, t)− z
∂ξ(x, t)

∂x
(9)

u2 = ξ(x, t) (10)

accounting for the displacement components of the mid-plane of the beam in the length and
thickness directions, η and ξ, respectively. The nonzero strain component of the composite
beam reads as follows

εxx =
∂η(x, t)

∂x
− z

∂2ξ(x, t)
∂x2 (11)

Hereafter, we consider a beam embedded on an elastic medium, as depicted in Figure 1,
accounting for a Pasternak coefficient, KP, as a shear layer and a Winkler coefficient, KW, as
normal layer. The elastic foundation is generally defined by using the stiffness coefficient
and power-law distribution function as [37].

KP(x) = KP0

(
1− β

( x
L

)m)
(12)

KW(x) = KW0

(
1− α

( x
L

)n)
(13)

depending on the power term n and coefficient α. Moreover, KW0 stands for the initial
value of the Winkler coefficient, whereas the Pasternak coefficient is likewise demonstrated
using an initial value, power term, and coefficient of KP0, m, and β, respectively.
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The equations of motion for the CNTs-reinforced structure are determined based on
the Hamiltonian principle, i.e.,

t1∫
t0

δ(Φ + Wnc − T)dt = 0 (14)

where Φ refers to the strain energy, T is the kinetic energy, Wnc is the work done by non-
conservative external forces, and t is the time variable. Each energy quantity can be defined
in variational form as

δ Φ =
1
2

∫
A

L∫
0

σxxδεxxdxdA =
1
2

∫
A

L∫
0

σxx

(
δ

∂η(x, t)
∂x

− zδ
∂2ξ(x, t)

∂x2

)
dxdA (15)

δT =
1
2

∫ L

0

∫
A

ρ(x)δ

((
∂η(x, t)

∂t
− z

∂2ξ(x, t)
∂x∂t

)2

+

(
∂ξ(x, t)

∂t

)2
)

dAdx (16)
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δWnc =
1
2

∫ L

0
δ

(
KW(x)ξ2(x, t) + KP(x)

(
∂ξ(x, t)

∂x

)2
)

dx (17)

which are substituted in the Hamiltonian principle (14) to yield the following equations
of motion

δu→ ∂

∂x

(
B(x)

∂2ξ

∂x2 − A(x)
∂η(x, t)

∂x

)
− I1(x)

∂3ξ(x, t)
∂x∂t2 + I0(x)

∂η2(x, t)
∂t2 = 0 (18)

δw→ ∂
∂x

(
I1(x) ∂2η(x,t)

∂t2 − I2(x) ∂3ξ(x,t)
∂x∂t2 − KP(x) ∂ξ(x,t)

∂x

)
+

+ ∂2

∂x2

(
D(x) ∂2ξ(x,t)

∂x2 − B(x) ∂η(x,t)
∂x

)
+ KW(x)ξ(x, t) + I0(x) ∂2ξ(x,t)

∂t2 = 0
(19)

Along with the following boundary conditions

A(x)
∂η(x, t)

∂x
δη(x, t)

∣∣∣∣x=L

x=0
− B(x)

∂2ξ(x, t)
∂x2 δη(x, t)

∣∣∣∣x=L

x=0
= 0 (20)

∂

∂x

(
B(x)

∂η(x, t)
∂x

)
δξ(x, t)

∣∣∣∣x=L

x=0
− ∂

∂x

(
D(x)

∂2ξ(x, t)
∂x2

)
δξ(x, t)

∣∣∣∣x=L

x=0
= 0 (21)

B(x)
∂η(x, t)

∂x
δ

(
∂ξ(x, t)

∂x

)∣∣∣∣x=L

x=0
− D(x)

∂2ξ(x, t)
∂x2 δ

(
∂ξ(x, t)

∂x

)∣∣∣∣x=L

x=0
= 0 (22)

For symmetry reasons throughout the thickness, the inertial terms I0, I1, I2 become
as follows {

I0(x)
I2(x)

}
= (ρm + (ρCNT − ρm)VCNT(x))

{
A
I

}
, I1 = 0 (23)

The stiffness terms A, D and B are determined as

{
A(x)
D(x)

}
=

h/2∫
−h/2

(
Em + (e1E11,CNT − Em)VCNT(x)

1− ν2(x)

){
1
z2

}
dz, B(x) = 0 (24)

After a brief mathematical manipulation, the equations of motion and boundary
conditions take the following form

I0(x)
∂2ξ(x, t)

∂t2 + KW(x)ξ(x, t)− ∂

∂x

(
I2(x)

∂3ξ(x, t)
∂x∂t2 + KP(x)

∂ξ(x, t)
∂x

−∂D(x)
∂x

∂3ξ(x, t)
∂x3

)
= 0 (25)

I0(x)
∂η2(x, t)

∂t2 − ∂

∂x

(
A(x)

∂η(x, t)
∂x

)
= 0 (26)

Ṽ = (VCNT−L −VCNT−R)(k)(1− x)(k) (27)

By substituting Equations (18) and (19) into Equations (20) and (21) and using
Equations (4), (5), (11) and (27), the governing equations of the problem become as follows((

1−
(

1− e1
E11,CNT

Em

)(
Ṽ
k + VCNT−R

))
∂2η(x,t)

∂x2 +
(

1− e1
E11,CNT

Em

)
Ṽ

1−x
∂η(x,t)

∂x

)
1

γ2(1−v2)
+

+
((

1− ρCNT
ρm

)
VCNT(x)− 1

)
∂η2(x,t)

∂t2 = 0
(28)

−
(

1 +
(

ρCNT
ρm
− 1
)(

Ṽ
k + VCNT−R

))
∂2ξ(x,t)

∂t2 +
(

1 +
(

ρCNT
ρm
− 1
)(

Ṽ
k + VCNT−R

))
γ2 ∂4ξ(x,t)

∂x2∂t2 +

−
(

1− ρCNT
ρm

)
Ṽ

1−x γ2 ∂3ξ(x,t)
∂x∂t2 −

((
1 +

(
e1

E11,CNT
Em

− 1
)(

Ṽ
k + VCNT−R

))
∂4ξ(x,t)

∂x4 +

+2
(

1− e1
E11,CNT

Em

)
Ṽ

1−x
∂3ξ(x,t)

∂x3 +
(

e1
E11,CNT

Em
− 1
)
(k−1)Ṽ
(1−x)2

∂2ξ(x,t)
∂x2

)
1

1−v2 +

−
(

mβxm−1 ∂ξ(x,t)
∂x + KW0(1− αxn)ξ(x, t)

)
+ KP0(1− βxm)

∂2ξ(x,t)
∂x2 = 0

(29)
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in which γ =
√

I/(AL2).

3. Solution Procedure

An analytical method is now implemented to solve the governing Equations (28) and
(29), based on the following kinematic definition

u = Uei(βx x−ωnt) (30)

w = Wei(βx x−ωnt) (31)

in which U and W denote the wave amplitudes, βx and ωn denote the wave number
and circular frequency propagated waves, respectively. By substitution of w and u from
Equations (30) and (31) into Equations (28) and (29) we get the following eigenvalue problem([

k11 k12
k21 k22

]
−ω2

n

[
m11 m12
m21 m22

])[
U
W

]
= 0 (32)

which is solved in terms of ωn, and wave frequency. This means that the following
determinant must be equal to zero∣∣∣∣[K−ω2

n M
]

2×2

∣∣∣∣ = 0 (33)

where the wave frequency f is defined as

f =
ωn

2π
(34)

Thus, the phase velocity associated with the problem can be determined as

C =
ωn

βx
(35)

4. Numerical Results

In this section, we study the sensitivity of the wave frequency and phase velocity to
different input parameters that could serve for design purposes of many high-tech devices
made of advanced CNT-reinforced composite materials, and further computational studies
on the topic. We start the analysis by accounting for the mechanical properties of the
constituent materials in Table 1 for FG CNTs-reinforced composites, while validating the
proposed methodology with findings by Loy [38] from literature. Table 2 summarizes the
results in terms of dimensionless natural frequency for a simply-supported structure and
different wave numbers, with a good correspondence between results based on our model
and those once from literature. One of the critical aspects for such structures, relies on the
influence of the CNT distribution in the length direction. To this end, we plot the wave
frequency vs. the wave number for various CNTs volume fractions, while keeping fixed
KP0 = 10 and KW0 = 200, as visible in Figure 2. For low wave numbers, up to the unit
value, any variation in the wave frequency is noticed, after which a monotonic increase
of wave frequency occurs for increased values of wave number. This behavior is even
more pronounced for an increased volume fraction of the reinforcing phase. For a constant
wave number, indeed, an increased volume fraction of CNTs gets higher values of wave
frequency. A further investigation accounts for the influence of the volume fraction of CNTs
and wave number on the phase velocity of the structure, as plotted in Figure 3. Note that
for small wave numbers up to 0.1, the volume fraction does not affect the phase velocity,
with a meaningful variation in the response for higher wave numbers in a non monotonic
sense, both in the ascending and descending branches of the plots. Small variations in the
volume fraction of CNTs within the range 0.1 and 10, enable a severe additive effect on the
phase velocity, where the structure gets stiffer.
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Table 1. Material properties of functionally graded CNTs-reinforced composite beam.

Properties Units CNT [28] Matrix [28]

E GPa 5646.6 2.5

ρ Kg/m3 1400 1190

ν - 0.28 0.3

Table 2. Comparative evaluation of the dimensionless natural frequency. Ω = ωR.
√
(1−V2)ρ/E

for a simply-supported isotropic shell and different wave numbers.

n Loy [38] Present

1 0.016102 0.0161011

2 0.009387 0.0093865

3 0.022108 0.0221045

4 0.042096 0.0420954

5 0.068008 0.0680080

6 0.099730 0.0997300
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Figures 4 and 5 describe the variation of wave frequency and phase velocity versus
the wave number for different CNT grading power terms at a fixed VCNT−TOTAL = 20%.
Based on these plots, for high wave numbers, the influence of the power term is much more
significant, where the power term plays a decreasing role in the variation of wave frequency.
In both figures, the wave frequency and phase variation decrease for an increased power
term, and a fixed wave number, due to a softening influence of the power term along with
an overall increase in the structural deformability.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 4. Wave frequency vs. wave number for different values of k . 

  

Figure 4. Wave frequency vs. wave number for different values of k.



Appl. Sci. 2022, 12, 3852 9 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 5. Phase velocity vs. wave number for different values of k . 

Figure 6 also shows the effect of the Winkler coefficient on the wave frequency for a 
different coefficient α , here varied from 0.2 to 0.8, under the assumption CNT L  5%V − = , 

P0 10K = . When the structure is supported by a foundation, the structural stiffness in-
creases monotonically with WK , since the wave frequency gets higher values for an in-
creased Winkler coefficient, especially for lower values of the coefficient α . Another im-
portant parameter for structures on an elastic foundation is represented by the Pasternak 
coefficient in the shear layer. Figure 7 shows the influence of this parameter on the phase 
velocity, while varying the coefficient β  from 0.2 up to 0.8. It is worth noticing that an 
increased Pasternak coefficient yields higher phase velocities for each selected β , 
whereas the phase velocity becomes smaller by increasing the coefficient β  from 0.2 up 
to 0.8 under the same Pasternak coefficient assumption. 
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Figure 6 also shows the effect of the Winkler coefficient on the wave frequency for a
different coefficient α, here varied from 0.2 to 0.8, under the assumption VCNT−L = 5%,
KP0 = 10. When the structure is supported by a foundation, the structural stiffness
increases monotonically with KW, since the wave frequency gets higher values for an
increased Winkler coefficient, especially for lower values of the coefficient α. Another
important parameter for structures on an elastic foundation is represented by the Pasternak
coefficient in the shear layer. Figure 7 shows the influence of this parameter on the phase
velocity, while varying the coefficient β from 0.2 up to 0.8. It is worth noticing that an
increased Pasternak coefficient yields higher phase velocities for each selected β, whereas
the phase velocity becomes smaller by increasing the coefficient β from 0.2 up to 0.8 under
the same Pasternak coefficient assumption.
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In Figure 8 we plot the influence of the Winkler coefficient on the wave frequency for
different power terms n, with a monotonic hardening effect of the Winkler coefficient on
the structural response, especially for increased values of n. It is clearly evident that the
wave frequency increases for an increased power term n, and a fixed Winkler coefficient
KW, while increasing monotonically with KW under the same assumption of n. Similar
observations can be repeated for a varying Pasternak foundation coefficient and power
term m (see Figure 9) whose response sensitivity is more accentuated for different values
of m, compared to that one stemming from a Winkler foundation. A further parametric
investigation accounts for the variation of the wave frequency with the rational volume
fraction at the right and left side of the structure (VCNT−R/VCNT−L) for various power terms
k. As plotted in Figure 10, such rational value VCNT−R/VCNT−L can affect significantly
the wave frequency of the structure, especially for increased values of k, with an overall
hardening effect for increased values of VCNT−R/VCNT−L and fixed power term k. Such
effect is also observed for an increased value of k from one to five, while keeping fixed
the rational value VCNT−R/VCNT−L. The last two parametric investigations account for
the sensitivity of the structural wave frequency (Figure 11) and phase velocity (Figure 12)
for different volume fractions (in percentage) of CNTs on the left side of the beam, and
different CNTs power terms. Based on both figures, an increased volume fraction of CNTs
as reinforcing phase within the material makes the structure stiffer, as visible from the
increased wave frequency and phase velocity. Both values get higher for an increased
power term k, especially for higher volume fractions of CNTs.
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5. Conclusions

The present work deals with the wave dispersion in longitudinally FG CNTs-reinforced
composite beams lying on an elastic medium, modeled as a Winkler–Pasternak foundation.
The graduation of CNT fibers is here modeled by means of a power-law function, defining
a variation from linear to parabolic distributions. The equations of motion of the composite
beams rely on a classic Euler-Bernoulli beam theory and Hamiltonian principle, whose
theoretical results can be summarized as follows:

• The phase velocity and wave frequency of the composite beam can be improved by
increasing the volume fraction of CNT fibers and the power term k.

• The Winkler-Pasternak foundation affects significantly the wave propagation response
of composite beam structures. The enhancement of Winkler and Pasternak coefficients
has a beneficial effect on the phase velocity and wave frequency, whose increased
values can be related to an improved overall stiffness of the structure. The wave fre-
quency and phase velocity reduce significantly by selecting higher values of coefficient
α within the power law distribution function.

• The CNTs volume fraction at both sides of the beam, has a meaningful influence on
the wave propagation. The volume fraction at the left side of the beam (VCNT−L) and
the VCNT−R/VCNT−L ratio has a hardening effect on the structure, with an improved
response in terms of wave frequency and phase velocity.
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