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1. Introduction

Advances in spacecraft and satellite control systems succeeded in solving

several challenging problems concerning attitude tracking, robust control,

optimal slew maneuvers, or precision pointing [1], while assuming a number

of actuators equal to, or larger than, the rotational degrees of freedom of

the system, where actuators may exploit di↵erent physical principles [2]. In

the attempt of extending operational lifetime or increasing mission resilience,

attitude stabilization problems in case of actuator failures have being gain-

ing an increasing attention in the recent past. The problem is particularly

relevant for small-size satellite platforms, for which a combination of weight,

volume and/or budget constraints may result into the adoption of a non-

redundant architecture for the attitude control system, possibly based on

low-cost hardware, which further jeopardizes overall system reliability.

In this framework, the present paper explores the feasibility of a single-

axis pointing maneuver for an underactuated spacecraft in the presence of a

non-zero residual angular momentum vector. In this scenario, a body-fixed

axis �̂, such as the line-of-sight of a sensor, a nozzle for orbit control or an

antenna, needs to be aligned to a target direction ⌧̂ , fixed in the inertial

reference frame. Only two reaction wheels (RWs) are available for managing

the residual angular momentum, which is a situation representative of a

failure condition of a non-redundant control system or of a critical condition

after multiple failures of a RW cluster. A similar problem was dealt with in

[3], where a single-axis pointing maneuver for a satellite with three di↵erent

principal moments of inertia (that is, a tri-inertial spacecraft) is studied under

the hypothesis of zero total angular momentum, implementing the kinematic
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planning techniques developed in [4] and [5] at a dynamic level.

The hypothesis of zero residual angular momentum is common to many

papers dealing with spacecraft attitude control in underactuated conditions

[6]. Unfortunately, such a situation is seldom encountered in practice: an

angular momentum normal to the orbit plane may be present for passive

gyroscopic stabilization [7] or it may result from the long term action of

environmental torques [8]. Also, a possibly large momentum may persist at

the end of a desaturation maneuver due to a switching (on-o↵) control logic,

or when a single-axis B-dot control law with magnetorquers (often referred

to as Y-dot control) is adopted for spacecraft detumbling [9].

A review of methods for attitude control of underactuated spacecraft is

presented by Tsiotras [10]. Several studies dealt with this class of problems,

considering diverse types of control hardware (thruster [11], RWs [12], control

moment gyros (CMG’s) [13]), for either axis-symmetric [14] or tri-inertial [6]

spacecraft, in di↵erent mission scenarios (full attitude stabilization, single-

axis pointing, acquisition of a desired spin state, etc.).

More recently, some papers addressed the problem of attitude control of

an underactuated spacecraft in the presence of a residual angular momentum.

A nonlinear control law based on the state-dependent Riccati equation is pro-

posed in [15], which stabilizes roll and pitch angles only at a desired value,

by means of two reaction wheels. A linear time-varying model predictive

control law is presented in [16], with the objective of driving the underac-

tuated spacecraft towards a prescribed attitude in the presence of a gravity

gradient torque. In such a case, the angular momentum is not exactly zero,

although it remains very small. Convergence to the desired attitude requires
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time intervals in the order of one hour and a residual error is present, with

persistent oscillations, which cannot be compensated by the underactuated

control hardware. A control law based on a sliding mode approach for at-

titude control around the torqueless direction is discussed in [17], where a

cluster of two single-gimbal control moment gyroscopes (SGCMG) with par-

allel gimbals axes is the underactuated attitude e↵ector. The final attitude

can be asymptotically attained only if the (inertially constant) angular mo-

mentum vector lies within the SGCMG cluster momentum envelope. This,

in turn, requires that the direction of the gimbal axes is exactly normal to the

conserved angular momentum when the desired attitude is attained, thus lim-

iting the set of feasible attitudes to a subspace of SO(3). For any other final

attitude the control law causes a permanent rotation in the neighbourhood

of the prescribed attitude, with pointing errors which may be significant.

This paper discusses a control strategy for exact inertial pointing of a

generic body–fixed axis by means of an underactuated spacecraft in the pres-

ence of a residual angular momentum. In this framework, the work extends

and generalizes the results proposed by Yoon [18] and Kwon [19], where the

problem was solved for pointing a principal axis of inertia along an arbitrary

direction. The practical applicability of the proposed approach is limited to

those missions where the target direction is fixed with respect to the inertial

frame, as it happens for space telescopes or other sensors for deep space stud-

ies. At the same time, the assumption of an inertially fixed target direction

allows for dealing with a model where only the absolute angular velocity is

relevant, without the need of accounting for orbital motion.

As a first contribution, a feasibility condition for the desired pointing
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maneuver is analytically determined for a generic body-fixed axis �̂, high-

lighting that, when �̂ is not a principal axis of inertia, it cannot be aligned

along some inertial directions ⌧̂ , while keeping the spacecraft at rest. This

latter condition requires that the body-fixed plane identified by the spin axes

of the two active RWs contains the (inertially fixed) direction of the angu-

lar momentum vector. Under this constraint, the direction ⌧̂ may become

unattainable by �̂ and an inequality represents the feasibility condition in

simple mathematical terms. The attitude that allows to maintain the body

axis along the inertially fixed desired direction with the spacecraft platform

at rest can be analytically determined, if described in terms of Euler angles.

The pointing feasibility condition and the attitude are shown to be inde-

pendent of the magnitude of the angular momentum, provided that such a

magnitude is compatible with active RW momentum saturation levels.

After proving that the problem of enforcing closed-loop stability in un-

deractuated conditions is well-posed, at least in the neighborhood of the

desired pointing attitude for a linearized system dynamics, an almost global

stabilization is achieved by means of a nested, inner/outer loop architecture

that generates asymptotic convergence towards the desired attitude from ar-

bitrary initial conditions. Singular perturbation theory (SPT) is applied for

both inner and outer loops in order to demonstrate convergence towards the

commanded attitude when a two-timescale behavior is enforced to the sys-

tem [20] by means of a proper selection of control law parameters. Closed

loop stability of the desired pointing attitude is proven up to the bounds of

the region of admissible pointing directions.

The paper is organized as follows. In Section 2.1, after a short review
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Figure 1: Geometry of the problem.

of spacecraft dynamics in underactuated conditions, the attitude parameters

which enforce the desired pointing at zero angular rate are derived, together

with the analytical condition for maneuver feasibility. After assessing system

controllability at least in the neighborhood of the attitude implementing the

desired pointing condition, the control strategy based on SPT is derived in

Section 3. Resulting performance of the control laws in rest-to-rest maneu-

vers as well as starting from arbitrary, randomly generated, initial conditions

is analyzed in Section 4. A section of concluding remarks and future work

ends the paper.

2. Problem Statement and Spacecraft Model

2.1. Spacecraft dynamics

A rigid satellite platform equipped with three identical, mutually perpen-

dicular RWs is considered, with the spin axes of the wheels aligned with the
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principal axes of inertia. When one of the wheels fails, it cannot provide one

of the components of the control torque, resulting in an underactuated con-

dition. Let FB = {G; ê
1

, ê
2

, ê
3

} be a body-fixed reference frame, centered in

the spacecraft center of mass, G, with axes aligned to the principal axes of

inertia of the spacecraft (Fig. 1). Without loss of generality, the spin axis of

the failed, non-spinning wheel, b̂, is assumed parallel to the third axis of the

body frame (b̂ ⌘ ê
3

). Thus, the spin axes of RWs available for control are

parallel to ê
1

and ê
2

, respectively.

It is also assumed that environmental disturbance torques are su�ciently

small, so that the non-zero angular momentum vector is approximately con-

stant in the inertial frame for the duration of the pointing maneuver, which is

in the order of a few hundreds seconds. As a further assumption, the magni-

tude of the angular momentum needs to be less than the momentum storage

capacity of one single active wheel. If this condition is violated, it may not

be possible to drive the spacecraft angular rate to zero. In such a case a de-

saturation maneuver (performed by means of some actuators which deliver

an external torque, such as magnetic actuators) is preliminarly required to

reduce the overall angular momentum below an acceptable threshold.

Expressing all vector quantities in terms of components in FB, spacecraft

dynamics is represented as

Ḣ + !⇥H = 0 (1)

where H = J! + h is the total angular momentum vector, with magnitude

H
0

= kHk, ! = (!
1

,!
2

,!
3

)T is the absolute angular velocity vector, J =

diag(J
1

, J
2

, J
3

) is the inertia tensor (including RWs at rest), h = (h
1

, h
2

, 0)T

is the relative angular momentum of the RWs, and v⇥ indicates the skew-

7



symmetric matrix equivalent for the cross-product operation of vector v, such

that v⇥u = v ⇥ u.

The relative angular momentum of the i–th active RW, i = 1, 2, is equal

to hi = Jw⌦i, where ⌦i is the wheel spin rate relative to FB, whereas the

absolute angular momentum for the same wheel is given by h
(a)
i = Jw(⌦i +

!i) = hi + Jw!i. The dynamics of the i-th wheel, under the control of the

electrical motor torque gem,i, is thus given by

ḣ
(a)
i = ḣi + Jw!̇i = gem,i i = 1, 2 (2)

A two–dimensional vector u = (u
1

, u
2

)T of available virtual control torques,

ui = �ḣi = � (gem,i � Jw!̇i), is introduced to attain a more compact nota-

tion. As a result, the mathematical model of spacecraft dynamics with two

active RWs takes the form

!̇ = J�1

⇥
Su� !⇥ (J! + h)

⇤
(3)

ḣ = �Su (4)

where

ST =

2

41 0 0

0 1 0

3

5

2.2. Kinematics

The single-axis pointing problem requires that the spacecraft attains a

final attitude, where a body-fixed axis, identified by the unit vector �̂, is

aligned to a prescribed inertially-fixed direction ⌧̂ , with zero final angular

speed. An inertially fixed reference frame FI = {G; ô
1

, ô
2

, ô
3

} is introduced,

such that the total angular momentum of the spacecraft H is aligned with
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ô
3

, and the axis ⌧̂ lies in the ô
1

-ô
3

plane, whereas ô
2

= ô
3

⇥ ô
1

completes a

right-handed triad. One thus has

ô
1

= ô
2

⇥ ô
3

; ô
2

= (H ⇥ ⌧̂ )/kH ⇥ ⌧̂k ; ô
3

= H/kHk (5)

Note that the unit vector ô
1

is parallel to the direction of the projection of

⌧̂ on the plane perpendicular to H . In the particular case when ⌧̂ is parallel

to H , ô
1

and ô
2

can be selected arbitrarily on the plane perpendicular to

ô
3

, to complete an orthogonal right-handed triad FI .

Spacecraft attitude with respect to FI is represented by means of a 3-1-3

sequence of precession ( ), nutation (⇥), and spin (�) Euler angles [7], where

 2 [�⇡, ⇡], ⇥ 2 [0, ⇡], and � 2 [�⇡, ⇡]. This attitude representation is

known to be singular for⇥ = 0, ⇡. Nonetheless, this parametrization provides

a clear and intuitive physical interpretation of the results: when spacecraft

angular rate is zero, nutation angle must be ⇡/2, whereas the final value of

the spin angle indicates the distribution of angular momentum between the

wheels when the spacecraft is at rest, as outlined in Subsection 2.3, where

it will also be shown that admissible pointing attitudes require ⇥ 6= 0, ⇡.

Consequently, singularity of the desired attitude in not considered any further

in the present analysis. Euler angle rates are given by

0

BBB@

 ̇

⇥̇

�̇

1

CCCA
=

2

6664

sin�/ sin⇥ cos�/ sin⇥ 0

cos� � sin� 0

� sin�/ tan⇥ � cos�/ tan⇥ 1

3

7775

0

BBB@

!
1

!
2

!
3

1

CCCA
(6)

whereas the expression of the coordinate transformation matrix TBI as a

function of  , ⇥, and � can be found in [21], and it is not reported here.
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2.3. Feasibility and solution of the pointing problem

When a spacecraft with only two active RWs is considered, the constraint

of constant non-zero angular momentum restricts the set of admissible atti-

tudes at rest to a compact subset of SO(3), provided that the total angular

momentum of the whole satellite must lie in the plane identified by the spin

axes of the active RWs (plane ê
1

–ê
2

, under the assumptions outlined in Sub-

section 2.1 for the spacecraft model). Given the definition of body and inertial

reference frames FB and FI , respectively, the target direction ⌧̂ is expressed

in FI as ⌧̂ I = (cos↵, 0, sin↵)T where ↵ 2 [�⇡/2, ⇡/2] is the elevation of ⌧̂

over the ô
1

-ô
2

plane. On the other hand, the unit vector �̂ is parametrized

in FB as �̂ = (cos� cos ⌘, cos� sin ⌘, sin�)T where � is the elevation over the

ê
1

–ê
2

plane, and ⌘ is the azimuth with respect to ê
1

. Provided that the

frame FB can always be chosen such that êT
3

�̂ � 0, the analysis is restricted

to the case � 2 [0, ⇡/2] without loss of generality.

In order to simplify the derivation of the target attitude, an auxiliary

body-fixed reference frame FA = {G; â
1

, â
2

, â
3

} is introduced, which is ob-

tained by rotating FB by an angle ⌘ about the axis ê
3

, that is, TAB = R
3

(⌘).

As a consequence, the auxiliary reference frame can be parametrized by

means of a 3-1-3 set of Euler-angles, { 0,⇥0,�0}, such that �0 = � + ⌘,

⇥0 = ⇥, and  0 =  . The unit vector �̂ belongs to the plane â
1

-â
3

of FA,

so that its components are given by

�̂A = (cos�, 0, sin�)T (7)

The derivation of a maneuver feasibility condition, with the determination of

an attitude which guarantees the prescribed alignment of �̂ and ⌧̂ with zero
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residual angular rate is performed describing spacecraft attitude in terms of

the angular position of this auxiliary reference frame.

Starting from an arbitrary initial attitude, identified by the angles  i, ⇥i,

and �i, the final attitude represented by  f , ⇥f , and �f must satisfy two

constraints, namely

1. the spacecraft is at rest, that is, ! = 0;

2. �̂ is aligned with ⌧̂ , that is, �̂ = ⌧̂ .

The first condition requires that, at the end of the maneuver, the total an-

gular momentum is completely stored in the RWs, that is, H must lie on

the â
1

-â
2

plane, which implies â
3

TH = 0. Remembering that total angular

momentum is parallel to ô
3

, so that HI = (0, 0, H
0

)T , and H = TBIHI , this

condition can be expressed as h
3

= H
0

cos⇥ = 0. Thus, the first requirement

is met if cos⇥f = 0, that is, the nutation angle at the end of the pointing

maneuver is ⇥f = ⇡/2. This implies that admissible final attitudes with zero

angular rate are never singular. At the end of the pointing maneuver, when

⇥ = ⇥f , the coordinate transformation matrix achieves the form

TAI( f ,�f ) =

2

6664

cos�f cos f cos�f sin f sin�f

� sin�f cos f � sin�f sin f cos�f

sin f � cos f 0

3

7775
(8)

The second requirement (alignment of axis �̂ with ⌧̂ ) is thus enforced

by equating the components of �̂ and ⌧̂ = TAI ⌧̂ I , when both vectors are
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expressed in FA, that is,

0

BBB@

cos�

0

sin�

1

CCCA
=

0

BBB@

cos�f cos f cos↵ + sin�f sin↵

� sin�f cos f cos↵ + cos�f sin↵

sin f cos↵

1

CCCA
(9)

According to Eq. (9) (third row), the precession angle  f must satisfy

the condition

sin f = sin�/cos↵ (10)

which admits two real solutions  f,1 =  ?
f and  f,2 = ⇡ �  ?

f , with  
?
f =

sin�1 (sin�/ cos↵) if

|↵|  ⇡/2� |�| (11)

The inequality in Eq. (11) represents a feasibility condition, as the point-

ing maneuver becomes possible only when the elevation of the axis ⌧̂ over

the plane perpendicular to the angular momentum vector H is less than the

angular distance between �̂ and b̂. Figure 2 shows the regions of admissible

(in black) and forbidden (in gray) target directions over the unit sphere for

a few values of �.

The first and second rows of Eq. (9) form a linear system of equations in

the unknowns X = cos�f and Y = sin�f , written as

8
<

:
aX + bY = c

bX � aY = 0
(12)

where a = cos f cos↵, b = sin↵, and c = cos� � 0, whose solution is

X = ac/(a2 + b2) , Y = bc/(a2 + b2) (13)
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(a) � = 10� (b) � = 45�

(c) � = 60� (d) � = 85�

Figure 2: Admissible (black) and unaccessible (grey) target directions ⌧̂ in F
I

for di↵erent

values of �.

Therefore, �f is found by using the four-quadrant inverse tangent function,

that is,

�f = atan2 (b, a) = atan2 (sin↵, cos↵ cos f ) (14)

Two attitudes realize the single-axis pointing with spacecraft at rest, one

for each solution of Eq. (10). Letting �? = atan2 (sin↵, cos↵ cos ?) and
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recalling the relation between Euler angles for FB and FA frames, it is

( ,⇥,�)f = {( ?, ⇡/2,�? � ⌘) , (⇡ � ?, ⇡/2, ⇡ � �? � ⌘)} (15)

2.4. Remarks

The constraint imposed by conservation of total angular momentum, H ,

of the system formed by spacecraft platform and the active RWs provides

some physical insight, useful for the derivation of a suitable control law.

First of all, by expressing the equation H = J! + h = TBIHI , with HI =

(0, 0, H
0

)T , in terms of body-frame components, one has that
0

BBB@

J
1

!
1

+ h
1

J
2

!
2

+ h
2

J
3

!
3

1

CCCA
= H

0

0

BBB@

sin� sin⇥

cos� sin⇥

cos⇥

1

CCCA
(16)

The relationship between nutation angle ⇥ and angular velocity compo-

nent along the failed axis b̂ = ê
3

is apparent. In particular, one has !
3

=

(H
0

/J
3

) cos⇥, which clearly implies that imposing a terminal value of !
3

= 0

is equivalent to require that ⇥f = ⇡/2. Thus, the RWs can absorb the whole

angular momentum vector, only if ⇥ = ⇡/2. This is equivalent to reducing

the number of available rotational degrees of freedom to two.

It is also worth to mention that, when the spacecraft is at rest, Eq. (16)

states that h
1

= H
0

sin�f , h
2

= H
0

cos�f . The angle �f thus defines

the allocation of the total angular momentum among the two RWs, and

it coincides with the desired final value of the spin angle for the auxiliary

frame, FA. One can finally note that, when a pointing on the boundary of

the feasible region is sought, such that |↵| = ⇡/2� |�|, Eq. (10) implies that

 f = ±⇡/2, and, as a consequence, the solutions for the system in Eq. (12)
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are given by �f = ±⇡/2. Remembering that also ⇥f = ⇡/2, for ! = 0, all

Euler angles are equal to ⇡/2 (in magnitude ) for this limit case.

3. Controller synthesis for exact pointing

The control objective is to drive the spacecraft towards the desired ad-

missible poiting condition from arbitrary initial conditions, while transfer-

ring the residual angular momentum to the active RWs. As a preliminary

result, controllability of the system in the neighborhood of the desired point-

ing attitude is assessed. Then, an almost-globally stabilizing control law is

developed, based on a nested architecture, where the inner loop controls pre-

cession and nutation angles, and the outer loop provides convergence towards

the desired value of spin angle. More in detail, in the framework of SPT,

at the inner level the fast dynamics is represented by RW response to an

angular momentum command, whereas the slow dynamics is described by

the commanded nutation and precession angle rates, which determine the

angular momentum command for the wheels. The resulting closed-loop sys-

tem tracks the commanded values of nutation and precession angles and it

represents the fast dynamics for the outer loop, where the slow dynamics is

given by the prescribed spin rate. The spin rate command is implemented by

enforcing a correction to the desired nutation angle, exploiting the residual

angular momentum for obtaining a rotation rate around the axis along which

an attitude e↵ector is not available. When the pointing maneuver is feasible,

the resulting command law for the two active RWs drives the body-fixed

direction �̂ towards ⌧̂ , so that the pointing error (that is, the angle between

the unit vectors �̂ and ⌧̂ ) asymptotically approaches zero.
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3.1. Controllability of the linearized system

Analysis of spacecraft rotational dynamics in the neighborhood of the

target attitude is performed via a linearization of the complete set of nonlin-

ear spacecraft equations of motion, namely Eqs. (6), (3), and (4). The state

vector, written in error form, is given by

xT = (e
 

, e
⇥

, e
�

, !T , eh
T )

where e
 

=  � f , e⇥ = ⇥� ⇡/2, e
�

= �� �f , and eh = (h
1

� h
1,f , h2

�
h
2,f )T . When higher-order terms are dropped, a linear time-invariant system

of 8 first-order ordinary di↵erential equations is obtained. Conservation of

angular momentum allows one to drop three variables and derive a 5th–order

system in the form

0

BBB@

ė
 

!̇

ėh1

1

CCCA
=

2

6664

0 hT
f /H0

0

0 �J�1h⇥
f 0

0 0

T 0

3

7775

0

BBB@

e
 

!

eh1

1

CCCA
+

2

6664

0

T

J�1

G

3

7775
Su (17)

where x = (e
 

,!T , eh1)T is the state vector, u = (u
1

, u
2

)T is the control

vector, the matrix S is defined as in subsection 2.1 and 0 = (0, 0, 0)T , G =

(�1, 0, 0). This set of states guarantees that, when the reduced-order system

reaches the origin, dropped variables also approach their desired values. In

fact, if !
3

! 0, then ⇥! ⇡/2; similarly, the conditions ! ! 0 and h
1

! hf1

imply that h
2

! hf2 and, as a further consequence, �! �f .

Controllability of the system in Eq. (17), requires full rank of the ma-

trix C =
⇥
B,AB,A2B,A3B,A4B

⇤
, where A and B are the state and

control matrices. Letting Ks = (J
2

h2

f2 + J
1

h2

f1) / (J1J2J3) and Kd = (J
1

�
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J
2

)/(H
0

J
1

J
2

J
3

), it is

C =

2

666666664

0 0
hf1

H0J1

hf2

H0J2
0 0 Kd

hf1h
2
f2

J1
�Kd

h2
f1hf2

J2
0 0

1

J1
0 0 0 � h2

f2

J2
1J3

hf1hf2

J1J2J3
0 0 Ks

h2
f2

J2
1J

2
3

Ks
hf2hf1

J1J2
2J3

0 1

J2
0 0

hf1hf2

J1J2J3
� h2

f1

J2
2J3

0 0 �Ks
hf2hf1

J1J2J3
�Ks

h2
f1

J2
2J3

0 0 � hf2

J1J3

hf1

J2J3
0 0 Ks

hf2

J1J3
�Ks

hf1

J2J3
0 0

�1 0 0 0 0 0 0 0 0 0

3

777777775

(18)

Su�cient condition for controllability is that all 5 rows of C are lin-

early independent, and one easily notes that all pairs of rows are linearly

independent, with two relevant exceptions. First, rank of C drops to 2 if

hf1 = hf2 = 0, but this condition is ruled out by the fact that khfk = H
0

> 0,

provided that if the total angular momentum is non–zero, at least one of the

relative angular momenta of the active RWs must be non-zero in the final

condition, when the spacecraft is at rest.

A second critical condition is obtained if hf2 = 0, that is, �f = ±⇡/2, so

that rows 2 and 5 are no longer linearly independent. This condition occurs

when ⌧̂ is at the boundaries of the region of feasible pointing directions.

Rank loss of C is caused by the selection of eh1 as the 5-th state variable

in the state vector of the reduced order model. If one considers the dual

reduced-order system, obtained by selecting eh2 instead of eh1 as the 5th state

variable, controllability of the resulting system can be verified. In this case,

the controllability matrix (not reported, for the sake of conciseness) looses

rank when �f = 0, ⇡, that is, for those pointing directions perpendicular to

the direction of the residual angular momentum, namely ↵ = 0. Hence, the

nonlinear system given by Eqs. (6), (3), and (4) is first-order controllable

also for �f = ±⇡/2, for an appropriate choice of the 5th state variable.
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Once controllability is assessed, a static full-state feedback control law in

the form u = Kx, which stabilizes the linearized system of Eq. (17) about the

origin, can be synthesized in the framework of LQR control theory [22, 23].

This represents a robust and rigorous approach to select the optimal control

gain matrix K 2 R2⇥5 that provides local asymptotic stability and optimal

closed-loop performance, in a neighborhood of the equilibrium point, with

the desired pointing attitude. Unfortunately, the local nature of the result

makes it unsuitable for large initial errors, so that a di↵erent approach is

derived in next paragraphs.

3.2. Angular momentum command for precession and nutation control

By combining angular momentum conservation, Eq. (16), with Euler an-

gle kinematic equations, Eq. (6), Euler angle rates can be expressed as a

function of residual angular momentum components in the body frame and

angular momentum stored in the active RWs,

 ̇ = (H
0

/J
1

) sin2�+ (H
0

/J
2

) cos2�+

� (h
1

/J
1

)(sin�/ sin⇥)� (h
2

/J
2

)(cos�/ sin⇥) (19)

⇥̇ = [(H
0

/J
1

)� (H
0

/J
2

)] sin� cos� sin⇥+

� (h
1

/J
1

) cos�+ (h
2

/J
2

) sin� (20)

�̇ = (H
0

/J
3

) cos⇥�  ̇ cos⇥ (21)

In this situation only two Euler angles can be directly controlled at the

same time, by enforcing prescribed values to the relative angular momenta,

h
1

and h
2

, which result into desired values of precession and nutation rates,
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written in the form

 ̇des =
1

⌧
 

( f � ) , ⇥̇des =
1

⌧
⇥

(⇥f �⇥) (22)

where a first order dynamics with time constants ⌧
 

and ⌧
⇥

is specified for

the evolution of  and ⇥, respectively. Upon substitution of  ̇des and ⇥̇des

into Eqs. (19) and (20), the resulting RW angular momenta are

h
1,des = H

0

sin� sin⇥� J
1

⇥̇des cos�� J
1

 ̇des sin� sin⇥

h
2,des = H

0

cos� sin⇥+ J
2

⇥̇des sin�� J
2

 ̇des cos� sin⇥
(23)

Provided that RW dynamics can be conveniently described by means of a

first-order model,

ḣi =
1

⌧h
(hi,des � hi) , i = 1, 2 (24)

an appropriate selection of the time constants, ⌧
 

, ⌧
⇥

� ⌧h in Eq. (22)

enforces a two-timescale response, where RWs track the required values, h
1,des

and h
2,des, on a faster timescale than the desired evolution of precession and

nutation angles.

For large initial errors, the inner system composed by Eqs. (19), (20), and

Eqs. (24) is recast in standard singular perturbation form [20],

ẋ = f(x, z, t, ") (25)

"ż = g(x, z, t, ") (26)

with z = h, x = ( ,⇥)T , and " = ⌧h ⌧ T is a fast time constant, much

smaller than T = min(⌧
 

, ⌧
⇥

, T
�

), where T
�

= 2⇡J
3

/H
0

is an estimate of the

rotation period of the spin angle.
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Theorem 2.1 in [20] provides three conditions under which a uniform ap-

proximation for slow and fast states is available. Let x̄(t) and z̄(t) represent

the quasi-steady state solutions of x and z, respectively, with x̄(t) represent-

ing the solution of the reduced order model

˙̄x = f(x̄, z̄, t, 0) (27)

for slow state variables, when fast states are at equilibrium, that is,

z̄ = h(x̄, t) (28)

is a solution for the system

g(x̄, z̄, t, 0) = 0 (29)

The expansion

x = x̄(t) +O(") (30)

z = z̄(t) + ẑ(⌧)� z̄(t
0

) +O(") (31)

provides a uniform approximation of the exact solution for slow, x(t), and

fast states, z(t), if (i) h(x̄, t) is an isolated root of the algebraic equation

g(x̄, z̄, t, 0) = 0 (Assumption 1.1); (ii) g(x
0

, z̄, t, 0) = 0 is asymptotically

stable uniformly for any initial value of slow and fast states, x
0

and z
0

at

time t
0

(Assumption 2.1); and (iii) the eigenvalues of the Jacobian matrix

@g/@z are smaller than a fixed negative quantity (Assumption 2.2).

The term ẑ(⌧) in Eq. (31) is the so called boundary layer solution of the

fast dynamic system

" ˙̂z = g(x
0

, ẑ, t, 0) (32)
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with ẑ(0) = z
0

as initial condition, ẑ(⌧) representing the fast transient that

drives the fast states towards their quasi-steady approximation, z̄(t).

In the present application the dynamics of x and z explicitly depends

on time, because of the (at this stage still uncontrolled) variation of the

spin angle, �, ruled by Eq. (21). The fast dynamics is represented by the

first-order response of the active RWs, which satisfies the aforementioned

assumptions 1.1, 2.1, and 2.2. in [20], provided that (i) the equilibrium

h = hdes is an isolated root for the equation hdes( 0

,⇥
0

,�(t
0

))� h̄ = 0; (ii)

this solution is clearly asymptotically stable uniformly for any initial value

of slow and fast states, x
0

and z
0

at time t
0

; and (iii) the eigenvalues of the

Jacobian matrix @g/@z, �
1

= �
2

= �1 are constant, hence smaller than a

prescribed negative quantity.

At this point a local theorem can be invoked for proving asymptotic sta-

bility of states towards ⇥f ,  f , and hf . In particular, once the system is

rewritten in terms of error variables, Theorem 11.4 of Ref. [24] provides a

proof of exponential stability, under five conditions which apply to the consid-

ered system (see Appendix for details), proving that almost global stability

is achieved under the control law that drives  and ⇥ towards their desired

values,  f and ⇥f = ⇡/2, with k!k = 0. The only exception is represented

by singular initial attitudes, when ⇥ = 0 or ⇡ exactly. In the unlikely event

of such a situation, an initial control action on the active wheels can be im-

plemented, in order to drive the spacecraft out of the singular attitude and

allow the control to work properly from any non-singular attitude.
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3.3. Control of the spin angle

The spin angle � is not controlled by means of the angular momentum

command described above, so that � takes an unpredictable value �1 2
[�⇡, ⇡], if  and ⇥ converge asymptotically towards their final values, being

in general �1 6= �f . A single axis rotation around ê
3

would be su�cient for

achieving the desired alignment, but no control torque, nor wheel angular

momentum is available around that axis. By introducing an outer control

loop, a spin rate can be generated by means of a nutation angle, which

projects a component of the residual angular momentum, H
0

cos⇥, along ê
3

.

Letting �̇des = (�des ��)/⌧�, a perturbed value of the required nutation

angle is considered, ⇥? = ⇥f + "
⇥

, such that for ⇥ = ⇥? the commanded

spin rate is achieved, if

�̇des = [(H
0

/J
3

) +  ̇des] cos⇥
? (33)

being from Eq. (33) sin "
⇥

= cos⇥? = ��̇des/[(H0

/J
3

) +  ̇des]. An incre-

mented desired nutation rate in the form ⇥̇?
des = (⇥?�⇥)/⌧

⇥

is thus enforced,

with the same precession rate command,  ̇des = ( des �  )/⌧ , and wheel

angular momentum command, specified for the inner loop by Eq. (23). Note

that, when � approaches the value prescribed by the pointing condition, �f ,

the desired spin rate converges towards zero, hence the perturbation "
⇥

of

the nutation angle with respect to its desired value also vanishes, and the

spacecraft achieves a detumbled condition at the desired pointing attitude.

Stability of the complete system including the outer loop is also inferred

on the basis of the singular perturbation approach, recalling again Theorem

2.1 in [20], under the hypotheses that (i) the spin angle is now the only

22



slow state, x = �, (ii) fast states are z = ( ,⇥, h
1

, h
2

)T , and (iii) the

perturbation parameter is now the fast timescale " = ⌧f = max(⌧
 

, ⌧
 

), that

is, the slowest time constant for the linear response enforced on nutation and

precession angles. A slower response is enforced on spin angle, where the

slow time constant is Ts = ⌧
�

� ⌧f .

The equilibrium z̄ = ( f ,⇥f , h1f , h2f )T for fast states is an isolated and

exponentially stable root for the system g(x̄, z̄, t, 0) = 0 (see above and

Appendix), so that Assumptions 1.1 and 2.1 both hold. Letting K
 

= ⌧f/⌧ ,

K
⇥

= ⌧f/⌧⇥ (where either one between K
 

and K
⇥

is equal to 1 and the

other one is greater than 1), and Kh = ⌧f/⌧h � 1, the dynamics enforced on

the inner system by the angular momentum command derived for the inner

loop is given by

" ̇ = K
 

( f � ) (34)

"⇥̇ = K
⇥

(⇥? �⇥) (35)

"ḣ
1

= Kh(h1,des � h
1

) (36)

"ḣ
2

= Kh(h2,des � h
2

) (37)

The eigenvalues �K
 

, �K
⇥

, and �Kh of the Jacobian matrix @g/@z are

all equal or smaller than �1, so that Assumption 2.2 is also satisfied, and a

uniform approximation in the form of Eqs. (30)-(31) is available.

A bound on the maximum value of �̇des needs to be introduced, for avoid-

ing that the required angular momentum component along ê
3

exceeds a pre-

scribed percentage of H
0

. This is obtained by saturating the maximum nu-

tation angle increment "
⇥

below a prescribed threshold. Such a constraint

obviously limits the maximum available spin rate, making the second step
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Figure 3: Architecture of the control law.

of the manoeuvre possibly slow, especially if a small residual angular mo-

mentum, H
0

, is available, but this further confirms, on physical grounds, the

validity of the timescale separation assumption. At the same time, a small

nutation angle increment also reduces coupling with other axes. The values

of H
0

and the bound on "
⇥

are thus the most relevant driving factors in

determining converge speed. Finally, a bound of the desired precession rate

is also required, where  ̇des < ( ̇)des,max

= kH
0

/J
3

), with k < 1, so that the

denominator in the definition of the nutation angle increment required for

spin angle control, sin "
⇥

, never vanishes. The control system architecture is

represented in Fig. 3, where the inner and outer loops are highlighted.

3.4. Time constants and saturation

The time constant ⌧h of RW response is representative of its dynamic char-

acteristics, so it is related to hardware type and performance. Conversely, the

time constants for required precession, nutation and spin rates, namely ⌧
 

,

⌧
⇥

, and ⌧
�

, are design parameter for the control laws, with values which can

be arbitrarily higher than ⌧h, thus forcing the two-timescale behavior upon

which the control system architecture is based. If time constants for desired
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Euler angle rates are higher, separation between timescales is wider, thus

allowing for a smooth, alas slow, convergence towards the desired attitude.

If a more aggressive maneuver is to be dealt with, in order to attain faster

convergence, higher Euler angle rates can be realized by choosing smaller

time constants, provided that ⌧
 

, ⌧
⇥

, and ⌧
�

remain at least approximately

one order of magnitude greater than ⌧h. However, if initial attitude error is

large, the corresponding value of desired Euler angle rates may result into

high values of commanded wheel angular momenta, which in turn cause

wheel torque saturation, where wheel response becomes linear with time,

with a slower convergence rate of h towards hdes. More important, timescale

separation between wheel response and Euler angle variation is no longer

guaranteed, hence overall spacecraft stability during the maneuver.

In these circumstances, implementation of the wheel angular momentum

command requires a control on RW torque saturation. Letting ui = (hi,des �
hi)/⌧h be the desired wheel torque for the i–th active wheel, i = 1, 2, and gmax

the maximum wheel motor torque, a saturation factor f = max(|u|/gmax) is

introduced. If f < 1, both wheel commands are within saturation limits and

the nominal implementation of the control law is adopted. If f > 1, satura-

tion occurs on at least one of the wheels, and the desired wheel commands

are reduced by scaling desired precession and nutation rates, �̇des and ⇥̇des,

in Eq. (23) by a factor, ksat  1, such that

h̄
1,des = H

0

sin� sin⇥� ksat(J1⇥̇des cos�+ J
1

 ̇des sin� sin⇥) (38)

h̄
2,des = H

0

cos� sin⇥+ ksat(J2⇥̇des sin�� J
2

 ̇des cos� sin⇥) (39)
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with

ksat = K
h
1� 

⇣
1� e�(f�1)

2
⌘i

(40)

where 0 <  < 1, and K is evaluated as follows. When the control torque

which violates the saturation level most severely is u
1

, an updated value of

h?
1,des is defined as

h?
1,des = h

1

+ ⌧h gmax sign(h1,des � h
1

) (41)

The corresponding value of K is obtained by inverting the first of Eqs. (23),

that is, letting

K = �(h?
1,des �H

0

sin� sin⇥)/(J
1

⇥̇des cos�+ J
1

 ̇des sin� sin⇥) (42)

Similarly, when u
2

exceeds the saturation limit more severely, it is

h?
2,des = h

2

+ ⌧h gmax sign(h2,des � h
2

) (43)

and K is derived from the second of Eqs. (23) as

K = (h?
2,des �H

0

cos� sin⇥)/(J
2

⇥̇des sin�� J
2

 ̇des cos� sin⇥) (44)

Note that K is set equal to zero when a negative value is obtained by

the above procedure, which means that the wheel command forces angular

momenta to track the current value of residual angular momentum along the

body axes parallel to the active RWs, without accounting for precession and

nutation rate commands. This phase requires a relatively small amount of

time, without jeopardizing convergence. At the same time, an attenuation

factor  is introduced in Eq. (40), such that, as soon as this initial phase

is completed (when present), the wheel torque command is driven slightly
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below saturation, thus recovering a residual sensitivity of the control law to

precession and nutation rate commands, even when the saturation violation

factor f is large. In this condition, the scaling factor simply makes desired

angular rate time constants longer. Note that, as f approaches 1, ksat be-

comes equal to K, with a smooth law. A value  = 0.1 was selected as

the best compromise between undesirable chattering, for  close to 1, and

large amplitude oscillations which cause convergence to require longer time

intervals, for values of  near zero.

Convergence is always reached, regardless of the value of , but when wide

amplitude oscillations occur during the initial phase, convergence requires

longer times. Conversely, when chattering occurs, the convergence remains

fast, but, from the practical point of view, deformation degrees of freedom

may be excited in the presence of flexible appendages, an e↵ect which is not

accounted for by the model adopted in the present study. This may cause

overall maneuver performance degradation on a real spacecraft.

3.5. Disturbance torques

In the presence of disturbance torques, the angular momentum H is

no longer constant in the inertial frame, but the timescale associated to

variations of H is significantly longer than the time required for performing

the maneuver, given the typical values of environmental torques acting on a

spacecraft. For long term pointing or very slow maneuvers, the directions of

the unit vectors of FI can be updated as functions of current values of !, h
1

,

and h
2

(which are measured on board) according to Eqs.(5), thus allowing

to handle also this e↵ect on a further slower timescale.
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4. Results

A dynamic model representative of a small satellite is considered for

demonstrating the viability of the proposed control approach, as well as ana-

lyzing its convergence performance. A reference spacecraft is assumed, with

an inertia tensor J = diag(10, 9, 8) kgm2 and two identical active RWs,

with moment of inertia Jw = 0.001 kg m2. RWs are controlled by an elec-

tric motor torque with a time constant ⌧h = 200 ms and maximum torque

gmax = 50 mNm. A residual angular momentum H
0

is present, with a nom-

inal value of 0.850 Nms. Time constants ⌧
 

= ⌧
⇥

= 2 s are enforced for

the desired precession and nutation angle responses, whereas a slower time

constant ⌧
�

= 20 s is assigned to the spin angle dynamics.

Numerical integration is performed by means of an explicit, 5th order

accurate, variable, step Runge-Kutta algorithm. A maximum time-step of

50 ms is prescribed. Unless otherwise stated, a reference pointing problem is

dealt with, for � = ⇡/9 rad and ↵ = ⇡/6 rad. The simulation is stopped at

time tf , when the residual pointing error between current and desired atti-

tudes, determined in terms of residual eigenaxis rotation amplitude �#, falls

below 0.017 rad = 0.1 deg, with a residual angular rate k!fk < 0.0017 rad/s

= 0.01 deg/s. The e↵ect of system parameters on maneuver time tf is ana-

lyzed and discussed, with particular emphasis on the values of H
0

and gmax.

4.1. Rest-to-rest maneuvers

A rest-to-rest maneuver is obtained if both initial and final attitudes are

admissible, with ⇥
0

= ⇥(t = 0) = ⇡/2, and the residual angular momentum

H
0

fully absorbed in the active RWs. This requires that, for a given value of
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�, the initial pointing direction of the sensor, identified by its elevation ↵
0

and

azimuth �
0

in FI , is such that |↵
0

| < ⇡/2��. The initial equilibrium value of

all system states can be determined, provided that (i) !
0

= (0, 0, 0)T at rest,

(ii) the initial value of Euler angles is prescribed by Eq. (15), with  
0

=  ?+

�
0

, ⇥
0

= ⇡/2, and �
0

= �?, and (iii) the initial angular momentum stored in

the active RWs is h
10 = H

0

sin�
0

and h
20 = H

0

cos�
0

. Assuming that the

final attitude is prescribed by the nominal pointing problem described above

(� = ⇡/9, ↵ = ⇡/6, and � = 0 for the considered choice of the frame of FI

described in subsection 2.2), a set of simulations is performed by sampling

initial values of elevation and azimuth angles, ↵
0

and �
0

, in order to determine

the maneuver time tf required for reaching the desired pointing attitude.

Figure 4 shows the contour plot for tf as a function of ↵
0

and �
0

(Fig. 4.a)

and a 3-D mesh plot of the resulting surface (Fig. 4.b). The point marked as

T in Fig. 4.a represents the desired pointing direction. Convergence requires

times ranging between 250 and almost 500 s for most of the feasible initial

pointing attitudes. Figure 5 shows the time histories of spacecraft attitude

variables (Figs. 5.a and b), and wheel torque and relative angular momenta

(Fig. 5.c and d) when the initial pointing attitude is given by ↵
0

= �64 deg

and �
0

= �105 deg (point A in Fig. 4.a). The correct implementation of

the proposed control strategy is clearly evident, where the precession angle

reaches its prescribed value in little more than 50 s, and ⇥ is displaced up to

the maximum admissible deviation for inducing a rotation around the spin

axis, which exploits the residual angular momentum to drive � asymptoti-

cally towards its desired value. For the considered initial condition, a 180 deg

variation of the (slowly varying) spin angle is required, which explains the
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Figure 4: Contour (a) and mesh (b) plots for convergence time to target pointing condition

T as a function of initial azimuth and elevation angles of sensor axis at rest.

long duration of the maneuver (438 s). The spikes visible in Fig. 5.c for the

wheel control torques are induced by the various saturation levels present

in the system (with the limit on the maximum RW torque) and in the con-

trol law (with a bound enforced on the maximum admissible nutation angle

increment, "
⇥

). As a result of these saturation levels, wheel angular momen-

tum command is only Lipschitz-continuous with respect to state variables,

that is, it is continuous, with bounded discontinuities on its first derivatives,

and sudden (but limited) variations in the torque required for tracking the

resulting wheel angular velocity command are present. Nonetheless, the re-

sulting variation of angular rates and wheel angular momenta are su�ciently

smooth (Fig. 5.a and 5.d, respectively).

It is apparent that convergence time becomes significantly shorter if the

initial pointing directions lies in the narrow “valley,” clearly visible in the

3-D representation of tf (Fig. 4.b), which includes the target attitude. Here,

convergence time is below 250 s, being equal to less than 60 s along the

bottom. The presence of this region of fast convergence is related to the

30



50 100 150 200 250 300 350 400

-0.5

0

0.5

1, 
2, 

3 [d
eg

/s
] 1

2

3

0 50 100 150 200 250 300 350 400
t [s]

-150

-100

-50

0

50

100

150

, 
, 

 [d
eg

]

50 100 150 200 250 300 350 400
-0.05

0

0.05

u 1, u
2 [N

 m
]

u1
u2

50 100 150 200 250 300 350 400
t [s]

-0.5

0

0.5

h 1, h
2 [N

 m
 s

]

h1
h2

a)

b)

c)

d)

Figure 5: Simulation for initial condition A (black triangle in Fig. 4.a).

values of Euler angles at initial time. All initial rest conditions require that

⇥
0

= ⇡/2 ⌘ �f . If also �
0

⌘ �f for the considered values of ↵
0

and

�
0

, the desired pointing can be obtained by means of a simple single-axis

rotation, which can be easily handled by the RWs. This is clearly visible in

the time-histories of state and control variables shown in Fig. 6.a-d for the

maneuver starting from the initial condition represented by the point labeled
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B in Fig. 4.a (↵
0

= �64 deg and �
0

= 105 deg). This point is the symmetric

of A, with respect to the final desired attitude, being thus characterized by

the same angular distante of �̂ from its desired pointing direction, ⌧̂ , but it

lies almost exactly at the bottom of the valley of fast maneuvers. Only two

velocity components are varied during the maneuver (Fig. 6.a), in order to

control the precession angle  , whereas !
3

remains close to 0 for its entire

duration. Both ⇥ and  remain almost exactly constant, at their initial

values, �
0

being only 0.15 deg away from its final prescribed value. Note

that,in cases with �
0

⇡ �f , the initial and final values of h
1

and h
2

are equal.

Only 67 s are thus su�cient for reaching the prescribed pointing condition,

which is approximately 7 times faster than the symmetric maneuver, starting

from point A, which requires a 180 deg variation of the spin angle.

4.2. Monte Carlo simulations

Random initial attitudes are generated following the technique proposed

in [25]. The initial angular momentum of each wheel is specified as hi,0 =

(2�i � 1)H
0

, i = 1, 2, where �i 2 [0, 1], i = 1, 2 are two uniformly distributed

random variables. The resulting initial value for angular rates is thus given

by !
0

= J�1

⇥
TBI(0, 0, H0

)T � h
⇤
, with hi,0 2 [�H

0

, H
0

].

An initial set of 10,000 simulations is run for the nominal values of residual

angular momentum, H
0

= 0.850 Nms, and wheel torque saturation levels,

gmax = 50 mNm. Four more Monte Carlo simulation campaigns are then

performed, each made of 10,000 randomly generated initial conditions, for

evaluating the e↵ects of H
0

and gmax on convergence performance, tf . H
0

is varied by ±50% first, generating two cases for H
0

= 0.425 Nms and

H
0

= 1.275 Nms, respectively, with gmax = 50 mNm. Similarly, the wheel
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Figure 6: Simulation for initial condition B (white triangle in Fig. 4.a).

motor saturation torque is varied by ±50%, generating two more cases for

gmax = 25 mNm and 75 mNm, with H
0

= 0.850 Nms.

Table 1 lists the results of the five Monte Carlo tests (the nominal case

is repeated twice for the sake of readability), in terms of average value of

convergence time, t̄f , over the whole set of tests, its standard deviation, �(tf ),

and three relevant percentiles (10%, 50%, and 90%). The corresponding
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probability density functions (PDFs) for convergence time tf are presented

in Figs. 7 and 8. In these plots the abscissa is reported in terms of hundreds

of seconds, so that each PDF achieves values in the order of 1.

Table 1: Results from Monte Carlo simulations

Variation of H
0

Case avg. std.dev. Percentiles

t̄f �(tf ) 0.1 0.5 0.9

-50% 298 75.9 198 299 395

nominal 262 68.4 178 257 358

+50% 264 74.2 172 257 368

Variation of gmax

Case avg. std.dev. Percentiles

t̄f �(tf ) 0.1 0.5 0.9

-50% 438 151.3 236 434 646

nominal 262 68.4 178 257 358

+50% 210 49.4 148 207 278

It is apparent from the results of the first set of Monte Carlo simulations,

where H
0

is varied, that the e↵ect of the residual angular momentum on con-

vergence performance is relatively modest, when random initial conditions

are considered. Only when H
0

is decreased, a slightly longer average con-

vergence time is obtained (approximately 7% longer than the nominal case),

with a slightly wider dispersion (standard deviation increases by 11%). This

is due to a longer time required for the final convergence of the spin angle,

which becomes slower, when a reduced value of H
0

is available. Conversely,
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.

the probability density functions for an increased value of H
0

is almost ex-

actly equal to that of the nominal case.

As expected, di↵erent levels of wheel torque saturation result into signif-
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Figure 9: Plot of t
f

vs �# for various H0.

icant variations of both average convergence time and standard deviation,

where an increase by 50% of wheel saturation torque allows for reducing con-

vergence time by 20%, on average, with a narrower distribution, �(tf ) being

reduced by almost 28%. On the other hand, when maximum wheel torque

is reduced by 50%, t̄f increases by 67%, and �(tf ) becomes more than dou-

ble. The probability density function, in this latter case, looses its peak and

becomes almost constant, over a wide interval.

The correlation between convergence time and initial pointing error �# is

analyzed in Figs. 9 and 10, where the three subplots in Fig. 9 are obtained for

the nominal value of gmax and di↵erent values of H
0

, whereas Fig. 10 shows

the results for three values of gmax and nominal H
0

. Each run is represented

by a grey point on the �# vs tf plane. The plots also reports the trend of the

percentiles, with the 50th percentile represented by a continuous black line.

When H
0

is higher, the distribution of convergence time is almost una↵ected
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Figure 10: Plot of t
f

vs �# for various g
max

.

by �# (Fig. 9.a), with almost exactly horizontal percentiles lines. A slight

increase of tf with �# is apparent for the nominal value of H
0

, although

quite limited (Fig. 9.b), whereas the third plot (Fig. 9.c), traced for a reduced

value of the residual angular momentum, reports a more visible trend with

wider dispersion, but also a more significant increase of convergence time as

a function of the initial pointing error.

When the e↵ect of gmax is considered (Fig. 10), the increase in the per-

centile lines with�# is limited, over the whole range of initial pointing errors.

For the highest saturation torque considered (Fig. 10.a), the 50th percentile

grows from 160 s, for initial pointing error in the range between 0 and 40 deg,

up to 210 s, when the initial error exceeds 170 deg. The same indicator grows

from 210 s up to 270 s if the nominal value of gmax is considered (Fig. 10.b)

as �# is larger, whereas longer convergence times are required for 50% of the

sample population, when g
max

is halved (Fig. 10.c), with convergence time
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as large as 360 s for smaller initial errors, up to almost 470 s. The other

percentile lines follow a similar pattern, such that dispersion remains almost

constant, getting broader for smaller values of the wheel motor saturation

torque, as already pointed out from the analysis of the global PDF.
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Figure 11: Worst case in Monte Carlo simulation for nominal system parameters.

Figure 11 reports the time histories for the worst case scenario within the
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set of 10,000 runs of the Monte Carlo simulation for nominal system param-

eters, that is, the maneuver requiring the longest convergence time, equal to

tf = 467 s. Figure 11.a, where the variation of angular velocity components

is presented, shows that the initial tumbling motion for the randomly gen-

erated initial condition is relatively high, so that the initial portion of the

maneuver is used to rapidly slow down the angular velocity, with ⇥ being

drawn close to its desired value, ⇥f = 90 deg. This is done by saturating

the control torque on one of the wheels (as shown in Fig. 11.c). This fast

initial transient, during which the error on precession and nutation angles is

uncontrolled, is required for reducing the RWs angular momenta to the point

where the desired commands can be implemented. After this initial phase,

the precession angle error decreases linearly until, during the final phase, also

the spin angle asymptotically reaches its desired value, on a slower timescale.

The spikes in the control torque, visible in Fg. 11.c, are caused by the dis-

continuities on the time derivative of h
1,des and h

2,des induced by the method

adopted for managing saturation, as discussed in subsection 3.4. When con-

trol torque demand from the baseline controller exceeds saturation limits, the

saturation factor f and the scaling factor for the control law, ksat, are deter-

mined from the value of the torque required by the wheel, which violates the

saturation constraint more severely. When this condition switches from one

active wheel to the other one, or when saturation is no longer violated, a dis-

continuity on the derivative of both h
1,des and h

2,des is present, which induces

a step variation on the resulting control torque, rapidly compensated. Note

that the variation of wheel angular momenta remains smooth (Fg. 11.d).
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Figure 12: Simulation of convergence to the bound of the admissible pointing region for

nominal system parameters and randomly generated initial conditions.

4.3. Convergence at the bounds of admissible pointing direction region

Performance for pointing at the boundary of the admissible region, where

↵ = ↵max = ⇡/2��, is finally considered, in which case desired Euler angles

are all equal to 90 deg (see subection 2.4) and the residual angular momentum
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is absorbed by only one of the wheels, at convergence. Figure 12 shows the

time histories of attitude (Fig. 12.a and b) and control (Fig. 12.c and d)

variables for nominal torque saturation and residual angular momentum, for

a randomly generated set of initial conditions. It is apparent that convergence

follows a pattern similar to that observed in previous simulations (including a

few spikes in the control torque). The only relevant di↵erence, exhibited also

by other simulations not reported, is that the spin angle � often converges

towards its desired value faster than the precession angle,  . As for the

remaining features of time-histories, there is no other relevant observation:

angular rates are reduced first, while ⇥ approaches 90 deg, with a rather

smooth variation of all attitude variables.

5. Conclusion

The possibility of aiming a generic body-fixed axis towards a prescribed

direction in space in the presence of a residual angular momentum, while

driving spacecraft at rest was discussed, when only two reaction wheels are

available for attitude control of a rigid satellite. A feasibility condition for the

pointing maneuver was derived, proving that a fixed direction in space can

be reached only in those cases when its angular separation from the direction

of the inertially fixed angular momentum vector is smaller than the angular

separation between the body–fixed axis and the axis of the failed reaction

wheel. The values of precession, nutation and spin angles that allow for the

desired pointing were analytically derived, showing that the nutation angle

must be equal to ⇡/2 if spacecraft angular rate needs to be driven to zero.

A control law based on the timescale separation principle is proposed,
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where di↵erent timescales for active wheel angular momenta and desired

Euler angle dynamics are enforced by appropriate control law gains. In the

presence of saturation, these gains are modified, in order to maintain the

timescale separation. The resulting behavior under the action of the proposed

control law, analyzed for rest-to-rest maneuvers and for initial randomly

generated tumbling conditions, demonstrates the viability of the approach

over a wide number of test cases.

Future work will address pointing strategies for directions outside of the

admissible region, that require a non-zero angular rate around the body-fixed

axis pointed along the desired direction, and tracking of a moving target

direction, thus allowing for axis pointing along a fixed direction in the orbit

frame, as for Earth-observation missions.

Appendix

Remembering that ⇥f = ⇡/2, so that sin⇥ = sin(⇥f + e
⇥

) = cos e
⇥

,

Eqs. (19), (20), and (24) is recast in error form,
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ė
 

= � 1

⌧
 

e
 

� sin�

cos e
⇥

eh1
J
1

� cos�

cos e
⇥

eh2
J
2

(A.1)

ė
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"ėh,i = �eh,i � "ḣi,des , i = 1, 2 (A.3)

with " = ⌧h. The expressions of ḣ
1,des and ḣ

2,des are derived from Eqs. (23),

and accounting for Eqs. (22). Their general forms are not reported here for

the sake of conciseness, but a slightly simplified version can be obtained for

⌧
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= Ts, such that
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After the initial transient, when ⇥ becomes su�ciently close to ⇥f = ⇡/2

(hence cos e
⇥

⇡ 1), all terms in Eqs. (A.4) and (A.5) are proportional to the

inverse of either one of the slow timescales, namely ⌧
⇥

, ⌧
 

, or Ji/H0

, such that

the terms "ḣi,des in Eqs. (A.3), for i = 1, 2, are vanishing with respect to the
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perturbation parameter ". This result is not surprising, if one considers that h
1,des

and h
2,des depend on slow variables only, hence hi,des can be considered (almost)

constant on the fast time scale, so that ḣi,des ⇡ 0.

If error dynamics is recast in a standard singular perturbation form,

⇠̇ = F (⇠, ⇣, t, ") (A.6)

"⇣̇ = G(⇠, ⇣, t, ") (A.7)

with ⇣ = (eh1, eh2)T , ⇠ = (e
 

, e
⇥

)T , and " = ⌧h ⌧ T , all of the five assumptions

for Theorem 11.4 of Ref. [24] apply to the present system. In detail

1. F (0, 0, t, ") = 0 and G(0, 0, t, ") = 0;

2. the equation G(⇠, ⇣, t, 0) = 0 has an isolated root, ⇣ = h(t,x), such that

h(t, 0) = 0; in the present case the isolated root is simply given by eh1 =

eh2 = 0;

3. the functions F , G and h and their partial derivatives up to second order

are bounded, which is true, in the neighborhood of ⇥ ⇡ ⇥f = ⇡/2;

4. the origin of the reduced system ⇠̇ = F (⇠,h(t, ⇠), t, 0) is exponentially stable;

5. letting ⌘ = ⇣�h(⇠, t), the origin of the boundary-layer system ⌘̇ = G(⇠,⌘+

h(t, ⇠), t, 0) is exponentially stable.

The latter two conditions are clearly satisfied by the considered system. Hence, the

origin of the system written in terms of error dynamics is (locally) exponentially

stable, if " is su�ciently small.
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