
1.  Introduction
Many hydrological applications, such as pumping tests or the set up of in situ remediation protocols, depend to 
a great extent upon the spatial variability (generically referred as heterogeneity) of the aquifer’s hydraulic prop-
erties (Rubin, 2003). In particular, it is a common tenet to regard the heterogeneity of the hydraulic conductivity 
K as the controlling parameter of flow and transport (Dagan, 1989). The variability of K implies that the flow 
variables are affected by a spatial uncertainty, and therefore developing efficient and reliable methodologies to 
quantify the K-heterogeneity becomes of paramount importance. This is particularly relevant for strongly hetero-
geneous formations, where the difference with the homogeneous formation is not evident, sometimes counterin-
tuitive (see, e.g., Janković et al., 2006, and references therein).

Among the plethora of methods used to identify the hydraulic conductivity (a comprehensive critical review can 
be found in Cardiff et al., 2013), pumping tests are (thanks to their minimal equipment’s requirement, and ease of 
implementation), by far, the most prominent tools. Owing to several (mainly economic and logistic) limitations, 
most of the efforts have focused on the identification of average properties (Copty et al., 2008, 2011; Desbar-
ats, 1994; Zech et al., 2012). However, this is not satisfactory at all, especially to achieve meaningful predictions 
on solute transport (Dagan, 1989; Rubin, 2003). For this reason, recently it was suggested to carry out measure-
ments over dense borehole spacings in order to achieve accurate three dimensional estimates for mildly hetero-
geneous aquifers (Cardiff et al., 2013). In line with this trend, the natural question here is whether pumping tests 
enable one to identify efficiently the heterogeneity structure of the conductivity even in strongly heterogeneous 
formations. In fact, with the exception of a single pumping test carried out as part of the well known MADE-ex-
periment (Bohling et  al., 2012), other experimental investigations under similar conditions limit to deal with 
“mildly heterogeneous formations” (see, e.g., Fernández-Garcia et al., 2004; Cardiff et al., 2013). Thus, from the 
experimental point of view, very little has been done when the degree of the formation's heterogeneity is high, 
and the present study constitutes an attempt to (partially) fill the gap.

Abstract  Steady well-type flow was monitored in an aquifer that was artificially packed in order to 
reproduce a given, highly heterogeneous, statistical distribution of the log-conductivity Y. In particular, we 
focus on pumping tests carried out at 10 volumetric flow rates. The experimental arrangement was composed 
by a pumping well and several surrounding observation piezometers. The unique feature of this experimental 
study is that the high heterogeneity structure of Y is known fairly well. Thus, the study lends itself as a valuable 
tool to corroborate theoretical findings about flows driven by sources through porous formations, where the 
variance 𝐴𝐴 𝐴𝐴
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𝑌𝑌
 (in the present study equal to 3.79) of Y is large. Besides discussing experimental findings, we 

tackle the crucial issue of upscaling the hydraulic conductivity in a well-flow configuration. In particular, we 
deal with the equivalent conductivity (EC) as that pertaining to a homogeneous (fictitious) medium which 
conveys the same volumetric flow rate of the real one, under the same boundary conditions. Hence, the EC 
can be identified straightforwardly by means of head measurements. Even if we show that the EC is a proper 
parameter to reproduce measurements, it is experimentally shown (in line with the theoretical results) to be 
position-dependent, and therefore, it cannot be regarded (unlike groundwater-type flow) as a formation’s 
property. This implies that the EC applies only to the configuration at stake. Then, we show that the EC, 
combined with a recent model of effective conductivity in well-flows through highly heterogeneous porous 
formation, leads to a reasonably reliable estimate of 𝐴𝐴 𝐴𝐴
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 , some limitations and approximations, notwithstanding. 

It is hoped that the present experimental study will be useful for other researchers who are engaged with similar 
research-topics.
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Identification of the effective conductivity, Keff, in convergent flows through a heterogeneous formation has 
become a topic of intensive analytical studies (e.g., S.  P.  Neuman & Orr,  1993; S.  P.  Neuman et  al.,  2004; 
Sánchez-Vila, 1997; Zech & Attinger, 2016). The drawback related to Keff is that it is not a medium's property 
(non-locality). Instead, it depends upon the geometrical configuration of the set-up.  In addition, Keff depends 
upon quantities (like the head gradient) that for radial-type flows are very difficult (and expensive) to measure 
in the field. To alleviate this logistic burden, an alternative approach, relying upon the EC concept, has been 
developed (Desbarats, 1992; Indelman et al., 1996; Sánchez-Vila et al., 1999; Schneider & Attinger, 2008). Its 
main advantage is that the EC can be computed by means of the head measurements, solely. However, like the 
effective conductivity, even the equivalent one is a non-local property (a detailed review is given by Sanchez-Vila 
et al., 2006).

Another viable option is by means of Monte Carlo simulations (MCs). However, this approach has two serious 
drawbacks. First, to generate a K-distribution reproducing the degree of heterogeneity of a strongly heterogeneous 
medium, very dense numerical grids are required. This would generate a very huge system of algebraic equations 
to solve, most of the times far beyond the standard computational power. Second, to account accurately for the 
statistics of the flow variables, many realizations are needed. Thus, these two requirements are too demanding for 
the majority of the real world situations. Furthermore, the scarcity of field data and the lack of precision in the 
measurement-devices render the identification of the statistics of K quite uncertain. As a consequence, a poorly 
accurate, that is, large uncertainty (especially when the formation possesses a high degree of heterogeneity), input 
data set can produce only an equally poor output data set (no matter how efficient per sé is the MC-method). This 
issue plays dawn significantly the ability of the MCs to come up with accurate results, de facto deteriorating the 
advantage of computationally intensive numerical simulations.

Despite theoretical progresses, understanding how to relate field measurements to the conductivity field can not 
be considered definitively over (see, e.g., Leven & Dietrich, 2006). This is mainly due to the fact that, especially 
for strongly heterogeneous formations, detailed experimental studies are still lacking. Besides dealing with a 
conductivity that varies considerably over the observation scale (Schad & Teutsch,  1994), it should be also 
considered that an excess in the pumping may eventually lead to compaction of the porous materials, and concur-
rently to a modification of the K-values (Chao et al., 2000). For these reasons, developing characterization-strate-
gies, that are cost-effective for repeated and/or continuous implementation, will provide valuable information for 
reducing overall costs (Ptak & Teutsch, 1994). This has stimulated development of pressure-based methods, that 
is, methods in which changes in the hydraulic head provide information content for mapping heterogeneity (see, 
e.g., Fallico et al., 2018; Fernandez-Garcia et al., 2002; Severino, De Bartolo, et al., 2019).

In the present study, we have carried out several pumping tests into a largely heterogeneous porous medium, 
which was artificially packed. Even if the experimental set up does not resemble exactly a real setting, it never-
theless exhibits statistical properties close to those observed (see, e.g., Istok et al., 1994; Rehfeldt et al., 1992). 
Like similar studies dealing with mildly heterogeneous porous media created in a laboratory (Fernández-Garcia 
et al., 2004), our study has the unique advantage that the hydraulic properties and in particular the log-conductiv-
ity Y ≡ ln K are well defined. In this way, one overcomes the lack of spatial information that renders the analysis 
very complex, sometimes hiding conclusions (Boggs et al., 1992; Wu et al., 2005; Zech et al., 2015). In addition, 
in our experiments the heterogeneity structure of Y is well known at point scale, therefore minimizing the uncer-
tainty in the parameters. In this way, one can test the capability of the predicting models to adequately reproduce 
real data. On the other hand, results of the identification could be matched against known values of the Y-field in 
order to define the proper strategy that makes use of a steady-state solution.

The paper is organized as follows. The procedure to pack the medium according to a known statistical distribution 
is described; then, we discuss flow experiments (carried out at several flow rates), consisting of recording pres-
sure heads at several piezometers radially distributed around a pumping well. Pressure-head data are employed 
to demonstrate (in agreement with the theoretical results) that the EC is the proper parameter to mimic radial 
flows taking place in strongly heterogeneous formations. Then, we illustrate how the present study is also useful 
for the so-called inverse (i.e., identification) problem. We end up by highlighting some concluding remarks and 
recommendations for future investigations.
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2.  Experimental Set-Up and Flow Experiments
Experiments were carried out at the laboratory of Hydraulics (University of Calabria, Italy) in a steel box 
(2 × 2 m-base, and 1 m-height). Inside the box, and all around the perimeter, vertical metallic supports were 
installed (5 cm away from the walls) to anchor a metal net over which a layer of geotextile was placed. The porous 
medium was packed by using 12 inclusions (10 cm × 10 cm × 5 cm), which were obtained by combining different 
quantities (i.e., silt, sand, fine gravel and coarse gravel) of soil material. The conductivity of each inclusion was 
determined by a permeameter operating at constant head. The K-value of each inclusion was obtained as mean 
over three replicates over cylindrical samples (diameter 6.4 cm and height 15.3 cm). The outcome is summarized 
in Table 1.

The log-conductivity Y ≡ ln K, of geometric mean KG ≡ exp 〈Y〉 = 7.22 × 10 −5 m/s and variance 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
= 3.79 , was such 

that the fluctuation Y′ = ln(K/KG) is Gaussian (Figure 1). The hypothesis 𝐴𝐴 𝐴𝐴
′ ∼  (0, 3.79) was also quantitatively 

confirmed by the Kolmogorov–Smirnov test which lead to D = 0.516 (to be compared with the value D ⋆ = 0.895 
at the 5%-level of confidence). From Table 1, it is seen that the variability within the K-class is characterized by 
a coefficient of variation 𝐴𝐴 𝙲𝙲𝙲𝙲

𝑐𝑐

𝐾𝐾
 much smaller than its counterpart at the formation scale, that is, 𝐴𝐴 𝙲𝙲𝙲𝙲

𝑓𝑓

𝐾𝐾
 . Specifically, 

it is seen that, in “the most limiting” case (i.e., largest 𝐴𝐴 𝙲𝙲𝙲𝙲
𝑐𝑐

𝐾𝐾
 ), it yields 𝐴𝐴 𝙲𝙲𝙲𝙲

𝑐𝑐

𝐾𝐾
∕𝙲𝙲𝙲𝙲

𝑓𝑓

𝐾𝐾
= 0.134∕6.54 = 0.02 . For this 

reason, one can disregard the variability within the class as compared with that at aquifer-scale, and concurrently 
in the subsequent developments we shall consider the local conductivity value as an exact one. The porosity n 
was (46.4 ± 0.2) × 10 −2. Likewise, since the coefficient of variation 𝐴𝐴 𝖢𝖢𝖢𝖢𝑛𝑛 = 4.31 ⋅ 10−5 results much smaller than 
that of K, the porosity can be regarded (in line with a common tenet, see e.g., Dagan, 1989; Rubin, 2003) as a 
given (equal to its mean value) parameter.

The porous formation was assembled by subsequent superpositions of 7 strata, 
each one composed by 19 × 19 inclusions. Location of each inclusion was 
determined according to a generator (NumPy) of random numbers uniformly 
distributed (due to the lack of correlation between each inclusion) in the set 
of integers {I, II, …, XII} (each one corresponding to a conductivity-value 
in Table 1). In order to place correctly inclusions (i.e., without leaving any 
gap in the between, and/or other disturbances), a metal grid (with a surface 
1.0 m × 0.9 m × 0.05 m equal to the quarter of that of the whole caisson's 
surface) with the mesh sizes equal to that of a single inclusion (first picture 
in Figure 2) was used. The grid was removed at the completion of the inclu-
sions’ placement (second picture in Figure 2), and placed nearby repeating 
the same filling till to form a layer (third picture in Figure 2). Then, to favor 
compaction (therefore eliminating any possible gap between two adjacent 
inclusions as well as air bubbles), multiple wetting cycles were supplied. This 
procedure was iterated for seven times to build up the whole aquifer (fourth 
picture in Figure  2). At this stage, it is crucial to remind that inclusions’ 
placement occurred with the piezometers already installed (first picture in 
Figure 2), and therefore, there was no disturbance due to the application of 
piezometers. At the completion, the formation 𝐴𝐴 (1.90m × 1.90m × 0.35m) 
resulted is composed of 7 × 19 × 19 blocks of conductivity lying in the set 
of Table 1 (Figure 3). To check that the statistical properties of Y after pack-

Inclusion I II III IV V VI

K ⋅ 10 −6 375.0 ± 6.0 366.0 ± 4.5 68.6 ± 0.1 (344.0 ± 7.0) ⋅ 10 74.9 ± 1.0 86.1 ± 0.7

𝐴𝐴 𝐴𝐴
′ (−)  1.65 ± 0.02 1.62 ± 0.01 −0.05 ± 0.01 3.86 ± 0.02 0.0369 ± 0.01 0.177 ± 0.01

Inclusion VII VIII IX X XI XII

K ⋅ 10 −6 13.2 ± 0.6 63.2 ± 1.9 20.9 ± 2.8 241.0 ± 21.5 8.6 ± 0.7 2.7 ± 0.2

𝐴𝐴 𝐴𝐴
′ (−)  −1.70 ± 0.04 −0.133 ± 0.03 −1.24 ± 0.13 1.21 ± 0.02 −2.13 ± 0.08 −3.30 ± 0.06

Table 1 
K-Values (in m/s) Attached to Each Inclusion (I, II, … , XII), Along With the Fluctuation 𝐴𝐴 𝐴𝐴

′ = ln (𝐾𝐾∕𝐾𝐾𝐺𝐺) of the 
Log-Conductivity Y, Supplemented With Their Uncertainties Within Each Class

Figure 1.  Cumulative Distribution Function (CDF) of measured (symbols) 
and Gaussian (continuous line) fluctuation Y′.
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ing were consistent with those in Table 1, several flow experiments were conducted, and measurements were 
compared with the expected ones. The purpose of this comparison is to confirm that there were no significant 
discrepancies (such as settling and disturbances during the packing) between the designed and the actual medium.

The medium was packed such to resemble the heterogeneity’s structure considered within the self-consistent 
approximation: the formation is a multiphase material made up of 12 homogeneous blocks of given log-per-
meability Y arranged at random in the space. Thus, two points at a relative distance x larger than 𝐴𝐴  (being this 
latter either the horizontal, I, or the vertical, Iv, integral scale) will exhibit completely different values of Y. To 
the contrary, two points at a relative distance x lesser than 𝐴𝐴  will have the same Y-value. As a consequence, the 
autocorrelation function ρ is written as:

�(�) =

{

1 � < 
0 � > ,

� (1)

with the two integral scales coincident with the characteristic sizes of the inclusion (i.e., I ≃ 10 cm and Iv ≃ 5 cm, 
respectively). The autocorrelation (1) is typical of the so-called “structureless formations” [examples can be 
found in Severino et al. (2009) and references therein], and therefore, it is relevant for the applications.

A battery of piezometers (inner radius equal to 1.4 cm) surrounding a pumping well of the same diameter at the 
center of the tank was placed according to a radial configuration (Figure 4). Each piezometer was screened till to 

Figure 2.  Illustration (from the left to the right) of the sequence leading to the layers of inclusions making up the formation.

Figure 3.  Three dimensional view of the distribution of the inclusions listed in Table 1.
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35 cm. To avoid intrusions of particles within the piezometers, these latter were also coated by a geotextile. The 
external boundary condition was that of given head 𝐴𝐴

(

𝐻̄𝐻𝑤𝑤 = 35 cm
)

 along the perimeter of the hosting box. This 
𝐴𝐴 𝐻̄𝐻𝑤𝑤 -value was fixed by a constant level of water between two (PVC) vertical walls (forming a cavity) around the 

perimeter of the caisson (Figure 5). To prevent lowering of the water level in the cavity due to the pumping (a) as 
shown in Figure 5, a new flow rate, slightly larger than the pumping one, was injected from the bottom of the box 
(b) in Figure 5. Finally, to avoid any excess in the water rising, the cavity was in hydraulic connection with two 
tanks (c) in Figure 5 whose level (kept constant thanks to a weir) was at 35 cm. The internal (i.e., at the pumping 
well) boundary condition is of given head along the well's axis, supplemented by the mass conservation, that is, 

𝑟𝑟𝑤𝑤

𝐵𝐵 ∫

2𝜋𝜋

0
∫

𝐵𝐵

0

d𝜃𝜃 d𝑧𝑧 𝑧𝑧𝑟𝑟(𝑟𝑟𝑤𝑤, 𝑧𝑧𝑧𝑧𝑧 ) = 𝑄𝑄𝑤𝑤 = const,� (2)

being Qw is the specific (per unit depth) flow rate, whereas qr(rw, z, θ) is the radial flux at the well's envelope 
r = rw. Pressure transducers, placed at the bottom of each piezometer, were used to monitor pressure-head, p/γ. 

Figure 4.  Arrangement (planar view) of the piezometers around the (central) pumping well.
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Pressure ports, equal to the aquifer's thickness B = 35 cm (thus with no screening), were connected to a preci-
sion-transducer. Finally, prior to any pumping the apparatus was tested (from both the hydraulic and electronic 
point of view) by checking that the hydraulic head at the piezometers was the static one, that is, p/γ = 35 cm. In 
the flow experiments, water was pumped at the central well (Figure 4) by 10 constant flow rates, that is, Q = 20; 
25; 30; 35; 40; 47.5; 50; 55; 60; 70 (liter/hour). Recording of pressure-heads initiated after reaching the steady 
state regime. The latter was achieved when water levels (and concurrently pressure head) at the piezometers and 
at the pumping well did not change in the time.

To show the transition in the output from pumping at the smallest flow rate to pumping at the highest one, in 
Figure 6 we have depicted contour levels pertaining to a single realization (corresponding to Q = 20, 35, 50, 
70 ℓ/h, respectively) of the drawdown sw. Besides the tremendous impact of the medium's heterogeneity upon 
the spatial distribution of the cone of depression, the striking feature is that in the close vicinity of the pumping 
well, the isolines are circular. This is explained by recalling that within a portion of domain surrounding the well 
(whose size is roughly a few horizontal integral scales), the medium behaves like a uniform one of constant (equal 
to the harmonic mean KH) conductivity (Severino, Leveque, & Toraldo, 2019). Since for the formation at stake 
the horizontal integral scale was I ≃ 10 cm, it is not surprising that the isolines are circular inside an annulus of 
radius ≃20 cm. Instead, away from the well the distortion mechanism due to the heterogeneity is clearly observed.

Before proceeding further, it is worth noting that, in the flow experiments at stake, the drawdown sw at the 
pumping well is always relatively small as compared with the characteristic hight ℓc = 35 cm of the aquifer, 
that is, sw/ℓc = 0.025 ÷ 0.10 (where the smallest and highest values correspond to the smallest/highest flow-rate, 
respectively). As a consequence, in the subsequent derivations assuming the flow domain as unbounded results 
a reasonable approximation.

3.  Applications and Discussion
We wish to exploit results analyzed so far to address one of the central problems in the effective medium theory 
(Choy, 2015): defining an effective, constitutive (Darcy) model 〈q〉 = −Keff∇〈H〉 relating the mean flux to the 
mean head gradient. In a different manner, it is assumed that the mean flow can be tackled as a homogeneous 
(fictitious) one, by dealing with an effective conductivity Keff. It is well known that the presence of a well (and 
more generally of spatially distributed sources) prevents obtaining an effective Darcy's law in a classical sense 
(Indelman, 1996; Sánchez-Vila et al., 1999). In fact, for a well-type flow, the head gradient does not vary slowly 
(which is the condition for obtaining a local effective law, see Dagan et al., 2013) especially in the zone surround-
ing the well. This is particularly relevant in strongly heterogeneous media, where the impact of the flow non-uni-
formity is enhanced by the huge variability of the conductivity (see, e.g., Desbarats,  1994; Durlofsky, 2000; 
Firmani et al., 2006). As a consequence, a central problem is whether, in this case, it is still possible dealing with 
an upscaled conductivity, relating the mean flow variables.

Figure 5.  A three-dimensional view of the experimental set-up, together with the device used to fix the boundary condition 
of given head around the perimeter of the caisson.
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Identification from real data of the upscaled conductivity is not straightforward, and the set up of a fairly 
general methodology is still matter of debate (a wide review can be found in Dagan and Lessoff (2007), Dagan 
et al. (2009, 2013), Pechstein et al. (2016) and Demir et al. (2017)). In the present study, we follow an avenue 
similar to that of Indelman et al. (1996). Thus, we consider an equivalent conductivity, EC, as that of a fictitious 
(homogeneous) formation that conveys the same specific (per unit length) flow rate Qw as the real (heterogene-
ous) one, that is, 

𝐾𝐾eq =
𝑄𝑄𝑤𝑤ln (2𝑟𝑟∕𝐿𝐿)

2𝜋𝜋
[

⟨𝐻𝐻𝑤𝑤 (𝑟𝑟)⟩ − 𝐻̄𝐻𝑤𝑤

] ,� (3)

under the same boundary condition: 𝐴𝐴 ⟨𝐻𝐻𝑤𝑤 (𝐿𝐿∕2)⟩ = 𝐻̄𝐻𝑤𝑤 . In Equation 3, 0 < r ≤ L/2 is the radial distance from 
the well's axis, whereas L = 2 m is the side of the caisson's base (see Figure 4). Note that the replacement of the 
head's spatial average with the ensemble one is allowed by virtue of ergodicity. This point shall be discussed to a 
deeper extent later on. Finally, since the ratio between the well's radius rw and its length Lw is equal to 0.04, the 
well can be regarded as a line of singularity (Dagan, 1978), and this authorizes adoption of 3 (in agreement with 
Indelman et al. (1996)).

Figure 6.  Iso-values (in m) of the single realization of the drawdown sw (m), as detected in the flow experiment for: a) 𝐴𝐴 𝐴𝐴 = 20𝓁𝓁∕ℎ ; b) 𝐴𝐴 𝐴𝐴 = 35𝓁𝓁∕ℎ ; c) 𝐴𝐴 𝐴𝐴 = 60𝓁𝓁∕ℎ ; and 
d) 𝐴𝐴 𝐴𝐴 = 70𝓁𝓁∕ℎ .
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The utility of the definition (3) is that it requires only head-values that are easily measurable in the field. To 
the contrary, the drawback of 3 is that the EC is not a medium’s property, but instead it also depends upon the 
distance, as well as the flow configuration (S. Neuman et al., 1996). In other words, the EC depends on the 
problem at stake, and therefore, it can not be used for other configurations (such as battery of wells, partially 
penetrating wells, injecting/pumping well-systems).

In order to apply the definition (3) to the flow experiments, in Table 2, we have listed the ensemble head 〈Hw〉 
as computed from the Np-measurements of the head 𝐴𝐴 𝐴𝐴

(exp)

𝑖𝑖
 at the piezometers located at the same radial distance, 

that is, 

⟨𝐻𝐻𝑤𝑤⟩ ≃
1

𝑁𝑁𝑝𝑝

𝑁𝑁𝑝𝑝
∑

𝑖𝑖=1

𝐻𝐻
(exp)

𝑖𝑖
.� (4)

The resulting EC has been depicted in Figure 7 as function of r. The striking evidence is that the EC defies 
completely the well-known bounds: KH ≤ Keq ≤ 〈K〉 (𝐴𝐴 𝐴𝐴𝐻𝐻 ≡ ⟨𝐾𝐾

−1
⟩

−1 is the harmonic mean) that are valid for mean 
uniform flows (Dagan, 1989; Matheron, 1967), being the smallest EC-value bigger than 〈K〉 = 3.97 × 10 −4 m/s. 
Moreover, the Keq-values also defy the limits [Equation (19) in Indelman et al. (1996)] that apply to a well-type 
flow taking place in weakly heterogeneous (i.e., 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
≪ 1 ) porous media (see, also Dagan & Lessoff, 2007). This 

behavior is clearly due to the coupling between the strong heterogeneity with the flow non-uniformity. A deep 
theoretical analysis is required in order to explain this out coming.

Our results corroborate theoretical findings: the EC varies with distance between the piezometer and the pumping 
well (Pechstein & Copty, 2021). As a consequence, if the EC, as determined by piezometers, is applied in simula-
tions as representative of the effective conductivity, Keff, the latter may result significantly different from the correct 
value. The discrepancy between conductivities determined by pumping tests and those to be used in simulations 
to fit measured heads has been observed (see, e.g., Dagan & Lessoff, 2007; Dagan et al., 2009; Severino, 2011).

3.1.  Implementation

To illustrate how the identification-methodology of Keq leads to predictions which are in agreement with the 
experimental measurements, in Figure 8 we have depicted the non-dimensional quantity:

𝛼𝛼(𝑟𝑟) ≡
2𝜋𝜋𝜋𝜋

𝐻̄𝐻𝑤𝑤 − ⟨𝐻𝐻𝑤𝑤 (𝑟𝑟)⟩
=

4𝜋𝜋2
(

𝑟𝑟∕𝓁𝓁eq

)

ln
[

𝐿𝐿∕ (2𝑟𝑟)
]

(

𝓁𝓁eq ≡
𝑄𝑄𝑤𝑤

𝐾𝐾eq

)

� (5)

Np r (m) Q = 20 Q = 25 Q = 30 Q = 35 Q = 40

8 0.23 0.297 ±0.001 0.297 ± 0.001 0.296 ± 0.001 0.296 ± 0.001 0.296 ± 0.001

4 0.38 0.298 ± 0.001 0.297 ± 0.001 0.297 ± 0.001 0.297 ± 0.001 0.296 ± 0.001

8 0.46 0.298 ± 0.001 0.298 ± 0.001 0.297 ± 0.001 0.297 ± 0.001 0.297 ± 0.001

8 0.60 0.299 ± 0.001 0.298 ± 0.001 0.298 ± 0.001 0.298 ± 0.001 0.298 ± 0.001

8 0.69 0.299 ± 0.001 0.299 ± 0.001 0.298 ± 0.001 0.298 ± 0.001 0.298 ± 0.001

Np r (m) Q = 47.5 Q = 50 Q = 55 Q = 60 Q = 70

8 0.23 0.295 ± 0.001 0.294 ± 0.001 0.293 ± 0.001 0.293 ± 0.001 0.291 ± 0.001

4 0.38 0.296 ± 0.001 0.295 ± 0.001 0.295 ± 0.001 0.295 ± 0.001 0.293 ± 0.001

8 0.46 0.296 ± 0.001 0.296 ± 0.001 0.295 ± 0.001 0.295 ± 0.001 0.293 ± 0.001

8 0.60 0.297 ± 0.001 0.297 ± 0.001 0.297 ± 0.001 0.297 ± 0.001 0.296 ± 0.001

8 0.69 0.297 ± 0.001 0.297 ± 0.001 0.297 ± 0.001 0.297 ± 0.001 0.296 ± 0.001

Note. The Integer Np is the number of local measurements 𝐴𝐴 𝐴𝐴
(exp)

𝑖𝑖
 appearing into (4).

Table 2 
Values (Blue Face) of the Spatial Average of the Head (m) at Several Radial Distances r, and for Each Volumetric Flow Rate Q (ℓ/h)
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as function of the radial distance r. The α-function has been obtained from 3 after dividing each side by the mean 
velocity V(r) = Qw/(2πr) (in analogy to Firmani et al. (2006)). Since the latter is valid for an unbounded domain, 
the quantity (5) applies here approximately for r ≪ L/2. The utility of using 5 stems from the fact that in this way 
the 10 plots 〈Hw〉 ≡ 〈Hw(r)〉 (each one corresponding to a given volumetric flow rate) collapse into a single one, 

Figure 7.  Values of the equivalent conductivity (3) at the different distances r, and for the entire set of the pumping 
volumetric flow rates Q.

Figure 8.  Values of the α-parameter at several radial distances r predicted (continuous line) and measured (symbols). The 
length ℓeq is equal to 2 cm.
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therefore providing a compact insight about the capability of the Keq-concept 
to reproduce the experimental data-set.

“Identifying the non-local Keff with the aid of field measurements or relating 
it to Keq is not a simple matter” (Indelman et al., 1996). Toward this aim, 
we propose in the sequel a methodology that makes use of a self-consist-
ent approximation of the effective conductivity in a well-type flow (Sever-
ino, 2019). Thus, the physical model underlying the self-consistent expres-
sion of the effective conductivity regards the porous formation as a collection 
of many homogeneous, non-overlapping inclusions each of conductivity K 
set at random in space (a somewhat similar methodology has been employed 

by Attinger (2003)). Hence, the effective conductivity Keff is computed by adapting a procedure, which was orig-
inally developed for mean uniform flows (see Dagan, 1989, Section 3.4.3), and the final result reads as follows:

∫

∞

0
∫

𝑟𝑟

0

d𝐾𝐾 d 𝑓𝑓 (𝐾𝐾𝐾)
Keff −𝐾𝐾

Keff +𝐾𝐾
 = 0,� (6)

being 𝐴𝐴  the characteristic size of the single inclusion. Since the model regards the medium as isotropic, the 
effective conductivity has a scalar nature. The non-linear Equation 6 allows computing Keff, once the joint prob-
ability distribution function 𝐴𝐴 𝐴𝐴 ≡ 𝑓𝑓 (𝐾𝐾𝐾) is selected. The most important feature which is detected from 6 is 
the dependence of Keff upon the radial distance r that, like the EC, prevents de facto considering Keff as a local 
medium’s property. Equation 6 allows investigating flow in the near and far field. Thus, close to the well (small 
r) it writes as: 𝐴𝐴 ∫

∞

0
d𝐾𝐾 𝐾𝐾 (𝐾𝐾𝐾 𝐾𝐾) (Keff −𝐾𝐾) ∕ (Keff +𝐾𝐾) ≃ 0 , which clearly shows the non-locality of the EC. To the 

contrary, away from the well (large r), one has:

∫

∞

0
∫

∞

0

d𝐾𝐾 d 𝑓𝑓 (𝐾𝐾𝐾)
Keff −𝐾𝐾

Keff +𝐾𝐾
 = 0.� (7)

In this case, the Keff is not anymore a function of the position, and therefore, one can claim that in the far field it 
is a medium’s property. A similar result was found to be valid also for transport (Di Dato et al., 2017).

With this prerequisite, the identification of the effective conductivity comes from the requirement that Keq ≃ Keff, 
which easily leads to the estimate of the variance 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 . To elucidate “in practice” the use of such a methodology, we 

consider the above described flow experiments. Preliminarily we note that, in this case, inclusions have the same 
characteristic size 𝐴𝐴 0 , and therefore, their distribution may be approximated by a δ-function centered at 𝐴𝐴 0 . Then, 
by regarding Y as a normally distributed random variable, the joint distribution function f is written as follows:

𝑓𝑓 (𝑌𝑌 𝑌) ≃
1

√

2𝜋𝜋 𝜋𝜋𝑌𝑌

exp

[

−
(𝑌𝑌 − ⟨𝑌𝑌 ⟩)

2

2𝜎𝜎2

𝑌𝑌

]

𝛿𝛿 ( −0) .� (8)

Insertion of (8) into (6) and switching to the fluctuation Y′ = Y − 〈Y〉 lead to:

𝐻𝐻 (𝑟𝑟 −0)
∫

+∞

−∞

d𝑌𝑌 ′exp

[

−
1

2

(

𝑌𝑌
′

𝜎𝜎𝑌𝑌

)2
]

𝜅𝜅 − exp𝑌𝑌 ′

𝜅𝜅 + exp𝑌𝑌 ′
= 0,� (9)

being κ = Keff/KG, whereas H ≡ H(x) is the Heaviside step-function. The solution of 9 is found in a fairly good 
agreement (the error is less than 10 −4) with 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
= 𝐻𝐻 (𝑟𝑟 −0) ln𝜅𝜅 . Then, by estimating κ as the ratio between the 

previously determined EC (see Figure 7) and KG = 7.22 ⋅ 10 −5 m/s, one can easily identify 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
 . Results from such 

a calibration procedure are summarized in Table 3, where we have also included the statistics of 𝐴𝐴 𝐴𝐴
2

𝑌𝑌
 as obtained 

from measurements. Unlike the confidence intervals at 95%, the two at 68% do not overlap. The explanation for 
such a discrepancy is multi-fold:

1.	 �The self-consistent model (6) is valid “in a strict sense” for a two-dimensional formation with circular inclu-
sions, whereas the packed aquifer has a three dimensional structure. Nevertheless, this does not represent a 
serious limitation, since the radial flow pattern holds the Dupuit's assumption, due to the fact that streamlines 
are practically horizontal (owing to the absence of screening). The feasibility of a 2D-modeling has been 
addressed recently in a couple of studies (Dagan et al., 2009; Dagan & Lessoff, 2007), as follow up of the 

Methodology Mean sdev CI0.68 CI0.95

Calibration 2.92 0.21𝐴𝐴 [2.71; 3.13] 𝐴𝐴 [2.51; 3.33] 

Direct measurements 3.78 0.41𝐴𝐴 [3.37; 4.19] 𝐴𝐴 [2.98; 4.58] 

Note. The corresponding confidence interval CI (at 68% and 95% level of 
confidence) is also indicated.

Table 3 
Estimates of the Mean and Standard Deviation (sdev) of the Variance 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 

Determined by the Calibration Procedure and by Measurements
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earlier analysis from Meier et al. (1998). Moreover, the main effect of the space dimensionality is mostly influ-
ential within a tiny region surrounding the well whose characteristic length is of 𝐴𝐴 (𝐼𝐼) (Indelman, 1996). Since, 
in the present study I = 10 cm, and the nearest battery of sampling piezometers is at r = 23 cm (Figure 4), 
the issue of the space dimensionality is an unwarranted complication (see, also Riva et al., 2006; Severino 
et al., 2011).
�Overall, the 2D (approximated) approach should be adopted cautiously (better avoided) in those circum-
stances in which the presence of screening, or any other disturbance, clearly defines the Dupuit’s assumption. 
In these cases, the 3D modeling remains the only viable option;

2.	 �While the model (6) relies upon the assumption of circular inclusions, the real aquifer is made up of inclusions 
of parallelepiped-shape. Even if the shape of inclusions does not constitute per sé a crucial flaw (Jankovic 
et al., 2003), the impact of the formation's anisotropy (neglected in our approach) could be a possible argu-
ment to explain the difference in the confidence intervals at 68%;

3.	 �Given the geometrical configuration of the packed aquifer, we have taken for granted the requirement of 
ergodicity, that is the ratio between the aquifer’s thickness and the vertical integral scale is much larger than 
one. In the present study, this ratio is 35/5 that is not large enough to regard the flow as fully ergodic [an 
extended treatment on this requirement can be found in Sanchez-Vila and Tartakovsky (2007) and Di Dato 
et al. (2017)]. This leaves a certain degree of uncertainty upon the mean values of the hydraulic heads;

4.	 �We have dealt with a zero correlated joint probability distribution (8). This makes the algebraic Equation 6, 
providing the effective conductivity, quite similar to that known for mean uniform flows (Dagan,  1989; 
Severino & Santini,  2005). Nevertheless, away from the well the flow behaves like a mean uniform one 
(Indelman, 2001; Severino, 2011), and therefore, we conclude that the neglect of correlation in 𝐴𝐴 𝐴𝐴 ≡ 𝑓𝑓 (𝐾𝐾𝐾𝐾𝐾) 
becomes a reasonable working hypothesis in the far field, that is, r/I ≫ 1. For the experiment at stake, the 
minimum sampling distance r is such that r/I = 23/10, and therefore, the above condition of ”far field” is not 
fulfilled completely (at least for the nearest battery of piezometers);

5.	 �The number Np of measurements (see Table 2) at each radial distance adopted to compute the spatial aver-
age in 4 is certainly not extremely large (owing to the many logistic as well as economic limitations). This, 
together with the experimental measurement errors, represents another way to address the discrepancy in 
Table 3;

6.	 �The plan view of the real setting is square, whereas the flow model relies upon a domain with a polar symme-
try. Although, this issue is certainly of minor relevance for the applications (see, e.g., Fernández-Garcia 
et al., 2004), it nevertheless has to be considered as a warning against to straightforward generalizations and/
or adaptions to domains of different shape (Severino et al., 2011).

To summarize, even if the experimental conditions do not match perfectly the assumptions underlying the effec-
tive conductivity model (6), they nevertheless lead to predictions that are in relatively good agreement with real 
data. Hence, we believe that our approach lends itself as a robust tool to identify the variance 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 , the approxima-

tions and experimental limitations, notwithstanding.

4.  Conclusions and Recommendations for Future Studies
We have presented a baseline experimental study on well-type steady flows in a strongly heterogeneous aquifer. 
The latter was artificially packed in order to reproduce a given, statistical distribution of the log-conductivity Y, 
with a high degree of heterogeneity 𝐴𝐴

(

𝜎𝜎
2

𝑌𝑌
= 3.79

)

 . The density of sampling locations (piezometers), and the scru-
pulous control of the experimental conditions, permitted to minimize the uncertainties, which normally prevent 
achieving definite and conclusive insights. The experiments were designed to investigate the combined influence 
of the flow configuration and the large spatial variability of the conductivity. Hence, the head measurements 
collected during pumping tests at different volumetric flow rates provide a unique data-set to grasp what can be 
expected in similar, field scale situations.

Our analyses have focused upon the problem of upscaling the conductivity K, a topic that, unlike the case of 
weakly heterogeneous formations (i.e., 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
≪ 1 ), has received a scarce number of experimental studies. In particu-

lar, a salient question is whether one can still implement the concept of equivalent conductivity (similarly to 
Severino & Coppola, 2012, in the case of unsaturated flows). It is shown that the latter depends on the mean 
flow pattern (in agreement with theoretical studies), and therefore, the EC can not be regarded as a formation's 
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property. In spite of these limitations, the EC lends itself as a robust parameter to simulate steady well-flows in 
strongly heterogeneous formations. Then, we have taken advantage from the data set to validate a new meth-
odology enabling one to identify the variance 𝐴𝐴 𝐴𝐴

2

𝑌𝑌
 of the log-hydraulic conductivity. Such a procedure leads to 

predictions close to the benchmark of the real data.

Now, we wish to illustrate, from the point of view of the practitioners, how results of the present studies can be 
used in the real-world applications. In particular, we ask whether radial flow occurring in a strongly heterogene-
ous formation can be solved ”only once”, by dealing with a medium with the same behavior of the real setting, 
similarly to the stand point adopted for flow under natural gradient conditions (Jankovic et al., 2003). Owing to 
the non-locality of the conductivity, the critical issue concerns the K-values to be assigned to each point of the 
flow domain. This is accomplished straightforwardly by means of Figure 8, which allows one to compute the 
proper nodal Keq = α(r)V(r), once the radial distance r is selected.

While the above example shows straightforwardly how findings of our study can be readily applied to solve prac-
tical problems, there are numerous aspects which require further investigations. Among these, we believe that the 
priority should be given to the impact of the aquifer's boundaries, and to the attainment of the ergodicity require-
ment (along the lines traced in Di Dato et al., 2017). Another central topic is the extension of the self-consistent 
solution to 3D. Unlike the case of mean uniform flows (Dagan, 1979), this is a rather difficult problem, and one 
can not make use of the potential theory, like in two-dimensional formations (Severino, 2019). A few of these 
challenges are part of ongoing research projects.

To conclude, we hope that the data-set exploited in the present study, and the preliminary check of theoretical 
results, will be useful for other researchers, and stimulate new theoretical/experimental developments on the 
topic.
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