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On the subalgebra lattice of a Leibniz algebra

Salvatore Sicilianoa and David A. Towersb

aDipartimento di Matematica e Fisica “Ennio De Giorgi”, Universit�a del Salento, Lecce, Italy; bDepartment of
Mathematics and Statistics, Lancaster University, Lancaster, UK

ABSTRACT
In this paper, we begin to study the subalgebra lattice of a Leibniz algebra.
In particular, we deal with Leibniz algebras whose subalgebra lattice is
modular, upper semi-modular, lower semi-modular, distributive, or dually
atomistic. The fact that a non-Lie Leibniz algebra has fewer one-dimen-
sional subalgebras in general results in a number of lattice conditions
being weaker than in the Lie case.
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1. Introduction

An algebra ðL, ½�, ��Þ over a field F is called a Leibniz algebra if, for every x, y, z 2 L, we have

x, y, z½ �½ � ¼ x, y½ �, z½ � � x, z½ �, y½ �:
In other words, the right multiplication operator Rx : L ! L, y 7! ½y, x� is a derivation of L. As a
result, such algebras are sometimes called right Leibniz algebras, and there is a corresponding
notion of left Leibniz algebra. Every Lie algebra is a Leibniz algebra and every Leibniz algebra sat-
isfying ½x, x� ¼ 0 for every element is a Lie algebra.

Leibniz algebras were first considered by Bloh in [8] and Loday in [18], and nowadays they play an
important role in several areas of mathematics such as homological algebra, algebraic K-theory, differ-
ential geometry, algebraic topology, noncommutative geometry, etc. As a result, the theory of these
algebraic structures has been developing intensively in the last three decades and many important the-
orems for Lie algebras have been considered in the more general context of Leibniz algebras.

Now, the set of subalgebras of a nonassociative algebra forms a lattice under the operations �
and � , where the join � of two subalgebras is the subalgebra generated by their set-theoretic
union, and the meet � is the usual intersection. The relationship between the structure of a Lie
algebra L and that of the lattice LðLÞ of all subalgebras of L has been studied by many authors.
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Much is known about modular subalgebras (modular elements in LðLÞ) through a number of
investigations including [1, 12, 13, 25–27]. Other lattice conditions, together with their duals,
have also been studied. These include semi-modular, upper semi-modular, lower semi-modular,
upper modular, lower modular, and their respective duals. For a selection of results on these con-
ditions see [9, 11, 14, 15, 17, 19, 21, 22, 24, 28].

The subalgebra lattice of a Leibniz algebra, however, is rather different; in a Lie algebra every
element generates a one-dimensional subalgebra, whereas in a Leibniz algebra elements can gen-
erate subalgebras of any dimension. Thus, one could expect different results to hold for Leibniz
algebras and, as we shall see, this is indeed the case. In Section 2, we show that cyclic Leibniz
algebras are determined by their subalgebra lattice. In Section 3, we classify Leibniz algebras over
a field of characteristic zero in which every subalgebra is an intersection of maximal subalgebras;
an extra family arises in the non-Lie case.

In Section 4, we study upper semi-modular Leibniz algebras. There turn out to be many more
of these than in the Lie algebra case; in particular, all nilpotent cyclic Leibniz algebras and a sub-
set of the extraspecial Leibniz algebras introduced in [16] belong to this class. Section 5 is devoted
to lower semi-modular Leibniz algebras. The situation here turns out to be very similar to the Lie
algebra case. The final section deals with modular Leibniz algebras. We see that this is a much
larger class than in the Lie algebra case; in particular, any Leibniz algebra which is of the form
E�C, where E is an upper semi-modular extraspecial or a nilpotent cyclic Leibniz algebra and C
is a central ideal is modular. However, these do not exhaust all of the modular Leibniz algebras
even of dimension four.

We fix some notation and terminology. Unless otherwise stated, throughout the paper all alge-
bras are assumed to be finite-dimensional. Algebra direct sums will be denoted by �, whereas
vector space direct sums will be denoted by _þ:

Let L be a Leibniz algebra over a field F. For a subset S of L, we denote by hSi the subalgebra
generated by S. The Leibniz kernel is defined as LeibðLÞ ¼ spanfx2j x 2 Lg: Note that LeibðLÞ is
the smallest ideal of L such that L=LeibðLÞ is a Lie algebra. Also, ½L, LeibðLÞ� ¼ 0:

We define the following series:

L1 ¼ L, Lkþ1 ¼ Lk, L
� �

ðk � 1Þ
and

Lð0Þ ¼ L, Lðkþ1Þ ¼ LðkÞ, LðkÞ
� �

ðk � 0Þ:
Then L is nilpotent of class n (respectively solvable of derived length n) if Lnþ1 ¼ 0 but Ln 6¼ 0
(respectively LðnÞ ¼ 0 but Lðn�1Þ 6¼ 0) for some n 2 N: It is straightforward to check that L is nil-
potent of class n precisely when every product of nþ 1 elements of L, no matter how associated,
is zero, but some product of n elements is non-zero (see, e.g., Proposition 5.4 of [10]). The nil-
radical N(L) (respectively radical, R(L)) is the largest nilpotent (respectively solvable) ideal of L.

The Frattini ideal of L, /ðLÞ, is the largest ideal contained in all maximal subalgebras of L; if
/ðLÞ ¼ 0 we say that L is /-free. The right centralizer of a subalgebra U of L is the set Cr

LðUÞ ¼
fx 2 Lj½U, x� ¼ 0g: It is easy to check that if U is an ideal of L then so is Cr

LðUÞ: We denote by
socðLÞ the socle of L, that is, the sum of all minimal ideals of L.

2. Cyclic Leibniz algebras

A Leibniz algebra L is said to be cyclic if it is generated by a single element. In this case, L has a
basis a, a2, :::, an (n> 1) and product ½an, a� ¼ a2a2 þ � � � þ anan: Let T be the matrix for Ra with
respect to the above basis. Then T is the companion matrix for pðxÞ ¼ xn � anxn�1 � � � � � a2x ¼
p1ðxÞn1 � � � psðxÞns , where the pj’s are the distinct irreducible factors of p(x). We shall speak of
these factors as being the distinct irreducible factors associated with L. The purpose of this short

2 S. SICILIANO AND D. A. TOWERS



section is to characterize cyclic Leibniz algebras in terms of their subalgebra lattice. We shall
need the following result, which is proved in [6, Corollary 4.3].

Theorem 2.1. The maximal subalgebras of the cyclic Leibniz algebra L are precisely the null spaces
of rjðRaÞ, where rjðxÞ ¼ pðxÞ=pjðxÞ and the pjðxÞ are the distinct irreducible factors associated with
L for j ¼ 1, :::, s:

Theorem 2.2. Let L be a Leibniz algebra over a field F with jFj > s. Then L has precisely s max-
imal subalgebras if and only if it is cyclic with s distinct associated irreducible factors.

Proof. Necessity follows from Theorem 2.1. To prove sufficiency, let M1, :::,Ms denote the max-
imal subalgebras of L. Then [s

i¼1Mi cannot be the whole L, since jFj > s: Choose x 2 L n [s
i¼1Mi:

Then x generates L. w

Corollary 2.3. Let L be a Leibniz algebra over an infinite field. Then L is cyclic if and only if it has
only finitely many maximal subalgebras.

3. Dually atomistic Leibniz algebras

We say that a Leibniz algebra L is dually atomistic if every subalgebra of L is an intersection of
maximal subalgebras of L. It is easy to see that if L is dually atomistic then so is every factor alge-
bra of L, and if L is dually atomistic then it is /-free. Dually atomistic Lie algebras over a field of
characteristic zero were classified in [19]. An extra family arises for Leibniz algebras.

Lemma 3.1. Let L be dually atomistic and let N be the nilradical of L. Then

(i) M \ N is an ideal of L for every maximal subalgebra M of L; and
(ii) every subspace of N is an ideal of L, and N2 ¼ 0:

Proof. (i) The result is clear if N � M, so suppose that N 6� M: Then L ¼ N þM and

L,N \M½ � ¼ N þM,N \M½ � � N2 þM2 \ N

� N \ /ðLÞ þM \ N � N \M,

using Theorem 6.5 of [20] (or Theorem 2.4 of [5]).
(ii) We have N2 � /ðLÞ ¼ 0, so every subspace of N is a subalgebra of L. Let S be any sub-

space of N. Then

S ¼ S \ N ¼
�

\
M2M

M

�
\ N ¼ \

M2M
ðM \ NÞ,

where M is the set consisting of all maximal subalgebras of L containing S. Therefore, S is an
intersection of ideals of L, by (i), and so is itself an ideal of L. w

Proposition 3.2. Let L be a solvable Leibniz algebra over any field F. Then L is dually atomistic if
and only if one of the following conditions holds:

(i) L is an abelian or almost abelian Lie algebra;
(ii) L ¼ LeibðLÞuFv, where v2 ¼ 0 and ½e, v� ¼ e for every e 2 LeibðLÞ:

Proof. Obviously, we can assume that L is not abelian. We first prove necessity. Let N be the nil-
radical of L. Then N is abelian by Lemma 3.1. As L is /-free, from [5, Theorems 2.4 and 2.6] it
follows that L ¼ NuV for some subalgebra V of L. As L is solvable, all minimal ideals of L are
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abelian. Moreover, by Lemma 3.1, every subspace of N is an ideal of L. Therefore, by [5,
Theorem 2.4] and [2, Lemma 1.9], we deduce that socðLÞ ¼ N ¼ Cr

LðNÞ: Note that the map

h : L ! DerðFnÞ, x 7! RxjFn
is an endomorphism with kernel Cr

LðFnÞ and so Cr
LðFnÞ has codimension at most one in L. Let

n1, n2 2 N such that ½ni, L� 6¼ 0, i¼ 1, 2. Since every subspace of N is an ideal of L, all elements
of L act by scalar multiplication on N. It follows that Cr

LðFn1Þ ¼ Cr
LðFn2Þ ¼ Cr

LðNÞ ¼ N, which
allows us to conclude that V is one-dimensional.

Let v 2 V , v 6¼ 0: As ½N, v� 6¼ 0, there exists n 2 N such that ½n, v� ¼ kn for some k 6¼ 0:
Replacing v by k�1v we can assume that ½n, v� ¼ n, so that Rv acts as the identity map on N.
Now, if ½v, n� ¼ an, then we have

a2n ¼ v, v, n½ �½ � ¼ v2, n½ � � v, n½ �, v½ � ¼ �an,

so a ¼ 0, � 1:
Put I ¼ fn 2 Nj½v, n� ¼ 0g,U ¼ fn 2 Nj½n, v� ¼ �½v, n� ¼ ng: Then I and U are ideals of L and

N ¼ I�U: Clearly, LeibðLÞ � I: But, also, if n 2 I then we have n ¼ ðvþ nÞ2 2 LeibðLÞ: Finally,
as every subspace of N is an ideal of L, we must have either I¼ 0 or U¼ 0, and the asser-
tion follows.

We now prove the converse. If L is an almost abelian Lie algebra, then, by [15, Proposition
1.1(3)], every subspace of L is a subalgebra, so L is obviously dually atomistic. Suppose next that
L satisfies condition (ii) of the statement. Note that B þ Fv is a maximal subalgebra of L for any
maximal subspace B of LeibðLÞ: Let H be a subalgebra of L. Let x 2 H and write x ¼ aþ kv, for
some a 2 LeibðLÞ and k 2 F: One has ðaþ kvÞ2 ¼ ka, hence a 2 H: This proves that either H is
contained in LeibðLÞ or is of the form H ¼ Aþ Fv for some subalgebra A of LeibðLÞ: In the latter
case, we clearly have

H ¼
�

\
B2M2

ðBþ FvÞ
�
,

where M2 denote the set of all maximal subspaces of LeibðLÞ containing A. On the other hand,
if H � LeibðLÞ, then we have

H ¼ LeibðLÞ \
�

\
B2M1

ðBþ FvÞ
�
,

whereM1 denotes the set of all maximal subspaces of LeibðLÞ containing H. This completes the proof. w

The combination of Theorem 3.2 with the next result yields a full characterization of dually
atomistic Lie algebras over fields of characteristic zero.

Proposition 3.3. Let L be a dually atomistic Leibniz algebra over a field of characteristic zero.
Then L is a three-dimensional non-split simple Lie algebra or is solvable.

Proof. We have that L=LeibðLÞ is a solvable or three-dimensional non-split simple Lie algebra by
[19, Lemmas 1 and 2]. In the former case, L is solvable, so suppose that the latter case holds.
Then, by [3, Theorem 1], we have L ¼ SuI, where S is a three-dimensional non-split simple Lie
algebra and I ¼ Leib(L). Moreover, every subspace of I is an ideal of L, by Lemma 3.1 and the
fact that L is /-free. Let x 2 I: Then ½S, x� ¼ 0 and, for all s1, s2 2 S, ½x, s1� ¼ kx, ½x, s2� ¼ lx for
some k,l 2 F, whence

x, s1, s2½ �½ � ¼ x, s1½ �, s2½ � � x, s2½ �, s1½ � ¼ klx� lkx ¼ 0:

It follows that ½x, S� ¼ ½x, ½S, S�� ¼ 0 and L ¼ S�I: Therefore L is a Lie algebra, and it follows
from [19, Lemma 1] that I¼ 0, as desired. w
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4. Upper semi-modular Leibniz algebras

Let L be a Leibniz algebra. A subalgebra U of L is called upper semi-modular if U is a maximal
subalgebra of hU,Bi for every subalgebra B of L such that U \ B is maximal in B. We say that L
is upper semi-modular if every subalgebra of L is upper semi-modular in L. The Lie algebras in
this class were classified in [15]. There are many more Leibniz algebras in this class.

We first establish the following result, which characterizes Leibniz algebras having a distribu-
tive lattice of subalgebras.

Proposition 4.1. The only non-Lie distributive Leibniz algebras are the two-dimensional cyclic
Leibniz algebras.

Proof. Let L be a distributive Leibniz algebra with LeibðLÞ 6¼ 0: Then L=LeibðLÞ must be a dis-
tributive Lie algebra and so is one-dimensional. Now, if L has dimension greater than two, then
LeibðLÞ is an abelian Lie subalgebra of dimension greater than one, and so L is not distributive.
Hence, L is two-dimensional cyclic, and it has a basis x, x2 with multiplication ½x2, x� ¼ 0 or
½x2, x� ¼ x2: In the former case, the only one-dimensional subalgebra is Fx2, and in the latter case
the only one-dimensional subalgebras are Fx2 and Fðx� x2Þ: In either case, L is distributive. w

The following is a straightforward exercise.

Lemma 4.2. Let U be a subalgebra of the Leibniz algebra L, and let I be an ideal of L contained in
U. Then U is upper semi-modular in L if and only if U/I is upper semi-modular in L/I.

Lemma 4.3. Let L be a nilpotent cyclic Leibniz algebra. Then L is upper semi-modular.

Proof. Let L be generated by a where ½an, a� ¼ 0: Suppose that U is a subalgebra of L which is
not in L2. Let 0 6¼ u 2 U: Then u ¼ aþPn

i¼2 kia
i 2 U for some ki 2 F: But then it is easy to see

that u, u2, :::, un are linearly independent, so U¼ L. Hence, all proper subalgebras of L are inside
L2, which is abelian. The result follows. w

Proposition 4.4. Let L be a non-Lie /-free Leibniz algebra over any field F. Then L is upper semi-
modular if and only L ¼ LeibðLÞ_Fv, where LeibðLÞ ¼ Fe1 þ � � � þ Fer and ½ei, v� ¼ ei for 1 � i � r,
all other products being zero.

Proof. Suppose first that L is upper semi-modular. Then L ¼ NuV where N is the nilradical, is
abelian, and V is a subalgebra of L, by Theorems 2.4 and 2.6 of [5]. Let v 2 V , n 2 N: Then
½v, v� 2 V\ LeibðLÞ � V \ N ¼ 0 and Fv covers Fv \ Fn ¼ 0, so Fn is covered by hn, vi: It follows
that ½n, v�, ½v, n� 2 Fn: As this is true for all v 2 V, every subspace of N is an ideal of L. Then, as
in Proposition 3.2, L is abelian or an almost abelian Leibniz algebra. Now suppose that V ¼
UuFv: Then Fv covers Fðaþ uÞ \ Fv, where a 2 LeibðLÞ, u 2 U: Hence Fa is covered by haþ
u, vi ¼ Faþ Fuþ Fv: It follows that u¼ 0 and we have the multiplication claimed.

Conversely, suppose that L has the form given. Then the subalgebras of L are of the form B or
Fv þ B where B is a subalgebra of LeibðLÞ: If B,C � LeibðLÞ, they clearly satisfy the upper semi-
modular condition. Consider B and Fv þ C. Then B \ ðFvþ CÞ ¼ B \ C and hB, Fvþ Ci ¼
Fvþ Bþ C: If B covers B \ C, we have B ¼ B \ C þ Fb for some b 2 B and hB, Fvþ Ci ¼
Fvþ C þ Fb which covers Fv þ C. If Fv þ C covers B \ C then B \ C ¼ C, whence C � B and
hB, Fvþ Ci ¼ Fvþ B which covers B.

Finally consider Fv þ B and Fv þ C. Then ðFvþ BÞ \ ðFvþ CÞ ¼ Fvþ B \ C and hFvþ
B, Fvþ Ci ¼ Fvþ Bþ C: If Fv þ B covers Fvþ B \ C, then we have that B ¼ B \ C þ Fb and
Fvþ Bþ C ¼ Faþ C þ Fb which covers Fv þ C. By symmetry this is sufficient in this case.
Hence L is upper semi-modular. w
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Corollary 4.5. Let L be an upper semi-modular Leibniz algebra over an algebraically closed field.
Then L is supersolvable.

Proof. If L is a Lie algebra, then the assertion follows from [15, Corollary 2.2]. On the other
hand, if L is non-Lie, then by Proposition 4.4 we have that L=/ðLÞ is supersolvable, and hence so
is L, by [4, Theorems 3.9 and 5.2]. w

The consideration of the three-dimensional non-split simple Lie algebras shows the hypothesis
that the ground field is algebraically closed cannot be dropped in Corollary 4.5.

Lemma 4.6. Let L be an upper semi-modular nilpotent Leibniz algebra. Then

(i) ½LeibðLÞ, x� � hxi \ LeibðLÞ for all x 2 L;
(ii) ½xi, y� 2 Fxiþ1 þ � � � þ Fxnþ1, for all x 62 LeibðLÞ, y 2 L, 2 � i � n, where xnþ1 ¼ 0, xn 6¼ 0. In

fact, Ryjhxi\LeibðLÞ has matrix

0 0 ::: 0 0
a3 0 ::: 0 0
..
. ..

. ..
. ..

. ..
.

an�1 an�2 ::: 0 0
an an�1 ::: a3 0

0
BBBBB@

1
CCCCCA
;

(iii) hxi \ LeibðLÞ is an ideal of L for all x 62 LeibðLÞ;
(iv) Let J ¼ fx 2 Ljx2 ¼ 0g. Then J is an abelian ideal of L;
(v) ½J, x� � hxi \ LeibðLÞ and ½x, J� � Fxn for all x 2 L, where xnþ1 ¼ 0, xn 6¼ 0:

Proof. (i) Let y 2 L: If y2 2 hxi then ½y2, x� 2 hxi \ LeibðLÞ: Hence suppose that y2 62 hxi: Then
Fy2 \ hxi ¼ 0 is covered by Fy2, so hxi is covered by hy2, xi ¼ hxi þ Fy2: Since L is nilpotent, this
implies that ½y2, x� 2 hxi \ LeibðLÞ and the result follows.

(ii) As L=LeibðLÞ is a nilpotent upper semi-modular Lie algebra, it follows from Theorem 2.2
of [15] that L2 � LeibðLÞ: Consequently, we have

x2, y
� � ¼ x, x, y½ �½ � þ x, y½ �, x½ � ¼ x, y½ �, x½ � 2 Fx2 þ � � � þ Fxnþ1

by (i). Suppose the result holds for i¼ k where k � 1: Then

xkþ1, y
� �

¼ xk, x
� �

, y
h i

¼ xk, x, y½ �
h i

þ xk, y
� �

, x
� �

2 Fxkþ1 þ � � � þ Fxnþ1,

which gives the result.
(iii) This is apparent from (ii).
(iv) Let x, y 2 J: Then Fx \ Fy ¼ 0 is covered by Fx, so hx, yi ¼ Fxþ Fy and ½x, y� ¼ ½y, x� ¼ 0,

whence J is an abelian subalgebra of L. Moreover, by Theorem 2.2 of [15] we have L2 �
LeibðLÞ � J, so J is an ideal of L.

(v) Let y 2 J: If y 2 hxi, then ½y, x�, ½x, y� 2 hxi \ LeibðLÞ, so suppose that y 62 hxi: Then hxi \
Fy ¼ 0 is covered by Fy, so hx, yi ¼ hxi þ Fy: It follows that ½y, x�, ½x, y� 2 hxi \ LeibðLÞ again,
which gives the first inclusion. Now

0 ¼ x2, y
� � ¼ x, x, y½ �½ � þ x, y½ �, x½ � ¼ x, y½ �, x½ �,

so ½x, y� 2 Fxn, yielding the second inclusion. w

Following [16], we say that a Leibniz algebra L is extraspecial if dimZðLÞ ¼ 1 and L=ZðLÞ is
abelian. Then we have the following result.
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Proposition 4.7. An extraspecial Leibniz algebra L is upper semi-modular if and only if J ¼ fx 2
Ljx2 ¼ 0g is an abelian ideal of L.

Proof. The necessity follows from Lemma 4.6(iv). Conversely, suppose that J is an abelian ideal of
L and let U, B be subalgebras of L for which U \ B is a maximal subalgebra of B. We need to
show that U is a maximal subalgebra of hU,Bi: We consider several cases.

Suppose first that U � J: If B � J then the result is clear. Therefore we can suppose that B 6�
J: Then there exists b 2 B such that ½b, b� 6¼ 0, which implies that ZðLÞ � B: It follows that B ¼
U \ Bþ ZðLÞ and so hU,Bi ¼ hU,ZðLÞi ¼ U þ ZðLÞ which covers U.

Suppose U 6� J, so that ZðLÞ � U: Then U \ ðBþ ZðLÞÞ ¼ U \ Bþ ZðLÞ so
U

ZðLÞ \
Bþ ZðLÞ
ZðLÞ is covered by

Bþ ZðLÞ
ZðLÞ :

It follows that �
U

ZðLÞ ,
Bþ ZðLÞ
ZðLÞ

	
¼ hU,Bi

ZðLÞ covers
U

ZðLÞ :

Hence hU,Bi covers U, completing the proof. w

5. Lower semi-modular Leibniz algebras

A subalgebra U of L is called lower semi-modular in L if U \ B is maximal in B for every subalge-
bra B of L such that U is maximal in hU,Bi: We say that L is lower semi-modular if every subal-
gebra of L is lower semi-modular in L.

If U, V are subalgebras of L with U � V, a J-series (or Jordan–Dedekind series) for (U, V) is a
series

U ¼ U0 � U1 � � � � � Ur ¼ V

of subalgebras such that Ui is a maximal subalgebra of Uiþ1 for 0 � i � r � 1: This series has
length equal to r. We shall call L a J-algebra if, whenever U and V are subalgebras of L with U �
V, all J-series for (U, V) have the same finite length, d(U, V). Put dðLÞ ¼ dð0, LÞ: The following
is proved in similar manner to [11, Lemma 5].

Proposition 5.1. For a solvable Leibniz algebra the following are equivalent:

(i) L is lower semi-modular;
(ii) L is a J-algebra; and
(iii) L is supersolvable.

Proof. (i))(ii): This is a purely lattice theoretic result (see [7, Theorem V3]).
(ii))(iii): Since L is solvable, all chains from 0 to L will have length dimL, so all maximal

subalgebras have codimension one in L. But then L is supersolvable, by [4, Corollary 3.10].
(iii))(i) Let L be a supersolvable Leibniz algebra and let U, B be subalgebras of L such that U

is maximal in hU,Bi: Then U has codimension 1 in hU,Bi, so hU,Bi ¼ U þ B: But now
dimðB=ðU \ BÞ ¼ dimððU þ BÞ=UÞ ¼ 1, whence U \ B is maximal in B. w

The following results follow from the corresponding results in [11].

Theorem 5.2. (cf. [11, Theorem 2]). Let L be a Leibniz algebra over a field F of characteristic 0.
Then L is a J-algebra if and only if L ¼ R�S where the radical R is supersolvable and S is a semi-
simple Lie algebra which is a J-algebra. Moreover, if S is lower semi-modular then so is L.
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Proof. Let L be a J-algebra. By Levi’s Theorem [4], L ¼ RuS, where R is the radical and S is a
semisimple Lie subalgebra of L. Moreover, R is supersolvable and ½S,R� þ ½R, S� � LeibðLÞ, by
Proposition 5.1. We claim that ½R, S� ¼ ½S,R� ¼ 0:

Let L be a minimal counter-example. Suppose that R is not a minimal ideal of L. Let R/K be a
chief factor of L. Then R ¼ K þ Fr for some r 2 R, and the minimality implies that ½K, S� ¼
½S,K� ¼ 0 and ½r, S� þ ½S, r� � K: But then

S, r½ � ¼ S2, r½ � � S, S, r½ �½ � þ S, r½ �, S½ � � S,K½ � þ K, S½ � ¼ 0:

Also,

r, S½ � ¼ r, S2½ � � r, S½ �, S½ � � K, S½ � ¼ 0:

Hence R ¼ LeibðLÞ is a minimal ideal of L and S is a maximal subalgebra of L. Let M be a
maximal subalgebra of S. Then dðLÞ ¼ dðMÞ þ 2: But RþM is a maximal subalgebra of L, so
dðLÞ ¼ dðRþMÞ þ 1 ¼ dðRÞ þ dðMÞ þ 1 since RþM is a J-algebra. It follows that d(R) ¼ 1 so
R ¼ Fr is one-dimensional. As in the first paragraph of Proposition 3.2 we have that Cr

LðRÞ has
codimension at most 1 in L. Suppose by contradiction that Cr

LðRÞ 6¼ L: As R � Cr
LðRÞ, we have

that Cr
LðRÞ \ S is an ideal of codimension 1 in S. Then, by Weyl’s Theorem, we have L ¼

Cr
LðRÞ�I, where I is a one-dimensional ideal of S, which is not possible as S is semisimple. Thus

Cr
LðRÞ ¼ L, in particular ½R, S� ¼ 0: But ½S,R� ¼ ½S, LeibðLÞ� ¼ 0, a contradiction. This establishes

the claim.
The converse is as in [11, Theorem 2]. w

Corollary 5.3. (cf. [11, Corollary 1]). Let L be a Leibniz algebra over an algebraically closed field F
of characteristic zero. Then the following are equivalent:

(i) L is lower semi-modular;
(ii) L is a J-algebra; and
(iii) L ¼ R�S where the radical R is supersolvable and S ¼ sl2ðFÞ or S ¼ 0.

Theorem 5.4. (cf. [11, Theorem 3]). Let L be a Leibniz algebra over a field F of characteristic zero.
Then L is lower semi-modular if and only if L ¼ R�S1� � � ��Sn where the radical R is supersolv-
able and the Si are mutually non-isomorphic three-dimensional simple algebras for 1 � i � n, and
also n � 1 when

ffiffiffiffiffiffiffiðFÞp � F and the Si are indecomposable if
ffiffiffiffiffiffiffiðFÞp 6� F:

Proof. The necessity follows easily from Proposition 5.1, Theorem 5.2 and [11, Theorem 3].
The converse follows from Theorem 5.2 and the fact that S ¼ S1� � � ��Sn is lower semi-

modular, by [11, Theorem 3]. w

6. Modular Leibniz algebras

A subalgebra U of a Leibniz algebra L is called modular in L if the following two conditions hold:

hU,Vi \W ¼ hV ,U \Wi for all subalgebras V,W � L with V � W, (1)

hU,Vi \W ¼ hV \W,Ui for all subalgebras V,W � L with U � W (2)

In particular, quasi-ideals are modular. We call L modular if every subalgebra of L is modular
in L.

In the following result we establish when a cyclic Leibniz algebra is modular:
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Proposition 6.1. A cyclic Leibniz algebra L of dimension n is modular if and only if it is one of the
following two types:

(i) nilpotent, so L ¼ hai where ½ai, a� ¼ aiþ1 for 1 � i � n� 1, and all other products are
zero; or

(ii) solvable with L ¼ hai where ½ai, a� ¼ aiþ1 for 1 � i � n� 1, ½an, a� ¼ an, and all other prod-
ucts are zero.

Proof. Let fa, a2, :::, ang be a basis for L with ½an, a� ¼ a1aþ � � � þ anan: The Leibniz identity shows
that a1 ¼ 0: Let T be the matrix for Ra with respect to this basis, so that it is the companion matrix for

pðxÞ ¼ xn � anx
n�1 � � � � � a2x ¼ p1ðxÞn1 � � � psðxÞns ,

where the pj are the distinct irreducible factors of p and p1ðxÞ ¼ x: Let L ¼ W1u � � �uWs be the
associated primary decomposition of L with respect to Ra. Then, as in [6, Theorem 4.1], we have

Wj,Wk½ � ¼ 0 for 2 � j, k � s;

W1,Wj½ � ¼ 0 for 2 � j;

Wj,W1½ � � Wj for 1 � j � s:

(Note that [6] concerns left Leibniz algebras, and there is a slight error in that paper in the first
equation given here). Let w 2 W ¼ W2� � � ��Ws: Then hW1,wi \W ¼ hw,W1 \Wi ¼ hwi, and
so hwi is an ideal of L. Thus, L has a basis fx1, :::, xn1 ,w1, :::,wkg where ½xi, a� ¼ xiþ1 for 1 � i �
n1 � 1, ½xn1 , a� ¼ 0, ½wi, a� ¼ kiwi for 1 � i � k: Then

kiwi þ kjwj ¼ wi þ wj, a½ � ¼ kðwi þ wjÞ,
where 0 6¼ k 2 F, since hwi þ wji is an ideal of L. Hence ki ¼ kj ¼ k:

Let a ¼ Pn1
i¼1 lixi þ

Pk
i¼1 �iwi: Then

a2 ¼
Xn1�1

i¼1

lixiþ1 þ k
Xk
i¼1

�iwi,

:::

an1 ¼ l1xn1 þ kn1�1
Xk
i¼1

�iwi,

an1þ1 ¼ kn1
Xk
i¼1

�iwi:

Since L ¼ haiwe have k¼ 0 or 1. Replacing a by ð1=kÞawe have themultiplication given in (i) or (ii).
In case (i) all of the subalgebras are inside LeibðLÞ, as in Lemma 4.3, and so it is easy to check

that they are modular. Then suppose that case (ii) holds. Let U be a subalgebra which is not in
LeibðLÞ, and let u ¼ aþPn

i¼2 kia
i 2 U: Then

u2 ¼ a2 þ
Xn�1

i¼2

kia
iþ1 þ kna

n,

:::

un�1 ¼ an�1 þ
�Xn

i¼2

ki

�
an,

un ¼
�
1þ

Xn
i¼2

ki

�
an:
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Hence un � un�1 ¼ an � an�1 2 U: But then

un�1 � un�2 ¼ an�1 � an�2 þ k2ðan � an�1Þ 2 U,

so an�1 � an�2 2 U: Similarly we have that ai � ai�1 2 U for 2 � i � n: Thus U has codimension
1 in L and so is a quasi-ideal and hence modular. All other subalgebras of L are inside LeibðLÞ
and modularity is straightforward to check. w

The next result shows that the extraspecial Leibniz algebras described in Proposition 4.7 are
indeed modular.

Proposition 6.2. An extraspecial Leibniz algebra L is modular if and only if J ¼ fx 2 Ljx2 ¼ 0g is
an abelian ideal of L.

Proof. If L is modular then it is upper semi-modular, so the necessity follows from
Proposition 4.7.

Conversely, suppose that L is extraspecial and J ¼ fx 2 Ljx2 ¼ 0g is an abelian ideal of L. It
follows from the fact that modular nilpotent Lie algebras are abelian that every subalgebra of L is
either inside J or is an ideal of L. The modular identities are then straightforward to check. w

In [23] Towers defined a subspace U of a Leibniz algebra L to be a quasi-ideal if ½U,V� þ ½V ,U� �
U þ V for every subspace V of L. Similarly we shall define a subalgebra U of L to be a weak quasi-ideal
if ½U,V� þ ½V ,U� � U þ V for every subalgebra V of L. Then we have the following result.

Proposition 6.3. Let L be a Leibniz algebra over an algebraically closed field. The following condi-
tions are equivalent:

(i) L is modular;
(ii) every subalgebra of L is a weak quasi-ideal of L; and
(iii) ½x, y� 2 hxi þ hyi for all x, y 2 L:

Proof. (i) ) (ii): Let U, V be subalgebras of L. Since L is modular, the intervals ½U : hU,Vi� and
½U \ V : V� are isomorphic as lattices. As L is supersolvable (by Corollary 4.5) this implies that
dimhU,Vi � dimU ¼ dimV � dimU \ V, whence

dimhU,Vi ¼ dimU þ dimV � dimU \ V ¼ dimðU þ VÞ:
It follows that hU,Vi ¼ U þ V and U is a weak quasi-ideal of L.
(ii) ) (i): If we assume (ii) then the two modular identities (1) and (2) are easily checked.
(ii) ) (iii): If (ii) holds, then ½x, y� 2 hx, yi ¼ hhxi, hyii � hxi þ hyi:
(iii) ) (ii): Suppose that (iii) holds and let U, V be subalgebras of L. Then ½u, v�, ½v, u� 2

U þ V for all u 2 U, v 2 V, whence U is a weak quasi-ideal of L. w

Remark 6.4. In the proof of Proposition 6.3, the assumption that the ground field is algebraically
closed is only used in the implication “(i) ) (ii)”. Therefore, the remaining implications remain
valid over arbitrary fields.

Corollary 6.5. Let L be a Leibniz algebra over a field F. Suppose that L ¼ E�Z, where Z is a cen-
tral ideal of L and E is an extraspecial Leibniz algebra such that J ¼ fx 2 Ljx2 ¼ 0g is an abelian
ideal of L. Then L is modular.

Proof. Note that every subalgebra of L is either inside JþZ or is an ideal of L. As a consequence,
if U and V are subalgebras of L, then one has that ½U,V� þ ½V,U� � U þ K, and the conclusion
follows from Proposition 6.3 and Remark 6.4. w
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Notice that the algebras described in Corollary 6.5 include those in which every subalgebra is
an ideal, as described in [16]; they are the ones for which J ¼ LeibðLÞ:

For our next result we shall need the following from [6], which we include for the reader’s
convenience.

Theorem 6.6. ([6, Theorem 2.5]). Let L be a four-dimensional non-split non-Lie nilpotent Leibniz
algebra with dimðL2Þ ¼ 2 ¼ dimðLeibðLÞÞ and dimðL3Þ ¼ 0. Then, L is isomorphic to a Leibniz
algebra spanned by x1, x2, x3, x4 with the nonzero products given by the following:

	 A14 : ½x1, x1� ¼ x3, ½x1, x2� ¼ x4;
	 A15 : ½x1, x1� ¼ x3, ½x2, x1� ¼ x4;
	 A16 : ½x1, x2� ¼ x4, ½x2, x1� ¼ x3, ½x2, x2� ¼ x3;
	 A17 : ½x1, x1� ¼ x3, ½x1, x2� ¼ x4, ½x2, x1� ¼ ax4, a 2 C n f1, 0g;
	 A18 : ½x1, x1� ¼ x3, ½x2, x1� ¼ x4, ½x1, x2� ¼ ax3, ½x2, x2� ¼ x4, a 2 C n f1g; or
	 A19 : ½x1, x1� ¼ x3, ½x1, x2� ¼ x3, ½x2, x1� ¼ x3 þ x4, ½x2, x2� ¼ x4:

In [6] the authors are assuming that the algebras are defined over the complex field. However,
all the basis changes made in the proof of this theorem are valid over any algebraically closed
field of characteristic different from 2; the only place where 2 is a problem is in the choice of s in
the penultimate line. By non-split they mean that L is not a direct sum of two non-zero ideals.

Proposition 6.7. Let L be a Leibniz algebra over an algebraically closed field of characteristic dif-
ferent from 2 and suppose that L3 ¼ 0: Then L is modular if and only if it is of the form given
in Corollary 6.5.

Proof. Suppose first that L is modular. We use induction on the (minimal) number of generators
of L as a Leibniz algebra. If L is cyclic, then it is at most two-dimensional and so is clearly of the
claimed form. Hence, suppose that L is generated by two elements, x, y, say. If L has dimension 3
or less, then it is clearly of the claimed form; if not, it must have dimension 4.

A four-dimensional nilpotent modular Leibniz algebra must have a basis x, x2, y, y2 with
½x, y� ¼ a1x2 þ a2y2 and ½y, x� ¼ b1x

2 þ b2y
2, by Proposition 6.3. Then L must be one of the alge-

bras given in Theorem 6.6. None of these are modular, as is shown below

A14 : x1, x2½ � ¼ x4 62 hx1i þ hx2i ¼ Fx1 þ Fx2 þ Fx3;

A15 : x2, x1½ � ¼ x4 62 hx1i þ hx2i ¼ Fx1 þ Fx2 þ Fx3;

A16 : x1, x2½ � ¼ x4 62 hx1i þ hx2i ¼ Fx1 þ Fx2 þ Fx3;

A17 : x1, x2½ � ¼ x4 62 hx1i þ hx2i ¼ Fx1 þ Fx2 þ Fx3;

A18 : x1 � x2, x1½ � ¼ x3 � x4 62 hx1 � x2i þ hx1i ¼ Fx1 þ Fx2 þ Fx3;

A19 : x1 � x2, x1½ � ¼ �x4 62 hx1 � x2 > þhx1i ¼ Fx1 þ Fx2 þ Fx3:

That just leaves the split case. If L is a direct sum of a three-dimensional ideal and a one-
dimensional ideal, then the latter is in the center and so this is of the claimed form. If it is a dir-
ect sum of two two-dimensional ideals, then it is of the form ðFxþ Fx2Þ�ðFyþ Fy2Þ and ½xþ
y, x� y� ¼ x2 � y2, which cannot be written as a direct sum of ðxþ yÞ2 ¼ x2 þ y2

and ðx� yÞ2 ¼ x2 þ y2:
Assume now that the result is true for n � 2, and suppose that L is generated by nþ 1 ele-

ments. Then L ¼ L1 þ Fx where L1 is of the form E�C with E being an extraspecial Leibniz alge-
bra and C being a central ideal of L. By considering pairs of generators and using the above we
see that L2 ¼ ðL1Þ2 ¼ Fz, say. Suppose there exists y 2 L1 n ZðL1Þ such that xþ y 2 ZðLÞ: Then
L ¼ L1�Fðxþ yÞ is of the required form. Similarly, L ¼ L1�Fx if x 2 ZðLÞ: If neither, then L is
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of the form ~E�~C where, ~E is an extraspecial Leibniz algebra, ~C is a central ideal of L, and
Zð~EÞ ¼ Fz ¼ ~E

2
, which completes the proof. w

Extending the above result to the case where Ln ¼ 0 and n> 3 is far from straightforward. It
is easy to see that any Leibniz algebra of the form E�C, where E is extraspecial in which J is an
abelian ideal, or a nilpotent cyclic algebra and C is a central ideal, is modular. However, not every
nilpotent modular Leibniz algebra L has this form, even if L is four-dimensional, as the following
example shows:

Example 6.8. Let L have basis x1, x2, x3, x4 and nonzero products ½x1, x1� ¼ x3, ½x2, x2� ¼
x4, ½x1, x3� ¼ x4 (This is A25 in [6, Theorem 2.6]). Then it is straightforward to check that L is
modular but is not of the form given in the previous paragraph.

It would also be good to remove the requirement of an algebraically closed field in
Proposition 6.7. However, this is not straightforward either, as modularity is not preserved by
extending the base field, as the following example shows.

Example 6.9. Let L be the extraspecial Leibniz algebra L ¼ Fxþ Fyþ Fz with ½x, y� ¼ z, ½y, z� ¼
�z, x2 ¼ y2 ¼ z and z2 ¼ 0, the other products being zero. By Proposition 6.3 and Remark 6.4, it
is easy to see that L is modular over the real number field and non-modular over the complex
number field. (For the latter conclusion, note that the elements xþ iy and x� iy are in J but their
sum is not.)
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