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A B S T R A C T

Next-generation battery research will heavily rely on physico-chemical models, combined with deep learning
methods and high-throughput and quantitative analysis of experimental datasets, encoding spectral information
in space and time. These tasks will require highly efficient computational approaches, to yield rapidly accurate
approximations of the models. This paper explores the capabilities of a representative range of model reduction
techniques to face this problem in the case of a well-assessed electrochemical phase-formation model. We
consider the Proper Orthogonal Decomposition (POD) with a Galerkin projection and the Dynamic Mode
Decomposition (DMD) techniques to deal first of all with a semi-linear heat equation 2D in space as a test
problem. As an application, we show that it is possible to save computational time by applying POD-Galerkin
for different choices of the parameters without recalculating the snapshot matrix. Finally, we consider two
reaction–diffusion (RD) PDE systems with Turing-type dynamics: the well-known Schnackenberg model and
the DIB model for electrochemical phase formation. We show that their reduced models obtained by POD and
DMD with suitable low-dimensional projections are able to approximate carefully both the Turing patterns at
the steady state and the reactivity dynamics in the transient regime. Finally, for the DIB model we show that
POD-Galerkin applied for different choices of parameters, by calculating once the snapshot matrices, is able
to find reduced Turing patterns of different morphology.
1. Introduction

The development of next-generation batteries, that will allow to
overcome safety, cost, sustainability and durability drawbacks of
present-generation lithium-ion based technologies, is impaired by shape
instability problems developing during discharge–charge cycling for
some active materials, especially metallic anodes Liang et al. (2020)
and Li et al. (2020). Such uncontrollable shape changes are related
to poorly understood phase-formation processes accompanying the
electric energy storage and release processes going on in batteries, and
lead to loss of capacity and internal short circuits, in turn limiting the
efficiency and lifetime of the devices. In order to gain a more insightful
physico-chemical understanding of the processes and to control them
in real-life devices, mathematical modelling of electrochemical phase
formation processes is starting to play a key role: an updated account of
the available approaches can be found in Bozzini et al. (2018). Among
PDE approaches to electrode shape-change processes, some of the
authors have developed a reaction–diffusion PDE model, customarily
referred to as the DIB model (see e.g. Lacitignola et al. (2015) and Sgura
et al. (2019)), characterized by the coupling of electrode morphology
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and surface chemistry. Specifically, this model, addressing the practi-
cally relevant mesoscopic scale, accounts for the interaction between
material shape and material chemistry through adatom and adsorbate
surface diffusion and source terms including the physics describing the
growth process and the operating conditions (electrolyte chemistry and
charge/discharge rate). This model has been proven by both theoretical
analysis and comparison with a wide corpus of experimental data.
It represents the essential features of unstable material growth in
electrochemical systems, in particular by means of the so-called Turing
patterns (see Lacitignola et al. (2015, 2017), Bozzini et al. (2019) and
reference therein). One of the key results of the analysis of the DIB
model Lacitignola et al. (2017), Sgura et al. (2019) and Sgura and
Bozzini (2017) is the correlation of the model parameters with the
occurrence and type of growth instabilities. In particular, in Sgura et al.
(2019) a segmentation of the parameter-space in morphological classes
has been proposed after solving the model for several choices of the
parameters involved. This exhaustive parameter-space mapping task is
extremely computationally expensive because each output requires a
very fine spatial discretization to capture the characteristic features
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of the pattern, together with a long integration in time, often with
small time steps, because each pattern is a stationary solution of the
PDE system. Despite its computational cost, this approach proved to be
extremely successful in support of parameter identification purposes
from experimental data maps Sgura and Bozzini (2017) and Sgura
et al. (2019). High-throughput and automated versions of parameter-
space exploration is strongly needed in view of systematic comparison
between experimental and computed space–time dependent datasets,
aimed at developing quantitative physical understanding as well as data
reduction/compression tools. For this reason, new techniques would be
needed to reduce complex computationally demanding operations. As
a first step towards this goal, in D’Autilia et al. (2020), the authors
proposed a matrix-oriented approach to solve the semi-discretized PDE
system in time by a sequence of Sylvester matrix equations, that are
much smaller in terms of dimension than the usual vector approach.

In the present paper, by following the approaches in Alla and Kutz
(2017), Benner and Breiten (2015), Benner et al. (2015), Brunton
and Kutz (2019), Kramer and Willcox (2019) and Peherstorfer and
Willcox (2015), we deal with the semi-discretized PDEs by Model Order
Reduction (MOR) techniques for the purpose of reducing costs and
complexity, but such that the essential features of the solution are
preserved, in terms of accuracy for the Turing pattern at the steady state
and the time dynamics (also denominated ‘‘reactivity’’, see D’Autilia
et al. (2020)). In particular, here in Section 2 we focus on the Proper
Orthogonal Decomposition (POD) with a Galerkin projection Benner
et al. (2015), Benner and Breiten (2015), Kramer and Willcox (2019),
Peherstorfer and Willcox (2015), Sirovich (1987) and Volkwein (2013)
and on the Dynamic Mode Decomposition (DMD) Alla and Kutz (2017)
and Brunton and Kutz (2019). To present practical numerical aspects of
these methods and to compare their performance in terms of reduction
of computational cost and preserved solution accuracy, first of all in
Section 3, we apply these techniques to a semi-linear heat equation
2D in space, for which the exact solution is available. For this simple
model, we present numerical simulations to study the effect of the
low-dimensional projections in terms of errors with respect to the full
model and then we provide an application of POD-Galerkin approach
when several choices of the diffusion and reaction parameters are
considered, without recalculating the snapshot matrix. In Section 4,
we consider MOR for reaction–diffusion PDE systems. First of all, we
consider the Schnackenberg model, that is a prototype PDE system with
Turing pattern formation studied in literature (see e.g. Madzvamuse
(2006)), and the DIB model for electrodeposition the high-throughput
implementation of which is the ultimate goal of the research presented
in this paper. For both these models we show that POD-Galerkin and
DMD with a suitable low-dimensional projection are able to approxi-
mate carefully the Turing pattern at the steady state and the reactivity
dynamics in the transient regime. In particular, for both models we
show that DMD exhibits an oscillating behaviour of the spatial mean
that is damped for increasing values of the projection space. Finally, for
the DIB model we show that POD-Galerkin applied for different choices
of parameters, by calculating once the snapshot matrices, is able to
find reduced Turing patterns of different morphology, as predicted by
the classification in Sgura et al. (2019). In addition to the numerical
advantages, the formation of a suitable base from a snapshot matrix
from which a rich scenario of morphologies can be constructed, also
contributes to the mechanistic clarification of the physico-chemical
complexity underlying electrochemical pattern formation. All compu-
tations presented in the paper have been performed in Matlab (ver.
2019a) on a computer Dell, i7 IntelCore processor, 2.8 GHz, 16Gb RAM.

2. Model reduction techniques

We consider the following dynamical system
{

𝐮̇(𝑡) = 𝐴𝐮(𝑡) + 𝐟 (𝐮(𝑡)), 𝑡 ∈ (𝑡0, 𝑇 ] (1)
2

𝐮(𝑡0) = 𝐮0
ith initial conditions 𝐮0 ∈ R𝑛, 𝐴 ∈ R𝑛×𝑛 and 𝐟 ∶ R𝑛 → R𝑛. The
ODE system (1) typically arises from the spatial semi-discretization of
a time dependent partial differential equation (PDE), where 𝑛 is the
umber of mesh points used for the spatial approximation by classical
pproaches (finite differences, finite elements, etc.). In the context of
odel Order Reduction (MOR) techniques, this system is also referred

o as full model. After the application of a numerical method in time
o (1), with time step ℎ𝑡 on the meshgrid 𝑡𝑘 = 𝑡0 + 𝑘ℎ𝑡, 𝑘 = 0,… , 𝑛𝑡,
s in Alla and Kutz (2017) and Benner et al. (2015), we construct the
o-called snapshot matrix as

=
⎡

⎢

⎢

⎣

| | … |

𝐮0 𝐮1 … 𝐮𝑛𝑡
| | … |

⎤

⎥

⎥

⎦

∈ R𝑛×(𝑛𝑡+1) (2)

here 𝐮𝑘 ≈ 𝐮(𝑡𝑘) is the numerical solution at each time 𝑡𝑘.
In some applications, long time integration and a large finely dis-

retized domain are needed to capture the essential features of the
olution, such that (1) is a high dimensional ODE system and also the
napshot matrix can be a huge matrix. For these reasons, following the
pproach in Alla and Kutz (2017), we aim to obtain low-dimensional
odels by applying MOR techniques in order to reduce costs and com-
lexity, while preserving the feature of the original PDE. In this paper,
e consider the Proper Orthogonal Decomposition with a Galerkin
rojection (POD- Galerkin) Sirovich (1987) and Volkwein (2013) and
he Dynamic Mode Decomposition (DMD) Alla and Kutz (2017) and
runton and Kutz (2019). The first one is an intrusive technique, that
onstructs the reduced model starting directly from the full model (1).
n other words POD-Galerkin can be applied when we know the original
DE model that generates the values in 𝑆. On the contrary, DMD is
data-driven algorithm that ignores a possible underlying dynamics

eyond 𝑆, which values could be given, for example, as experimental
ata. Since the Singular Value Decomposition (SVD) of a matrix is
crucial computation for the application of both the POD-Galerkin

rojection and the DMD technique, we start by defining its formulation
nd its main properties.

.1. Singular value decomposition

The SVD is one of the most important matrix factorization with
everal theoretical properties of linear algebra (see Brunton and Kutz
2019)). In many fields of applications, the SVD is used to extract, from
igh dimensional data, dominant patterns that are typically low rank
nd to indicate where the information is concentrated. In our context
t provides a unique matrix decomposition for the snapshot matrix (2)
iven by

= 𝑉 𝛴𝑊 𝑇 , (3)

here 𝛴 is a 𝑛 × (𝑛𝑡 + 1) diagonal matrix which diagonal entries
𝑖 ≥ 0, 𝑖 = 1,… ,min(𝑛, 𝑛𝑡) are the singular values of 𝑆, that are
orted in decreasing order and in several cases rapidly go to zero. 𝑉 ,𝑊
re orthogonal matrices of dimensions 𝑛 and 𝑛𝑡 + 1, respectively. The
VD (3) allows to select a set of optimal basis modes by using the
eading columns of 𝑉 (see Volkwein (2013)). The main idea of a MOR
echnique to reduce the number 𝑛 of ODEs in (1) is to choose a rank-𝑟
pproximation of 𝑆 by means of the corresponding truncated SVD given
y

𝑟 = 𝑉𝑟𝛴𝑟𝑊
𝑇
𝑟 . (4)

4) is obtained by keeping the leading 𝑟 singular values, that is 𝛴𝑟 =
𝑖𝑎𝑔(𝜎1, 𝜎2,… , 𝜎𝑟) and by taking the first 𝑟 columns of 𝑉 and 𝑊 in (3)

such that:

𝑉𝑟 =
⎡

⎢

⎢

⎣

| | … |

𝐯1 𝐯2 … 𝐯𝑟
| | … |

⎤

⎥

⎥

⎦

∈ R𝑛×𝑟, 𝑊𝑟 =
⎡

⎢

⎢

⎣

| | … |

𝐰1 𝐰2 … 𝐰𝑟
| | … |

⎤

⎥

⎥

⎦

∈ R(𝑛𝑡+1)×𝑟
(5)
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The computation of the truncated SVD (4)–(5) is a key tool to con-
struct a reduced space onto which the system (1) will be projected, as
explained in details in the next subsections.

2.2. POD-Galerkin projection

The POD-Galerkin projection (see Alla and Kutz (2017) and Volk-
wein (2013)) is an intrusive technique that constructs the reduced
model starting directly from the 𝑛-dimensional full model (1) and where
the fundamental assumption is the explicit knowledge of the term 𝑓 (𝐮)
in the full model.

Let be 𝑟 ≪ 𝑛, given an orthogonal basis 𝑉𝑟 = [𝐯1, 𝐯2,… , 𝐯𝑟] ∈ R𝑛×𝑟

as in (4) computed from the snapshot matrix 𝑆 of the full model (1),
the POD Galerkin projection approximates the state vector 𝐮(𝑡) ∈ R𝑛 as
follows:

𝐮(𝑡) ≈ 𝐮̄(𝑡) ∶= 𝑉𝑟𝐮̃(𝑡) ∈ R𝑛 (6)

where 𝐮̃(𝑡) ∈ R𝑟 will be said reduced state. With this assumption (6) and
by projecting the full model onto 𝑉𝑟 we obtain the reduced dynamical
system
{

̇̃𝐮(𝑡) = 𝐴𝑟𝐮̃(𝑡) + 𝐟𝑟(𝐮̃(𝑡)), 𝑡 ∈ (𝑡0, 𝑇 ],
𝐮̃(𝑡0) = 𝐮̃0,

(7)

where 𝐴𝑟 = 𝑉 𝑇
𝑟 𝐴𝑉𝑟 ∈ R𝑟×𝑟

𝐟𝑟(𝐮̃(𝑡)) = 𝑉 𝑇
𝑟 𝐟 (𝑉𝑟𝐮̃(𝑡)) ∈ R𝑟 (8)

and the initial condition 𝐮̃0 = 𝑉 𝑇
𝑟 𝐮0. The reduced system has dimension

𝑟 and then if 𝑟 ≪ 𝑛, by solving (7)–(8) we achieve a significant
dimensionality reduction.

2.3. Dynamic mode decomposition

The Dynamic Mode Decomposition introduced in Alla and Kutz
(2017) and Brunton and Kutz (2019) is applied directly to a snapshot
matrix, that can be formed by numerical simulations or can be provided
by sets of experimental data. Hence, DMD ignores a possible underlying
continuous or discrete dynamical system and tries to identify the un-
derlying process by fitting the dynamics hidden in the snapshots in a
linear least squares sense. DMD is able to return a modal decomposition
of the dynamics, but it is different from POD Volkwein (2013) which
computes orthogonal modes as described before. Following Brunton
and Kutz (2019), we resume the DMD algorithm as follows. Given a
snapshot matrix 𝑆 as in (2), the first step constructs the two matrices

𝑆1 =
⎡

⎢

⎢

⎣

| | … |

𝐮0 𝐮1 … 𝐮𝑛𝑡−1
| | … |

⎤

⎥

⎥

⎦

∈ R𝑛×𝑛𝑡 , 𝑆2 =
⎡

⎢

⎢

⎣

| | … |

𝐮1 𝐮2 … 𝐮𝑛𝑡
| | … |

⎤

⎥

⎥

⎦

∈ R𝑛×𝑛𝑡 .

(9)

Then DMD tries to find the best fitting matrix operator 𝐴 such that

𝑆2 = 𝐴𝑆1, ⟺ 𝐮𝑘+1 = 𝐴𝐮𝑘, 𝑘 = 0,… , 𝑛𝑡 − 1 (10)

The solution in the least squares sense is obtained by computing 𝑆†
1

the Moore–Penrose pseudo-inverse of 𝑆1 and it is given by 𝐴 = 𝑆2𝑆
†
1 .

Due to the large dimensions of 𝑆𝑖, 𝑖 = 1, 2, from a computational point
of view it is not convenient to calculate 𝐴 directly. In fact, the DMD
algorithm computes a projection of 𝐴 onto a reduced 𝑟-dimensional
subspace, getting a matrix 𝐴̃ ≈ 𝐴, such that the time dynamics can
be reconstructed by 𝐮̃𝑘+1 = 𝐴̃𝐮̃𝑘, starting by 𝐮̃0 a projection of the first
snapshot 𝐮0, 𝐮̃𝑘 is the reduced state variable in this case. The main idea
is to get the spectral decomposition of 𝐴̃ and by its eigenvalues and
eigenvectors recover an approximation 𝐮̄𝑘 of the full state variable 𝐮𝑘.
More implementation details about DMD are reported in Algorithm 1.
As for the POD-Galerkin projection, a crucial point for DMD is to choose
3

an appropriate value of 𝑟.
Algorithm 1 DMD.
Step 1. Given 𝑆1 in Eq. (9), select a rank 𝑟 ≥ 1 and compute the
truncated SVD of 𝑆1 by 𝑆1𝑟 = 𝑉𝑟𝛴𝑟𝑊 𝑇

𝑟 .

Step 2. To project the matrix 𝐴 onto the leading vectors of 𝑉𝑟,
calculate the 𝑟 × 𝑟 matrix

𝐴̃ = 𝑉 𝑇
𝑟 𝑆2𝑊𝑟𝛴

−1
𝑟 ∈ R𝑟×𝑟

and define the linear reduced model for the reduced state 𝐮̃𝑘 by

𝐮̃𝑘+1 = 𝐴̃𝐮̃𝑘.

Step 3. Compute the spectral decomposition of 𝐴̃

𝐴̃𝑊 = 𝑊𝛬

where columns of 𝑊 are eigenvectors and 𝛬 = 𝑑𝑖𝑎𝑔(𝜆1,… , 𝜆𝑟)
contains the eigenvalues.
Step 4. Reconstruct the high-dimensional DMD modes of 𝐴 by

𝛷 = 𝑆2𝑊𝑟𝛴
−1
𝑟 𝑊 ∈ R𝑛×𝑟

and recover an approximation 𝐮̄𝑘 of the full state variable 𝐮𝑘 by

𝐮𝑘 ≈ 𝐮̄𝑘 =
𝑟
∑

𝑗=1
𝜙𝑗𝜆

𝑘
𝑗 𝑏𝑗 , 𝑘 = 0,… , 𝑛𝑡, such that 𝛷𝐛 = 𝐮0. (11)

𝐮0 is the first snapshot, 𝜙𝑗 are the columns of 𝛷 and are eigenvectors
of the high- dimensional matrix 𝐴, 𝜆𝑗 are the corresponding eigen-
values, while 𝑏𝑗 are obtained by solving the above overdetermined
system in least square sense.

3. Scalar PDE: semi-linear heat equation

In this section, to show the performance of the reduction techniques
for time dependent PDEs including diffusion and reaction scales, we
consider as test problem a semi-linear heat equation with exact so-
lution. In order to create the snapshot matrix, we approximate the
PDE solution by the matrix-oriented approach described in D’Autilia
et al. (2020) and briefly reported below, that allows a fast computation
with respect to the classical vector approach. We recall that in general
the PDEs that we want to solve depend on a set of parameters. For
this first example, we want to study the performance of the MOR
techniques: (i) for different values of the truncation parameter 𝑟 and
(ii) by solving directly the reduced systems for new parameter values
without changing the snapshot matrix, i.e. by constructing once the
snapshot matrix. We will demonstrate this last strategy by changing the
values of the diffusion and reaction parameters in the following scalar
PDE.

We consider the heat equation with a linear reaction term and zero
Neumann boundary conditions given by
{

𝑢𝑡 = 𝑑𝛥𝑢 + 𝛼𝑢, (𝑥, 𝑦) ∈ 𝛺 ⊂ R2, 𝑡 ∈ [0, 𝑇𝑓 ]
(𝐧∇𝑢)

|𝜕𝛺 = 0, 𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦)
(12)

𝑑 > 0 diffusion coefficient, 𝛼 reaction coefficient, 𝛺 = [0, 𝐿] × [0, 𝐿] a
square domain and the initial condition 𝑢0(𝑥, 𝑦) = 𝑐𝑜𝑠(𝜋𝑥)𝑐𝑜𝑠(2𝜋𝑦), such
that the exact solution is given by 𝑢∗(𝑥, 𝑦, 𝑡) = 𝑒(𝛼−5𝜋2𝑑)𝑡𝑢0(𝑥, 𝑦).

As described in details in D’Autilia et al. (2020), solving (12) by the
Method of Lines based on a finite difference spatial discretization of 𝛺
with stepsizes ℎ𝑥 = 𝐿

𝑛𝑥+1
, ℎ𝑦 = 𝐿

𝑛𝑦+1
and 𝑛𝑥 and 𝑛𝑦 interior meshpoints,

we have the ODE system (full model):
{

𝐮̇(𝑡) = 𝑑𝛥𝐮(𝑡) + 𝛼𝐮(𝑡)
(13)
𝐮(𝑡0) = 𝐮0
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where 𝛥 = 1
ℎ2𝑥
(𝐼 ⊗ 𝑇1) +

1
ℎ2𝑦
(𝑇2 ⊗ 𝐼) ∈ R𝑛×𝑛, 𝑛 = 𝑛𝑥𝑛𝑦, is the discrete

Laplace operator that is a very large block matrix defined in terms of
the Kronecker product ⊗. 𝑇1 ∈ R𝑛𝑥×𝑛𝑥 and 𝑇2 ∈ R𝑛𝑦×𝑛𝑦 account for the
iscretization of second order derivatives along 𝑥 and 𝑦, respectively,
nd include a contribution due to the approximation of zero Neumann
Cs.

.1. Snapshot matrix: an efficient computation

In order to reduce the computational cost due to the construction
f the snapshot matrix, we approximate the PDE solution by applying a
atrix-oriented approach (see D’Autilia et al. (2020)) that rewrite (12)

s the following differential matrix equation such that vec(𝑍) = 𝐮:

𝑍̇ = 𝑇1𝑍 +𝑍𝑇2 + 𝐹 (𝑍), 𝑍(0) = 𝑍0,

where 𝑇1 and 𝑇2 are described before, 𝐹 (𝑍) = 𝛼𝑍 is the reaction
term evaluated componentwise and 𝑍0(𝑥𝑖, 𝑦𝑗 ) = 𝑢0(𝑥𝑖, 𝑦𝑗 ) for (𝑥𝑖, 𝑦𝑗 ), 𝑖 =
1,… , 𝑛𝑥, 𝑗 = 1,… , 𝑛𝑦 on the spatial meshgrid. Then the IMEX Euler
method in matrix form is given by

𝑍𝑘+1 −𝑍𝑘 = ℎ𝑡(𝑇1𝑍𝑘+1 +𝑍𝑘+1𝑇2) + ℎ𝑡𝐹 (𝑍𝑘), 𝑘 = 0,… , 𝑛𝑡 − 1 (14)

that is equivalent to the following sequence of Sylvester matrix equa-
tions

𝑀1𝑍𝑘+1 +𝑍𝑘+1𝑀2 = 𝐶𝑘, (15)

where 𝐶𝑘 = 𝑍𝑘 + ℎ𝑡𝐹 (𝑍𝑘), while the coefficient matrices 𝑀1 = 𝐼 − ℎ𝑡𝑇1
and 𝑀2 = −ℎ𝑡𝑇2 do not change during time evolution. The solution of
(15) at each time 𝑡𝑘 is a matrix 𝑍𝑘 which entries approximate the so-
lution 𝑢(𝑥𝑖, 𝑦𝑗 , 𝑡𝑘) in each point (𝑥𝑖, 𝑦𝑗 ). Here, we calculate this solution
by the rEuler method described in D’Autilia et al. (2020) solving (15)
in the spectral space in very efficient and fast way. Hence, we create
the snapshot matrix 𝑆 in (2) with columns given by 𝐮𝐤 = 𝑣𝑒𝑐(𝑍𝑘). In
other words 𝐮𝐤 is the vectorization of 𝑍𝑘, where 𝑣𝑒𝑐 stacks the columns
of 𝑍𝑘 beneath each other. Once we have created the snapshot matrix
𝑆, we can proceed with the application of the POD-Galerkin and DMD
techniques.

To apply the MOR techniques in exam, firstly we need to compute
a truncated SVD of the snapshot matrix 𝑆 as in (4) in order to obtain
the orthogonal matrix 𝑉𝑟, for a given fixed 𝑟 ≪ 𝑛.

The application of a POD-Galerkin projection to the full system
(12) yields the reduced system
{

̇̃𝐮(𝑡) = 𝑑𝐴𝑟𝐮̃(𝑡) + 𝛼𝐮̃(𝑡)
𝐮̃(𝑡0) = 𝐮̃0 = 𝑉 𝑇

𝑟 𝐮0
(16)

where 𝐴𝑟 = 𝑉 𝑇
𝑟 𝛥𝑉𝑟 ∈ R𝑟×𝑟. If 𝐮̃𝑘 is the numerical solution of this

reduced r-dimensional ODE system, then we will recover an approxima-
tion of the solution of the full model (13) by 𝐮̄𝑘 = 𝑉𝑟𝐮̃𝑘, for 𝑘 = 0,… , 𝑛𝑡.
It is worth noting that solving directly the full model (13) by an usual
vector approach (see also D’Autilia et al. (2020)) will require at each
time step the solution of a large sparse linear system of dimension
𝑛 = 𝑛𝑥 ⋅ 𝑛𝑦 and this is very expensive for 𝑛𝑥 = 𝑛𝑦 ≥ 50 (𝑛 ≥ 2500)
mesh points. For this reason, it is more convenient to solve the reduced
system (16) that is not sparse, but it has dimension 𝑟 ≪ 𝑛, as we will
show in the numerical simulations. In fact, solving (16) by the IMEX-
Euler method in vector form we have the sequence of (small) linear
systems

𝐴̃𝐮̃𝑘+1 = 𝐵̃𝐮̃𝑘 𝑘 = 0,… , 𝑛𝑡 − 1 (17)

where 𝐼𝑟 denotes the identity matrix of order 𝑟, 𝐴̃ = 𝐼𝑟 − 𝑑ℎ𝑡𝐴𝑟 and
̃ = (1 + ℎ𝑡𝛼)𝐼𝑟 have dimension 𝑟 ≪ 𝑛. Finally, we approximate the
umerical solution of the full model (13) with a projection, that is
𝑘 ≈ 𝐮̄𝑘 = 𝑉𝑟𝐮̃𝑘, for each 𝑘.

Concerning the application of DMD we strictly follow the Algo-
rithm 1 to approximate the solution 𝐮(𝑡). As for POD-Galerkin, DMD
computes the reduced solution by solving a system of dimension 𝑟 ≪ 𝑛
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as described in (11) in the least squares sense by using the QR solver.
(In practice, in the next simulations this will be obtained by using the
well known command ‘‘mldivide’’ (backslash) in Matlab.)

Both MOR techniques considered yield an approximation 𝐮̄𝑘(𝑟),
𝑘 = 0,… , 𝑛𝑡, depending on the chosen truncation value 𝑟. Thus, in
dependence of 𝑟, we can evaluate the error of each technique with
respect to the numerical solution of the full model. To this aim we
consider the errors in the Frobenius and maximum norms at the final
time given by:
{

𝑒𝐹 (𝑟) = ‖𝐮𝑛𝑡 − 𝐮̄𝑛𝑡‖𝐹
𝑒𝑚𝑎𝑥(𝑟) = ‖𝐮𝑛𝑡 − 𝐮̄𝑛𝑡‖∞,

(18)

where 𝐮𝑛𝑡 = 𝑣𝑒𝑐(𝑍𝑛𝑡 ) is calculated by solving (15) and 𝐮̄𝑛𝑡 by solving
(17), respectively.

3.2. Numerical results

We consider (12) with the diffusion and reaction parameters given
by 𝑑 = 0.2 and 𝛼 = −1, respectively. We discretize the domain 𝛺 =
[0, 1] × [0, 1] with 𝑛𝑥 = 𝑛𝑦 = 400 mesh points, such that the full model
has dimension 𝑛 = 160000. We consider the timestep ℎ𝑡 = 10−4 and
the final time 𝑇 = 0.3, such that 𝑛𝑡 = 3000. In Figs. 1(a)–(b)
we show the full model solution by the IMEX Euler method (in matrix
form) 𝑍𝑛𝑡 at final time 𝑇𝑓 (left plot) and the corresponding absolute
error with respect to the exact known solution 𝑢∗(𝑥, 𝑦, 𝑇𝑓 ) (middle plot).
We construct the snapshot matrix 𝑆 ∈ R160000×3001 which columns are
𝐮𝑘 = 𝑣𝑒𝑐(𝑍𝑘), 𝑘 = 0,… , 𝑛𝑡 and we plot in Fig. 1(c) its first 50 singular
values that decay when 𝑟 increases. We want to find a value of 𝑟 that
gives a good approximation of the solution along the time dynamics
(with respect to the snapshot matrix). Therefore, for 𝑟 = 1,… , 20, we
evaluate the errors (18) of the reduced solutions by POD and DMD
in the Frobenius and maximum norms with respect to the full model
numerical solution. In Fig. 2, we report the behaviour of 𝑒𝐹 (𝑟) (left
plot) and 𝑒𝑚𝑎𝑥(𝑟) (right plot). For 𝑟 = 5, in Fig. 3 we show the absolute
error of the reduced solutions with respect to the exact PDE solution
𝑢∗(𝑥, 𝑦, 𝑇𝑓 ) = 𝑒(𝛼−5𝜋

2𝑑)𝑇𝑓 𝑢0(𝑥, 𝑦) at the final time obtained with the
two MOR methods. Very similar good errors are obtained also for this
small truncation value and are given by 𝑒𝐹 = 4.7666 × 10−8, 𝑒𝑚𝑎𝑥 =
3.0218× 10−10 (POD Galerkin), 𝑒𝐹 = 4.1110× 10−8, 𝑒𝑚𝑎𝑥 = 2.2889× 10−10

(DMD).
Fig. 2 shows that the two MOR techniques have very similar perfor-

mance: the errors decrease for increasing values of 𝑟 and very small
errors are obtained already for 𝑟 = 20. In particular, POD-Galerkin
and DMD reach almost the same accuracy for 𝑟 = 20: 𝑒𝐹 ≈ 10−11 and
𝑒𝑚𝑎𝑥 ≈ 10−13.

Finally, we want to investigate the performance of the MOR tech-
niques for new values of parameters 𝑑 and 𝛼 without changing the
snapshot matrix and solving only the new corresponding reduced sys-
tems. In fact, this application is important in the perspective of solving
the same model with several choices of its parameters. In this case, we
apply only the POD-Galerkin projection because for this technique it is
possible to solve directly the reduced problems for the new parameter
values, instead for DMD, it would be necessary to recalculate the
snapshot matrix. For 𝑟 = 5, we compare the results in terms of errors
at the final time 𝑇𝑓 and execution time: in Table 1 we report CPU
times (in seconds) and errors (Frobenius and maximum norms) with
respect to the full model solution. It is worth noting that the CPU
time for solving the full problem (13) for each parameter choice is
about 509.57 s. Hence, the numerical results reported in Table 1 show
that by applying the POD-Galerkin technique it is possible not only
to approximate accurately the full model solution, but also to save
computational time such that, in the worst case, we have the ratio
(timefull)/(timePOD) ≈ 3400. In Fig. 4, we show the reduced solutions

obtained for the new choice of parameters.
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Fig. 1. Semilinear heat Eq. (12) with 𝑑 = 0.2 and 𝛼 = −1. (a) Full model solution by the IMEX Euler method at final time 𝑇𝑓 = 0.3; (b) absolute error of the full model solution
wrt the exact solution at final time; (c) First fifty singular values of the snapshot matrix 𝑆 ∈ R160000×3001.
Fig. 2. Semilinear heat equation: comparisons of the errors 𝑒𝐹 (left plot) and 𝑒𝑚𝑎𝑥 (right plot) in (18) obtained by the POD-Galerkin and the DMD techniques. In all cases the
errors decrease for increasing values of 𝑟 and very small errors are obtained also for 𝑟 = 20.
Fig. 3. Semilinear heat equation: for the truncation value 𝑟 = 5, we show the absolute error of the reduced solutions by POD-Galerkin (left plot) and DMD (right plot) wrt the
exact PDE solution at the final time 𝑇𝑓 = 0.3. The corresponding errors with respect to the full model numerical solution are 𝑒𝐹 = 4.7666×10−8, 𝑒𝑚𝑎𝑥 = 3.0218×10−10 (POD Galerkin),
𝑒𝐹 = 4.1110 × 10−8, 𝑒𝑚𝑎𝑥 = 2.2889 × 10−10 (DMD). Very similar errors are obtained.
Fig. 4. Semilinear heat equation: POD-Galerkin with 𝑟 = 5. We report the absolute error maps of the POD reduced solutions wrt the exact PDE solution for the indicated diffusion
and reaction parameters. The corresponding maximum and Frobenius error norms (18) with respect to the full model are reported in Table 1.
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Table 1
Semilinear heat equation: POD-Galerkin reduced solutions for 𝑟 = 5 for indicated
parameters. We report the errors at final time as defined in (18) and the CPU execution
times (seconds). It is worth noting that the CPU time for solving the full problem (13)
for each parameter choice is about 510 s and then a significant computational saving
is obtained.

Method Parameters CPU time (s) 𝑒𝐹 𝑒𝑚𝑎𝑥
POD 𝛼 = −1, 𝑑 = 0.2 0.01034 4.7666 ×10−8 3.0218 ×10−10

𝑟 = 5 𝛼 = 0.04, 𝑑 = 0.03 0.028080 1.1984 ×10−7 8.2488 ×10−10

𝛼 = −10, 𝑑 = 0.09 0.146731 2.9174 ×10−9 1,5953 ×10−11

4. Reaction–diffusion PDE systems

We consider a reaction–diffusion PDE system with nonlinear reac-
tion terms and zero Neumann boundary conditions, given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡 = 𝑑1𝛥𝑢 + 𝑓 (𝑢, 𝑣), (𝑥, 𝑦) ∈ 𝛺 ⊂ R2, 𝑡 ∈ [0, 𝑇 ]
𝑣𝑡 = 𝑑2𝛥𝑣 + 𝑔(𝑢, 𝑣)
(𝐧∇𝑢)

|𝜕𝛺 = (𝐧∇𝑣)
|𝜕𝛺 = 0

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦) , 𝑣(𝑥, 𝑦, 0) = 𝑣0(𝑥, 𝑦).

(19)

where 𝑑1, 𝑑2 are the diffusion coefficients and 𝛺 = [0, 𝐿𝑥] × [0, 𝐿𝑦]. The
model kinetics 𝑓 and 𝑔 depend on a variety of parameters, therefore
different kinds of solutions can be studied, such as travelling waves
or oscillating dynamics Bozzini et al. (2019), Lacitignola et al. (2017,
2015), Sgura and Bozzini (2017) and Sgura et al. (2019).

In this paper, we are interested in the approximation of the so-called
Turing patterns that are spatially non-homogeneous stationary solutions
of (19). We start by considering the well-known Schnackenberg model
as prototype of pattern formation obtained by the well-known Turing
instability. The Turing instability, also known as diffusion-driven insta-
bility, arises when a homogeneous equilibrium that is stable in absence
of diffusion becomes unstable in presence of diffusion and at the steady
state attains characteristic patterns like spots, labyrinths, among others
(see e.g. D’Autilia et al. (2020)).

The computational challenges in the numerical approximation of
Turing patterns are related to: (i) long time integration to identify the
final pattern as asymptotic solution of the PDE system and (ii) a large
and finely discretized spatial domain to recognize the pattern structure.
For these reasons, here we apply a MOR technique to show if it is able
to reduce the computational costs, also in view of a mapping of the
parameter space able to identify all the possible Turing patterns present
in the RD model in exam.

In the second part of this section, we will consider the DIB model for
electrodeposition that is a more realistic application for electrochemical
phase formation modelling and, as shown in Lacitignola et al. (2015),
presents Turing pattern formation able to describe the experimental
shape of electrodeposits Lacitignola et al. (2017), Sgura and Bozzini
(2017) and Sgura et al. (2019). Moreover, we want to emphasize that
in these RD-PDE systems it is important to identify the pattern but
also to reproduce the whole time dynamics. In fact, as discussed also
in D’Autilia et al. (2020), in presence of Turing instability the time
dynamics exhibits essentially two regimes, the so-called reactivity for
small times in the transient regime and the asymptotic steady state for
long times. For this reason, here we shall also study when a reduction
technique is able to preserve these features. Hence, in this section, both
for the Schnackenberg and the DIB models, first we will apply POD-
Galerkin and DMD to identify the optimal 𝑟− dimensional reduction
spaces able to reproduce with sufficient accuracy the final pattern and,
secondly, we will show the behaviour of the spatial mean ⟨𝑣(𝑡)⟩ of
the solution, chosen as in D’Autilia et al. (2020) as an indicator for
highlighting the time dynamics.
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4.1. MOR techniques

As usual, the starting point both of POD and DMD is to build the
snapshot matrices by using a numerical approximation of (19). For
this goal, we apply the IMEX Euler scheme in matrix-oriented form,
such that two sequences of Sylvester equations like (15) are solved
as in D’Autilia et al. (2020) by the rEuler method. Hence, if 𝑛𝑥 and
𝑛𝑦 are the meshsizes used for the spatial semi-discretization of 𝛺 =
[0, 𝐿𝑥] × [0, 𝐿𝑦], with total meshpoints 𝑛 = 𝑛𝑥𝑛𝑦, and 𝑛𝑡 the number
of time steps, we construct the snapshot matrices by considering the
numerical approximations both for 𝑢 and 𝑣 by

𝑆𝑢 =
⎡

⎢

⎢

⎣

| | … |

𝐮0 𝐮1 … 𝐮𝑛𝑡
| | … |

⎤

⎥

⎥

⎦

, 𝑆𝑣 =
⎡

⎢

⎢

⎣

| | … |

𝐯0 𝐯1 … 𝐯𝑛𝑡
| | … |

⎤

⎥

⎥

⎦

∈ R𝑛×(𝑛𝑡+1) (20)

where 𝐮𝑘 = 𝑣𝑒𝑐(𝑍𝑢
𝑘), 𝐯𝑘 = 𝑣𝑒𝑐(𝑍𝑣

𝑘 ) and 𝑍𝑢
𝑘, 𝑍𝑢

𝑘 are the matrix solutions
by the rEuler method at each time step. As second step, we need to
compute a truncated SVD of the snapshot matrices (20), i.e. 𝑆𝑢 =
𝑉𝑟𝛴𝑟,𝑢𝑊 𝑇

𝑟 and 𝑆𝑣 = 𝑄𝑟𝛴𝑟,𝑣𝑃 𝑇
𝑟 , in order to obtain the orthogonal bases

𝑉𝑟 and 𝑄𝑟, respectively. We can generalize the semi-discretized ODE
system (7) such that now POD-Galerkin yields the following reduced
coupled ODE system for 𝐮̃(𝑡), 𝐯̃(𝑡) :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̇̃𝐮(𝑡) = 𝑑1𝐴𝑟𝐮̃(𝑡) + 𝐟𝑟(𝐮̃(𝑡), 𝐯̃(𝑡))
̇̃𝐯(𝑡) = 𝑑2𝐵𝑟𝐯̃(𝑡) + 𝐠𝑟(𝐮̃(𝑡), 𝐯̃(𝑡))
𝐮̃(𝑡0) = 𝐮̃0 = 𝑉 𝑇

𝑟 𝐮0
𝐯̃(𝑡0) = 𝐯̃0 = 𝑄𝑇

𝑟 𝐯0

(21)

where 𝐴𝑟 = 𝑉 𝑇
𝑟 𝛥𝑉𝑟, 𝐵𝑟 = 𝑄𝑇

𝑟 𝛥𝑄𝑟 ∈ R𝑟×𝑟

𝐟𝑟(𝐮̃(𝑡), 𝐯̃(𝑡)) = 𝑉 𝑇
𝑟 𝐟 (𝑉𝑟𝐮̃(𝑡), 𝑄𝑟𝐯̃(𝑡)), 𝐠𝑟(𝐮̃(𝑡), 𝐯̃(𝑡)) = 𝑄𝑇

𝑟 𝐠(𝑉𝑟𝐮̃(𝑡), 𝑄𝑟𝐯̃(𝑡))

(22)

and 𝛥 the Laplace discrete operator in Kronecker form defined in the
previous section. The POD-Galerkin projection then approximates the
solutions 𝐮, 𝐯 of the ODE full model associated to (19) after space
semi-discretization, as follows
{

𝐮(𝑡) ≈ 𝐮̄(𝑡) ∶= 𝑉𝑟𝐮̃(𝑡)
𝐯(𝑡) ≈ 𝐯̄(𝑡) ∶= 𝑄𝑟𝐯̃(𝑡).

(23)

In the following computations, to solve the reduced system (21), we
apply the IMEX-Euler method in vector form, given by
{

(𝐼𝑟 − 𝑑1ℎ𝑡𝐴𝑟)𝐮̃𝑘+1 = 𝐮̃𝑘 + ℎ𝑡𝐟𝑟(𝐮̃𝑘, 𝐯̃𝑘) 𝑘 = 0,… , 𝑛𝑡 − 1
(𝐼𝑟 − 𝑑2ℎ𝑡𝐵𝑟)𝐯̃𝑘+1 = 𝐯̃𝑘 + ℎ𝑡𝐠𝑟(𝐮̃𝑘, 𝐯̃𝑘)

(24)

where 𝐼𝑟 is the 𝑟-dimensional identity matrix. We remark that at each
time step, we have to solve for 𝐮̃𝑘+1 and 𝐯̃𝑘+1 two (full) linear systems of
dimension 𝑟 ≪ 𝑛 where 𝑛 = 𝑛𝑥𝑛𝑦, instead of large sparse n-dimensional
linear systems required by the corresponding application of IMEX to the
full model. Therefore, we will solve easily the reduced 𝑟×𝑟 linear systems
in (24) by the vector approach, by using the direct solver (‘‘backslash’’)
in Matlab.

Concerning the application of DMD, we apply the Algorithm 1 using
only one snapshot matrix 𝑆𝑢 or 𝑆𝑣, depending on which component of
the solution we want to approximate, i.e. 𝐮(𝑡) or 𝐯(𝑡) respectively. In this
case, 𝑆1 and 𝑆2 in (9) are built only from 𝑆𝑢 (or 𝑆𝑣) and consequently
also the corresponding truncated SVD in Step 1 of the Algorithm 1. As
for POD-Galerkin, DMD approximates the solutions by solving a system

of dimension 𝑟 ≪ 𝑛 given in (10).
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Fig. 5. Schnakenberg model: (a) numerical solution 𝑢(𝑥, 𝑦) at final time 𝑇𝑓 = 2; (b) a selection of the singular values of the snapshot matrices 𝑆𝑢 and 𝑆𝑣 for 1 ≤ 𝑟 ≤ 100.
4.2. Schnakenberg model

We first apply POD-Galerkin and DMD to the well known Schnack-
enberg model given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡 = 𝛥𝑢 + 𝛾(𝑎 − 𝑢 + 𝑢2𝑣), (𝑥, 𝑦) ∈ 𝛺 = [0, 1] × [0, 1], 𝑡 ∈ [0, 𝑇𝑓 ]
𝑣𝑡 = 𝑑𝛥𝑣 + 𝛾(𝑏 − 𝑢2𝑣)
(𝐧∇𝑢)

|𝜕𝛺 = (𝐧∇𝑣)
|𝜕𝛺 = 0

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦) , 𝑣(𝑥, 𝑦, 0) = 𝑣0(𝑥, 𝑦).

(25)

Although this model is very simple, it represents an important example
of patterns typically found in biological experiments (see e.g. Madzva-
muse (2006)). The model parameters 𝑎, 𝑏, 𝛾 are positive constants and
there is a unique stable homogeneous equilibrium (𝑢𝑒, 𝑣𝑒), 𝑢𝑒 = 𝑎+𝑏 and
𝑣𝑒 =

𝑏
(𝑎+𝑏)2 , that undergoes Turing instability in presence of diffusion.

4.2.1. Numerical results
In our numerical tests we consider the typical values of parameters

𝑑 = 10, 𝛾 = 1000, 𝑎 = 0.1 and 𝑏 = 0.9 taken from the literature
(see e.g. Madzvamuse (2006)) and the initial conditions 𝑢0(𝑥, 𝑦) =
𝑢𝑒 + 10−5rand(x,y), 𝑣0(𝑥, 𝑦) = 𝑣𝑒 + 10−5rand(x,y) small spatially random
perturbations of (𝑢𝑒, 𝑣𝑒). We discretize the domain 𝛺 with 𝑛𝑥 = 𝑛𝑦 = 50
interior points, such that 𝑛 = 𝑛𝑥𝑛𝑦 = 2500, we consider the time stepsize
ℎ𝑡 = 10−4 and 𝑇𝑓 = 2, such that 𝑛𝑡 = 20000. In Fig. 5 are shown
the numerical solution at final time (left plot) and the singular value
decay of the snapshot matrices 𝑆𝑢, 𝑆𝑣 ∈ R2500×20001 (right plot) for
𝑟 = 1,… , 100, 𝑟 ≪ 2500.

We choose three different values of 𝑟 to find the solution with
POD-Galerkin and DMD and then evaluate the errors defined in (18)
comparing the full model and reduced solutions at final time for the
variable 𝐮(𝑡).

By choosing 𝑟 = 5, we find:
𝑒𝐹 = 0.0839, 𝑒𝑚𝑎𝑥 = 0.0052 (POD-Galerkin)
𝑒𝐹 = 4.0522, 𝑒𝑚𝑎𝑥 = 0.2220 (DMD).
It is clear that POD-Galerkin gives a better solution, as shown by

comparing Figs. 6(a) and 7(a).
By increasing the truncation value to 𝑟 = 25 we obtain a better

solution from DMD but not as accurate as POD-Galerkin (see Figs. 6(b)
and 7(b)). In fact, for 𝑟 = 25 we find the errors

𝑒𝐹 = 1.4827 × 10−5, 𝑒𝑚𝑎𝑥 = 1.2002 × 10−6 (POD-Galerkin)
𝑒𝐹 = 1.9787, 𝑒𝑚𝑎𝑥 = 0.1356 (DMD).
In order to further improve the approximation by DMD we choose

𝑟 = 70, the pattern obtained is shown in Fig. 7(c). In this case we obtain
the errors

𝑒𝐹 = 3.8571 × 10−10, 𝑒𝑚𝑎𝑥 = 2.4960 × 10−11 (POD-Galerkin).
𝑒𝐹 = 0.0440, 𝑒𝑚𝑎𝑥 = 0.0021 (DMD).
Therefore, for the Schnackenberg model we can deduce that POD-

Galerkin performs better than DMD because requires a smaller trun-
cation value 𝑟 to catch the final pattern and exhibits smaller errors.
To study the entire time dynamics and see if also the reactivity zone is
well approximated in the transient regime, for the above values of 𝑟 we
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study also the behaviour of the spatial mean obtained for the full and
reduced solutions given by

⟨𝑢(𝑡)⟩ = 1
|𝛺|

∫𝛺
𝑢(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 ≈ 𝑚𝑒𝑎𝑛(𝐮𝑘), 𝑘 = 0,… , 𝑛𝑡. (26)

The results are reported in Fig. 8 for 𝑟 = 5, 25, 70. By comparing
the profiles for the different truncation values of 𝑟, we note that the
DMD technique has an oscillating behaviour of ⟨𝑢(𝑡)⟩ which amplitude
decreases with larger 𝑟, then this can explain why the largest value
of 𝑟 = 70 is needed to capture both the final pattern and the entire
dynamics. On the other hand, it is evident that POD-Galerkin for 𝑟 = 5 is
already able to capture the asymptotic regime and the final pattern, but
it requires 𝑟 = 25 to follow the reactivity zone more accurately, in any
case much smaller than 𝑟 = 70 needed by DMD for similar behaviour.

4.3. DIB electrochemical model

We focus here on the morphochemical model (briefly said DIB
model as for example in Sgura et al. (2019)) that describes an elec-
trodeposition process for metal growth, typical of recharge processes
in batteries with metal electrodes. The nonlinear kinetics in (19) are
given by

𝑓 (𝑢, 𝑣) = 𝜌
(

𝐴1(1 − 𝑣)𝑢 − 𝐴2𝑢
3 − 𝐵(𝑣 − 𝛼)

)

,

𝑔(𝑢, 𝑣) = 𝜌
(

𝐶(1 + 𝑘2𝑢)(1 − 𝑣)[1 − 𝛾(1 − 𝑣)] −𝐷𝑣(1 + 𝑘3𝑢)(1 + 𝛾𝑣)
)

.
(27)

The unknown functions 𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) represent the morphology
of the metal deposit and the surface coverage with a functionally rele-
vant adsorbate respectively, while the nonlinear source terms account
for generation and loss of the relevant material. The physico-chemical
meaning of the parameters is reported for example in Lacitignola et al.
(2015). In particular, (𝑢𝑒, 𝑣𝑒) = (0, 𝛼) is a homogeneous equilibrium for
any choice of parameter values that is of interest for battery modelling
and that undergoes Turing instability in presence of diffusion Lacitig-
nola et al. (2015). Moreover, in Lacitignola et al. (2017) it has been
proved that for a given parameter choice there exists an intrinsic pat-
tern type that can only emerge if an effective domain size of integration
is considered.

4.3.1. Numerical results
In our numerical tests we consider the parameter values 𝐵 = 66,

𝐶 = 3, 𝑑 = 20, 𝜌 = 1, 𝐴1 = 10, 𝐴2 = 30, 𝛼 = 0.5, 𝑘2 = 2.5, 𝛾 = 0.2,
𝐷 = 2.4545 and 𝑘3 = 1.5 and initial conditions that are small spatially
random perturbations of (𝑢𝑒, 𝑣𝑒) = (0, 𝛼) as in D’Autilia et al. (2020).
We discretize the domain 𝛺 = [0, 20] × [0, 20] with 𝑛𝑥 = 𝑛𝑦 = 50 interior
points (𝑛 = 𝑛𝑥𝑛𝑦 = 2500), we consider time stepsize ℎ𝑡 = 10−3 and final
time 𝑇𝑓 = 100, such that 𝑛𝑡 = 100000. We are interested in finding by
the MOR techniques an approximation of the Turing pattern solution
at the final time and in tracking the entire time dynamics. In Fig. 9 are
shown the numerical solution for 𝑣 at final time 𝑇𝑓 and the singular
value decay of the snapshot matrices 𝑆𝑢, 𝑆𝑣 ∈ R2500×100001 (right plot)
until 𝑟 = 100.
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Fig. 6. Schnackenberg model: solutions at final time with POD-Galerkin.
Fig. 7. Schnackenberg model: solutions at final time with DMD.
Fig. 8. Schnackenberg model: time dynamics of the spatial mean ⟨𝑢(𝑡)⟩ for the reduced solutions by POD-Galerkin and DMD compared with the full model. The final patterns
corresponding to the same values of 𝑟 are reported in Figs. 6 and 7.
Fig. 9. DIB model: (a) numerical solution 𝑣 at final time 𝑇𝑓 = 100 by the IMEX Euler method (rEuler); (b) singular values of the snapshot matrices 𝑆𝑢 , 𝑆𝑣 ∈ R2500×100001 for
1 ≤ 𝑟 ≤ 100.
First of all, we choose the values of 𝑟 = 5, 20 to find the reduced
solutions with POD-Galerkin and DMD. The errors in the Frobenius
and maximum norms (as in (18)) comparing full model and reduced
solutions at the final time for the unknown variable 𝑣 are given by:
8

𝑟 = 5: 𝑒𝐹 = 0.2957, 𝑒𝑚𝑎𝑥 = 0.0120 (POD-Galerkin) and 𝑒𝐹 = 0.0568,
𝑒𝑚𝑎𝑥 = 0.0028 (DMD).

𝑟 = 20: 𝑒𝐹 = 0.2976, 𝑒𝑚𝑎𝑥 = 0.0159 (POD-Galerkin) and 𝑒𝐹 = 0.0186,
𝑒 = 0.0016 (DMD).
𝑚𝑎𝑥
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Fig. 10. DIB model: solutions for 𝑣 at final time with POD-Galerkin for increasing values of 𝑟. The corresponding errors 𝑒𝐹 , 𝑒𝑚𝑎𝑥 with respect to the full model solution 𝑣 are
reported in the main text.
Fig. 11. DIB model: solutions 𝑣 at final time with DMD for increasing values of 𝑟. The corresponding errors 𝑒𝐹 , 𝑒𝑚𝑎𝑥 with respect to the full model solution 𝑣 are reported in the
main text.
By comparing the final patterns in Figs. 10(a)–(b) and 11(a)–(b)
and the above errors, it is clear that DMD gives a better solution for
smaller values of 𝑟. This result becomes more clear looking at the
entire dynamics of the spatial mean ⟨𝑣(𝑡)⟩ = 1

|𝛺|

∫𝛺 𝑣(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 ≈
𝑚𝑒𝑎𝑛(𝐯𝑘), 𝑘 = 0,… , 𝑛𝑡 in Figs. 12(a)–(b). For 𝑟 = 5, 20, it is easy
to see that the POD-Galerkin solution tends to another steady state,
while DMD exhibits an oscillating behaviour around the dynamics of
the full model, like in the Schnackenberg case. On the other hand, in
Figs. 10(c) and 11(c) we show that by choosing a sufficiently large
value 𝑟 = 100 ≪ 2500 POD-Galerkin gives a better approximation even
more accurate than DMD for the same 𝑟, because as shown in Fig. 12(c)
it is able to capture both the transient and the asymptotic regimes. In
fact, in this case 𝑒𝐹 = 4.9120×10−9, 𝑒𝑚𝑎𝑥 = 4.2719×10−10 (POD-Galerkin)
and 𝑒𝐹 = 0.0029, 𝑒𝑚𝑎𝑥 = 3.7061 × 10−4 (DMD).

Hence, for the DIB model we emphasize that for a labyrinth solution
POD-Galerkin needs larger 𝑟 to attain a good approximation, even if for
the chosen 𝑟 = 100 a highly accurate approximation (errors ≈ 10−9)
is obtained with respect to DMD with the same projection size. A
possible explanation is that, like for the Schnackenberg case, as shown
in Fig. 12, the spatial mean of the DMD has an oscillatory behaviour
for small values of 𝑟 that tends to be slowly damped for larger value of
𝑟, such as 𝑟 = 100. This oscillatory phenomenon is worth to be further
investigated in a future research.

Finally, we apply the POD-Galerkin projection, and then solve the
reduced model (24), for new choices of the parameters 𝐵,𝐶,𝐴2 without
changing the snapshot matrices obtained for the previous set 𝐵 =
66, 𝐶 = 3, 𝐴2 = 30. We choose the case 𝑟 = 100, such that the reduced
pattern solution for this set is reported in Fig. 10(c). The POD-Galerkin
solutions 𝐯̄𝑛𝑡 obtained at the final time of integration 𝑇𝑓 = 100 for
the new parameter sets (a) 𝐵 = 45, 𝐶 = 2.9, 𝐴2 = 30 and (b) 𝐵 =
30, 𝐶 = 3, 𝐴2 = 1 are shown in Fig. 13(a) and Fig. 13(b), respectively.
The pattern in (𝑎) belongs to the class of labyrinths and the pattern
in (b) belongs to the class of reversed spots (holes), as can be expected
looking at the segmentation of the parameter space in Sgura et al.
(2019) (Fig. 5).
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5. Conclusions

In this paper, we have considered a representative selection of
model-reduction techniques, i.e. POD-Galerkin projection and DMD
to approximate the numerical solutions of a selection of PDE models
into a lower dimensional space, preserving the main features of the
solutions. First of all, we have considered a semi-linear heat equation,
2D in space, with a known exact solution and we have shown how it
is possible to save computational time by applying the POD-Galerkin
projection for different choices of the parameters without recalculating
the snapshot matrix. In fact, in the worst case, we have the ratio
(timefull)/(timePOD) ≈ 3400. Finally, we have considered the reaction–
diffusion Schnackenberg model and the DIB model for electrochemical
phase formation that present Turing pattern formation. For these mod-
els we have shown that, as an alternative to solve the full model of
dimension 𝑛 = 2500, POD-Galerkin and DMD with a suitable low-
dimensional projection (𝑟 = 70 for Schnakenberg and 𝑟 = 100 for the
DIB model), yield reduced models able to approximate carefully both
Turing patterns at the steady state and the reactivity dynamics in the
transient regime. In particular, DMD exhibits an oscillating behaviour
during the time dynamics that tends to be damped for larger values of
𝑟 (see Fig. 8 and Fig. 12) . Moreover, we have shown that, starting from
a given parameter set and calculating once the snapshot matrices, the
POD-Galerkin technique applied to the DIB model for new parameters
is able to find reduced Turing patterns of different morphology, as
predicted by the classification in Sgura et al. (2019) for the range of
values considered. These encouraging results are a first step towards
the application of more sophisticated model-reduction techniques to
approximate in cheap and accurate way the Turing patterns of the DIB
electrochemical PDE system of great interest for battery modelling. In
fact, MOR techniques will be of particular interest in devising smart
parameter identification techniques to compare numerical solutions
with experimental data of batteries where it is required to solve the
PDE model for different parameter choices. For example, in our group
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Fig. 12. DIB model: time dynamics of the spatial mean ⟨𝑣(𝑡)⟩ for the reduced solutions compared with the full model for the values of 𝑟 = 5, 20, 100. The corresponding final
patterns are shown in Figs. 10 and 11.
Fig. 13. DIB model: POD-Galerkin 𝑟 = 100 reduced solutions 𝐯̄𝑛𝑡 for indicated parameter choice. The snapshots have not been recalculated and correspond to those of the parameters
𝐵 = 66, 𝐶 = 3, 𝐴2 = 30 and reduced final pattern in Fig. 10(c).
we are currently studying the case of constraints evaluations in classical
approaches based on PDE constrained optimization problems or for
training set construction in approaches based on machine learning
techniques.
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