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Abstract: The olive oil supply chain and even its individual stages have been extensively investigated
through life cycle assessment (LCA) in recent decades. Most practices of the olive oil supply chain
have been associated with negative environmental effects, such as soil degradation, carbon dioxide
emissions, air and ground pollution, and depletion of groundwater. The current work aimed to
perform a bibliometric analysis, through a science mapping approach, coupled with a review on
the life cycle assessment (LCA) studies of the olive oil sector, with relevance to the environmental
impacts of agricultural and industrial practices of this food sector. A total of 110 documents published
in 2008–2021 were analyzed and discussed. More than 78% of documents were released from
2015. The main Scopus categories relating to the topic analyzed were environmental sciences (25%),
energy (18%), and engineering (17%). The most productive countries were Italy, Spain, and Greece.
The cluster analysis identified three main research topics related to the “agricultural phase”, “oil
extraction”, and “waste management and by-product valorization”. Most of the recent publications
focused on the application of LCA to evaluate the environmental impact of innovative agricultural
practices, sustainable control of parasites and weeds, wastes, and by-products valorization within a
circular economy.

Keywords: bibliometric analyses; environmental impact; LCA; olive oil extraction; olive production;
science mapping

1. Introduction

The cultivation of olive trees (Olea europaea L.) is an ancient practice in the Mediter-
ranean basin and the oil production represents a traditional and widespread activity of
the agrifood sector in all the countries of the area. Known and used since ancient times,
olive oil is the most used fat in the Mediterranean diet. Several clinical and epidemiological
studies have highlighted the nutritional qualities of extra-virgin olive oil (EVOO), which
is considered the most suitable fat for human consumption among all widely consumed
dietary fats [1]. EVOO can have a series of benefits to human health because of its healthy
fatty acid profile (particularly oleic acid), the high content of bioactive components in-
cluding phenolic compounds (e.g., oleocanthal, tyrosol, hydroxytyrosol, oleuropein) and
carotenoids (provitamin A, β-carotene, and lutein) [2].

Olive trees are cultivated in more than 50 countries distributed throughout the five
continents for a total of 10.8 million hectares (average of the four-year period 2016–2019) [3].
The olive growing surface is mainly addressed to obtain drupes for the production of olive
oil (about 87%), while the remainder produces table olives [4]. World olive production is
mainly concentrated in the Mediterranean basin. The five countries with the largest olive
growing area in 2019 were Spain, Tunisia, Italy, Morocco, and Greece [3]. As a result of an
increasing globally olive oil demand, in 2016–2017, 162,000 hectares of olive groves were
planted, and 100,000 hectares were transformed from traditional or intensive cultivation to
the super-intensive system to satisfy market needs [4]. Current trends see an expansion of
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olive growing in areas such as South America, Argentina, and Australia; for example, in
a few years Argentina and Australia have multiplied their production of olives, reaching
342,951 and 86,192 tons in 2019, respectively [3]. The top five olive oil producing countries,
considering the average production of the four-year period 2016–2019, were Spain, Italy,
Greece, Turkey, and Tunisia [3]. In Figure 1 the top ten countries with the largest olive
growing area and related olive oil production are shown.

Figure 1. Top ten countries with the largest olive growing area and related olive oil production
(means of the four years 2016–2019 [3]).

Most practices of the olive oil supply chain (from the extraction of raw materials,
through the cultivation of olive trees and oil production, to the final management of
wastes and co-products), particularly in the European Union (EU) countries, have been
associated with various negative environmental effects, such as soil degradation and
pollution, variation of soil microbial populations, harmful atmospheric emissions, pollution
and depletion of groundwater [5]. The use of pesticides, herbicides, chemical fertilizers,
irrigation, or inadequate management of mill wastes and by-products can generate high
environmental impacts [6,7]. An important issue in the olive oil production sector is the
management of the produced wastes. A large part of the organic wastes from mills is
distributed directly on soils for its beneficial effects related to the nutrient concentration
and its potential for mobilizing ions, but also with possible negative effects due to its high
content of mineral salts and phytotoxic compounds [8,9]. The environmental impacts vary
significantly according to the different agronomic techniques, cultivation systems, and oil
extraction technologies adopted, correlated with the climatic, socioeconomic, and cultural
conditions [10].

The potential environmental impacts associated with a system (product/process/activity)
during its life cycle can be assessed using the life cycle assessment (LCA) methodology,
through the recognition and evaluation of the resources consumption and the greenhouse
gas emissions [11]. LCA analysis can be useful in identifying strategies for improving
the environmental performance of a system in the different phases of its life cycle and in
supporting strategic planning or design or redesign of products or processes [12]. Spa-
tially referenced data should be considered when assessing the environmental impact of
technological innovations by LCA in the context of the environmental risk assessment of
European Union technology policies [13]. The earliest LCA studies, now considered partial
LCAs, date back to the late 1960s and early 1970s, and the LCA methodology went through
an initial period of conception in 1970–1990 and then standardization in 1990–2000 [14].
The LCA methodology is internationally regulated by the ISO 14040 and ISO 14044 stan-
dards [15,16]. For LCA studies in the specific sector of olive oil production, these regulations
are accompanied by the product category rules (PCR) document relating to olive oil for
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the environmental product declaration “Virgin olive oils and its fractions” [17]. LCA has
been widely adopted to evaluate the environmental sustainability of agriculture and food
processing [18,19]. In recent decades, LCA has been applied in studies on the olive oil
supply chain (production of olives, olive oil extraction, waste management) with the aim of
identifying the more critical activities/processes in terms of environmental loads and to
find improved strategies to limit the negative effect of the productive process [20]. One of
the most cited publications in international journals on a complete LCA study on olive oil
dates from 2008 and addressed the natural resource consumption and the environmental
emissions associated with “cradle to gate” olive oil production including the agricultural
and extraction phases [21]. Reviews on LCA of the olive oil sector were carried out by
Salomone et al. [22] on a total of 51 papers, by Banias et al. [10] on 18 papers, and by
Espadas-Aldana et al. [20] on 23 selected studies.

Quantity, quality, and trends of research activities of a research field or a specific topic
within the scientific literature can be statistically analyzed by the bibliometric analysis
approach, comprising performance analysis and bibliometric mapping (or science mapping)
techniques [23,24]. The bibliometric analysis approach contributes to study the develop-
ment and trends of a research field and enables analysis of publishing activities of individual
research groups, institutions, or countries, to find connections between publications and
research groups, to study the international dimension of a research field, to quantify the
most cited publications and the most cited authors [25,26]. Several scientific databases,
which also include patent and funding data, are used to retrieve bibliometric data to per-
form science mapping analyses. The studies based on bibliometric analyses are limited
to the publications indexed under the selected scientific database and retrieved with the
adopted search criteria. Research outputs from company activities or international projects
may be overlooked when not reflected in publications in peer-reviewed journals. Despite
its limitations, the bibliometric analysis method allows large amounts of bibliometric data
to be summarized for presenting the intellectual structure and trends of a research topic.
The three freely available bibliometric mapping software HistCite [27], CiteSpace [28], and
VOSviewer [29] are packages widely used for performing automatic analyses of scientific
research fields. In the past two decades several research areas have been widely analyzed
by the science mapping approach (see review by Chen [26]). This bibliometric methodology
was also used for mapping research developments and trends in individual crop species
such as grape [30], fiber crops [31,32], sugarcane [33], rice [34], maize [35], hazelnut [36],
durum wheat [37], potato [38], bread wheat [39], and muskmelon [40]. No bibliometric
study has been published so far on the LCA research on the olive oil supply chain.

Due to the general increasing interest in agrifood supply chain sustainability and the
several LCA studies published in the past decade on olive oil production, the current work
presents a science mapping analysis of the scientific research, based on LCA, on the olive
oil supply chain, coupled with a literature review with relevance to the environmental
impacts of agricultural and industrial practices of this food sector. The aims of this study
are primarily to provide a holistic overview of the development of the topic and to detect
the prominent research topics and their trends over time. In relation to the latter point, the
current study also provides a review of the main topics and issues found in literature. The
novelty of this study is to identify and quantify the temporal and geographical patterns
in the relevant literature, analyzing the number of publications per year and country that
carried out the research, including research institutions and authors, where the research
findings are published, and what are the major research topics and trends. The performed
bibliometric analysis focuses on the study of data associated with Scopus indexed scientific
publications, which are often the result of collaboration between teams of researchers and
industrial partners during international or national projects. This paper can be useful as a
guideline for scientists seeking to improve their understanding of the wider LCA research
dynamics concerning the olive oil sector, with a focus on the management of olive growing
and oil production wastes and on the valorization of by-products.
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2. Materials and Methods

Elsevier’s Scopus and Thomson Reuters’ Web of Science are the most frequently used
multidisciplinary databases for bibliometric analyses. In the present study, the Scopus
database was chosen because it is considered as one of the largest repositories of abstracts
and citations of peer-reviewed literature. In addition, 99% of Web of Science indexed
journals overlap with Scopus, while only 34% of Scopus indexed journals are also indexed in
Web of Science [41]. Bibliographic records related to olive growing and olive oil production
were retrieved from the Scopus database on 30 December 2021.

Relevant scientific publications were identified by using the string (TITLE-ABS-KEY
(LCA OR “Life Cycle Assessment” OR “Life Cycle Analysis”) AND TITLE-ABS-KEY
(“olive*”)) AND (EXCLUDE (PUBYEAR, 2022)); i.e., by using the search parameters “LCA”,
“life cycle assessment”, “life cycle analysis”, and “olive” in the combined fields of title,
abstract, and keywords. The search period was limited by excluding documents dated after
2021 to make comparisons of complete 12-month intervals. No starting date was given for
the search, permitting the search database to find the earliest articles in the literature. A
total of 148 papers were retrieved and first examined individually by carrying out a manual
review based on document type and titles, abstracts, and keywords. The publications were
selected by restricting the dataset to the document types of article, review, book chapter,
note, and conference paper. Patents were not considered. Thirty-eight papers were found
not to meet the selection criterion or not pertinent to the topic (olive and/or LCA were only
mentioned and no data on LCA of olive oil were reported, LCA acronym not corresponding
to “life cycle assessment”, olive* equivalent to author names, LCA carried out on some
foods containing olive oil such as canned anchovies) and then removed from the following
analysis; the final database was composed of 110 documents. The first relevant document
found was published in 2008; thus the period to which the publication dataset refers is
2008–2021. Studies on journals not indexed in Scopus, according to its dates of coverage,
may be missing.

The productivity was measured according to the number of publications over the
years, the research institutions, and the countries involved in the specific research area, the
distribution of publication by journal and its citation impact, the identification of the most
involved subject areas, the most cited papers. The VOSviewer software version 1.6.16 [42]
was used for generating and visualizing bibliometric networks based on the 110 retrieved
publications. Keywords co-occurrence was explored, and clusters were constructed by
considering the terms occurring at least 3 times and a minimum of 30 terms per cluster. The
appropriate VOSviewer software functionality was used to omit some terms not relevant for
the analysis (article, case study, comparative study, controlled study, critical review, priority
journal, procedures, review, surveys, country names, etc.). More detailed explanations
about the cluster analysis and graphical map representation are available in the VOSviewer
manual [43].

3. Results
Performance Analysis

As the Scopus search was conducted on 30 December 2021, some publications for 2021
may be missing because journal publisher metadata have not yet been processed for index-
ing the documents into the Scopus database. The first article was published in 2008 [21].
In the first half of the considered period (2008–2014), the number of documents per year
varied from 0 to 10 with an average of 3.4 per year; the number of papers significantly
increased in the second period (2015–2021) with a mean per year of 12.3 and a range from 8
to 18 (Table 1).
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Table 1. Documents per year on life cycle assessment (LCA) of olive oil supply chain from 2008
to 2021.

Year

Number of Documents
Number of

Authors
Number of

Journals
Number of
Countries

Number of
Citations

Total Articles on a
Journal Book Chapter—Conference Paper Total Average *

2008 1 1 0 2 1 1 96 96
2011 1 1 0 6 1 1 1 1
2012 3 3 0 11 2 3 201 67
2013 9 6 3 33 8 7 351 39
2014 10 8 2 44 9 5 349 35
2015 8 8 0 30 5 5 282 35
2016 14 13 1 61 11 10 424 30
2017 10 9 1 40 5 8 429 43
2018 9 6 3 28 7 4 175 19
2019 14 14 0 67 12 9 214 15
2020 13 12 1 56 12 13 78 6
2021 18 18 0 105 12 12 40 2

* Number of citations divided by the number of articles.

Most of the documents were published in peer-reviewed journals (n = 99, equal to
90.0%) and only a few documents were published on book chapters (n = 3), or on conference
proceedings (n = 8). Ninety-nine documents (90.0%) were original research articles and
eleven were reviews or state-of-art articles (10.0%). The number of authors and countries
involved in LCA studies on olive oil supply chain experienced a progressive growth over
the years and could be partly attributed to the rising interest in the research topic and to
the current higher pressure to publish among academics.

The studies were published on 54 different journals and conference proceedings or
books. Eleven journals published from two to four documents and only three journals more
than four documents (Journal of Cleaner Production, Sustainability, Journal of Environmental
Management). Table 2 reports the 14 journals publishing at least 2 papers and the relative
Scopus CiteScore (CS), SCImago Journal Rank (SJR), and Highest CiteScore Percentile
(HP) [44]. CS is a measure of the citation impact of scientific journals based on the citations
number to papers by a journal over four years, divided by the number of the same papers
indexed in Scopus. SJR is a bibliometric indicator of the degree of influence of a scientific
journal. SJR measures weighted citations received by the serial and it is determined by the
number of citations and by the importance of the journal from which the citation comes. The
HP is based on the CiteScore metric and indicates the relative standing of a journal in the
subject area where the source performs the best. The most active source of publications was
the Journal of Cleaner Production with 30 publications (27.3%) out of 110 published papers
on LCA. This international and transdisciplinary journal, focusing on cleaner production,
environmental and sustainability research and practice, is characterized by having the
highest SJR (1.937), ranking after Energy (1.961). The Journal of Cleaner Production has also
the highest CS (13.1), followed by Energy (11.5), Renewable Energy (10.8), Science of the
Total Environment (10.5), and Journal of Environmental Management (9.8). All these journals,
together with the International Journal of Life Cycle Assessment, Sustainable Production and
Consumption, Sustainability, Biomass & Bioenergy, Foods, and Journal of the Science of Food and
Agriculture ranked in the 84th–98th CS percentile.

Figure 2 shows the Scopus subject areas in which the examined publications on
LCA of olive oil production fall, bearing in mind that journals, particularly those that
are multidisciplinary or deal with different aspects of the olive oil chain, are classified
simultaneously in more subject areas. Numbers following the subject area name refer to
the percentage and to the number (in brackets) of articles that fall into the subject area.
The involved thematic areas are 19. As expected, the list is headed by the subject area
environmental sciences (25%), followed by energy (18%), engineering (17%), business,
management and accounting (12%), and agricultural and biological sciences (9%). Less
represented areas were social sciences (4%), chemical engineering (3%), biochemistry,
genetics and molecular biology (2%).
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Table 2. Major characteristics of the top journals publishing LCA studies on olive oil production.

Journal a Publisher N. b CS c SJR d HP e

Journal of Cleaner
Production Elsevier 30 13.1 1.937 98

Journal of Environmental
Management Elsevier 5 9.8 1.441 95

Sustainability (Switzerland) Multidisciplinary Digital
Publishing Institute (MDPI) 5 3.9 0.612 84

Science of the Total
Environment Elsevier 4 10.5 1.795 96

International Journal of Life
Cycle
Assessment

Springer 4 7.8 1.093 90

Foods Multidisciplinary Digital
Publishing Institute (MDPI) 4 3.0 0.774 93

Sustainable Production and
Consumption Elsevier 3 6.7 1.019 88

Chemical Engineering
Transactions

Ital. Ass. Chem. Eng in.
(AIDIC) 3 1.5 0.274 38

Acta Horticulturae Inter. Soc. Hort. Science
(ISHS) 2 0.5 0.181 12

Biomass And Bioenergy Elsevier 2 6.7 1.037 94
Renewable Energy Elsevier 2 10.8 1.825 88

Agronomy Multidisciplinary Digital
Publishing Institute (MDPI) 2 2.6 0.707 65

Energy Elsevier 2 11.5 1.961 98
Journal of the Science of
Food and
Agriculture

Wiley-Blackwell 2 5.5 0.782 88

a Journals with at least two publications; b N.: number of documents; c CS: CiteScore 2020; d SJR: SCImago Journal
Rank 2020; e HP: Highest CiteScore Percentile 2020 (a 98th CiteScore Percentile means that the journal is ranked in
the top 2% of its subject area).

Figure 2. Scopus subject areas in which the examined publications on life cycle assessment (LCA) of
olive oil production fall.

Regarding author attributes such as affiliation countries, 31 countries were involved
in at least one article on LCA of olive oil production, but only 10 countries participated in
at least three papers (Figure 3). The world situation shows that Italy was the most active
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country involved in 53.6% (n = 59) of total publications (n = 110), followed by Spain with
18.2% (n = 20), and this can be related to the fact that these two leading countries have the
largest production of olive oil (Table A1). Greece published ten papers, France six papers,
Cyprus and Iran five papers, Australia, Netherlands and Tunisia four papers, and Portugal
three papers.

Figure 3. Author affiliation countries publishing at least 2 papers on LCA of olive oil production.

The cooperative network of key authors based on the number of documents on LCA of
olive oil supply chain published by authors is reported in Figure 4; the main characteristics
of the most active institutions are reported in Table A2. The cooperative network indicates
the collaborations between authors in terms of number of papers with coauthors belonging
to the nodes interconnected. Authors of at least two papers were considered to develop the
map. The map shows many groups working on LCA of olive oil production that are not
connected to each other. This is explained by the fact that most of the experiments were
conducted in local contexts and by the availability of secondary data in LCA databases
implemented in the LCA studies. The largest network (red cluster) with 12 components has
its center at the Mediterranean University of Reggio Calabria, Italy, where the most relevant
authors, who have published 7–10 papers each, work in the same research group. The
second major network (dark green cluster) with 9 components has the University of Milano,
Italy, as its header, and the authors participating in at least 4 publications work in the same
research group. Other institutions participating in at least four articles were the University
of Perugia (Italy), University of Bari Aldo Moro (Italy), University of Basilicata (Italy),
Frederick University, Nicosia (Cyprus), University of Toulouse (France), INRAE Occitanie-
Toulouse (France), University of Catania (Italy), University of Foggia (Italy), University of
Messina (Italy), University of Sassari (Italy), and University of Jaen (Spain). It is notable
that the most productive institutions belong to EU countries of the Mediterranean basin,
and this is partly consistent with the importance that olive growing, olive oil production,
and EVOO per capita consumption have in these nations [1,4]. The low presence of research
institutions from other important olive oil producing countries of North Africa and Near
East could be due to the minor research funds available to those institutions and to the
minor pressure on academics to publish in indexed journals.
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Figure 4. Cooperative network of key authors.

4. Principal Topics and Trends of LCA of Olive Oil Production Research

The cluster analysis of terms related to the field present in the keywords, title, and
abstract of 110 publications published on LCA of olive oil supply chain in the period
2008–2021 is illustrated in Figure 5. A total of 123 keywords, with a minimum number of
occurrences of 3, are grouped in three main clusters (each with a minimum of 30 keywords),
which provide an overview of the structure of the research themes. Different colors (red,
green, blue) represent the terms (keywords) belonging to different clusters. The size of the
nodes (circles) is based on the number of occurrences. Links between nodes indicate the
co-occurrence between terms. The red cluster mainly refers to the agricultural phase (olive
tree cultivation and olive harvesting); the blue cluster is inherent to the oil production in
the mill; the green cluster concerns the waste management, the by-product valorization
(waste from orchards, olive mill wastewater, olive husk, pomace, olive wet husk) and the
oil packaging and distribution, with a view to transitioning to a circular economy. The three
clusters are tightly interconnected because some aspects of the olive oil chain of research
can be included in more than one cluster.

4.1. Agricultural Phase

The red cluster consists of 55 keywords; high-frequency keywords are “carbon foot-
print”, “climate change”, “cultivation”, “agriculture”, “agricultural practices”, “machin-
ery”, “land use”, “productions”. This cluster includes publications that evaluated the
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environmental impact of all activities of the agricultural phase (young olive planting, prun-
ing, soil management, fertilization, irrigation, weed control, pesticide treatments, fruits
harvesting). Various factors were considered by the numerous LCA analyses, such as
the diesel and electricity consumption needed for the different cultivation practices (soil
management, pruning, olive harvesting, olive transport), water consumption for irrigation,
production, transport, and use of fertilizer, pesticide, and herbicide products. Several
studies were addressed at evaluating the impact of one or more activities/processes of the
agricultural phase alone, while other studies also considered the activities/processes of the
other phases of the supply chain. However, the studies focused on agricultural phase paid
particular attention to three areas: growing systems, plant protection, and harvest.
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4.1.1. Growing Systems

Conventional, organic, or integrated cultivation techniques, and different olive-growing
models (traditional, intensive, and super-intensive) were the focus of numerous studies.
Comparison between traditional and organic olive growing systems showed a significant
decrease of greenhouse gas emissions (carbon footprint per kilogram of product of 324
and −10 g CO2 eq, respectively) of agricultural practices in the organic system, mainly
due to the higher efficiency in reducing the impact on fossil fuel depletion [45]. Opti-
mization of fertilization in the organic system was considered a priority because of the
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higher costs and higher environmental impact caused by manure fertilization compared
to foliar fertilization in the respiratory inorganics (15.759 vs. 12.316 pt), climate change
(4.706 vs. 1.882 pt) and eco-toxicity (1.063 vs. 0.321 pt) impact categories [46]. Comparison
of environmental impact assessment of intensive and super-intensive growing systems
versus traditional ones was the focus of many studies. The intensive and super-intensive
irrigated systems can allow a higher level of mechanization (pruning and harvesting),
higher productivity, and higher agronomic and economic-efficiency rates than the tradi-
tional farming systems, but they showed the largest impact on most environmental impact
categories (specifically in the climate change and acidification categories) because of the
higher use of fertilizers, plant protection products, herbicides, and soil management [47–51].
Water use is increasingly considered relevant with climate change. In recent decades, the
number of scientific studies developed through the application of different methods to
assess it has increased significantly in the context of sustainable agriculture [52]. Some
studies compared differences in irrigation management [49,51,53,54]. Maesano et al. [54]
pointed out that a non-irrigated (NI) system showed the best environmental performance
compared to a partial (PI) and a fully irrigated (FI) system, due to not using the water
resource and less energy inputs. Irrigation represented one of the main hot spots for most
of the examined impact categories, and specifically for the water consumption category,
with values of 8.02 × 10−4 m3 for NI, 1.97 × 10−1 m3 for PI, and 1.15 × 10−1 m3 for FI in
the Life Cycle Impact Assessment through the ReCiPe Midpoint method (per kg of olive
production). Some other studies considered the use of deficit irrigation in the olive tree
more environmentally and economically sustainable than irrigated olive cultivation, and
specifically recommended it when water resources are scarce or expensive [55,56]. This is
strictly in line with sustainable development models promoted by the recent international
program “The European Green Deal” [57]. A comparative environmental LCA in rainfed
and irrigated orchards highlighted the importance of water management based on an
irrigation decision supporting system (DSS) compared to conventional irrigation practices
based on farmer experiences in order to decrease the negative environmental impacts of
olive cultivation; a reduction of water and energy use by 42.1% was found with DSS-based
irrigation management compared to conventional practices, resulting in a reduction of the
total environmental impact of 5.3% per unit of product (1 ton) and 10.4% per unit of area
(1 ha) [58]. LCA and energy-economic analysis, performed to compare the conventional
system with an alternative management of olive orchards in semi-arid environments (drip
irrigation with treated urban wastewater and agronomic techniques aimed to preserve soil
quality) showed that the alternative management was the most energy-consuming system
(total input energy per kg of olives 4.43 and 2.80 MJ, respectively), but it resulted in a more
effective management model in terms of emissions of CO2 eq (0.08 kg compared to 0.11 kg),
productivity and profitability [59]. The environmental performance of conventional energy
sources (electric and fossil) and the hybrid photovoltaic source for irrigation systems in
intensive and super-intensive olive orchards were investigated; a significant saving of
fossil energy (up to 67%) and a consequent reduction of greenhouse gas emissions by the
photovoltaic installation were shown [60]. Overall, the organic systems showed lower envi-
ronmental impacts than the conventional ones because of the lower use of fertilizers and
pesticides, but they were characterized by lower yield and higher costs [49]. Considering
both the environmental and productivity aspects, the integrated production systems related
to the soil management, irrigation, phytosanitation, and harvesting would be the best olive
fruit production system and a sound strategy to achieve a positive carbon balance [49,50].

4.1.2. Plant Protection

Several studies considered the environmental impact of all phases of the olive oil chain
(from trees cultivation to oil production, packaging, and distribution), and showed that
the most significant environmental problems arise from the agricultural phase, mainly
due to fertilizer and pesticide treatments, and to the weed control [21,61–66]. Among
chemicals, dimethoate-based insecticides were the most used [21,61], and seem particularly
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relevant in terms of freshwater consumption (about 1
4 of overall consumption). In terms of

greenhouse gas emissions, plant protection treatments were the most significant item in
both conventional cultivation and organic cultivation, and number of treatments carried
out seems a key factor due to fuel use [64]. In fact, besides the use of few chemicals for
protection in organic farming, the large quantities and frequency of treatments causes an
increase in the impacts associated with the plant protection phase. With regards to weed
control, LCA showed better performance for most of the selected impact categories in the
low-dosage/no-tillage scenario (reduced use of chemicals) than the zero chemical weeding
control in the organic system and the traditional olive growing systems using chemicals for
weed and pest control [67].

4.1.3. Harvest

Investigations of technical, economic, and environmental aspects of different olive
harvesting systems (highly mechanized harvesting, mechanical-aided harvesting, fully
manual harvesting) showed that mechanical harvesting was the best system for decreasing
the production costs; the assessment of the environmental impact indicated that the entirely
manual and mechanical-aided harvesting systems were the most sustainable in terms of
impact per hour, while highly mechanized harvesting was less environmental impacting
in term of mass-based unit (1 kg of harvested olives) when compared to the mechanical-
aided harvesting system [68,69]. Previously, a study [46] showed that the mechanized
harvesting had a higher environmental impact associated with the higher fuel consumption
of the harvesting machines compared to the manual or semi-mechanized performance of
harvesting, which, however, showed higher costs. The energy consumption was measured
by Fantozzi et al. [70] for different olive harvesting techniques and the harvesting with
electric rakes showed savings of about 100 kg CO2 eq/ha, compared to the mechanical
harvester. High values in the eutrophication (6.21 kg P eq) and climate change (3.09 kg
CO2 eq) categories were shown by the harvesting practices in the intensive olive growing
systems because of the gas emissions caused by the diesel needed for the transportation of
the materials used for the olive harvesting; a reduction of the environmental impact could
be obtained by the substitution of diesel with eco-friendly fuels [49].

4.2. Oil Extraction

The blue cluster, including 32 keywords, mainly represents terms inherent to the
oil extraction process. “Life cycle assessment” and “olive oil” are obviously the crucial
terms corresponding to the keywords used for the bibliographic search; other important
terms were “oil and fats”, “extraction”, “food products”. LCA analysis applied to the
oil extraction phase resulted in lower environmental impact and primary energy use
compared to the agricultural phase [21,63,64]. The current oil extraction technologies
are characterized by low variability, because the virgin olive oil extraction is essentially
carried out through mechanical means: the traditional press, the three-phase centrifugation,
and the two-phase ecological decanter systems. The traditional and continuous three-
phase processes can produce large quantities of vegetable wastewater (96 L/100 kg olives)
and wet pomace (54 kg/100 kg of olives), while the two-phase cycle extraction system
generates a small volume of vegetable wastewater (5–25 L/100 kg of olives) and a high
quantity of pomace with a water content between 55% and 60%. [71]. A lower impact was
observed in the traditional olive oil extraction process compared to the two-phase and
three-phase systems [72]. A study by Salomone and Ioppolo [61] showed that the three-
phase centrifugation system allows a higher oil extraction capacity than the traditional
pressing systems but requires a greater amount of water and energy; a modified system
using continuous centrifugation with a two-and-a-half-phase system requires the addition
of a small amount of water to dilute the olive pasta during the continuous centrifugation,
enables the generation of an olive wet pomace containing part of the vegetation water, and
consequently the generation of a smaller amount of wastewaters. The introduction of a
physical co-adjuvant (calcium carbonate) during EVOO extraction allowed the reduction of



Sustainability 2022, 14, 3747 12 of 25

operational time (around 33.5%), environmental impacts (1.58 × 10−1 and 1.78 × 10−1 kg
CO2 eq for the w/Calcipur®5 and the control, respectively) and costs (5%) [73], while
the electroporation-assisted extraction improved the olive extraction yield of 5% and
reduced the environmental impact indicators by approximately 5% [74]. LCA applied to
an innovative olive mill plant with low oxidative impact, heating of paste, and a special
decanter that avoids the vertical centrifugation showed the higher quality of EVOO but
a higher environmental impact for all the categories considered (on average equal to 5%)
compared to the conventional plant [75]. The use of visible and near infrared spectroscopy
for the prediction of intact olive ripeness resulted in a lower environmental impact than
chemical analyses; a saving of 11,360 kg CO2 eq per year per laboratory was hypothesized
by substituting the chemical analyses with the optical one [76].

4.3. Waste Management and By-Product Valorization

This cluster included 36 keywords related to the waste management of the whole
olive oil supply chain including the agricultural phase, the oil extraction phase, and the
oil packaging and distribution. High-frequency keywords were “waste management”,
“recycling”, “olive pomace”, “food products”, “vegetable oils”, “packaging”, “glass”,
“ecodesign”, “ecotoxicity”, “wastewaters”, “biogas”, “waste incineration”, “anaerobic
digestion”, “carbonization”, “waste disposal”, food waste”, “solid waste”.

The olive oil industry wastes include the olive tree pruning residues, pomace, de-oiled
pomace, husks, pits, ashes, and wastewaters. Olive farms produce large quantities of wood
from pruning which are usually eliminated through combustion and, in some contexts,
the ash is reused as fertilizer. After extracting the extra virgin olive oil and the olive oil,
the residues of the pressing consist of the olive mill wastewaters (OMW) and the wet
pomace, which includes the husks, the pulp residues, and the olive pits. OMW essentially
consists of water from oil olives, dilution water from oil pastes used in continuous systems,
and soluble substances dissolved in the drupes. In some countries, the controlled direct
spreading of OMW, or the produced sludge after OMW evaporation in storage ponds, on
agricultural land is authorized as ferti-irrigation. The pomace undergoes successive and
different processes from which it is possible to obtain pomace oil, of lower quality than olive
oil but suitable for many foods and non-food uses. Oil can also be extracted from olive husk
with hexane or other specific solvents. Exhausted or de-oiled olive pomace, and pits from
virgin and exhausted pomace, are used as biomass to produce energy. OMW with olive
pomace, olive wet pomace, and other agricultural wastes are also used to obtain compost.

4.3.1. Renewable Energy

The sustainable management of wastes for energy production has been the major
research topic from a circular economy perspective. Several studies have investigated
the environmental impact of the thermo-chemical conversion of solid and liquid olive
mill wastes (pomace, mill wastewater, de-oiled pomace, husk, pits) by different pyrolysis
systems, gasification, and combustion to produce biogas and biomethane [77–88]. A
significant reduction of carbon emissions of the different pyrolysis systems, compared to
with conventional waste management, was observed. An LCA study showed a global
environmental impact reduction of 88.1% by the anaerobic digestion of olive mill solid waste
for biogas production and a stabilized digestate in comparison to pomace oil extraction
using natural gas as fuel [81].

Comparison of the conventional olive oil production system with two olive biorefinery
platforms using olive wastes showed the production of some value-added bioproducts (oil
pomace, biodiesel, fuel additive, phosphate salts) and the mitigation of the environmental
impacts; the production of 1 ton of olive oil in the agro-biorefinery systems was associ-
ated with a 4.1–10.6% saving in the climate change damage category, 6.7–11.2% saving
in energy consumption, and 1.6–12.0% saving in damage to human health [85]. Other
studies concerned the manufacturing of briquettes and pellets for water heating and home
heating [89–93]. LCA of pelleting process showed an improvement of about 85% in selected
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environmental impact categories in the manufacturing of olive husk pellets by exploitation
of solar thermal collectors [90]. All these studies remarked on the advantages of using farm
and oil industry by-products to produce renewable energy to enhance farm sustainability
and noted they were capable of producing benefits for farmers and the whole community.

4.3.2. Other Studies on by-Product Valorization

Some other research concerned the potential environmental impact associated with
the addition of olive pomace and olive stone flour in manufacturing artificial lightweight
aggregates (LWA) and porous fired clay bricks. A reduction of about 3.8–15.3% of all
the studied impact categories was found by substituting the clay with “alperujo” (a solid
olive-mill by-product) with LWA manufacture [94], while the environmental benefits
were limited for the production of ceramic bricks incorporating alperujo compared to
the traditional ceramic brick manufacturing process [95]. The utilization of OMW in the
brick-making process showed a decrease of the global warming potential (up to 3.1%) and
of the abiotic depletion of fossil fuels (4.3%) with respect to the conventional fired clay brick
production [96].

Other environmental assessments concerned the use of de-oiled pomace for weed
control [97], the composting of olive mill waste [77,98], the use of olive by-product silages
in the diet of dairy goats [99], the selective recovery of phenolic compounds (total phenols,
hidroxytyrosol, tyrosol) with antioxidant properties from olive mill wastewater [100–102],
the preparation of activated carbon from olive-waste cakes [103,104], the production of
olive oil for cosmetic application from olive stones [105], the growth of microalgae in
OMW to remove organic pollutants [106], and advanced oxidation processes for OMW
treatments [107].

4.3.3. Packaging and Distribution

This cluster also includes some specific LCA analysis of olive oil packaging and
distribution. Some studies discussed the environmental performances of different ma-
terials used for olive oil primary packaging (glass, tin, polyethylene terephthalate steel,
Doypack) [108–111] and the relevance of the manufacture of glass bottles within the trans-
formation stage [65,112]. A recent LCA study estimated environmental effects ranging
from 2% to 300% in the packaging phase depending on the type of material used for the
oil packaging and the impact categories taken into consideration [111]. Dimmed glass
bottles, which are perceived to be of higher quality and the most environmentally sus-
tainable by consumers [111,113], resulted in the most impactful packaging system due to
their weight (58%) across all categories compared to tin (37%) and PET (13%) [111]. How-
ever, considering the distribution distance, the lowest environmental impact was shown
by glass bottles in local distribution and by tin-plated cans in long-distance distribution
cases [110]. The recyclable PET bottle could potentially have the lowest impact on global
warming as a function of the possible advancements and improvement of PET recycling
processes [108]. Innovative olive oil single-use plastic packaging (two layers of polylactic
acid treated with metallization and one of bio-polyethylene) showed a better performance
in the climate change category (−44% CO2 eq) but had higher impacts in the ecosystem
quality impact categories compared to the traditional one (three layers of polyethylene,
aluminum, polyethylene terephthalate) [114].

5. Research Trends

Seventeen research articles (not including reviews or state-of-art papers) that have
received more than a total of 50 citations and a minimum average value of 7 citations
per year are reported in Table 3. Analysis of these papers provides insight into the topics
that most attract research interest: resource consumption and carbon emissions from the
olive oil industry, oxidation processes for olive mill wastewater treatment, innovative
and sustainable olive-growing models, optimization of organic and conventional olive
agricultural practices, and environmental evaluation of biomass pelleting. The top three
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articles received more than 90 citations and they were all published in the Journal of Cleaner
Production. The most cited paper (219 citations) was published in 2017 by two research
groups working at the University of Bari, Italy, and at the Institute for Environment and
Sustainability, Ispra, Italy [115]. LCA was applied to some food products, including olive oil,
to evaluate the environmental impacts associated with food consumption in EU-27 countries
in 2010. Results indicated that the agronomic and zootechnical activities were the lifecycle
phases with the highest impact for all examined foods, followed by the food processing
and logistics phases. The burden of the end-of-life stage was often greater than those of the
agriculture, transports, and processing phases. The second most cited paper (114 citations)
was published in 2012 by researchers from the University of Messina, Sicily, Italy [116]. The
potential environmental impacts of all activities involved in the olive oil production chain
(olive farming, olive oil extraction, olive oil mill waste treatment) were assessed to design an
efficient olive oil chain with low environmental impacts, and to use LCA as a chain-focused
management tool. The critical activities associated with important environmental loads
were conventional cultivation practices, fertilization, the use of pesticides, the combustion
of exhausted pomace, and the co-composting of olive wet pomace with manure on fields.
The third most cited paper with 96 citations, published in 2008 by researchers working
at the University of Cyprus, Cyprus, deals with the natural resource consumption and
environmental emissions associated with “cradle to gate” olive oil production [21]. To
identify the processes with the most significant environmental burdens, LCA methodology
was applied to the used fertilizers and pesticides, to farming activities, industrial oil
extraction, oil transportation, and oil waste management. The production of the inorganic
fertilizers used in olive tree cultivation and the practice of disposing of liquid waste from
mills in evaporation ponds were found to be of primary importance with regard to raw
material consumption, air pollution, and groundwater contamination.

Table 3. Published papers that received more than a total of 50 citations and at least an average value
of 7 citations per year (30 December 2021).

Year Authors Countries a Title Journal TC b Avg. C c

2017
Notarnicola B., Tassielli G.,
Renzulli P.A., Castellani V.,
Sala S. [115]

Italy Environmental impacts of food
consumption in Europe

Journal of Cleaner
Production 219 44

2012 Salomone R., Ioppolo G. [61] Italy
Environmental impacts of olive oil
production: a life cycle assessment case
study in the province of Messina (Sicily)

Journal of Cleaner
Production 114 11

2008 Avraamides M., Fatta D. [21] Cyprus
Resource consumption and emissions from
olive oil production: a life cycle inventory
case study in Cyprus

Journal of Cleaner
Production 96 7

2013
Chatzisymeon E., Foteinis S.,
Mantzavinos D., Tsoutsos T.
[107]

Greece
Life cycle assessment of advanced
oxidation processes for olive mill
wastewater treatment

Journal of Cleaner
Production 86 10

2012 De Gennaro B., Notarnicola B.,
Roselli L., Tassielli G. [47] Italy Innovative olive-growing models: An

environmental and economic assessment
Journal of Cleaner
Production 76 8

2014
Mohamad R.S., Verrastro V.,
Cardone G., Bteich M.R., Favia
M., Moretti M., Roma R. [46]

Italy

Optimization of organic and conventional
olive agricultural practices from a life cycle
assessment and life cycle costing
perspectives

Journal of Cleaner
Production 75 9

2018
De Luca A.I., Falcone G.,
Stillitano T., Iofrida N., Strano
A., Gulisano G. [67]

Italy

Evaluation of sustainable innovations in
olive growing systems: a life cycle
sustainability assessment case study in
southern Italy

Journal of Cleaner
Production 72 18

2013
Kalogerakis N., Politi M.,
Foteinis S., Chatzisymeon E.,
Mantzavinos D. [101]

Greece

Recovery of antioxidants from olive mill
wastewaters: a viable solution that
promotes their overall sustainable
management

Journal of
Environmental
Management

70 8

2015 Aguilera E., Guzmán G.,
Alonso A. [45] Spain

Greenhouse gas emissions from
conventional and organic cropping
systems in Spain. II. Fruit tree orchards

Agronomy for
Sustainable
Development

69 10
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Table 3. Cont.

Year Authors Countries a Title Journal TC b Avg. C c

2014
Rajaeifar M.A., Akram A.,
Ghobadian B., Rafiee S.,
Heidari M.D. [62]

Iran
Energy-economic life cycle assessment
(LCA) and greenhouse gas emissions
analysis of olive oil production in Iran

Energy 63 8

2016

Rajaeifar M.A., Akram A.,
Ghobadian B., Rafiee S.,
Heijungs R., Tabatabaei M.
[117]

Iran,
Nether-
lands

Environmental impact assessment of olive
pomace oil biodiesel production and
consumption: a comparative lifecycle
assessment

Energy 60 10

2016
Paolotti L., Boggia A.,
Castellini C., Rocchi L.,
Rosati A. [118]

Italy

Combining livestock and tree crops to
improve sustainability in agriculture: a
case study using the life cycle assessment
(LCA) approach

Journal of Cleaner
Production 59 10

2019 Boesen S., Bey N.,
Niero M. [113] Denmark

Environmental sustainability of liquid
food packaging: is there a gap between
Danish consumers’ perception and
learnings from life cycle assessment?

Journal of Cleaner
Production 53 18

2015 Accorsi R., Versari L.,
Manzini R. [108] Italy

Glass vs. plastic: life cycle assessment of
extra-virgin olive oil bottles across global
supply chains

Sustainability
(Switzerland) 52 7

2016 Kylili A., Christoforou E.,
Fokaides P.A. [90] Cyprus Environmental evaluation of biomass

pelleting using life cycle assessment
Biomass and
Bioenergy 52 9

2017 Benavente V., Fullana A.,
Berge N.D. [79]

Spain,
United
States

Life cycle analysis of hydrothermal
carbonization of olive mill waste:
comparison with current management
approaches

Journal of Cleaner
Production 50 10

2015
Tsarouhas P., Achillas C.,
Aidonis D., Folinas D.,
Maslis V. [63]

Greece Life cycle assessment of olive oil
production in Greece

Journal of Cleaner
Production 50 8

a Countries of the authors’ institutions; b TC: total number of citations; c Avg. C: average number of citations
per year.

The term year map, based on all the 110 publications on LCA applied to the olive
oil supply chain retrieved from the Scopus database (2008–2021), is reported in Figure 6.
The aquamarine terms are the keywords more frequently used in early LCA publications
(“waste management”, “waste treatment”, “wastewaters”, “environmental issues”, “car-
bon sequestration”, “carbon dioxide”). During this period (2008–2014), LCA was mainly
addressed to analyzing the environmental impact of resource consumption and carbon diox-
ide emissions from the olive oil industry, waste management, strategies aimed to improve
recycling and reduce negative environmental effects, and sustainable energy-production
from solid wastes [21,77,119]. That was accomplished through a better understanding of
the environmental impacts of the different olive growing and oil extraction processes and
the diagnosis of related environmental hot spots [46,47,59,61,112].

This first period was followed by publications with ‘hot’ terms such as “environmental
sustainability“, “carbon footprint”, “global warming” “gas emission” “cultivation”, “or-
chard”, “pelletizing”, “packaging”, “oil and fats” (terms in green, Figure 6). The greater
attention of consumers towards environmental issues stimulated research on the environ-
mental sustainability of the agrifood supply chains, on the identification of production
phases with greater negative effects on the environment, and on the recycling, use, and
valorization of oil industry by-products from a circular economy perspective. LCA analysis
concerned the environmental impact of land use for traditional and organic farming, the
sustainable development of olive tree cultivation and EVOO industry, the energy efficiency
of agricultural practices, the biomass uses for the energy production, and the different
materials for oil packaging [63,64,79,90,111,120].
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Yellow terms (Figure 6) represent those covered in more recent publications (2018–2021)
(“productivity”, “agricultural practices”, “harvesting”, “irrigation”, “olive pomace”, “anaer-
obic digestion”, “gasification”, “circular economy”, “technological innovations”). Much
research concerned the environmental impact of the super-intensive olive growing sys-
tems, innovative agricultural practices aimed to improve olive productivity, alternative
agronomic practices for maintaining soil fertility or supplying nutrients to the soil, the
sustainable control of parasites and weeds, assisted and fully mechanized olive harvesting
to reduce the costs, the different systems of anaerobic digestion of olive and oil industry
wastes for biogas production, and cost-benefit analysis of technological innovations for
olive oil production by-products valorization [50,51,65,69,73,75,86,121].

These LCA research topics have received a strong impetus from the recommendations
of the European Commission on the characteristics of olive oil and olive-residue oil and
on the relevant methods of analysis [122], on the use of common methods to measure and
communicate the life cycle environmental performance of products and organizations [123],
and on the guidance for the implementation of the EU Product Environmental Footprint
(PEF) [124]. Fully exploiting the potential of agriculture to mitigate climate change by
increasing the sector’s positive contribution to carbon sequestration is one of the challenges
of the European Common Agricultural Policy 2014–2020. The olive oil production sector can
be an important tool against climate change, particularly in countries where olive trees are
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widely cultivated. Some studies have focused on proper olive crop management practices
to mitigate the release of CO2 into the atmosphere through carbon immobilization [120,125],
also as a result of international European projects on climate change mitigation [126,127].

6. Conclusions

Life cycle assessment represents a useful methodology for evaluating the environ-
mental performance of the different phases of the olive oil supply chain, to verify the
ecological effectiveness of different design choices, to evaluate the related economic aspects,
and therefore for an integrated assessment of the sustainability of the olive oil sector [22].
Through bibliometric methods, 110 publications related to the LCA of olive oil supply chain
stages were retrieved from the Scopus database and examined (2008–2021). The current
bibliometric analysis highlighted the recent application of LCA to the olive oil sector as a
growing research topic, which has led to a notable scientific literature in recent years (86
out of the total 110 published documents on the topic fell in the second half of the analyzed
period). This is in line with the increased interest in the sustainability of agriculture and
food production systems shown by most countries [128] and is consistent with the growing
interest of consumers worldwide in EVOO [129]. The papers were published in a total of
54 journals that are classified into 19 subject areas. The high environmental impacts of the
agricultural phase, and the relevance of problems related to the waste management of the
whole chain, prompted researchers in publishing on journals qualified in environmental
issues and falling mainly in the subject area of environmental sciences, with a record of 72.
The energy and engineering subject areas ranked second and third with 51 and 48 records,
respectively. The most productive journal was the Journal of Cleaner Production, (27.3% of the
documents on LCA of olive oil production were published in this journal), followed by the
Journal of Environmental Management (4.5%) and Sustainability (4.5%). The trend is to publish
in indexed journals (90%) rather than conference proceedings or book series (10%). Many
groups are found to have worked on the LCA of the olive oil sector, with limited linkages
and international collaboration. The environmental impacts of the olive oil industry were
analyzed and evaluated in several territorial contexts. The current bibliometric analysis
has highlighted that, considering the top ten countries for olive oil production and olive
oil consumption, a large part (62.5%) of the scientific literature on LCA of olive oil supply
chain has been developed in the EU countries (Italy, Spain, Greece, France, Netherlands,
and Portugal) compared to the other top producing countries of the Near East (Syria) and
North Africa (Morocco, Tunisia, Turkey, Algeria, Egypt) which participated in six (4.1%)
documents. This may at least in part be attributable to EU agricultural policies and to
the greater sensitivity and attention of EU populations to the issues of environmental
sustainability of agriculture and food production.

The cluster analysis identified three main research topics that the research groups
worked on: “agricultural phase”, “oil extraction”, and “waste management and by-product
valorization”. In general, the objectives of most studies were focused on identifying
environmental hot spots and on comparing different alternative systems. Environmental
hot spots mainly concerned the cultivation phase (due to the use of fertilizers, pesticides,
and herbicides) and the waste management, while the oil extraction phase was the least
variable one. Current trends were addressed to investigate the environmental impacts of
the super-intensive olive growing systems and of innovative agricultural practices aimed
to increase tree productivity: the mechanized olive harvesting, sustainable control of
parasites and weeds, evaluation of different pyrolysis systems of oil mill wastes for energy
production, and the valorization of by-products.

It should be noted that even if Scopus is one of the major databases, there are still
journals not referenced in Scopus as well as journals not indexed by any other database,
and therefore publications in these journals may have been overlooked. Thus, a more
comprehensive study might not only consider other databases for scientific papers but also
include policy papers and technical reports. Patent datasets could also be explored to better
understand the landscape of technological development derived from R&D outputs.
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Appendix A

Table A1. Olive oil production and olive oil consumption per country (means of the years 2017–
2021 [130]), and a number of published documents on LCA of olive oil supply chain.

Country
Olive Oil Production Olive Oil Consumption Scientific Documents

Tons % Tons (%) N. %

Spain 1,371,400 44.2 495,120 16.0 20 13.7
Italy 284,960 9.2 471,000 15.2 59 4.1
Greece 255,200 8.2 116,460 3.8 10 6.8
Tunisia 229,000 7.4 33,800 1.1 4 2.7
Turkey 214,900 6.9 163,900 5.3 2 1.4
Morocco 151,000 4.9 134,000 4.3
Syria 119,400 3.8 100,700 3.2
Portugal 109,000 3.5 65,340 2.1 3 2.5
Algeria 87,800 2.8 87,300 2.8
Egypt 36,100 1.2 36,000 1.2
Argentina 31,400 1.0 7600 0.2
Jordan 24,200 0.8 23,500 0.8 1 0.7
Palestine 21,700 0.7 15,100 0.5 1 0.7
Chile 20,200 0.7 8000 0.3
Lebanon 19,900 0.6 15,700 0.5 1 0.7
Australia 18,700 0.6 47,700 1.5 4 2.7
Libya 16,700 0.5 16,800 0.5
Israel 16,000 0.5 24,000 0.8
USA 15,800 0.5 354,500 11.4 2 1.4
Albania 11,900 0.4 13,300 0.4
Iran 8300 0.3 11,300 0.4 5 3.4
China 6200 0.2 50,000 1.6 1 0.7
Cyprus 5220 0.2 6140 0.2 5 3.4
France 4640 0.1 121,280 3.9 6 4.8
Croatia 4020 0.1 7840 0.3
Saudi
Arabia 3000 0.1 34,700 1.1

Uruguay 1000 0.0 1700 0.1
Slovenia 580 0.0 2360 0.1
Montenegro 500 0.0 500 0.0
Austria 8340 0.3
Belgium 15,380 0.5 1 0.7
Brazil 86,500 2.8 1 0.7
Bulgaria 3700 0.1
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Table A1. Cont.

Country
Olive Oil Production Olive Oil Consumption Scientific Documents

Tons % Tons (%) N. %

Canada 49,700 1.6
Czech.
Rep. 4860 0.2

Denmark 6000 0.2 2 1.4
Estonia 860 0.0
Finland 2840 0.1
Georgia 500 0.0
Germany 65,260 2.1
Hungary 2940 0.1
Iraq 1500 0.0
Ireland 4280 0.1 2 1.4
Japan 61,500 2.0
Latvia 1380 0.0
Lithuania 940 0.0
Luxembourg 1520 0.0
Malta 740 0.0
Mexico 15,700 0.5
Netherlands 15,660 0.5 4 2.7
Norway 4100 0.1
Poland 9580 0.3 1 0.7
Romania 4060 0.1 2 1.4
Russia 24,600 0.8
Slovakia 1880 0.1
Sweden 10,420 0.3 1 0.7
Switzerland 15,500 0.5 1 0.7
Taiwan 7900 0.3
United
King. 67,825 2.2

Uzbekistan 500 0.0
Other
countries 15,480 0.5 142,095 4.6 8 5.4

TOTAL
WORLD 3,104,200 100.0 3,104,200 100.0

Table A2. Most active institutions on research on LCA of olive oil production.

Institution Country
N. of Publications

Total Number
of Citations

Average
Number of
Citations *Total Articles on a

Journal
Book Chapter—

Conference Paper

Mediterranean University
of Reggio Calabria Italy 12 11 1 170 14

University of Perugia Italy 7 7 199 28
University of Bari Aldo
Moro Italy 6 6 420 70

University of Basilicata Italy 6 4 2 107 18
University of Milano Italy 6 6 63 11
Frederick University Cyprus 4 2 2 94 24
University of Toulouse France 4 4 61 15
INRAE Occitanie-Toulouse France 4 4 61 15
University of Messina Italy 4 3 1 188 47
University of Catania Italy 4 4 29 7
University of Foggia Italy 4 4 58 15
University of Sassari Italy 4 4 32 8
University of Jaén Spain 4 4 11 3

* Number of citations divided by the number of articles.
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