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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Aluminum alloys foams with homogeneous and regular open cells have been frequently proposed and used as support structures 
for catalytic applications. In this kind of application, the quality of produced metal foam assumes primary importance. This paper 
presents an application of a classifier algorithm to predict quality in the manufacturing process of aluminum alloy foams with 
homogeneous and regular open cells. A data analysis methodology of experimental data, which is based on Binary Gaussian 
Process Classification, is presented. The proposed method is a Bayesian classification method, which gets away from any 
assumptions about the relationship between process inputs (the geometric design parameters of the regular unit cells) and process 
output (probability to obtain defective foam). We demonstrate that the proposed methodology can provide an effective tool to 
derive a model for the prediction of quality. An investment casting process, via 3D printing of wax patterns, is considered 
throughout the paper. Despite this specific case study, the methodology can be exploited in different processes in which the 
assumptions of traditional statistical approaches could not be easily verified, e.g., additive manufacturing. 
© 2020 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing 
Engineering. 
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1. Introduction 

Predicting the quality of products can be considered a 
meaningful insight into the optimal design of an industrial 
manufacturing process. Quality prediction can be based on an 
experimental determination of the manufacturing process. 

In [1], we discussed an experimental determination of an 
investment casting process for producing aluminum alloy 
foams with homogeneous and regular open-cells, which are 
employed as catalytic supports. In general, catalytic open-cell 
metal foams have to be characterized by a large void fraction 
or porosity, have to offer low resistance to thermal transport 
[2], to mass transfer [3], and needs to be easily coated with a 
catalytic layer on their surface via dip coating or other loading 
methods [4]. In this kind of application, the geometrical 
characterization of produced metal foam assumes primary 
importance. The shape of open cells influences both product 

performance and process performance, particularly processing 
time, which strongly depends on the designed shape [5]. 

Examples of open-cell metal foams, obtained by an 
investment casting process, are depicted in Fig. 1. Three 
cylindrical metal foams with prismatic unit cells are reported 
(two samples with runners, by which the liquid metal entered 
the mold cavity). Runners and the sprue gating, are then cut 
from the casting. After minor machining post-processing, the 
casting (identical to the original wax pattern) is ready for use. 

In [1], experimental results on an aluminum casting alloy 
showed that the main limitations of investment casting 
concern the minimum wall thickness that can be cast to obtain 
a safe part. If this limit is exceeded, an incomplete filling of 
the mold will occur, as shown by the defective sample 
depicted in Fig. 2 (incomplete filling). 
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Fig. 1. Examples of cylindrical metal foams obtained by investment casting 

 

Fig. 2. Example of a defective foam sample obtained by investment casting 

Another constraint concerns the maximum achievable total 
height of the foam sample, due to limitations of the casting 
furnace, assuming the use of a single sprue and several 
patterns attached. Hence, in [1] a statistical model for 
predicting quality of the investment casting process was 
derived based on geometric characteristics of the produced 
metal foam (wall thickness and total height). In particular, 
logistic regression and Response Surface Methodology were 
proposed for determining a statistical model of the 
manufacturing process. 

In the present work, a supervised classification is proposed 
as an alternative for predicting quality in the process. In 
supervised classification, a set of training data points with 
their corresponding classes are available to learn the 
underlying structure of the model. Based on this information, 
the objective is to infer the classes of new data points.  

Kernel machines have recently received much attention in 
the literature for classification problems. Examples of kernel 
classification algorithms include Support Vector Machine and 
Gaussian Processes (GPs). Herein, we consider a GP, which is 
a Bayesian kernel nonparametric probabilistic classification 
model originating from Gaussian process regression. Since the 
type of classification targeted is of ‘defective/not-defective’, 
we focus on binary GP classification (classes labeled as 1/1  
respectively). 

A latent function, distributed as a GP [6], is considered as 
the basis for binary GP classification. This latent function has 
a value, at a certain data point, which is related to the 
probability that this data point belongs to one class. The GP 
prior has some hyper-parameters that can be estimated by 
maximizing the log marginal likelihood [6]. When the hyper-

parameters are estimated, the posterior distribution over the 
latent function evaluated at the training data points can be 
computed. This, in turn, allows us to predict the classes for 
new data points. 

The remainder of this paper is organized as follows. In 
section 2, the investment casting process is presented. Section 
3 describes the experimental procedure implemented. In 
section 4, the binary GP classification model is presented, 
while in section 5 the actual results are discussed. Finally, 
conclusions are provided in section 6. 

2. The investment casting process 

The term metal foam applies to porous structures whose 
solid matrix has a large fraction of interconnected, 
homogenous, and regular open cells. Typical applications of 
this material are catalytic supports, heat exchangers, filter 
elements, acoustic absorbers, crash absorbers, etc., because 
they have special properties, such as the permeability of the 
open cell structure, high porosity, and high ratio of surface 
area to volume. When the porosity cannot be subdivided into 
well-defined cells, the material is usually referred to as a metal 
sponge. 

Investment casting has been shown as an effective 
technology for the production of digitally designed regular 
open-cell foams, as an inexpensive alternative to direct metal 
additive manufacturing. In the investment casting (a.k.a. lost-
wax casting or micro-casting), the material is poured into a 
ceramic cavity designed to create an exact duplicate of the 
desired part using soluble preform (a prototype, a.k.a. wax 
pattern, usually of a polymer material, and obtained by a 3D 
printing process). 

The ceramic cavity is obtained by investing (surrounding) 
the wax patterns of refractory material. The fragile wax 
patterns must withstand forces encountered during the mold 
making. After embedding, the mold is dried and then baked to 
harden the embedded material and to decompose (and 
evaporate) the polymer foam, leaving behind a negative image 
of the foam. Subsequently, the mold is filled with molten 
metal in a hot state under moderate pressure. 

Aluminum alloys are usually used in investment casting 
mainly due to their high fluidity. After solidification and 
cooling, the mold materials are removed (e.g., by water under 
high pressure), leaving the metal foam that is an exact image 
of the original polymer prototype. 

The main limitation of the investment casting technology is 
the spatial resolution currently offered. The limitation on the 
minimum wall thickness adds an obvious constraint also on 
the minimum cell size for a given level of porosity. This 
constraint might become cumbersome if small cell sizes are 
required. The experimental study in [1] showed that nearly 
any macroscopic geometrical property relative to catalytic 
applications (surface-to-volume ratio, hydraulic porosity, etc.) 
could be obtained by investment casting process.  

3. Experimental determination of the process 

The design process of a cylindrical foamed structure with a 
large fraction of interconnected, homogenous, and regular 
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open cells is guided by quality specifications such as density 
and material volume/wettable surface ratio. Computer-aided 
design (CAD) models of the actual metal foam can be used to 
yield a precise estimate of the true geometrical parameters. 
An example is given in Fig. 3, where three geometrical 
parameters are characterizing the cylindrical foamed structure 
[1]: (i) the wall thickness (a.k.a. shell size) (S), (ii) the height 
of the cylinder (H) and (iii) the open cell thickness (tk). 

An experimental determination of the investment casting 
process consists of performing a set of metal foam casting 
tests, where the geometric characteristics of the foam (S, H, 
and tk) are changed. After each test, the observed quality of 
the metal foam is labeled as ‘defective’ or as ‘not-defective’ 
point in the set of process parameter combinations. In [1], 
starting from a set of experimental tests, a statistical analysis 
of collected tests was discussed. Statistical approaches are 
required to account for the randomness of the failure 
phenomenon. In particular, logistic regression, which allows 
estimating the relationship between some predictor variables 
(the foam geometric parameters S, H, and tk) and a 
dichotomous outcome (such as defective/not-defective), was 
used. In practice, logistic regression allows us to directly 
estimate the probability of defective (or ‘failure process’), by 
considering both the defective and not-defective experimental 
points in the analysis. 

When the response variable is dichotomous or ordinal, 
common linear models of Designs of Experiments, such as the 
standard second-order RSM designs, including the central 
composite design (CCD) and its variations (the rotatable CCD 
and the spherical CCD), the Box-Behnken design, etc., are 
inappropriate, and different approaches should be used to 
construct experimental designs. In [1], to handing a non-
normal response of as in the logistic regression, a generalized 
linear model was fitted to the response data. In particular, a 
15-run D-optimal design (no replication) for a GLM with a 
Bayesian approach was implemented. Table 1 reports the 
experimental design with the coded value for both S and H 
between -1 and 1. 

The column y (the label -1/+1) is related to the 
experimental observation on the cylindrical metal foam 
obtained by design parameters S and H. The value  1 y  
represents a non-defective sample, while   1 y a defective 
one. 

The design was repeated for two levels of the open cell 
thickness (tk). The difference observed in the experimental 
results was related to the case S = 0.35mm H = 30mm and the 
foaming process failed for tk = 0.4mm, not for tk = 0.5mm. 

Table 1 (first column) also reports the experimental order 
based on the maxmin distance criterion, in which space-filling 
of the experimental region is obtained by sequentially 
selecting the points in the region so that they are as far apart 
as possible from the points previously experimented in the 
sequence. 

A
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Fig. 3. A cylindrical foamed structure designed with CAD 

The use of a Bayesian D-optimal design ensures good one-
dimensional projections, whereas the maximin distance 
criterion ensures good space-filling in the full-dimensional 
space. 

Table 1. 15-run Bayesian D-optimal design for tk=0.4mm [tk=0.5mm] 

Order S (mm) S coded H (mm) H coded y 

10 1.00 1.000 45 0.309 1 

3 0.25 -1.000 55 0.747 -1 

12 0.45 -0.492 60 1.000 1 

7 0.50 -0.290 25 -0.516 1 

1 1.00 1.000 55 0.890 1 

4 0.80 0.428 15 -0.965 1 

8 0.30 -0.874 35 -0.008 -1 

5 0.60 -0.127 45 0.282 1 

9 0.80 0.373 35 -0.074 1 

6 1.00 1.000 30 -0.365 1 

2 0.25 -1.000 15 -0.990 -1 

11 0.80 0.439 60 1.000 1 

14 0.45 -0.471 45 0.238 1 

15 0.35 -0.723 45 0.288 -1 

13 0.35 -0.687 30 -0.426 -1[1] 
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open cells is guided by quality specifications such as density 
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common linear models of Designs of Experiments, such as the 
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and the spherical CCD), the Box-Behnken design, etc., are 
inappropriate, and different approaches should be used to 
construct experimental designs. In [1], to handing a non-
normal response of as in the logistic regression, a generalized 
linear model was fitted to the response data. In particular, a 
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Bayesian approach was implemented. Table 1 reports the 
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4. Gaussian process for binary classification 

Gaussian processes (GPs) for regression assume that the 
target function has a Gaussian process prior. Usually, the 
mean of this Gaussian is assumed to be a constant value, 
while the covariance between the targets at two different 
points is a decreasing function of their distance. This 
decreasing function is controlled by a small set of hyper-
parameters that capture the interpretable properties of the 
function, such as the length scale of autocorrelation, the 
overall scale of the function, and the amount of noise. The 
posterior distributions of these hyper-parameters given the 
data can be inferred in a Bayesian way by maximizing the 
marginal likelihood. 

While the target values in GP regression are continuous 
real values, in GP classification they are discrete class labels 
(in binary classification, two-class labels). Since it is not 
appropriate to assume that the target function with discrete 
outputs has a Gaussian process prior, it is assumed that there 
is some latent function whose value at a certain input location 
is monotonically related to the probability of belonging to a 
certain class at that location. As a consequence, the latent 
function, rather than the target function, has a Gaussian 
process prior. Starting from a prior on this latent function, the 
data points are used to infer both the posterior distribution 
over the latent function and the values of hyperparameters, 
which determine various aspects of the function. 

Consider binary observations,     , 1,1 ,i iY y y   
appointed to   , D

i iX  x x ,   , , 1, ,i iy i N x . 
The observations are considered to be drawn from a Bernoulli 
distribution with a success probability   1 | i ip y  x . Given 
this data set, the classification problem is to output the correct 
class label for a new data point.  

To represent our uncertainty over class labels, one may 
want a method that outputs probabilities over the different 
labels for each new data point. We assume that the probability 
over class labels as a function of x  depends on the value of 
the latent real-valued function   : Df  x , which is 
mapped to a unit interval by a sigmoid transformation g as 
follows (a.k.a. logistic model, which we used in this study). 
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The transformation used is a function 
     1 |i i ip y g f x x , where g is also called the link 

function. Hence, given the latent function  f x , for binary 
classification, the probability of class label is independent of 
all other quantities. We put a Gaussian process prior on the 
latent function, which implies that any finite subset of latent 
variables has a multivariate Gaussian distribution [5]. 
Namely, at the observed inputs the latent variables, 

  if  f x , have a Gaussian prior distribution 
    |   | , p X Nf f μ K , where K is the covariance matrix and 

μ  the mean function. While the prior on mean is set to a 
constant value, the covariance matrix is constructed by a 
covariance function   , |i jk x x , which represents the prior 
assumptions of the smoothness of the latent function 
parameterized by Θ  that we can learn from the data. The 
covariance function determines the covariance between two 

latent variables. i.e., how the response at one input is affected 
by the responses at another input. 

The covariance function can be defined by various kernel 
functions. Different kernel functions lead to a different degree 
of smoothness and different structures. A widely used 
covariance function is the stationary squared exponential: 
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where r is the distance between two input vectors of index i 
and j, and 2

se  the magnitude parameter. The length-scale, 2
dl , 

governs how fast the correlation decreases among input 
dimension d. The process associated with squared exponential 
is indefinitely mean square differentiable, which is a strong 
assumption on the smoothness of   f x . In our study, we used 
the covariance function in equation (2), as it is probably the 
most widely used in the machine learning literature [5]. 

Given the latent function, the class labels are independent 
Bernoulli variables and, we can write the conditional posterior 
of the latent function as 
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Finally, the class probability at a test point would be 
obtained by integrating over the hyper-parameters weighted 
by their posterior probability, as in the following equation. 

      | , | , ,  | .p y p y p d   x x                         (6) 

This integral is costly and there are usually many fewer 
hyper-parameters than data points. Therefore, in this paper, 
rather than integrating over the hyper-parameters, we fit them 
by maximizing the marginal likelihood as 

 ˆ   argmax  | p   and predict using these best fit hyper-
parameters:  ˆ | , ,  p y x . 

The marginal likelihood  ,  p  and Gaussian prior 
distribution   | ,p f  in equation (4) are both analytically 
intractable due to the nonlinearities in (1). Therefore, 
approximation techniques need to be used to get the posterior. 
One widely used technique is the expectation propagation 
(EP) algorithm. The implementation of the EP used in our 
study was done via the Gaussian Process for Machine 
Learning (GPML) TOOLBOX in MATLAB [7]. A comparison of 
different methods for approximate inference in GP 
classification is provided in [8], it is showed that the EP 
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algorithm provides high accuracy and speed when compared 
to alternative methods. 

5. Classification experiments 

The GPML TOOLBOX was used for binary GP 
classification of the investment casting process based on 2 
input factors: (i) 1  x the wall thickness foam (S) and (ii) 2  x the 
height of the cylinder (H). Value of S ranging between 
0.25mm  and 1.00mm  was and of H ranging between 15mm  
and 60mm  were considered. The design was replicated for 
two different values of the open cell thickness:   0.4tk mm  
and   0.5tk mm .  

A 15-run Bayesian D-optimal design, with no replication, 
was implemented (Table 1). Table 1 also reports the coded 
value for both S and H ranging between -1 and 1. Table 1 also 
reports the experimental order, based on the maxmin distance 
criterion, in which space-filling of the experimental region is 
obtained by sequentially selecting the points in the region so 
that they are as far apart as possible from the points 
previously experimented in the sequence. While the maximin 
distance criterion ensures good space-filling in the full-
dimensional space, the Bayesian D-optimal design ensures 
good one-dimensional projections. 

In this study, we implemented a sequential sampling 
strategy [9]. In particular, four scenarios with a different 
number of tests (i.e. 6, 9, 12, and 15) were considered. The 
selection of tests in each scenario is based on the sequential 
order obtained by the maxmin distance criterion. Hence, the 
first 6 tests are included in the first scenario, the first 9 in the 
second, the first 12 in the third, and all of the 15 tests in the 
last scenario. In practice, instead of assuming that the 
experimental test data is already available, this work aims to 
sample experimental points sequentially to explore 
increasingly the design space and to construct a surrogate 
model in each scenario. 

Fig. 4 shows the results of the GP classification based on 
the first 6 experimental tests. The input points are represented 
by 6 cross-marks. The resulting classification is displayed in 
form of a contour plot over the design space spanned by the 
factors S coded (horizontal axis) and H coded (vertical axis). 
For each of the two factors, the design space has been 
expanded to cover values greater than 1 and lesser than -1, i.e. 
ranging between -1.5 and 1.5. Fig. 5 and Fig. 6 show the 
results of the GP classification based on the first 9 and 12 
experimental tests, respectively. A color scale is used to 
represent the predicted class probability  ˆ 1  | , ,p y x   at a 
test point by maximizing the marginal likelihood as 

 ˆ   argmax |p  . Dark colors indicate a low 
probability to obtain a non-defective product, while brighter 
ones are used for a higher probability of obtaining a non-
defective product. 
 

 

Fig. 4. GP classification based on the first 6 experimental tests 

 

Fig. 5. GP classification based on the first 9 experimental tests 

 

Fig. 6. GP classification based on the first 12 experimental tests 
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4. Gaussian process for binary classification 

Gaussian processes (GPs) for regression assume that the 
target function has a Gaussian process prior. Usually, the 
mean of this Gaussian is assumed to be a constant value, 
while the covariance between the targets at two different 
points is a decreasing function of their distance. This 
decreasing function is controlled by a small set of hyper-
parameters that capture the interpretable properties of the 
function, such as the length scale of autocorrelation, the 
overall scale of the function, and the amount of noise. The 
posterior distributions of these hyper-parameters given the 
data can be inferred in a Bayesian way by maximizing the 
marginal likelihood. 

While the target values in GP regression are continuous 
real values, in GP classification they are discrete class labels 
(in binary classification, two-class labels). Since it is not 
appropriate to assume that the target function with discrete 
outputs has a Gaussian process prior, it is assumed that there 
is some latent function whose value at a certain input location 
is monotonically related to the probability of belonging to a 
certain class at that location. As a consequence, the latent 
function, rather than the target function, has a Gaussian 
process prior. Starting from a prior on this latent function, the 
data points are used to infer both the posterior distribution 
over the latent function and the values of hyperparameters, 
which determine various aspects of the function. 

Consider binary observations,     , 1,1 ,i iY y y   
appointed to   , D

i iX  x x ,   , , 1, ,i iy i N x . 
The observations are considered to be drawn from a Bernoulli 
distribution with a success probability   1 | i ip y  x . Given 
this data set, the classification problem is to output the correct 
class label for a new data point.  

To represent our uncertainty over class labels, one may 
want a method that outputs probabilities over the different 
labels for each new data point. We assume that the probability 
over class labels as a function of x  depends on the value of 
the latent real-valued function   : Df  x , which is 
mapped to a unit interval by a sigmoid transformation g as 
follows (a.k.a. logistic model, which we used in this study). 
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    2 2 2
1 | , , ,   exp ,se D sek r l l r                                  (2) 

 2 2
, ,1

    ,D
i d j d dd

r x x l


                                                    (3) 

where r is the distance between two input vectors of index i 
and j, and 2

se  the magnitude parameter. The length-scale, 2
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governs how fast the correlation decreases among input 
dimension d. The process associated with squared exponential 
is indefinitely mean square differentiable, which is a strong 
assumption on the smoothness of   f x . In our study, we used 
the covariance function in equation (2), as it is probably the 
most widely used in the machine learning literature [5]. 

Given the latent function, the class labels are independent 
Bernoulli variables and, we can write the conditional posterior 
of the latent function as 
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Finally, the class probability at a test point would be 
obtained by integrating over the hyper-parameters weighted 
by their posterior probability, as in the following equation. 
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This integral is costly and there are usually many fewer 
hyper-parameters than data points. Therefore, in this paper, 
rather than integrating over the hyper-parameters, we fit them 
by maximizing the marginal likelihood as 

 ˆ   argmax  | p   and predict using these best fit hyper-
parameters:  ˆ | , ,  p y x . 

The marginal likelihood  ,  p  and Gaussian prior 
distribution   | ,p f  in equation (4) are both analytically 
intractable due to the nonlinearities in (1). Therefore, 
approximation techniques need to be used to get the posterior. 
One widely used technique is the expectation propagation 
(EP) algorithm. The implementation of the EP used in our 
study was done via the Gaussian Process for Machine 
Learning (GPML) TOOLBOX in MATLAB [7]. A comparison of 
different methods for approximate inference in GP 
classification is provided in [8], it is showed that the EP 
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algorithm provides high accuracy and speed when compared 
to alternative methods. 

5. Classification experiments 

The GPML TOOLBOX was used for binary GP 
classification of the investment casting process based on 2 
input factors: (i) 1  x the wall thickness foam (S) and (ii) 2  x the 
height of the cylinder (H). Value of S ranging between 
0.25mm  and 1.00mm  was and of H ranging between 15mm  
and 60mm  were considered. The design was replicated for 
two different values of the open cell thickness:   0.4tk mm  
and   0.5tk mm .  

A 15-run Bayesian D-optimal design, with no replication, 
was implemented (Table 1). Table 1 also reports the coded 
value for both S and H ranging between -1 and 1. Table 1 also 
reports the experimental order, based on the maxmin distance 
criterion, in which space-filling of the experimental region is 
obtained by sequentially selecting the points in the region so 
that they are as far apart as possible from the points 
previously experimented in the sequence. While the maximin 
distance criterion ensures good space-filling in the full-
dimensional space, the Bayesian D-optimal design ensures 
good one-dimensional projections. 

In this study, we implemented a sequential sampling 
strategy [9]. In particular, four scenarios with a different 
number of tests (i.e. 6, 9, 12, and 15) were considered. The 
selection of tests in each scenario is based on the sequential 
order obtained by the maxmin distance criterion. Hence, the 
first 6 tests are included in the first scenario, the first 9 in the 
second, the first 12 in the third, and all of the 15 tests in the 
last scenario. In practice, instead of assuming that the 
experimental test data is already available, this work aims to 
sample experimental points sequentially to explore 
increasingly the design space and to construct a surrogate 
model in each scenario. 

Fig. 4 shows the results of the GP classification based on 
the first 6 experimental tests. The input points are represented 
by 6 cross-marks. The resulting classification is displayed in 
form of a contour plot over the design space spanned by the 
factors S coded (horizontal axis) and H coded (vertical axis). 
For each of the two factors, the design space has been 
expanded to cover values greater than 1 and lesser than -1, i.e. 
ranging between -1.5 and 1.5. Fig. 5 and Fig. 6 show the 
results of the GP classification based on the first 9 and 12 
experimental tests, respectively. A color scale is used to 
represent the predicted class probability  ˆ 1  | , ,p y x   at a 
test point by maximizing the marginal likelihood as 

 ˆ   argmax |p  . Dark colors indicate a low 
probability to obtain a non-defective product, while brighter 
ones are used for a higher probability of obtaining a non-
defective product. 
 

 

Fig. 4. GP classification based on the first 6 experimental tests 

 

Fig. 5. GP classification based on the first 9 experimental tests 

 

Fig. 6. GP classification based on the first 12 experimental tests 
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Fig. 7 and Fig. 8 show similar results when all of the tests 
in the 15-run Bayesian D-optimal design are considered. Fig. 
7 refers to the case of open-cell thickness equal to   0.4tk mm  
while Fig. 8 refers to   0.5tk mm . 

It can be observed that the GP classifier can model a 
response variable in a sequential sampling strategy, and the 
classification is robust to the number of tests. This result 
assumes importance in cases of experiments that are too 
costly or time-consuming to conduct [9]. Furthermore, the GP 
classifier allows extending the prediction in points not 
included in the boundaries of the input design space. From 
Fig. 7    0.4tk mm  it appears that values of the coded 
variable S greater than -0.5 (i.e., actual size of S greater than 
0.44mm ) allow obtaining a safe result in the process [1]. In 
the case of   0.5tk mm  (Fig. 8), the GP classifier can model 
more complex interaction relationships between the two input 
factors that logistic regression in [1] is not able to model. 

 

 

Fig. 7. GP classification based on all of the 15 tests. tk=0.4mm. 

 

Fig. 8. GP classification based on all of the 15 tests. tk=0.5mm. 

6. Conclusions 

In this paper, a methodology based on a GP for classifying 
and predicting the quality of a manufacturing process has 
been presented. The proposed method is a Bayesian 
classification method, which gets away from any assumptions 
about the structural relationship between inputs and output. 
The method can model a response variable in a sequential 
sampling strategy. Furthermore, given new data, we can get a 
class probability rather than a hard decision.  

A case study related to investment casting for the 
production of metal foams has been considered. In particular, 
the geometric characteristics of the foam (S, H, and tk) are 
used as the input factors of the manufacturing process, which 
may influence on the successful production. Despite this 
specific case study, the methodology can be exploited in 
different processes in which the assumptions of traditional 
statistical approaches for experimental data modeling could 
not be easily verified. 

One advantage that we can observe on using GP classifiers 
for quality prediction is that they are fully non-parametric 
statistical models. Hence, we can improve the performance of 
GP classifiers from many different directions. Firstly, we can 
use the evidence for model selection and kernel 
hyperparameter optimization. Secondly, prior information can 
be used to inform the learning of the hyperparameters (for 
example, if some input features are thought to be more 
relevant). Finally, we can improve approximate inference and 
optimization techniques to gain in both accuracy and speed.  
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