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Abstract: Extra-virgin olive oil (EVOO) contains many bioactive compounds with multiple biological
activities that make it one of the most important functional foods. Both the constituents of the lipid
fraction and that of the unsaponifiable fraction show a clear action in reducing oxidative stress by
acting on various body components, at concentrations established by the European Food Safety
Authority’s claims. In addition to the main product obtained by the mechanical pressing of the
fruit, i.e., the EVOO, the residual by-products of the process also contain significant amounts of
antioxidant molecules, thus potentially making the Olea europea L. an excellent example of the circular
economy. In fact, the olive mill wastewaters, the leaves, the pomace, and the pits discharged from
the EVOO production process are partially recycled in the nutraceutical and cosmeceutical fields
also because of their antioxidant effect. This work presents an overview of the biological activities of
these by-products, as shown by in vitro and in vivo assays, and also from clinical trials, as well as
their main formulations currently available on the market.

Keywords: Olea europea L.; olive oil; olive mill wastewater (OMW); olive leaf extract (OLE); hydroxy-
tyrosol; oleuropein; polyphenols; pit; by-products

1. Introduction

Olive oil is the main product obtained from olives, fruits that come from the Olea
europaea L. evergreen trees [1]. Olive oil is a characteristic element of the Mediterranean Diet
(MD) because of the health-beneficial effects deriving from its chemical composition [2–4]
as well as its appreciable taste and usefulness in flavoring a large variety of foods. In
particular, the constituents of both lipidic and unsaponifiable fractions in extra-virgin olive
oils (EVOOs) have been demonstrated to be able to reduce oxidative stress by acting on
various biomolecules in the body, as also stated by the European Food Safety Authority
(EFSA) [5].

During the production process of EVOOs, olive milling yields a mixture of olive paste
and water. Subsequent malaxation of the olive paste allows for the separation of three
phases: (i) the olive oil, (ii) a solid residue, and (iii) the olive mill wastewater (OMW).
The last two components are produced in large quantities, and they are considered an
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agro-industrial waste whose disposal represents an important environmental problem as
the plant material is usually subjected to microbial deterioration [6,7].

Currently, in the linear economy, agricultural by-products are mainly used as combus-
tion feedstock for biofuels (Figure 1) [8,9].
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Figure 1. From linear to the circular economy in the olive oil sector.

The most important biomasses are residues from wood working (wood shavings
and sawdust) or forestry activities, wastes from farms and agro-business, the organic
fraction of municipal solid wastes, and plants deliberately grown for energetic purposes.
Similarly, pruning wastes from olive trees are also used as biomass. However, in coherence
with the “circular economy” principle, it is important to valorize these waste products
containing high levels of secondary metabolites, thus accelerating the implementation of
the “Transforming our world: the 2030 Agenda for Sustainable Development” [10,11].

Nevertheless, the transition from linear to the circular economy requires a cultural
and structural change: a deep revision and innovation of production, distribution, and
consumption models [12]. Furthermore, from a circular economy perspective, the added
value of materials and energy must be maintained for as long as possible over multiple
productions and use cycles, representing a new opportunity also for seasonal sectors, such
as the EVOOs manufacturing industry.

Olive mill waste, olive pomace (exhausted pulp, kernel, and seeds), and vegetative
water are significant by-products of the olive oil-producing countries in the Mediterranean
basin, with a high environmental impact if not properly treated. In addition, these wastes
are rich in high-value compounds, which can be either used directly after extraction or ex-
ploited as ingredients with different applications, e.g., as food supplements, nutraceuticals,
cosmeceuticals, and animal feed.

The transition from linear to the circular economy, largely desired from stakeholders
in the olive oil sector, requires a multidisciplinary approach that exploits know-how
harmonically from different fields (Figure 2).
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Figure 2. Extra virgin olive oil’s (EVOO’s) circular economy: overview of an integrated olive
tree exploitation.

This transition would also bring an additional value, represented by the possibility
that each oil mill can integrate new processes with the pre-existing ones, with the result-
ing economic advantages, guaranteeing both product diversification and fair income for
all stakeholders, who are currently threatened by the increasing oil price trend and the
emerging Xylella pandemic.

In this review, we focused our attention on the secondary metabolites contained in
waste materials derived from the olive oil production process and their ability to reduce
oxidative stress, both in vitro and in vivo. Particular attention has been paid to their
potential exploitation in the circular economy by obtaining new high-value ingredients for
health-related products (nutraceuticals, pharmaceuticals, and cosmeceuticals).

2. Olea europea L.: Overview on Its Chemical Compounds

The most represented chemical classes in Olea europea L. tree are mainly classified as
nonpolar compounds (present in the lipophilic oil fraction, such as squalene, tocopherols,
sterols, and triterpenic compounds) and polar phenolic compounds [13].

Among the polyphenolic compounds, the most abundant and studied in olives are ty-
rosol (TY), hydroxytyrosol (HT), oleuropein (OL), oleocanthal, and verbascoside (Figure 3).

The secondary metabolites from Olea europea L. have high biological value, and they
are present in different concentrations in the various parts of the olive plant (Table 1); as
such, many of them are present in the derived EVOOs, but they can also be found in the
waste products from the production process.
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Table 1. Distribution of the main classes of metabolites in the different parts of the plant Olea europea L. [13–21].

Seed Oil Virgin Olive Oil Skin Pulp Wood Leaves

Phenolic
acid/aldehydes

Phenolic
acid/aldehydes

Phenolic
acid/aldehydes

Phenolic
acid/aldehydes

Phenolic
acid/aldehydes

Phenolic
acid/aldehydes

Tocopherols Tocopherols Tocopherols

Sterols Sterols Organic acid and
coumarins

Organic acid and
coumarins

Organic acid and
coumarins

Organic acid and
coumarins

Flavonoids Simple phenols
and derivatives

Simple phenols
and derivatives

Simple phenols
and derivatives

Lignans Secoiridoids and
derivatives

Secoiridoids and
derivatives

Secoiridoids and
derivatives

Fatty acids and
derivatives Flavonoids Flavonoids

Pentacyclic
triterpenes Tocopherols

For this reason, all the materials involved in olive oil manufacturing represent a
precious reservoir that could supply extracts reusable for health purposes. The most
studied secondary metabolites are the polyphenols (or biophenols, as they are often referred
to in EVOOs) that represent a group of molecules with one or more phenolic rings [14].
These compounds can be defined as nutraceuticals for their biological/pharmacological
actions [15], mostly derived from their antioxidant properties, that play a protective role
against oxidative stress [16] and extend the shelf-life of olive oil [17].

The antioxidant activity is mainly due to five classes of polyphenols identified as
simple phenols, phenolic acids, secoiridoids, flavonoids, and lignans [18]. Among these,
OL represents the principal biophenol in the olive leaf [19], followed by other constituents
such as verbascoside, luteolin-7-O-glucoside, apigenin-7-O-glucoside, and TY [20]. Their
antioxidant activity is even higher than that of antioxidants, such as vitamins E and C [21].

3. Olea europea L. By-Products for Human Health

The plant Olea europea L. is a genus that comprises more than 40 species. To this genus
belong plants that are typical of temperate regions in the European continent, Asia, and
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Africa. We focused on Olea europaea L. because it is the only species used for obtaining oil
by pressing their fruit (i.e., the olive). On the other hand, other species, such as O. capensis,
O. dioica, O. brachiata, and O. obvata, are not used for oil production. Currently, there are
almost 400 cultivars of Olea europaea L. used all over the world, of which about 100 are
planted in Italy.

Olive products, such as olive oil and table olives, are functional foods because of
their beneficial effects, mostly due to mono- and poly-unsaturated fatty acids and, last but
not least, the presence of polyphenols and other secondary metabolites. During the olive
oil production process, some polyphenols remain in the oil-water emulsion, but most of
them, being hydrophilic, end up in the OMW. Sometimes olive leaves are also added to
the olives before milling in order to enrich the resulting oil in polyphenols. In addition,
many production factors (e.g., cultivar, ripening time, and extraction method), as well as
environmental factors (e.g., climate, precipitations, and age of the trees), are responsible for
the different content and composition of polyphenols in oil [22].

The nutritional and health-promoting effects of olives and olive oils are well-established
and recognized [23], such as their antioxidant [24,25], anti-inflammatory [26,27], cardio-
protective [28,29], anticancer [30], antidiabetic, and neuroprotective effects [31,32]. Thanks
to these properties, these compounds positively contribute to the beneficial effects of the
MD [33]. To confirm the significant role of olive oil components as responsible for the
benefits of the MD, Fernandes et al. examined the outcome from randomized controlled
trials on the effect of regular dietary EVOO intake on inflammatory markers [34]. Recently,
Storniolo and co-workers demonstrated that the role of oleic acid in the colon cancer cells
growth is reverted in the presence of olive oil representative minor components, suggesting
that the consumption of seed oils, high oleic acid seed oils, or olive oil will probably have
different effects on colorectal cancer [35,36]. The presence of secondary metabolites also in
the by-products of olive oil production makes OMW, leaves, pomace, and kernels raw mate-
rials exploitable in the nutraceutical, food, cosmetic, feed, and energy sectors. The scientific
evidence related to the health-promoting effects of these by-products is detailed below.

3.1. Secondary Metabolites in Olive Mill Wastewater

OMW is a by-product of olive oil production, rich in water-soluble bioactive com-
pounds that could be separated by industrial membrane technology [37]. This procedure,
based on the different capabilities of the substances in a mixture to cross the polymeric or
inorganic semipermeable membrane at different rates, allows a cost-effective purification
of the OMW phenolic pool because of the low operative temperature needed [38].

Nanofiltration has also been successfully employed for concentrating phenolic com-
pounds extracted from the same raw material. The extracts are fractionated across different
membranes to get microfiltration, followed by ultrafiltration and nanofiltration [39]. The
total phenolic content is then analyzed using high-performance liquid chromatography
(HPLC) [40].

OMW has long been considered a waste whose disposal requires high economic costs.
Recently, numerous studies have shown its content in polyphenols and other biologically
important molecules, shifting its perspective from waste to an economical and natural
source of antioxidants [41]. The typical composition of OMW is reported in Table 2. As
can be observed, OL, abundant in leaves, is absent in OMW, while are present several
low molecular weight phenolic compounds, such as TY and HT, which are formed by
enzymatic hydrolysis during the milling process. Phenolic compounds with molecular
weights in the range of 600–5000 Da and other molecules, such as verbascoside, its isomers,
and oxidation products, as well as higher molecular weight phenols deriving from the
oxidative polymerization of hydroxytyrosol and elenolic acid, are also present [42,43].
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Table 2. Chemical composition of olive mill wastewater (OMW) extracts obtained by different techniques.

Composition OMW a UF b AIR c WSF c WIF c
UF HSF UF ETNA O1PP NF 90

F a P a R a F a P a R a F a R a

Total phenols 1409.0 1692.0 3.2 2.8 1.9 81.3 79.5 81.3 75.5 62.2 77.4 65.6 86.2
Hydroxytyrosol 3.8 n.d. - - - 3.8 3.7 3.9 3.5 3.0 3.8 3.2 4.0

Protocatechuic acid 25.0 - - - - 25.0 24.0 24.5 27.0 20.6 26.0 22.0 30.0
Catechol 7.5 - - - - 7.5 7.1 7.2 6.0 5.0 6.2 5.5 7.5
Tyrosol 39.0 n.d. - - - 39.0 38.7 39.6 34.2 30.0 36.0 31.0 40.0

Caffeic acid 5.0 - - - - 5.0 4.9 5.2 4.0 3.0 4.4 3.2 3.7
p-Cumaric acid 1.0 - - - - 1.0 0.9 0.9 0.8 0.6 1.0 0.7 1.0
Verbascoside - n.d. - - - - - - - - - - -

Isoverbascoside - n.d. - - - - - - - - - - -
Carbohydrates - - 25.0 d 60.0 d 5.1 d - - - - - - - -

Fucose - - 0.5 0.6 0.4 - - - - - - - -
Rhamnose - - 14.3 13.7 16.4 - - - - - - - -
Arabinose - - 14.1 10.7 17.6 - - - - - - - -
Galactose - - 12.6 13.1 5.9 - - - - - - - -
Glucose - - 42.2 45.1 47.7 - - - - - - - -

Mannose - - 5.5 5.4 4.4 - - - - - - - -
Xylose - - 5.0 4.9 5.3 - - - - - - - -

Galacturonic acid - - 4.9 5.0 1.4 - - - - - - - -
Glucuronic acid - - 1.0 1.1 0.7 - - - - - - - -

Proteins - - 3.2 11.0 0.3 - - - - - - - -

UF = ultrafiltration residue; AIR = alcohol insoluble OMW residue; WSF = water-soluble fraction; WIF = water-insoluble fraction; UF HSF =
ultrafiltration performed with HSF membrane type; UF ETNA O1PP = ultrafiltration performed with ETNA 01PP membrane type; NF 90 =
nanofiltration performed with NF90 membrane type; F = feed; P = permeate; R = retentate. a Expressed as mg/L; b expressed as ppm; c

expressed as g/100 g of fraction; d expressed as mol%; n.d. = not determined.

OMW also contains significant amounts of monosaccharides, such as glucose, galac-
tose, arabinose, rhamnose, and galacturonic acid, and polysaccharides, whose prebiotic and
antioxidant activities have been evaluated [44–47]. Among simple sugars, arabinose, in par-
ticular, showed to be able to reduce the concentration of hydroxyl radicals by chelating Fe2+

ions [48] significantly. Many studies on various matrices also showed the antioxidant capac-
ity of polysaccharides [49–51]. Therefore, the remarkable antioxidant activity of OMW can
be attributed not only to its polyphenolic content but probably also to the polysaccharide
and protein content. Furthermore, polysaccharides in OMW assimilated to dietary fibers
owed additional biological and physiological functions, such as antimetastatic, immunos-
timulating, and anti-ulcer activity, as well as reduction of serum cholesterol, inhibition of
hyaluronidase, and release of histamine [45,52].

3.2. Biological Activity of Olive Mill Wastewater Extracts

Recently, many research groups have tested OMW, in which both HT and its pre-
cursors are much more concentrated with respect to olive oil, on numerous biological
targets. A study on two OMW mixtures with a polyphenol content of 100 and 36 g/kg
(MOMAST® HY100 and MOMAST® HP30, respectively) found a significant antioxidant
and anti-inflammatory effect in an ex vivo model of rat colon, liver, heart, and prefrontal cor-
tex [53]. After treatment, the levels of the several inflammatory markers, i.e., prostaglandin
(PGE2), lactate dehydrogenase (LDH), nitric oxide synthase (iNOS), COX-2, and TNFα,
decreased drastically.

Other studies on purified extracts of OMW have shown additional anti-angiogenic
and chemopreventive effects, both in vitro and in vivo [54,55], as well as inhibition of
the proliferation, migration, and invasion of endothelial cells [56]. Furthermore, the
antiproliferative activity of OMW against MDA-MB-231 breast cancer cells has been also
demonstrated [57]. Chemopreventive effects of OMW rich in HT have also been observed
in HL60 human promyelocytic leukemia cells, HT-29, and DLD1 colon adenocarcinoma
cells, reducing cell proliferation by inducing apoptosis [58].



Molecules 2021, 26, 1072 7 of 23

Noteworthy, OMW extracts were shown to have neuroprotective effects both in vitro
and in vivo on dissociated brain cells (DBC) of NMRI mice. Even though the mechanism
of action is not yet fully understood, it is likely that the biological effect is due to its
antioxidant and anti-inflammatory action by inhibiting lipid peroxidation and restoring
glutathione concentrations. The secoiridoids in OMW are also responsible for the beneficial
effects in delaying cellular aging in neurodegenerative disease. For example, they were able
to interfere with aggregation of amylin [31], tau [59], and Aβ peptides in vitro [60], in C.
elegans [61], and in the mouse model TgCRND8 of Aβ deposition [62], which appears to be
dose-dependent [63]. Neuroprotection exerted by biophenols has also been demonstrated
in neuroblastoma cells by reducing the oxidative stress induced by H2O2 and the toxicity
induced by copper (Cu) [64]. The cytoprotective effects of formulations containing both HT
and OMW were compared on the same cell line by inducing toxicity after 24 h of exposure
to cadmium (Cd), mercury (Hg), and lead (Pb), showing that the polyphenols could slow
down or even halt the progression of the disease aggravated by heavy metals [65].

OMW phenolic compounds were also able to reduce risk factors for coronary heart
disease and stroke prevention [66]. Furthermore, Storniolo et al. highlighted that HT
and other polyphenols play an important role in preventing the negative consequences
of diets rich in fats and/or sugars [67]. They showed that treatment with HT or OMW
could reduce significantly the level of nitric oxide (NO) and the increase of endothelin-1
(ET-1) by modulating the intracellular levels of Ca2+ and the endothelial phosphorylation
of nitric oxide synthase, changes induced by high levels of glucose and free fatty acids (as
in diabetic patients).

Due to its antioxidant properties, OMW could easily find applications in the food,
pharmaceutical, and cosmetic industries. For example, it could be used to better preserve
the quality and shelf life of food [68,69]. Production of functional foods from OMW extracts
represents a crucial alternative to transform this agro-industrial waste into a useful and
relevant ingredient [70,71]. An interesting approach for fortifying food products with
phenolic substances involves their direct addition [72]. In this regard, OMW phenolic
extracts were added to milk to study their effect in modulating the Maillard reaction when
milk is heated at very high temperatures. The authors reported that the phenolic extracts
were able to trap the reactive carbonyl species responsible for the unpleasant taste and to
inhibit the formation of Amadori products [73]. The use of OMW phenolic compounds
in milk-based beverages has also been reported to improve their nutritional properties; in
fact, as the concentration of more complex phenolic compounds decreased during storage,
the level of HT increased due to the hydrolysis of its precursors [74].

In light of all these pieces of evidence, it can be hypothesized that the phenolic
compounds present in OMW, such as HT and OL, could soon be considered raw materials
for nutraceutical supplements or formulations. Several HT-containing products, such as
Mediteanox®, Hydrox®, and Hytolive®, are already on the market in pharmaceutical forms,
such as capsules, elixirs, creams, and even in EVOOs with a very high HT content (over
500 mg/kg). Hydrox® and Hytolive® have been licensed as “generally recognized as safe
(GRAS)” ingredients. Pure synthetic hydroxytyrosol, marketed by SEPROX BIOTECH, has
also achieved this status and has recently been proposed in the EU for Novel Food. Some
of these products have already been tested successfully [75,76].

Polyphenols are massively used as cosmetic ingredients. In fact, it is known that
UV irradiation and oxidative stress are the main causes of extrinsic aging and of diseases
such as skin cancer [77]. The protective action against UV damage, inhibition of the
antimicrobial activity of dermal proteinases, and the anti-carcinogenic action have been
demonstrated in vitro on skin cell lines. These findings could be exploited for preparing
novel topical formulations. The protective effect exerted by polyphenols against lipid
oxidation on cell membranes, an effect that mimics the protection from the oxidation of oil
lipids by polyphenols, can also prevent oxidative phenomena in the formulation during
storage [78,79]. The topical application of active antioxidant ingredients can support the
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skin’s own antioxidant system against oxidative stress and may protect the skin from
long-term photoaging.

High reactive oxygen species (ROS) production also results in the expression of col-
lagenase (MMP-1) and elastase, leading to accelerated degradation of the corresponding
proteins. Lee et al. showed that polyphenols effectively inhibit elastase and hyaluronidase,
exerting an anti-aging effect [80]. Treatment of HaCaT keratinocytes with polyphenolic
extracts resulted in a reduced formation of intracellular ROS after UV irradiation [81–83].
Finally, Potapovich et al. showed that post-treatment with polyphenols of normal human
epidermal keratinocytes (NHEKs) after UV exposure was effective in abolishing the over-
production of peroxides and inflammatory mediators [84]. In this regard, considering the
composition of OMW, it would be interesting to investigate more in detail this aspect as
OMW could also present similar anti-aging effects.

3.3. Secondary Metabolites and Biological Activity of Olive Pomace Extracts

The main destiny of olive pomace in the linear economy is its transfer to an olive
pomace factory, where it is dried and then used for extracting with organic solvents (usually
hexane) the residual fat (crude pomace oil), which will be then rectified before marketing.
In recent times, the price of pomace oil has significantly dropped, making, in some cases,
its extraction uneconomical. In addition, the sector had already been experiencing great
difficulties because of the increased water content in virgin pomace due to the increasingly
widespread use of two-phase decanters. The opportunity to consider the pomace not only
as a source of fats but also of a complex mixture of bio-compounds can be advantageous
for both the environment and the miller’s income. In fact, the possibility to implement a
new production process into the mill could potentially provide an additional source of
profit for both olive oil producers and olive millers, thus closing the supply chain at the
production site.

In this regard, Nunes et al. investigated the chemical composition of the bioactive
compounds in olive pomace (e.g., fatty acids, vitamin E, and phenolic compounds) and its
nutritional profile and they also developed a sustainable process for extracting the antioxi-
dants (the Multi-frequency Multimode Modulated Ultrasonic technique) [85]. Moreover,
they discovered that the vitamin E profile of the olive pomace contained high amounts
of α-tocopherol (2.63 mg/100 g), although β- and γ-tocopherol and α-tocotrienol were
present in lower concentrations (less than 0.1 mg/100 g of pomace). Oleic acid was the
most abundant lipid, followed by palmitic, linoleic, and stearic acid (10%, 9%, and 3%,
respectively), while the polyphenols were mainly represented by HT and comsegoloside
(making together about 79% of the total content). A year before, Goldsmith et al. had
already tested an innovative ultrasound method with the aim to increase the aqueous
extraction of phenolic compounds from olive pomace [86]. Application of a Design of
Experiments allowed the authors to find the optimal extraction conditions, although the
process was not very efficient (2 g of dried pomace/100 mL of water at 250 W for 75 min at
30 ◦C), thus limiting the technological transfer to an industrial level.

Recently, the interest in the water-soluble fraction from olive pomace is high because
numerous authors are demonstrating the potential beneficial effects of the contained sugars,
polyphenols, and minerals. Ribeiro et al. investigated the effect of the gastrointestinal
tract on its bioactive composition, demonstrating that about 50% of the water-soluble com-
pounds remained active, especially of HT and potassium [87]. In addition, the recovered
antioxidant activity in the serum was about almost 58%, and more than 50% of the initial
α-glucosidase inhibition activity was maintained, as well as its ACE inhibitory activity.
The colon-available fraction presented a substantial concentration of polyphenols and
minerals, evidencing that OMW liquid-enriched powder could be potentially useful to
prevent both cardiovascular and gut diseases. The potential effects in terms of liquid-
enriched powder marketing are interesting, although further studies are needed to confirm
preliminary results.
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Other authors investigated even simpler techniques to make the extraction process
more convenient. Cea Pavez et al. exploited pressurized liquid extraction (PLE) for extract-
ing phenolic compounds from olive pomace [88]. Despite the extraction protocol showed
great compositional variability of the obtained mixtures depending on the experimental
conditions used; after optimization, PLE allowed the obtaining of a higher polyphenolic
content compared to the traditional extraction method (1659 mg/kg and 282 mg/kg, re-
spectively), also yielding three- and four-times higher concentrations of secoiridoids and
flavonoids, as well as a significant HT enrichment.

In the context of environment-friendly green technologies, the use of deep eutectic
solvents (DESs) has been gaining prominence in recent years. DESs have several advan-
tages, including very low toxicity, ease of preparation, low cost, high biodegradability, and
stability in the presence of water. In 2018, Chanioti et al. employed natural deep eutectic
solvents (NADES) constituted by choline chloride with citric acid, lactic acid, maltose and
glycerol, and water combined with homogenization (HAE), microwave (MAE), ultrasound
(UAE), or high hydrostatic pressure (HHPAE) [89]. Choline chloride with citric acid and
lactic acid showed the best extraction efficiency in terms of total phenolic content and
antioxidant activity of the extracts, while HAE proved to be the best extraction technique.
Extracts with NADES were generally richer in polyphenols compared to conventional
solvent extraction procedures, and HPLC analysis confirmed that proposed methods are
effective and sustainable alternatives for their extraction from natural sources.

The exploitation of compounds with high biological and commercial value is cer-
tainly the direction in which to push the transition of the oil sector. Many studies agree
on the beneficial properties of these substances. Vergani et al. carried out a study on
the biological effects of polyphenols extracted from olive pomace and on the effects of
single phenolic compounds present in the extract (i.e., TY, apigenin, and OL) in protecting
hepatocytes against fat excess and oxidative stress [90]. The polyphenols were extracted
in ethanol/water (50:50 v/v) at high pressure-temperature (25 bar, 180 ◦C for 90 min),
obtaining a total concentration of 5.77 mg of caffeic acid equivalent/mL. In order to test the
biological effects of the extract, FaO cells exposed for 3 h to a mixture of oleate/palmitate
(2:1 molar ratio) were used as a model for hepatic steatosis. The cells were incubated with
TY, apigenin, or OL (10, 13, and 50 µg/mL, respectively), and the content of intra- and
extra-cellular triglycerides (TGs) and other oxidative stress markers measured after 24 h.
The preliminary results showed that olive pomace extract ameliorated lipid accumulation
and lipid-dependent oxidative unbalance, suggesting them as potential therapeutic agents.
The direct correlation between an MD supplemented with EVOO and a reduced prevalence
of hepatic steatosis in older individuals at high cardiovascular risk was recently investi-
gated in a clinical trial comprising one hundred men and women (mean age: 64 ± 6 years
old) at high cardiovascular risk (62% with type 2 diabetes) [91].

The biological activity of polyphenols recovered from olive oil by-products was also
investigated by Romani et al., who studied the cardioprotective effects of hydroxytyrosol,
oleuropein, oleocanthal, and lignans in the MD [92]. Moreover, recent European projects,
such as EPIC (European Prospective Investigation into Cancer and Nutrition) and EPICOR
(long-term follow-up of antithrombotic management patterns in acute coronary syndrome
patients), focused on the functional and health-promoting properties of EVOOs, showing
the relationship between cancer and nutrition and the existent link between the consump-
tion of EVOO, fresh fruits, and vegetables, and the incidence of coronary heart diseases.
Results evidenced that both the EVOO and the by-products of the olive oil extraction
process are precious sources of bioactive compounds that can be recovered applying green
technologies and used for food, agronomic, nutraceutical, and biomedical applications, in
agreement with the circular economy strategy.

3.4. Secondary Metabolites in Olive Leaves

Leaves represent an important quote of the total harvest weight. Therefore, it is
important to develop efficient extraction methods that can assure high yields of polyphe-
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nols, secoiridoids, and other bioactive molecules that can be exploited in nutraceutical
products, cosmetics, and functional foods (see Table 1). Olea europaea L. leaves are a poten-
tially inexpensive, renewable, and abundant source of biophenols [93]. The importance
of this agricultural and industrial waste needs to be emphasized and better understood,
considering the benefits that we can get from it in health terms and also regarding the
environment. Due to its antioxidant, antimicrobial, and anti-inflammatory effects, olive
leaf extract (OLE) is considered a natural supplement. Several studies already showed the
pharmaceutical and nutraceutical potentials of the secondary metabolites extracted from
olive leaves. Microfiltration, ultrafiltration, and nanofiltration are all techniques able to
provide OLEs with high amounts of polyphenols that could be exploited by cosmetic, food,
and pharmaceutical industries.

Because natural active compounds are safer to use than synthetic chemicals, there is a
growing interest in extracting oleuropein from olive leaves. However, the high operational
cost, as well as the toxicity and flammability of the organic solvents usually employed, lim-
its their exploitation. Nevertheless, the utilization of novel techniques, e.g., NADES, might
bring a change [94]. In order to use these extracts for nutraceutical and pharmacological
purposes, another crucial point to address is their bioavailability. In fact, when assumed
orally, secondary metabolites in olive leaf should resist the gastric acid in the stomach
before reaching the bloodstream. However, it has been observed that the amount of OL
and verbascoside at the end of the digestion processes are almost negligible, mainly due
to their chemical instability [95]. On the other side, luteolin-7-O-glucoside (Figure 4) was
fairly resistant to digestion and, therefore, it can be considered an interesting polyphenol
for oral administration.
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The same study also analyzed if different extraction methods could influence the
total amount of obtained polyphenols, either processing the olive leaves by freeze-drying
at −20 ◦C or by hot air drying (70–120 ◦C), although the final concentration was nearly
the same.

In order to determine the total polyphenol content of the leaves, a wide research study
was performed on seventeen cultivars planted in Iran, including some varieties that are
also present in Italy [96]. The total phenolic content and antioxidant activity of the leaves’
extracts were determined, showing that the Coratina cultivar has one of the highest content
of polyphenols and the maximum radical scavenging activity. The OLE composition was
mainly characterized by vanillin, rutin, luteolin 7-O-glucoside, oleuropein, and quercetin.
High OL concentrations were also detected in other cultivars, such as the Mishen, Beleidi,
Kalamon, and Roghani cultivars, while it was not detected in the Conservolea, Amigdalolia,
Leccino, and Fishomi cultivars (Table 3).
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Table 3. Total phenols contents and antioxidant activities of different cultivars of olive leaves extracts.

Cultivars Total Phenol 1 FRAP 2 DPPH 3

Manzanilla 134.50 ± 0.01 1107.71 ± 0.01 33.93
Conservolea 92.35 ± 0.01 1277.33 ± 0.01 62.94
Arbequina 42.35 ± 0.02 1760.57 ± 0.01 62.56

Mishen 71.93 ± 0.01 1971.37 ± 0.01 63.48
Coratina 155.91 ± 0.06 358.66 ± 0.01 22.95
Roghani 121.75 ± 0.02 1400.76 ± 0.01 29.58
Kalamon 190.65 ± 0.03 532.76 ± 0.01 26.74

Amphissis 50.70 ± 0.01 1110.38 ± 0.01 95.39
Yellow 73.85 ± 0.01 1400.95 ± 0.01 53.80

Amigdalolia 42.73 ± 0.01 1341.05 ± 0.01 74.30
Mary 62.24 ± 0.01 1203.81 ± 0.01 60.26

Leccino 59.23 ± 0.01 568.28 ± 0.01 69.30
Shenge 61.97 ± 0.01 614.19 ± 0.01 60.18
Gordal 184.72 ± 0.01 450.86 ± 0.01 20.66

Sevillenca 83.63 ± 0.01 432.19 ± 0.01 34.92
Fishomi 109.98 ± 0.06 1794.57 ± 0.01 32.82

1 Expressed as mg GAE/g dry extract. 2 Expressed as µmol Fe II/g dried extract. 3 Concentration expressed in
IC50: µg/mL.

Itrana, Apollo, and Maurino cultivars were the ones with the highest content of
polyphenols, mainly quinic acid, oleuropein, and luteolin 7-O-glucoside, and also the
ones with the strongest antioxidant activity. Italian olive cultivars, namely Dritta, Leccino,
Caroleo, Coratina, Castiglionese, Nebbio, and Grossa di Cassano were also studied to
determine their OL concentration in the extracts. Leaves from Nebbio, Grossa di Cassano,
and Castiglionese olive trees revealed the highest oleuropein content. On the other hand,
Caroleo, Leccino, and Dritta leaf extracts showed the lowest OL amounts.

Concluding, polyphenols have a wide range of bioactivities, and the olive leaf extracts
could be either used as such in cosmetics, or they could be mixed with olives that are too
ripe to produce oils with great resistance to oxidation, thus using them directly as olive
oil supplements [97]. Alternatively, their phenolic extracts could be employed to produce
dietetic tablets and food supplements, pharmaceuticals, and also to improve the shelf-life
of foods.

In general, green leaves seem to have a higher OL content compared to the yellow
ones [98]. Since leaves represent a significant part of the total harvest weight, it is of
paramount importance to exploit them in the best way possible, as already stated, according
to a circular economy approach.

3.5. Biological Activity of Olive Leaf Extracts

Olive leaves have been widely used in popular medicine to treat diseases like fever
and other inflammation-related situations. The ancient Greeks and Romans used OLE
as a natural remedy for treating hypertension. Leaves were also used in the past to
prepare infusions.

It has been shown that olive leaf extract can lower blood pressure in animal models,
alleviate arrhythmia, and exert spasmolytic activity on intestinal muscle [99]. Several
studies attest to the antihypertensive effect of olive leaf extract by reducing systolic and
diastolic blood pressure and even improving plasma TGs and LDL levels. Moreover, the
antihypertensive effect did not show side effects on liver or renal functions in subjects with
stage-1 hypertension, attesting its potential use as a preventive nutraceutical for chronic
diseases [100].

Among the Olea europea L. polyphenols, oleuropein is a secoiridoid present as gluco-
sylated derivatives in the olive fruit, while its dihydroxytyrosol and non-glucosylated sec-
oiridoids were found in the leaf. OLE is a natural supplement that can be used either alone
or in combination with other extracts, mainly in formulations that do not require a medical
prescription. To support the key nutraceutical role of EVOO in the MD, Storniolo et al.
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recently analyzed whether it induced changes on endothelial physiology elements, such as
NO, ET-1, and ET-1 receptors, which are involved in controlling blood pressure [101]. Some
in vitro studies confirmed this action by analyzing a commercial extract on cardiomyocytes
of rabbits’ hearts. As a result, OLE caused a concentration-depended decrease in systolic
left ventricular pressure and heart rate, as well as an increase in relative coronary flow,
maybe because of the direct and reversible suppression of the L-type calcium channel [102].

The vasorelaxant activity of OLE has also been investigated on aorta sections in addi-
tion to the inotropic and chronotropic effects measured on atria [103]. The vasorelaxant
activity was related to the mechanism involving voltage and receptor operated Ca2+ cal-
cium channels. The calcium antagonist activity is always to be considered in addition to
the antioxidant activity and to other mechanisms involved in the same pharmacological
direction, such as the direct effect on endothelium cells. The leaf extract was also shown to
act by reducing the spontaneous contractility of the vessels, thus indirectly acting positively
on the pressure exerted by the blood flow on the vessels [104].

OLE and Hybiscus sabdariffa L. flower extracts also showed calcium antagonistic
properties [103]. Before the idea of formulating a nutraceutical product that synergizes the
two activities, several in vitro and ex-vivo studies were conducted to verify the antagonist
action directed to calcium channels. These two extracts have already been developed in a
nutraceutical product, registered as “Pres Phytum” and already commercialized in Italy.
In particular, the biological activity of the nutraceutical formulation led to vasorelaxant
effects on smooth muscles in different districts of the body (IC50 2.38 mg/mL) and to a
negative chronotropic effect (IC50 1.04 mg/mL) that could be exploited in the treatment of
preclinical hypertension, without leading to a negative inotropic effect.

As we know, natural molecules do not only have an antioxidant effect; but we have
to study and analyze their multitarget profile in order to understand what their real
potential is [105]. Olive leaves phenols also reduce blood pressure with NO bioavailability
modulation that is increased after a 28 day long dietary assumption [106]. Oleuropein and
hydroxytyrosol induced the NO synthase and also had effects on NADPH, which also
augmented the quote of superoxide.

OLE has also been studied in humans, and results are significantly positive in terms of
cardioprotection [107]. When assumed as a dietary supplement (chronic consumption), the
phenolic compounds contained in the olive leaf extract led to a reduction in LDL and TGs
concentration that could be attributed to the antioxidant and calcium antagonist properties,
but, in diabetic people, they also led to a reduction of the glucose concentration, probably
because of the α-amylases inhibition, and to a reduction of glycosylated hemoglobin
(HbAlc) and plasma insulin [106,108].

The anti-inflammatory effect on monocytes, the reduction of adhesion molecules,
such as ICAM-1 and VCAM-1, and the inhibition of platelet aggregation are aspects that
contribute to the cardioprotective effects of olive tree leaves [109]. As reported above, OL
has activity on calcium channels; this evidence opens up new perspectives for using this
molecule in many pathologies and also neurodegenerative diseases, such as Alzheimer’s
disease (AD). In fact, neurodegenerative pathologies are often caused by calcium cy-
totoxicity, and in this case, the olive’s polyphenols, such as oleuropein, could play an
important role.

Several studies have already been performed in this direction, and the results are
encouraging. Transgenic mice (APPswe/PS1dE9) received, from 7 to 23 weeks of age,
50 mg/kg of oleuropein contained in OLE compared to a control diet [110]. OLE-treated
mice showed significantly reduced (p < 0.001) amyloid plaque deposition in cortex and
hippocampus compared to control mice, providing a basis for considering natural and
low cost biophenols from olive as a promising drug candidate against AD. Nevertheless,
additional studies are needed to validate these results and determine the anti-amyloid
mechanism, bioavailability as well as permeability of olive biophenols to the blood brain
barrier (BBB) in AD.
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Oxidative stress certainly contributes to the onset of neurodegenerative diseases. OLE,
in combination with hibiscus flower extract, has been shown to prevent the degeneration of
cerebral cells following insult in vitro studies, thus exerting a neuroprotective action [111].
The action of the pool of molecules that these extracts contain is related to the bioavailability
often impaired by oral administration. With a “drug like” approach, the components of
the phytocomplexes were tested for their ability to permeate the BBB using an in silico
predictive model. Oleuropein, contained in the mix, was shown to be able to pass the
BBB and, using adequate doses of leaf extract, it was possible to reach biologically active
concentrations in the brain, demonstrating the neuroprotective efficacy in the brain and its
permanence even after oral intake, as confirmed by in vivo studies [63].

The anti-inflammatory effect of OLE has been investigated by screening all dis-
eases in which inflammatory mechanisms are involved. In order to demonstrate the
anti-inflammatory properties of OLE on upper respiratory illness (URI), very common
among teenagers and especially in young athletes, a study was performed on high school
students by treating for nine weeks the groups either with 100 mg of oleuropein or with
placebo [112]. The young athletes were monitored during training, and the illness incidence
was the same in both groups, but the treatment with OL led to a reduction of the sick days,
resulting in a quicker recovery.

OLE also plays an important role against osteoarthritis (OA) [113]. A study revealed
as an olive oil supplemented diet could improve cartilage recovery after anterior cruciate
ligament transection [114]. In particular, the polyphenols inhibited the development of
proinflammatory cytokines, including IL-1β, TNF-α, IL-6, and prostaglandin E2, and other
synthetic pathways involved in the development and progression of OA [115,116].

Table 4 summarizes the principal biological activities of OLE reported in the literature.

Table 4. Biological effects of olive leaf extracts (OLEs).

Disease Type of Experiment Dose Effects

Hypertension [100] Human clinical trial 1000 mg OLE/die

Lowering systolic and
diastolic blood pressures,
significant reduction of
triglyceride (TG) levels.

Atherosclerosis [107] in vivo 100 mg OLE/kg body weight

Reduction of the levels of
cholesterol, TGs, and LDL

cholesterol, and block of the
inflammatory response.

Thrombosis [109] in vitro 1% v/v OLE Significant dose-dependent
reduction in platelet activity.

Hypocholesterolemia [111] Human studies 1.2 g OLE/die Reduction of total cholesterol,
decreased LDL cholesterol.

Diabetes [106,108] in vitro IC50 = 4.0–0.02 mg/mL OLE
Inhibition of the activities of
α-amylases from human

saliva and pancreas.

Human clinical trial 500 mg OLE/die Significant reduction in
HbA1C values.

Alzheimer [110] in vivo 50 mg OLE/kg
Reduction of amyloid plaque

deposition in cortex and
hippocampus.

Upper respiratory illness [112] Randomized controlled trials 100 mg oleuropein/die Reduction of the sick days, i.e.,
acceleration of the recovery.
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3.6. Cosmetic Formulations of Olive Leaf Extracts

Cosmetic products currently on the market often contain “Olea europaea Leaf Extract”,
whose composition includes the presence of TY, HT, OL, and other flavonoids, such as lute-
olin and apigenin. Some studies attested the strong antioxidant activity of OLE on the skin;
for example, oleuropein formulations highlighted lenitive efficacy by reducing erythema,
transepidermal water loss, and blood flow of about 22%, 35%, and 30%, respectively [117].

The rejuvenating effect of OLE in cosmetics was also studied on 36 people who used a
particular cream containing the extract “SUPERHEAL™ O-Live Cream” (PhytoCeuticals,
Inc, USA) [118]. After two months of daily applications, OLE led to an amelioration in
overall skin condition concerning hydration, wrinkle state, and erythema conditions, as
determined by measuring several physiological parameters, such as melanin and ery-
thema index, transepidermal water loss, skin hydration, skin pH, sebum level, texture,
and wrinkles.

Another important aspect that can be considered about a cosmetic activity is the
photoprotective effect of polyphenols. This potential effect has been studied in oral and
topical photoprotection. There is a lot of interest in researching natural sunscreen, also
considering the low impact on the environment. An in vitro assay on sun protection
factor (SPF) and molecular model studies of UV absorption supported the use of OLE as a
photoprotective, antioxidant, and antimutagenic agent.

Skin cancer is one of the most common types of cancer, and it is becoming more
impactful day by day. In this regard, the scientific world is trying to find a valid way of
prevention that can fight even less severe reactions from sun exposure, such as erythema,
photoaging, and immunosuppression [119,120]. Finding a 100% preventive photoprotective
filter from natural sources—and also from waste—could be a great starting point for the
development of some preventive products able to reduce the frequency of this type of
chronic disease.

3.7. Secondary Metabolites and Biological Activity of Kernel and Seed Extracts

Olive stone is a lignocellulosic material, with hemicellulose, cellulose, and lignin that
are the main components. Olive stones are obtained by separation of the pulp from the
kernels by means of two different technologies, both before the EVOO extraction process
(through the employment of the destoner [121] separating the whole kernel from the fruit)
and after the EVOO extraction process (through olive pomace depicting machine). The
utilization of the lignocellulosic material from olive stones in biofuel production has been
recently reported [122].

Alu’datt et al. optimized various extraction conditions and characterized the phenolic
olive seed compounds as well as their antioxidant activity [123]. Their research revealed
that the free phenolic forms were predominant in olive seeds. In 1998 Fernández-Bolaños
et al. analyzed both the water-soluble non-carbohydrate compounds obtained by steam
explosion, such as sugar degradation compounds (furfural and hydroxymethylfurfural),
lignin degradation compounds (vanillic acid, syringic acid, vanillin, and syringaldehyde),
and phenolic olive fruit compounds (TY and HT) [124]. As a result, they observed that
the concentration of hydroxytyrosol was higher than that of the other compounds. In
addition, they noted that the amount of HT increased by raising both steaming temperature
and time. Rodríguez et al. later confirmed olive stone as an attractive source of bioactive
and valuable compounds due to the presence of polyphenols and polyols [125]. They
also explored various potential uses of this EVOO by-product, such as activated carbon,
furfural production, plastic filled, abrasive, cosmetics, biosorbents, animal feed, and resin,
discussing the application of this material based on each component.

González-Hidalgo et al. analyzed the composition of TY, HT, OL, and tocopherol
and the antioxidant activity in different fractions of the main by-product from the table
olive canning industry (i.e., the stone with some residual olive flesh) [126]. The highest
polyphenolic concentration (1710.0 ± 33.8 mg/kg), as well as the highest antioxidant
activity (8226.9 ± 9.9 hydroxytyrosol equivalents mg/kg), were observed in the seed olive.
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The highest amounts of HT (854.8 ± 66.0 mg/kg) and TY (423.6 ± 56.9 mg/kg) were
registered in the whole by-product from the pepper stuffed olives, while the maximum
OL content (750.2 ± 85.3 mg/kg) was reported in the stone without seed. In particular,
α-tocopherol values of 79.8 ± 20.8 mg/kg and 6.2 ± 1.2 mg/kg were registered in the
seed olive stone and in the whole by-product from the anchovy-stuffed olives, respectively.
In light of these results, the use of table olive by-product could be a source of natural
antioxidants in food, cosmetic, or pharmaceutical products. In addition, table olive by-
product revaluation could help to diminish their environmental impact.

Recently, Sibel Bolek proposed to replace wheat flour with olive stone powder, rich
in fiber and antioxidants derivatives, in biscuit production, to explore its effect on the
rheological characteristics and quality of dough [127]. They added 0%, 5%, 10%, and 15%
of olive stone powder in place of the same amounts of wheat flour. As a result, wheat
flour replacement with olive stone powder increased the antioxidant activity, as well as
fat and fiber content of sample biscuits. In particular, 30.44% ± 0.03% DPPH radical
scavenging activity, 11.22% ± 0.09% crude fiber, and 26.32% ± 0.22% fat were quantified by
substituting wheat flour with 15% olive stone powder. Furthermore, the authors showed
that a replacement of wheat flour with up to 15% olive stone powder did not cause any
alteration to the biscuit sensorial properties.

However, olive fruits present large variability in composition. Khadem et al. inves-
tigated the physicochemical properties and bioactive contents of whole olive stone oils
extracted from six olive varieties, namely Zard, Roughani, Mari, Shengeh, Koroneiki, and
Manzanilla, cultivated in the city of Fasa, Iran [128]. They analyzed fatty acids, sterols, and
triacylglycerols contents, equivalent carbon number, saponification, iodine, unsaponifiable
matter values, and phenolic contents, concluding that, despite the great variability in the
whole olive stone oils composition among the six cultivars, whole olive stone oils could be
used as a natural source of polyphenol compounds for human consumption.

Lama-Muñoz et al. proposed a multi-step process that could allow an integral use of
olive stone from the point of view of a biorefinery plant [129]. They proposed an initial
aqueous extraction at 130 ◦C for 90 min without acid addition and a solid:liquid ratio of 1:2
(w/w), useful to recover liquors with higher phenolic content and antioxidant capacity. This
first step provided a double benefit: to separate phenolic compounds potentially useful in
cosmetic, pharmaceutical, and food industries and to recover biomass of possible inhibitors.
In a second time, olive stones were exposed to further treatment with 2% (w/v) sulfuric
acid to obtain the maximum amount of fermentable sugars, mainly xylose, with a low
content of compounds such as formic acid, furfural, and hydroxymethylfurfural, able to
inhibit fermentative microorganisms involved in bioethanol production. The remaining
olive stone was particularly rich in cellulose and lignin, and it could be subjected to enzy-
matic hydrolysis to achieve glucose in high yields. Glucose could be then converted into
bioethanol or into other products, such as poly(3-hydroxybutyrate) and hydroxymethyl-
furfural. The final lignin-enriched solid could be converted into phenols, biopolymers, or
fibers or directly used for energy production. The authors thus concluded that olive stone
might be considered as an excellent feedstock for biorefinery plant development. A review
written by Ruiz et al. in 2017 described the most recent proposals for the use of biomass
derived from olive tree cultivation and olive oil production processes [130].

Spizzirri et al. obtained an ethanolic extract with antioxidant properties to be used in
the food and cosmetic industry as a functional food and nutraceutical additive, starting
from the olive stones discarded from the EVOO production [131]. The efficiency of the
multi-step extraction method was evaluated by quantifying the recovery yield and the
total phenolic compounds for a series of solvents with different polarities. Flavonoids were
shown to represent about 60% of phenolic antioxidants. The antioxidant activity of the
alcoholic fraction was then determined by DPPH assay, showing a good efficiency already
at low concentration (IC30 of 0.060 mg/mL). In addition, the extract showed an interesting
ability to preserve β-carotene from lipidic peroxidation (IC30 of 1.30 mg/mL).
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4. Olea europea L. By-Products for Zootechnical Feeding

In addition to their use as health-promoting compounds, by-products of the olive oil
industry could also represent a source of ingredients for zootechnical feeding. Feeding
innovations based on the utilization of these bioactive-rich by-products can reduce enteric
emissions in ruminants while improving the nutritional composition and shelf-life quality
of meat and meat products, simultaneously improving environmental sustainability [132].
The by-products of olive oil production, which represent an important environmental
issue in the Mediterranean area, can be valorized in the livestock sector according to the
‘pyramid of the value of the bioeconomy’, which favors the use of functional ingredients of
high value for animal nutrition. In this regard, the content of poly-unsaturated fatty acids
is improved in oils for human consumption, while saturated fatty acids are employed for
animal feeding. This makes the food healthier for humans while simultaneously reducing
feeding costs and the environmental impact of livestock [133,134].

Furthermore, the animal diet deeply influences the quality of the animal meat and
derived products and, consequently, the quality of the human diet and health. An animal
diet enriched with polyphenols olive oil waste could represent a sustainable approach both
for reducing adverse environmental effects of these wastes and for improving the quality
of the products of animal origin.

It is important to underline that the use of olive pomace, containing appreciable
amounts of oil, has already been considered a feasible strategy to influence the quality
of meat [135]. OMW has also been exploited for animal feeding. Gerasopoulos et al.
separated, by means of a microfiltration method, the two liquid products from olive
mill wastewater, i.e., the downstream permeate and the upstream retentate, and, after
characterization, incorporated them into broilers’ feed [136]. By measuring oxidative stress
biomarkers in blood and tissues, they noted that broilers given OMW-supplemented feed
had significantly lower levels of protein oxidation and lipid peroxidation and higher total
antioxidant capacity in plasma and tissues compared to the control group. As already
known, an antioxidant status able to reduce the stress level in broiler chickens could
improve meat quality [137].

In order to improve growth performance and feed digestibility of pigs and pork meat
quality, Paiva-Martins et al. investigated the supplementation of animal feeds with olive
leaves [138]. Unfortunately, they observed that pigs fed diets with olive leaves showed
a lower daily weight gain and a decrease in overall backfat compared to pigs fed by the
conventional diet. However, chops from pigs fed the leaf diets had lower peroxide and
conjugated diene contents, a lower drip loss, and an improved oxidative stability thanks to
a significantly higher α-tocopherol concentration in intramuscular fat and backfat.

Milk quality is also affected by the introduction of by-products from the olive oil
industry in animal feeding. Arco-Pérez et al. assessed the effect of the partial replacement
of the forage in the diet with olive by-products in goats feeding obtaining milk with higher
amounts of vaccenic, eicosadienoic, and conjugated linoleic acid, valuable molecules
with several beneficial effects, with the concomitant improvement of the animal meat
quality [139]. On the other hand, Branciari et al. investigated both the nutraceutical profile
and quality characteristics of the cheese deriving from sheep feed with an OMW-enriched
diet [140]. The polyphenol supplementation yielded TY and HT sulfate metabolites both
in the obtained milk and cheese derivatives, also providing a direct antioxidant effect on
cheese without modifying its chemical composition.

Kerasioti et al. studied the tissue specific effects of feeds supplemented with OMW on
detoxification enzymes in sheep, which resulted in an increased glutathione S-transferase
activity in the liver and spleen and a decreased γ-glutamylcysteine synthetase expression
in the liver, without affecting the superoxide dismutase activity in both tissues [141]. The
authors concluded that the beneficial effects of the OMW-enriched feeds were tissue-
and developmental stage-specific. Instead of using OMW, Musawi et al. conducted a
study to investigate the effect of ground olive leaves supplementation on milk yield and
composition, as well as on some blood biochemical parameters, in goats [142]. Although
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the diet had no significant effect on the average animal body weight, the milk production
was significantly increased in goats fed with 2% olive leaves powder. Nevertheless, milk
compositions (lactose, protein, and fat percentage) and energy value, as well as blood and
biochemical parameters of the ruminant, did not vary significantly from the control group.

Similar to milk and cheese, egg quality is affected by the introduction of by-products
of the olive oil industry in animal feeding. Zangeneh and Torki evaluated the performance
of laying hens fed with olive pulp [143]. Although the olive pulp-included diet had no
significant effect on overall egg production and mass, eggshell weight was higher than that
of the birds fed with the control diet, suggesting no deleterious effects on bird’s performance
but yielding more resistant eggs. Cayan and Erener also conducted an experiment aimed
at measuring the effects of olive leaves powder on performance, egg yield, egg quality,
and yolk cholesterol level of laying hens [144]. In this case, the authors noted that the
supplementation had no effect on feed intake and egg weight and yield, but it significantly
increased the final body weight of hens. Furthermore, the dietary olive leaves powder
increased yellowness in yolk color and decreased its cholesterol content by about 10%.

5. Conclusions

It is well-known that EVOO and the by-products of its production are an important
source of bioactive compounds, e.g., polyphenols and other secondary metabolites, that
contribute to reducing cellular oxidative stress and inflammation, thus potentially sup-
porting the resolution of many pathologies. Although the beneficial effects of EVOOs are
recognized, e.g., in the Mediterranean Diet, currently, olive by-products are not yet properly
exploited, except for a few cosmetic formulations on the market. In fact, there are many
regulatory obstacles that prevent these by-products, still considered waste, from re-entering
the food or nutraceutical formulations sector. Nevertheless, both olive mill wastewater and
olive leaves extracts have already demonstrated peculiar properties. Similarly, kernel and
seed extracts were shown to have great potential as nutraceuticals and cosmeceuticals. In
addition, besides the direct exploitation for human purposes, all these by-products could
be easily employed in animal feeding, thus positively affecting the quality of products for
human consumption, e.g., milk, cheese, eggs, and meat. As such, their exploitation would
benefit both our health and that of the environment by reducing their waste disposal. With
the aim of favoring the transition from a linear to a circular economy within the olive mills,
a revision of the legislation, an improvement of the environmental governance, and the
identification of economic tools is needed for creating adequate incentives for adopting
circular and sustainable production and consumption models, and also promoting the
transition towards environmental tax reform. Although this project is quite ambitious and
time-consuming, we hope that research studies devoted to demonstrating its feasibility,
similarly to those reported in this review article, will contribute to its realization.
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