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Abstract: In the last years, a change in the power generation paradigm has been promoted by
the increasing use of renewable energy sources combined with the need to reduce CO2 emissions.
Small and distributed power generators are preferred to the classical centralized and sizeable ones.
Accordingly, this fact led to a new way to think and design distributions grids. One of the challenges
is to handle bidirectional power flow at the distribution substations transformer from and to the
national transportation grid. The aim of this paper is to review and analyze the different mathematical
methods to design the architecture of a distribution grid and the state of the art of the technologies
used to produce and eventually store or convert, in different energy carriers, electricity produced by
renewable energy sources, coping with the aleatory of these sources.

Keywords: distributed generation; dispatchable DG; power loss reduction; energy storage systems;
renewable energies; hydrogen production

1. Introduction

Nowadays, one of the major challenges in the energy field is dealing with the continu-
ously increasing of energy demand and, at the same time, to realize a massive reduction in
CO2 emissions with the objective to reach the zero-net emissions in power generation. The
urgency of this need is driven by the increasing effects that greenhouse gasses have on the
global average temperature. In this way, the Paris Agreement sets out a global framework
to limit the increase to 1.5 ◦C in global average temperature [1] as the global warming has
consequences on societies, affecting food distribution, nutrition, public health, poverty,
etc. and on ecosystems living on the planet [2]. In this scenario, there are two different
pathways to achieve this goal: the first one is to pursue an increase in the energy efficiency
use in the processes and in the technologies in industrial plants as well as in the residential
scale, and the second one is to shape the power generation transition from a fossil fuel
centered model to renewable, sustainable, and zero-emissions ones.

Energy efficiency, counteracting the whole energy demand from any source, can also
decrease greenhouse gas emissions for any process which involves fossil fuels. In 2019, the
global energy demand registered a limited increased by 0.9%. Slower economic growth and
milder weather conditions can explain this phenomenon, but an improvement in energy
efficiency has been registered as well [3].

On the other hand, renewable power generation has experienced a constant increase in
the last years and, according to IEA, starting from 2040 the amount of electricity generation
will be equally split between Renewable Energy Resources (RER) and fossil fuels [4]. Nowa-
days, the rate of construction of new large-scale power plants is hampered by huge capital
costs, environmental constraints, and excessive transmission costs [5]. Therefore, small-scale
distributed solutions, with their high penetrations, are preferred and, in this new panorama,
Distributed Generators (DGs) based on RER are leading the new paradigm to think power
generation and consequently power distribution. However, it is better to underline that DGs
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does not directly imply the usage of RER, indeed IEA defines a DG as an electricity source
that is directly connected to the distribution network to supply a local consumer and support
the distribution network [6]. The former examples of DGs are fossil fuel-based, i.e., internal
combustion engines, gas turbines, microturbines, etc. In recent years, the DGs’ family has
been enlarged by RER-based ones, for example, wind, geothermal, solar both as photovoltaic
and thermodynamic solar plants, ocean, fuel cells, biomass, etc.

The success of renewable DGs can be explained by technical, economic, and envi-
ronmental advantages. Under the technical point of view, DGs assure grid strengthening,
lower power loss, higher reliability, voltage stability, power quality enhancement, and
supply security, and on the other hand, DGs can lead to a reduction in transmission and
distribution operating costs and fossil fuel cost savings, because in some cases renewable
resources are free and they benefit of a large availability. Finally, the reduction in green-
house gas emissions and conservation of natural resources are the major effects of the
environmental benefits of RER-based DGs implementation [7–13]. Nonetheless, DGs also
have drawbacks, the technical benefits which guarantee their success can easily turn into
their disadvantages, indeed an incorrect DG sitting within the network can lead to an
increase in power losses as well as to undesired fluctuations in the voltage and frequency of
the network. Therefore, the correct DGs placement and sizing have a decisive role in their
implementation [14,15]. Furthermore, the regulatory frameworks can limit the Distribution
Networks Operators (DNO) to exploit distributed generation, for example by establishing
dispatching priorities. This depends on if DGs have a “firm” or “non-firm” connection, i.e.,
the ability to curtail the power output at low demand.

This last aspect is also related to the aleatory availability of the RER, especially for the
solar and wind resources, and to stochastic approach in their sizing, which obliges in some
regulatory choices in their dispatchment [16,17].

In this context, it is inevitable to accumulate the produced energy and to redistribute to
the grid in the periods when the renewable source is not available, enhancing the capacity
of the transmission lines. Energy Storage Systems (ESS) can help the distribution network
in terms of voltage and frequency fluctuations, but also increasing the power quality and
reliability of the grid [18,19]. However, the high capital costs of the commercial solutions
and the evolving nature of the ESSs technology, which is still far away from its maturity
stage, are limiting their large implementing in the distribution networks.

The present work aims to treat these two fundamental problems to move from a
centralized power production model to a distributed one. In other words, this paper analy-
ses both the mathematical model side related to the sizing and placement of Distributed
Generators within a distribution network together with the analysis of the state-of-the-art
of the technologies currently available among the ESS. Jointly analyzing the literature
relating to these two macro topics, which have been dealt with separately so far, is the first
step necessary to develop a methodology that allows identifying the best combination of
DGs and ESS for the sizing of a distribution grid, as the integration of the ESS within the
mathematical model of a distribution network inevitably passes through the constitutive
equations, valid for the particular technology considered.

In the next section, therefore, a review of distribution network optimization methods,
focusing mainly on analytical methods comparing performance and numerical results, has
been carried out. One of the greatest difficulties in comparing the different optimization
methods lies in finding a base case on which evaluating the performance of the proposed
models. In the literature, it is difficult to find a shared Bus Test System; therefore, the
results obtained from the different models are difficult to interpret and difficult to directly
compare. The present work, therefore, aims to overcome this difficulty by proposing in
Section 2.3 two different Bus Test Systems: the IEEE 33 and IEEE 69 Test Systems on which
evaluating and comparing the results of the examined models. The last section, on the other
hand, proposes to carry out an analysis, even if not exhaustive, on the various technologies,
currently available, to accumulate energy, cataloging them according to technological
maturity and current investment costs.



Energies 2021, 14, 4270 3 of 43

2. Optimization Methods for Correct Placement of Renewable Distributed Generators

The correct sizing and siting of a renewable DG are key factors for the success of
distribution grid enhancing its reliability and quality. There are several aspects to be taken
into account, such as technical constraints, economic drivers, and the operation philosophy
of the grid. All of them contribute to generate a nonlinear multivariable optimization
problem [20]. To solve the optimization problem, it is fundamental to clearly define the
Objective Function (OF) (Equation (1)) to be maximized or minimized under the chosen
constraints (Equations (2) and (3)) for the case study:

f (x) = f (g1(x), g2(x), g3(x), . . . ..gn(x)),x ∈ A (1)

hi(x) = 0, i = 1, . . . ..n (2)

mi(x) ≤ 0, i = 1, . . . ..n (3)

The formulation of the OF is strictly related to the optimization problem to be solved.
It could be a technical optimization, for example, power loss minimization, or could be a
OF designed for operating costs reduction or could be tailored for environmental purposes
or as well it could be a combination of all these perspectives. The OF could be also single
objective or multi-objective, where various OFs are maximized or minimized in parallel [21].
Mathematically a multi-objective problem can be harsh to implement and difficult to solve
as it can lead to conflict, for example, the DGs capacity maximization OF, the optimization
result leads to an increase in losses and in an increase of greenhouse emissions [22]. In the
literature, different methods used to find the correct solution for the optimization problem
can be found, but they can be reconducted to three main categories: Conventional Methods,
Heuristic Methods, and Hybrid Methods.

Conventional methods group all those methods, which, based on analytical forms
or methods of linear and nonlinear programming, were among the first to be used for
the solution of electrical network optimization problems. This category includes OPF
methods, analytical techniques, Mixed-integer linear programming and Mixed-integer
nonlinear programming. The main strength of this type of method lies in the ability to
identify the optimal solution to the problem at the expense of their reduced scalability as a
function of the complexity of the system under study: the more the distribution network is
complex and the more parameters to be inserted in the model, the greater the difficulty of
implementing the method and the greater the computational effort.

Heuristic methods, or intelligent methods, exploit various concepts or principles
aimed at manipulating the solution space to solve the problem under consideration. Exam-
ples of this class of methods are Genetic algorithms that exploit the principles of genetics
and natural selection, Particle Swam Optimization that is based on the principles that
regulate bird flocks, Tabu Search based on the concepts of responsive exploration and
adaptive memory and the Ant Colony Optimization that transposes the behavior of insects,
capable of finding the shortest way to reach food, in an algorithm, which converts the
optimization problem in a “shortest path” problem, by means of weighted graph in which,
iteratively, each virtual ant, randomly going through the graph, builds a solution. Each
solution will be compared through the virtual pheromone function test, which will identify
the shortest and fastest solution. This type of method is characterized by the particular
simplicity by which the problem is formulated and by their excellent scalability. However,
they are very sensitive to the formulation of the problem and in the definition of descriptive
parameters and show the tendency to find near-optimal solutions that are susceptible to
being trapped in local optimum solutions.

Finally, there is a third category called Hybrid Methods, which is a combination of
Conventional Methods and Heuristic Methods. The main intent of this category is to try to
combine the strengths of each method in order to obtain a better convergence and stability
of the solution. In Table 1, the categories shown are represented with a list of the strengths
and weaknesses of each belonging method and the OFs taken into consideration [23,24].
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Table 1. Classification of different methods for optimization problems.

Category Method Advantages Weakness Objective Function References

Conventional
Methods

Optimal Power Flow
(OPF)

- Accuracy deals well with the
computational effort

- Consider the technical grid effort
defining the optimal operating cost

Closed formulation of problem,
the model is not flexible to

inclusion of various parameter

- Minimize power losses
- Maximize DG capacity
- Maximize social welfare and

maximize profit

[25–36]

Analytical Techniques

- Computationally efficient
- Easiness in implementation
- Not iterative
- No convergence issues.

The formulation of the problem
can affect accuracy in complex

problems.

- Minimize power losses
- Minimize power losses and voltage

deviation
- Minimize annual energy losses
- Maximize profit
- Maximize power quality
- Maximize DG penetration

[37–48]

Mixed-integer linear
programming

- Easily implementable
- Suitable for complex problems
- Comparatively flexible

Inaccuracies because of
linearization

- Minimize costs and Maximize
profits

- Minimize annual investment and
operation costs

[49–55]

Mixed-Integer nonlinear
programming

- Higher accuracy
- Short computation time

- Implementation not easy
- Requires several decision

variables

- Minimize power losses and
improve voltage stability [56]

Heuristic
Methods Genetic Algorithm

- Find the global optimum to a variety
of functions

- Derivates not employed
- Suitable for discrete and continuous

parameters
- Complex and not well-defined

problems do not affect the solution
- Bad solutions do not invalidate the

end solution

- Computationally inefficient
for complex problems

- Possibility of premature
convergence being trapped
into local optima

- Can be inaccurate

- Minimize voltage stability margin,
minimize line losses and voltage
deviation

- Minimize total costs
- Minimize power losses and voltage

deviation

[57–86]
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Table 1. Cont.

Category Method Advantages Weakness Objective Function References

Simulated Annealing
- Simple implementation
- Robust
- Accurate for combinatorial problems

- Can be trapped in local
optima and no information
about the distance from the
global optimum

- Computationally inefficient
- The initial configuration

influences the local optima

- Improve system reliability and
minimize expansion costs

- Minimize power losses and
improve voltage profile

[87–92]

Heuristic
Methods Ant Colony Optimization

- Suitable for parallel population
searching

- Rapid discovery of good solutions
- Can adapt to changes
- Convergence

- Theoretical analysis is not
easy

- Probability distribution can
change for each iteration

- Time to reach the
convergence is uncertain

- Have dependent sequences
of random decisions

- Maximize system reliability and
minimize annual system costs

- Minimize power losses, improve
voltage profile and feeder load
balancing

[73,93–100]

Particle Swam
Optimization

- Simple implementation
- Suitable for parallel computation
- Robust
- Fast convergence
- Computational efficient
- Efficient for solving problems where

the mathematical models are not easy
to implement

- Initial parameters
definition is harsh

- Can be trapped into local
optimum

- Difficulties to solve
scattering problems

- Minimize power losses and
improve voltage profile

- Minimize power losses
[101–121]

Tabu Search

- Suitable for complex problems
- Explicit memory
- Suitable for discrete and continuous

parameters

- Dependence on strategy for
Tabu list manipulation

- Can be trapped in local
optima

- Computationally inefficient
- The global optimum

depends on parameter
settings

- Minimize power losses
- Minimize total operational costs [73,122–127]
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Table 1. Cont.

Category Method Advantages Weakness Objective Function References

Hybrid
Methods

OPF and Genetic
Algorithm

- Explores different DGs combinations
over a given time horizon

- The initial configuration
influences the local optima

- Need to develop
probabilistic model for RER

- Reduce the cost of active and
reactive power [128–131]

OPF and Analytical
Techniques

- Fast convergence
- High accuracy
- Can deal with highly constrained

problems

- Need to develop
probabilistic model for RER - Minimize power losses [41,132]

Genetic Algorithm and
Tabu Search

- High accuracy
- Fast convergence

- Need to develop
probabilistic model for RER

- Dependence on strategy for
Tabu list manipulation

- Minimize the losses [133]
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Among all the methods this paper analyses the conventional ones, in particular it
outlines the Analytical Techniques and the Optimal Power Flow methods.

2.1. Analytical Techniques

In the analytical techniques, the OFs are based on mathematical or theoretical formulas
which model the variable or a set of variables to describe the distribution network behavior
under defined constraints. The most common ones are exact loss formula, loss sensitivity
factor, branch current loss formula, branch power loss formula, equivalent current injec-
tions, and phasor feeder current injection. In the literature, few references about branch
current loss formula, branch power loss formula, equivalent current injections, and phasor
feeder current injection can be found [24]. For this reason, this paper focuses on the exact
loss formula and loss sensitivity factor methods

2.1.1. Exact Loss Formula

This method is based on the power losses formula, reported as follows [134]:

PL =
N

∑
i=1

N

∑
j=1

[
αij
(

PiPj + QiQj
)
+ βij

(
QiPj − PiQj

)]
(4)

αij =
rij

ViVj
cos
(
δi − δj

)
(5)

βij =
rij

ViVj
sin
(
δi − δj

)
(6)

Pi = PDGi − PDi (7)

Qi = QDGi −QDi (8)

Rearranging (Equation (4)) using (Equations (7) and (8)):

PL =
N
∑

i=1

N
∑

j=1
[αij ((PDGi − PDi)Pj + (QDGi −QDi)Qj + βij((QDGi −QDi)Pj

−(PDGi − PDi)Qj)]

(9)

(Equation (9)) then will be minimized imposing

∂PL
∂Pi

= 2
N

∑
i=1

(
αijPj − βijQj

)
= 0 (10)

(Equation (11)) is derived from (Equation (10)):

Pi =
1

αii

[
βiiQi +

N

∑
j=1,j 6=1

(
αijPj − βijQj

)]
(11)

Finally, using (Equation (7)), the following equation is obtained:

PDGi = PDi +
1

αii

[
βiiQi −

N

∑
j=1,j 6=1

(
αijPj − βijQj

)]
(12)

The base algorithm, applied to the Exact loss formula methods, contemplates comput-
ing the power losses in the distribution network before placing the DGs simply running
(Equation (4)). The second step is calculating the DG optimal size at each bus based on
(Equation (12)). The third and fourth steps realize a bus priority list, ordered from the bus
with the lowest power loss to the higher one, after substituting at each bus per time the DG
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unit with its optimal size and calculating the related power losses. The optimal locations to
place the optimal sized DGs are selected from the priority list.

In the literature, analytical techniques, based on the exact loss formula, try to improve
the computational efficiency when the impedance matrix or Jacobian matrix when large-
scale distribution networks are considered [24], to adapt these calculations to the different
type of DGs, because the particular nature of the DG has decisive influence on the total
power losses of the networks. Duong et al. [135] propose an iterative analytical method
that can be applied to generators capable of delivering both active and reactive power.
The different types of generators with their constitutive equations are listed in Table 2. At
each iteration, (Equation (4)) is minimized by applying the equations in Table 2 for each
generator. For each node i, (Equation (4)) must be solved twice: the first to calculate the
base case and the second to establish the generator size. To identify the correct power factor,
the method proposes two types of approaches: the first, being faster, consists in matching
the power factor of each generator to the overall power factor of the loads (Equation (13))

PFDGi = PFD (13)

where the overall loads power factor is expressed as

PFD =
PD√

P2
D + Q2

D

(14)

PD =
n

∑
i=1

PDi QD =
n

∑
i=1

QDi (15)

The generator power factor is expressed as

PFDGi =
PDGi√

P2
DGi + Q2

DGi

(16)

The second case, instead, involves an iterative calculation, as the power factors of
some DGs are made to vary by small steps around the power factor value of the combined
loads. Finally, the power factor values are compared with the constitutive equations in the
table and the values that produce lower power losses are chosen. Figure 1 shows the flow
chart which summarizes the logical steps of the proposed method.

Table 2. Constitutive equations for different generator types.

Type 1
DG Injects Active and Reactive Power

Type 2
DF Injects Active and
Consumes Reactive

Power

Type 3
DG Injects Only Active Power

Type 4
DG Injects Reactive Power

PDGi =
αii(PDi + aQDi)− Xi − aYi

a2αii + αii
(17)

where
QDGi = aPDGi (18)

Xi = ∑n
j=1; j 6=i

(
αij Pj − βijQj

)
(19)

Yi = ∑n
j=1;j 6=i

(
αijQj + βij Pj

)
(20)

a = (sign) tan
(
cos−1(PFDG)

)
(21)

For DG injecting reactive power
sign = +1

The constitutive
equations are the same
of Type 1 generators, the
only difference is in
(Equation (20)).
For DG absorbing
reactive power
sign = −1

PDGi = PDi − 1
αii

∑n
j=1; j 6=i(αij Pj−

βijQj)
(22)

QDGi = QDi − 1
αii

∑n
j=1; j 6=i(αijQj−

βij Pj)
(23)
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The results of the proposed method show how DGs, capable of delivering both real and
reactive power, reduces losses more than DGs which deliver only active power. Moreover, it
was shown also that correct selection of the power factor, in case of DGs capable delivering
both active and reactive power, has a crucial role in power loss reduction.

Duong et al. [136] showed two analytical approaches to identify optimal size and best
siting of renewable DGs, taking into account the time-varying demand (Figure 2) and the
outputs of different RER-based DGs (Figure 3). The first proposed method, called A1, is
based on the Elgered loss equation and is applied in the solution of two case studies. In the
first case, the method is applied to identify the best positioning and the corresponding size
of the generators, assuming as a hypothesis to size the generators on the peak of demand
and therefore not to allow any type of regulation. In the second case, however, the variable
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nature of the demand is considered, and the different characteristics of each DG are taken
into account.
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Figure 3. Daily PV and Wind output curve.

Four scenarios are, therefore, formulated in which three different types of generators
are considered: a PV-based DG and a Wind-based DG, considered with their hourly output
curves, but considered as non-dispatchable resources, and finally a Biomass-based DG,
considered both as a dispatchable and as a non-dispatchable resource. The algorithm used
for the solution of the optimization problem is shown in Figure 4.

The second method proposed, called A2, is based on the “branch current loss formula”.
The active and reactive power can therefore be expressed as

PDGk = −|Vk|
∑k

i=1 IaiRi

∑k
i=1 Ri

(24)

QDGk = −|Vk|
∑k

i=1 IriRi

∑k
i=1 Ri

(25)

The Power loss reduction can be expressed as

∆Ploss =

(
∑k

i=1 IaiRi

)2

∑k
i=1 Ri

+

(
∑k

i=1 IriRi

)2

∑k
i=1 Ri

(26)
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The same algorithm as per Figure 4 can be applied for method A2 by calculating the
active power and reactive power as per (Equation (24)) and (Equation (25)), respectively,
and using (Equation (26)) as objective function to minimize.
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The proposed methods offer near-optimum results, as these numerical results have
been compared with the exhaustive load flow solution. The authors also found that for
non-dispatchable DGs it is difficult to reach the optimal loss reduction in peak conditions.
The strengthen of these methods is that they can easily be implemented in practice in a
smart grid scheme. The efforts to account the time-variability of renewable DGs and a
dynamic load demand in the analytical formulas have a relevant impact on the applicability
of these methods in future scenarios, where the penetration of RER-based DGs is the future
driver for the evolution of distributed networks. Different attempts can be already found
in literature.

Elmitwally [137] presents a new Analytical method (A5) based on the concept of the
load centroid. As in an electrical distribution network it is highly improbable to be able to
position the generator in the immediate vicinity of the load, as it is enslaved to different
loads, the concept of load centroid then proposes to find the electrical equivalent of what
in mechanics is the center of gravity, that is the center of action of a single DG within
which the loads it serves are located. Two methods for calculating the load centroid were
examined, both are based on the estimate of the Performance index (PI) (Equation (27)),
which, by combining the value of the active power loss and the Average Node Voltage
Deviation (ANVD) (Equation (28)) multiplied by a selective weighting factor K, allows to
identify the ideal position for the DG location.

PI = Ploss + K ANVD (27)

ANVD =

∣∣∣∣1− ∑n Vn

NB

∣∣∣∣ (28)

In Figures 5 and 6, the flow charts of the first and second method, respectively, are
presented. Once the load centroid has been found, one can then proceed with the algorithm
proposed by the author to identify the different sizes of each generator by iteratively
calculating the new load centroid after each positioning of each DG. In Figure 7, the logical
scheme of the proposed algorithm is presented.

Hung et al. in [44] proposed analytical expressions to locate and size different re-
newable DG units and calculate the optimal power factor for each unit, considering the
uncertainties of demand and DGs output to minimize the energy losses.

Hung et al. [45] described the functioning of a dispatchable renewable DG (a Pho-
tovoltaic based DG with its battery storage), where the uncertainties of demand and
generation have been accounted by using a self-correction algorithm. The size of the DG
is calculated by minimizing a multi-objective function, which accounts power losses and
voltage deviation. The power losses and voltage deviation multi-objective function are
also used in [42], where it is minimized to find the optimal capacity of PV units in different
load scenarios, matching always the uncertainties of demand and outputs.
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2.1.2. Loss Sensitivity Factor

This method has been widely used to solve the capacitor allocation problem [138],
and its strengthen is a reduction of the solution space by means of a linearization process
of v 5 respect to the initial operating point.

∂PL
∂Pi

= 2
N

∑
i=1

(
αijPj − βijQj

)
(29)

The steps of the method consist in solving the (Equations (4) and (13)) without DGs to
estimate the sensitivity factors at each bus; then the buses, similarly to what done in the
exact loss algorithm, are ranked in a priority list.

The top ranked buses are used first to locate the DGs, and the optimal DGs capacity is
found increasing the capacity until lowest system losses are obtained by solving (Equation (29)).

The process reaches the end when all the bus are used and the bus which results in
minimum power losses is selected as optimal DG location. The drawbacks of this method
result in several iterations in calculating the power losses, which can limit the spread of
this method in problem scale-out [38].

Kashem et al. [139] applied the sensitivity analysis on active and reactive power to
calculate the site and size of DGs. The results show not only a benefit in enhancing the
penetration of DGs, but also that the decrease in power losses is much higher if a proper
DG planning is performed.

Mirzaei et al. [140] considered different RER based DGs and the optimum capacity
was calculated taking into account a hybrid analytical technique, based on the sensitivity
analysis, combined with the continuous power flow method.

In fact, the method proposes to insert the maximum loadability (λmax) in the calcu-
lation of the active and reactive power to take into account the collapse point (CP) of the
voltage. If considered the Voltage-Loading Parameter (λ) dependency, the stability of the
voltage is a function of the current circulating in the branch up to the point of collapse of the
voltage. The presence of a DG causes an increase in voltage at the bus, as injecting active
power into the bus results in a decrease in reactive power, with a consequent extension of
the collapse point towards higher load values. Therefore, applying the Voltage-Loading
Parameter (λ), the trend of the active, and reactive power become, respectively,

PD = Poi
D + λPCPF

D (30)

QD = Qoi
D + λQCPF

D (31)

Thus, rearranging (Equations (30)) and (31) with (Equation (7)) and taking into account
the variability of the power factor as a function of the different types of generators, we
obtain the following constitutive equations:

(1) Generators capable of injecting only active power:

PDGi =
(

Poi
Di + λiPCPF

Di

)
+

1
αii

[
βiiQi −∑N

j=1,j 6=i

(
αijPj − βijQj

)]
(32)

(2) Generators able to input only reactive power:

QDGi =
(

Qoi
Di + λiQCPF

Di

)
+

1
αii

[
βiiPi −∑N

j=1,j 6=i

(
αijQj − βijPj

)]
(33)
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(3) Generators with mixed power factor:

PDGi =
(

Poi
Di + λiPCPF

Di
)
−

 1

αii×
(

1+
√

1−PF2
PF2

)


×
[

αii ×
√

1−PF2

PF2

(
Qoi

Di + λiQCPF
Di
)

−∑N
j=1,j 6=i

(
αij

(
Pj +

√
1−PF2

PF2 Qj

)
−βij

(√
1−PF2

PF2 Pj −Qj

))
]

(34)

Therefore, starting from the aforementioned mathematical treatment, the authors
propose the following solution algorithm in Figure 8.
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The results show a decrease in power losses and an increase of the network voltage
stability.

2.2. Optimal Power Flow

The optimal power flow approach was discussed firstly by Carpentier in 1962 [141],
and its main scope is to define the optimal operating state to instantaneously operate and
control a power network under constrained conditions. The OPF method in the “reverse



Energies 2021, 14, 4270 18 of 43

loadability” approach is able to size the DGs capacity and to find their optimal locations
to minimize the power losses and decrease the operational cost [11]. From 1962, a variety
of OPF versions have been proposed so far. Mathematically, the OPF models can be
expressed as an objective function (Equation (1)), subjected to specific constraints as per
(Equations (2) and (3)).

Mahmoud et al. [41] proposed a new mixed analytical-OPF method which dramatically
decrease the computational time for solving the optimization problem of the correct design
of a distribution network grid. The method exploits the real power loss (RPL) calculation
scheme proposed in the analytical solver called Efficient Analytical (EA) Method. The RPL
calculated as in (Equation (35)) requires solving the load flow equation only once.

RPLDG = ∑j/∈BDG
rj

V2
j

(
P2

j + Q2
j

)
+∑j∈BDG

rj

V2
j

((
Pj −∑i∈NDG SijPDGi

)2

+
(
Qj −∑i∈NDG SijQDGi

)2
) (35)

where S represents the complex power as binary matrix (NDGxBDG) defined as follows:

Sij =

{
1, i f SDGi passes through branch j
0, otherwise

}
(36)

It is therefore no longer necessary to recalculate the power losses before and after
the positioning of the generators, as the second term of (Equation (35)) already takes into
account the influence that the addition of the generator would have on the power loss
in the branch. The first term, on the other hand, of (Equation (35)) remains constant and,
therefore, takes into account the base case. From (Equation (35)) it is possible to obtain the
(Equation (36)), which will become the objective function of the analytical solver.

RPLRDG = ∑j∈BDG
rj

V2
j

(
2 ∑i∈NDG SijPDGi

(
Pj + Qj ∑i∈NDG Sij

√
1−PF2

DGi
PF2

DGi

)
−∑i∈NDG SijP2

DGi

(
1 + ∑i∈NDG Sij

1−PF2
DGi

PF2
DGi

)) (37)

The optimization process will be calibrated on the nature of the generator by returning
the value of the sizes of the generators positioned in each branch of the network. In the
case of generators with a known power factor, the objective function becomes the one in
(Equation (37)), while in case of unspecified power factors the solver imposes the condition
in (Equation (38)).

∂RPLRDGs
∂PDGm

∣∣∣∣
PDGi=Popt

DGi

= 0 (38)

∂RPLRDG
∂PDGm

∣∣∣∣
PDGi=Popt

DGi , QDGi=Qopt
DGi

=
∂RPLRDG

∂QDGm

∣∣∣∣
PDGi=Popt

DGi , QDGi=Qopt
DGi

(39)

As the number of possible combinations (NC) Generators-Nodes in the network is
equal to

NC =
NB!

NDG!(NB − NDG)!
(40)

an estimated RPLR is formulated to find the best placement. The proposed algorithm
scheme for the EA method is represented in Figure 9. The EA method can be used in com-
bination with the OPF method. In this case, the EA method is used to calculate the correct
size of the generators, it will be the task of the OPF solver to find the optimal placement of
the generators by verifying that they respect the network constraints. Figure 10 shows the
complete scheme of the combined EA-OPF method.
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Abdi et al. [142] proposed a review of the different approaches, differentiating them
by objective functions, constraints, variables, mathematical formulation and solution
algorithms. The grid topology, as well as the control strategy and the different equipment
employed in the studied network, affect dramatically the results and the performance of
the OPF method used, so it is fundamental to choose the correct OPF approach to solve the
optimization problem.

The strength of the OPF method lies in its adaptation for the implementation in differ-
ent network topologies and in its ability to incorporate in the mathematical formulation the
new technologies constitutive equations of intelligent networks, thus allowing to update
the mathematical model with the values of the electrical variables, measured in real time.

OPF can be extended on different energy carriers, describing more accurately the
energy flow and conversion along different processes, strictly interconnected by means
of the creations of an Energy Hub (EH) [143]. Despite OPF has a markable flexibility
in modelling networks behaviors, there is still space for improvements, for example, to
better integrate the optimal economic point with the technical optimal one, accounting
the curtailment cost related to various operation intervals and the impact of the market
on reactive power cost. Furthermore, the EH is not completely developed, specially it
is not applied to smart grids yet, as well as the Optimal Energy Flow method. Finally,
it is necessary to better modelling uncertainties, implementing new methods, as done
in [144–146] to overcome the computational effort of the Monte Carlo method, used to
model the stochastic nature of renewable power generation and the uncertainties of the
demand-side management [142].

2.3. Numerical Results

Considering the different nature of all optimization methods and the different grids
used in literature to test the algorithms effectiveness, it is hard to establish a benchmark to
evaluate the performance of the methods used to solve the optimization problem. For this
reason, to validate the different approaches, we chose two grid models: the IEEE 33 [147]
and IEEE 69 [148] Bus Test Systems and, on these two grids, the Analytical Techniques and
the OPF method have been applied to compare their different performance.

The results, obtained by solving the two network configurations by positioning a
different number of generators each time up to a maximum of 3, are shown in Table 3. By
hypothesis, in this first case, those generators only deliver active power. The OPF method
in [41] is used as benchmark on the basis of which all the analyses have been carried out,
regarding the performance of the other algorithms used to solve the optimization problem.
The OPF method can completely solve any network configuration by returning the optimal
size and site values of the DGs. The main drawback lies in the excessive computational
time required. For example, for the IEEE 33 network configuration, the time required varies
from 1.30 s, to solve the system by positioning only one DG, up to 202 s, required to solve
the network with 3 DGs. The computational effort grows even more if complex network
configurations have to be considered, such as IEEE 69 with 3 DGs. In this case the time
required by the CPU amounts to 6655 s. In [41], the authors also present a mixed method,
which combines the OPF method with an analytical method, based on Real Power Loss
Reduction (RPLR). With this new approach, indeed, the analytical method finds the best
location for DGs and finally the OPF algorithm is employed to solve the optimization sizing
problem. This new method has the advantage of considerably reducing the computational
effort, even with complex network configurations, for example the IEEE 69 configuration
with 3 DGs is solved in 1.66 s, instead of the previous 6655 s, required by applying only the
OPF method. The combined OPF method also returns the same size and position values to
the nodes of the DGs, identified by the OPF method.
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Table 3. Optimization methods comparison—DG capable to supply active power.

Bus Test
System Method N. DG Optimal Bus Optimal Size [kw] Power Loss

[kW]
CPU Time

[s]

IEEE 33

Analytical method A3 [38]

1

6 2490 111.24 0.09

Analytical method A4 [135] 6 2601 111.10 0.16

Analytical method based on Loss
Sensitivity factor [135] 18 743 146.82 0.11

Analytical method based on
Exhaustive Loss Factor [135] 6 2601 111.10 1.06

Analytical method A5 [137] 30 1500 125.21 0.97

Efficient analytical method [41] 6 2530 111.07 0.05

Efficient analytical method
combined with OPF [41] 6 2590 111.02 0.09

OPF [41] 6 2590 111.02 1.30

Analytical method A4 [135]

2

6 14 720 1800 91.63 0.27

Analytical method based on Loss
Sensitivity factor [135] 18 33 720 900 100.69 0.18

Analytical method based on
Exhaustive Loss Factor [135] 12 30 1020 1020 87.63 2.03

Analytical method A5 [137] 30 25 1500 1000 107.95 2.23

Efficient analytical method [41] 13 30 844 1149 87.172 0.11

Efficient analytical method
combined with OPF [41] 13 30 852 1158 87.17 0.15

OPF [41] 13 30 852 1158 87.17 20.2

Analytical method A4 [135]

3

6 12 31 900 900 720 81.05 0.4

Analytical method based on Loss
Sensitivity factor [135] 18 33 25 720 810 900 85.07 0.23

Analytical method based on
Exhaustive Loss Factor [135] 13 30 24 900 900 900 74.27 3.06

Analytical method A5 [137] 30 25 24 1500 1000 220 107.35 3.26

Efficient analytical method [41] 13 24 30 798 1099 1050 72.787 0.37

Efficient analytical method
combined with OPF [41] 13 24 30 802 1091 1054 72.79 0.41

OPF [41] 13 24 30 802 1091 1054 72.70 202

IEEE 69

Analytical method A3 [38]

1

61 1810 83.4 0.54

Analytical method A4 [135] 61 1900 81.33 0.28

Analytical method based on Loss
Sensitivity factor [135] 65 1520 109.77 0.15

Analytical method based on
Exhaustive Loss Factor [135] 61 1900 81.33 7.75

Analytical method A5 [137] 61 1900 83.25 6.09

Efficient analytical method [41] 61 1878 83.23 0.16

Efficient analytical method
combined with OPF [41] 61 1870 83.23 0.2

OPF [41] 61 1870 83.23 3.01
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Table 3. Cont.

Bus Test
System Method N. DG Optimal Bus Optimal Size [kw] Power Loss

[kW]
CPU Time

[s]

Analytical method A4 [135]

2

61 17 1700 510 70.3 0.52

Analytical method based on Loss
Sensitivity factor [135] 65 27 1440 540 98.74 0.3

Analytical method based on
Exhaustive Loss Factor [135] 61 17 1700 510 70.3 15.53

Analytical method A5 [137] 61 64 1900 20 83.23 12.3

Efficient analytical method [41] 61 17 1795 534 71.68 0.45

Efficient analytical method
combined with OPF [41] 61 17 1781 531 71.68 0.5

OPF [41] 61 17 1781 531 71.68 101

Analytical method A4 [135]

3

61 17 11 1700 510 340 68.38 0.71

Analytical method based on Loss
Sensitivity factor [135] 65 27 61 1360 510 510 58.57 0.52

Analytical method based on
Exhaustive Loss Factor [135] 61 17 11 1700 510 340 68.38 23.16

Analytical method A5 [137] 61 64 21 1900 20 470 72.65 17.3

Efficient analytical method [41] 61 18 11 1795 380 467 69.62 1.62

Efficient analytical method
combined with OPF [41] 61 18 11 1719 380 527 69.43 1.66

OPF [41] 61 18 11 1719 380 527 6943 6655

Hung et al. [135] considered an iterative Analytical method (A4), which has consid-
erable advantages under the computational point of view. It is completely comparable
with the combined OPF method, however it has the disadvantage of presenting a solution
which is trapped in local optimum, as evidenced by the different sizes and different nodes,
identified in generators placement in IEEE 33 network configuration with three DGs and
2 DGs together with the IEEE 69 network configuration with 3 DGs.

Elmitwally [137] presented a method that has a computational time 20 times greater
than the A4 analytical method in the IEEE 69 network configuration at three DGs, however,
it is still more advantageous than the OPF method.

Even in this case, the method is very sensitive to local optimal solutions, in fact in
almost all the network configurations the method is trapped in optimal locals, as evidenced
by the higher power losses calculated, compared to global optimal solutions. Only in the
IEEE 69 network configuration with 1 DG it has managed to produce a solution comparable
to that of the other methods.

Table 4 shows the results obtained by solving the same network configurations pre-
sented in Table 3, assuming the DGs capable to deliver both active and reactive power.
The difficulty of the A4 analytical method immediately emerges to free itself from local
optimal solutions even in this situation, reporting higher power losses than the combined
OPF method, except for the IEEE 69 one DG configuration. In this case, while managing
both methods to identify the exact Bus where to place the generator, the combined OPF
method has a loss of 23.17 kW, slightly higher than the 22.62 kW of the A4 method. The
reason lies in the nominal power of the generator identified by the methods. In the case
of the combined OPF method it is 1828 kVA, lower than the 2243 kVA of the A4 method.
However, both generators, identified by the two methods, have the same power factor.
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Table 4. Optimization methods comparison—DG capable to supply active and reactive power.

Bus Test
System Method N. DG Optimal

Bus
Optimal Size

[kVA]
Power Loss

[kW] Power Factor

IEEE 33
Analytical method

A4 [135]

1 6 3107 67.9 0.82

2
6 2195

44.39 0.82
30 1098

3

6 1098

22.29 0.8230 1098

14 768

IEEE 69
Analytical method

A4 [135]

1 61 2243 22.62 0.82

2
61 2195

7.25 0.82
17 659

3

61 2073

4.95 0.8217 622

50 829

IEEE 33
Efficient analytical method

combined with OPF [41]

1 6 2558 67.86 0.82

2
13 846

28.50
0.90

30 1138 0.73

3

13 794

11.74

0.90

24 1070 0.90

30 1030 0.71

IEEE 69
Efficient analytical method

combined with OPF [41]

1 61 1828 23.17 0.82

2
61 1735

7.20
0.81

17 522 0.83

3

11 495

4.27

0.81

18 379 0.83

61 1674 0.81

IEEE 69

Analytical method
A1 [134,136] 1 61 1844.4 21.08 0.814

Analytical method
A2 [136,149] 1 61 1844.3 21.11 0.825

In [136], the proposed analytical methods are based on the Elgerd’s loss formula,
called Analytical method A1, and on the branch current loss formula, called Analytical
method A2. The results, obtained by applying these two methods to the IEEE 69 network
configuration with one DG, are completely comparable to those obtained by the combined
OPF method.

Making a comparison with the CPU’s Time data, it is evident that the A4, EA, LSF,
and OPF combined with EA methods are the fastest methods. In Figures 11 and 12, the
relative computational times are represented, respectively, in IEEE 33 and in IEEE 69 case
studies, i.e., the computational time required by each method to find a solution compared
to the time needed by the OPF method in [41] as base case. In all configurations, they
guarantee convergence in almost half the time required for the OPF method. In the case
study IEEE 33 Figure 11 the A4 method allows a time saving compared to the OPF method
equal to 87.69%, 98.66%, and 99.80%, respectively, in the case of placement of 1 DG, 2 DG,
and 3 DG. The OPF combined with EA method, on the other hand, in the case of placement
of 1 DG guarantees a computational saving of 93.08%, 99.26% in the case of 2 DG and
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99.80% in the case of 3 DG. The EA and LSF methods, on the other hand, are the methods
that compete for the primacy relative to the speed of convergence. The EA method is the
fastest method in the IEEE 33 case study in the 1 DG and 2 DG configurations going to
convergence with a computational time saving of 96.15% and 99.46%, respectively, while
in the 3 DG configuration the fastest method turns out to be the LSF saving 99.89 of the
Computation time.

Energies 2021, 14, x FOR PEER REVIEW 21 of 42 
 

 
Figure 11. IEEE 33 Computational Time. 

 
Figure 12. IEEE 69 Computational Time. 

In the IEEE 69 Figure 12 case study, on the other hand, the method that achieves 
convergence in the shortest possible time is the LSF method. However, the gap between 
LSF and EA in this case study is still small, the computational time saved is 94.68% for the 
EA method and 95.02% for the LSF method in the 1 DG configuration, 99.55% for the EA 
method and 99.70% for LSF in the 2 DG configuration, and finally 99.98% for the EA 
method and 99.99% for the LSF method. The same trend and almost similar values are 
also confirmed for the other methods in the IEEE case study 69 Figure 12, thus highlight-
ing a good independence of the convergence speed of these methods from the complexity 
of the electrical network to be solved.  

The relative Power Losses of each method weighted with the Power Losses of the 
base case in [41] for IEEE 33 case study are represented in Figure 13, while in Figure 14 
the weighted Power Losses for IEEE 69 case study are reported. Therefore, going instead 
to consider the Power Losses values reported in Tables 3 and 4 and comparing the values 
in Figures 13 and 14, the OPF combined with EA method is the method that best guaran-
tees an accurate calculation regarding the Power Losses and completely equal to the val-
ues obtained with the OPF method. The EA method guarantees values slightly less precise 
than the OPF combined with EA method, in fact we find an error in the IEEE 33 case study 
of 0.05% and 0.12% compared to the base case by solving the network with 1 DG and 3 
DG, respectively, while in the case study IEEE 69, there is an error of 0.27% solving the 
network with 3 DG. However, the A4 and LSF methods in the IEEE 69 case study, with 

Figure 11. IEEE 33 Computational Time.

Energies 2021, 14, x FOR PEER REVIEW 21 of 42 
 

 
Figure 11. IEEE 33 Computational Time. 

 
Figure 12. IEEE 69 Computational Time. 

In the IEEE 69 Figure 12 case study, on the other hand, the method that achieves 
convergence in the shortest possible time is the LSF method. However, the gap between 
LSF and EA in this case study is still small, the computational time saved is 94.68% for the 
EA method and 95.02% for the LSF method in the 1 DG configuration, 99.55% for the EA 
method and 99.70% for LSF in the 2 DG configuration, and finally 99.98% for the EA 
method and 99.99% for the LSF method. The same trend and almost similar values are 
also confirmed for the other methods in the IEEE case study 69 Figure 12, thus highlight-
ing a good independence of the convergence speed of these methods from the complexity 
of the electrical network to be solved.  

The relative Power Losses of each method weighted with the Power Losses of the 
base case in [41] for IEEE 33 case study are represented in Figure 13, while in Figure 14 
the weighted Power Losses for IEEE 69 case study are reported. Therefore, going instead 
to consider the Power Losses values reported in Tables 3 and 4 and comparing the values 
in Figures 13 and 14, the OPF combined with EA method is the method that best guaran-
tees an accurate calculation regarding the Power Losses and completely equal to the val-
ues obtained with the OPF method. The EA method guarantees values slightly less precise 
than the OPF combined with EA method, in fact we find an error in the IEEE 33 case study 
of 0.05% and 0.12% compared to the base case by solving the network with 1 DG and 3 
DG, respectively, while in the case study IEEE 69, there is an error of 0.27% solving the 
network with 3 DG. However, the A4 and LSF methods in the IEEE 69 case study, with 

Figure 12. IEEE 69 Computational Time.

In the IEEE 69 Figure 12 case study, on the other hand, the method that achieves
convergence in the shortest possible time is the LSF method. However, the gap between
LSF and EA in this case study is still small, the computational time saved is 94.68% for
the EA method and 95.02% for the LSF method in the 1 DG configuration, 99.55% for the
EA method and 99.70% for LSF in the 2 DG configuration, and finally 99.98% for the EA
method and 99.99% for the LSF method. The same trend and almost similar values are also
confirmed for the other methods in the IEEE case study 69 Figure 12, thus highlighting a
good independence of the convergence speed of these methods from the complexity of the
electrical network to be solved.

The relative Power Losses of each method weighted with the Power Losses of the
base case in [41] for IEEE 33 case study are represented in Figure 13, while in Figure 14 the
weighted Power Losses for IEEE 69 case study are reported. Therefore, going instead to
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consider the Power Losses values reported in Tables 3 and 4 and comparing the values in
Figures 13 and 14, the OPF combined with EA method is the method that best guarantees
an accurate calculation regarding the Power Losses and completely equal to the values
obtained with the OPF method. The EA method guarantees values slightly less precise
than the OPF combined with EA method, in fact we find an error in the IEEE 33 case study
of 0.05% and 0.12% compared to the base case by solving the network with 1 DG and 3 DG,
respectively, while in the case study IEEE 69, there is an error of 0.27% solving the network
with 3 DG. However, the A4 and LSF methods in the IEEE 69 case study, with generators
capable of supplying only real power, guarantee both an error of 2.28%, 1.93%, and 1.51%
lower losses compared to the base case respectively in the configurations with 1 DG, 2 DG,
and 3 DG. On the other hand, the case of the LSF method is singular, which only in the
IEEE 69 3 DG case study records power losses that are 15.64% lower than in the base case,
thus demonstrating its high sensitivity to network configurations.
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3. Energy Storage Systems

The large penetration of RER DGs, together with the need to enhance the reliability
of the grid, as well as the demanding requirements of power and frequency stability are
the leading drivers for the emergence of ESS. Despite of the investment cost and, in some
cases, the harmful effect on environment are the main limiting factors for a widespread
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commercialization, a growing in the ESS installed capacity is observed along the years.
In 2014, the ESS installed capacity was approximately 140 GW worldwide, in 2018 it was
almost 176 GW worldwide [150,151].

In the literature, there exists a general classification of the different ESS systems is as
follows: Mechanical energy storage systems, Chemical energy storage systems, Electro-
chemical energy storage systems, Electrostatic and electromagnetic energy storage systems,
and Thermal energy storage systems. Although the number of technical solutions found in
literature, the majority of the ESS installed capacity worldwide (96%) is of the Mechanical
type, more precisely Pumped hydro energy storage (PHES) and the remaining 4% collects
all the other types [152].

The PHES system is the oldest and most mature of all the others. It consists of two
basins at different elevations, one basin is higher than the other. The system harnesses
the Potential Energy E, stored as difference in elevation between the two basins as per the
following relation:

E = mg∆h (41)

The potential energy is stored as water pumped to the higher reservoir during off-peak
demand. During the peak demand the water is released to the lower reservoir, converting
the potential energy in electric energy by means of a hydraulic turbine connected to
a generator.

The drawbacks of this solution are mainly related to the cost of the investment, the
impact on the environment and the high dependency on the morphology and location of
the sites.

Apart the technology maturity, there are other features which can measure the ESS
effectiveness. Under a technical point a view, there are the energy density (measured in
Wh/kg) and the power density (W/kg), which are two capacity indexes of the storage
system; the efficiency expressed both as the efficiency during the charging and discharging
phase; lifecycle; and response time. Economically speaking, the success of the ESS depends
for the most on its capital cost, the O&M cost, and the environment impact. In [153,154], the
authors reviewed the state-of-the-art of different energy storage technologies, investigating
how they respond to these different technological and economical parameters. In Table 5,
the different ESS technologies are categorized and summarized highlighting also the state
of their technological maturity. Analyzing the data in Table 5, it can be seen that CAES,
TES, PHES, and HS are the energy storages used for long-term and high-capacity. The key
factors are the relative low energy cost ($/kWh), the high energy density (Wh/kg), and
their lifecycle.

Indeed, also the other Electrochemical Energy Storage Systems (EESS) have a high
energy density and, in some cases, low energy cost as well, as for example the Lead-
acid battery, but their usage is limited as float service application, peak shavings, or
uninterruptible power supplies. Other applications of the EESS are as energy accumulators
in islanded microgrids solution [155]. The main reasons are related to their short lifecycle,
cost and the high impact on environment [153].
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Table 5. Classification of different ESS.

Category Technology Energy Density
[Wh/kg]

Power Density
[W/kg]

Overall
Efficiency Lifecycle Response

Time

Capital
Cost—Power

[$/kW]

Capital
Cost—Energy

[$/kWh]

Technological
Maturity

Mechanical Energy
Storage Systems

Pumped hydro energy
storage (PHES) 0.5–1.5 0.8–1.1 65–85% 30–50 y Min 600–2000 5–100 Mature

Compressed air
energy storage (CAES) 30–60 0.65–1.2 40–80% 20–40 y Min 400–800 2–50 Developed

Flywheel energy
storage (FES) 10–30 400–500 80–99% 20 y <ms 250–350 1000–5000 Developed

Chemical Energy
Storage Systems

Hydrogen storage
(HS) 800–10,000 5–500 20–50% 5–15 y <s 10,000 - R&D—demonstration

precommercial

Electrochemical
Energy Storage

Systems

Lead-acid battery 50–75 150–300 75–80% 5–15 y ms 300–600 200–400 Mature

Nickel-cadmium
battery 60–90 150–230 60–65% 10–20 y ms 500–1500 800–1500 Developed

sodium-sulfur battery 150–240 90–230 80–90% 10–15 y ms 1000–3000 300–500 Developed

Lithium-ion battery 100–200 1000–2000 85–95% 5–15 y ms 1200–4000 600–2500 Mature

Vanadium redox
battery 35–60 75–150 75–85% 5–15 y ms 600–1500 150–1000 Developed

Zinc-bromite battery 75–85 90–110 65–75% 5–10 y ms 700–2500 150–1000 R&D—demonstration
commercial

Polysulfide bromine
battery 15–30 - 65–75% 10–15 y ms 330–2500 120–1000 R&D—demonstration

commercial

Electrostatic and
electromagnetic
Energy Storage

Systems

Supercapacitor energy
storage system (SCES) 3–5 2000–5000 97% 20 y ms 100–300 500–1000 R&D—demonstration

precommercial

Superconducting
magnetic energy
storage (SMES)

3–25 500–2000 85–99% 20 y ms 1000–10,000 1000–10,000 R&D—demonstration
precommercial

Thermal Energy
Storage Systems (TES) 80–250 10–30 30–60% 10–40 y s-min 200–300 10–50

R&D—demonstration
commercial—

Developed
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Regarding the application of EESS in islanded microgrid solutions, Zhou et al. [156]
have formulated a model that allows to organize the hourly production of a virtual power
plant, consisting of a conventional power plant with a maximum power of 16 MW, a
wind power plant with a rated capacity of 10.2 MW and a PV power plant with a rated
capacity of 10 MW. The virtual power plant can also make use of battery fleets composed
by 500 lead-acid batteries with a maximum capacity of 12.74 MWh and 500 NiMH batteries
with a total capacity of 16.2 MWh. The proposed model considers the degradation cost
of batteries in scheduling the storage and sale of the energy produced on the balancing
and on the day-ahead markets. The degradation cost CVPP is presented in (Equation (42))
as a function of the battery capital cost (CVPP), battery lifespan with virtual power plant
participation, i.e., dependent by working and stress conditions during normal operations
(LVPP), total energy storage (Ev), and deep of discharge (DoDRe f ).

CVPP =
Cb

LVPPEvDoDRe f
(42)

The model is tested on four scenarios: Scenario n.1 with low variation of WPP and
PV output, low day-ahead market prices; Scenario n.2 with low variation of WPP and
PV output, high day-ahead market prices; Scenario n.3 with high variation of WPP and
PV output, low day-ahead market prices; Scenario n.4 with high variation of WPP and
PV output, high day-ahead market prices. The results demonstrate in all four scenarios
how the degradation cost of the batteries greatly influences the schedule of the virtual
power plant, forcing the operator to buy electricity on the balancing market and use the
conventional power plant more, rather than using the battery fleets due to their high
degradation cost.

More recently, Zia et al. [157] proposed a model that programs the management of a
scalable DC microgrid, composed of a PV system of 15 kW and Li-ion battery of 38.4 kWh
rated capacity. In the objective function of the model the trading cost with the utility AC
grid, the levelized cost of electricity for the PV system, the degradation cost for the battery,
load shedding cost and the incentive demand response are considered (i.e., consumers
are encouraged to allow the DC Microgrid operator to adjust the shiftable loads (such
as HVAC systems, electric vehicles, lighting, dishwashers, etc.) to off-peak periods and
scheduled islanded periods). The results highlight how the degradation cost and the
incentive demand response strongly influence the operating cost, in particular how the
degradation cost leads to higher operating cost in cold weather regions as the temperature
influence the capacity of the battery, because of power fading, indeed at low temperatures
the metallic Lithium plating causes electrolyte decomposition, leading to a reduction of the
battery capacity.

The degradation cost also greatly influences the possibility to employ second-life
battery, as underlined by Song et al. [158]. One of the problems associated with the
widespread use of batteries is their high cost. Under this point of view, the use of second-
life battery can be a solution. The authors therefore examine a wind farm of 800 MW
using a battery fleet of 600 MWh to mitigate the wind uncertainty. In the calculations,
however, the capacity of the second-life batteries is 480 MW as, in general, the batteries
are withdrawn when their capacity is at 80% of their initial capacity and the estimate of
the real capacity of the second-life batteries is very difficult. The model also takes into
consideration the refurbishment cost of approximately $40/kWh incurred in the case of
use of second-life batteries. The results show how the degradation cost applied to the
current price levels of the energy, produced by the wind farms, makes the use of second-
life batteries completely worthwhile. Nazari-Heris et al. in [159], instead, account the
degradation cost in a new model for the management of EESS within a distributed grid
and investigate the relationship between the system operator and the owner of EESS and
try to find an optimal operating point solving a bi-level optimization process. The system
operator and the ESS owner are two distinct actors with their own objective functions to be
optimized, the problem is therefore solved through a bi-level programming algorithm. The
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strategy proposed by the authors consists in minimizing the cost of the system by satisfying
the daily power load and maximizing the benefit of the EES owner. The model is tested
on the IEEE RTS 24-bus system. What emerges from the results is a maximization of daily
profits of the EESS owner equal to $9681.06 and a minimization of the daily operating cost
by the system operator equal to $558,556.778. The EES charge/discharge cycle management
policy is managed according to the balance needs of the electricity grid.

3.1. Compressed Air Energy Storage

CAES is of Mechanical energy storage system type. The operating philosophy of these
systems is to harness the energy in excess during off-peak hours to compressed air, store
it in a tank or in a reservoir, and, during the peak hours, the air is heated and sent to a
turbine to be expanded, moving the generator to produce electric power, through a system
based on the Joule–Bryton thermodynamic cycle.

Even though the CAES technology is very attractive in terms of large storage capacity
and lifetime, which can be compared to PHES [160,161], a set of economic and technological
drawbacks currently stop a wide market penetration of this application. First, under the
technical point of view, is the low efficiency reached by this technology. This aspect is
related to lack of mass-produced equipment available for high-efficient CAES plant. As
for PHES technology, geological restrictions for underground sites, which can be used as
air compressed reservoir, limit the CAES solutions as well. Under an economic point of
view, the spread reduction between peak/off-peak energy price, throttles the investment
payback time [162].

To overcome these shortcomings, different improvements have been proposed, start-
ing from the thermodynamic cycle. In conventional CAES, the heat is removed from the
compressed air flow and discharged into the ambient before storing the air after the com-
pression stage. Before the expansion stage the compressed flow is heated again, generally
by means of natural gas burners. In Adiabatic CAES (A-CAES), no heat is discharged
or introduced from the environment. This is possible by storing the heat using a TES,
making then it available in the flow heating phase. This improves the cycle efficiency up to
20% [163–165].

Another developed technology consists in using air or nitrogen in liquid form (L-
CAES). The air is cooled down to its liquid state and stored. When there is a shortage
of energy, it is converted back to the gaseous form and sent to the turbine to move the
generator [166].

To overcome the lack of mass-production systems for CAES cycle, the I-CAES elim-
inates multiple compression stage, cooling and heating phase, and the expansion stage,
simply using a liquid piston system. This slightly improves the compression efficiency up
to 95%, making thus possible to reach a 70% overall efficiency [162,167].

The CAES technology is currently implemented and 11 operating CAES plants are
working around the world for a total installed capacity of 406.69 MW [154].

3.2. Thermal Energy Storage

The TES working principle is based on converting the thermal energy produced by
electricity or directly made available by RER, as for example the heat produced by solar
irradiation, to electric energy in moments of shortage, in order to guarantee the stability
and reliability of the grid. The TES are of three types: sensible heat storage, latent heat
storage and thermochemical heat storage [168,169].

Sensible heat storage uses the temperature gradient in the storing medium to store
heat as per the following Equation (15):

Q = m·C·∆T (43)

The storing media employed vary in the different applications and they depend on
the capacity required by the ESS. Water, diathermic oil, molten salt, liquid metal, concrete,
etc. are different storing media employed in TES systems. Water is generally used for low-
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capacity systems such, for example, residential applications. In Concentrated Solar Power
plants oil, molten salt and liquid metal and concrete are common media employed [154,170].
The main purpose of these systems is to collect heat at high temperature to make then
it available to the bottom thermodynamic cycle (generally a Rankine cycle) to realize an
efficient heat to electric energy conversion, avoiding too much dispersion when the heat
energy is stored. Molten salt storing temperature is generally lower than 600 ◦C, to avoid
molten salt solidification, as well the high temperature corrosion, which implies higher
O&M costs [171]. With sensible heat storage system another problem is related to the phase
change status, for example, for molten salt the solidification of the medium leads to the
inactivation of the entire system. The melting point for molten salt lays around 200 ◦C.
For liquid metal systems the melting point is lower, for example for liquid sodium the
melting point is about 98 ◦C, liquid sodium has also good thermal and hydraulic properties,
which can guarantee good performance as storage medium, but there are still challenges
regarding safety and reliability of the system to be solved [170].

In Latent heat storage, the energy is stored through phase change materials (PCMs).
The phase transitions involve solid–liquid, solid–gas, and liquid–gas. Commonly, solid-
liquid PCMs are used. The high-density media property and the small volume change
in the system which occurs are the key points for their success [172]. PCMs are of three
types: organic, inorganic, and eutectic. Organic includes paraffins, fatty acids, etc. Their
drawbacks are related to their cost and flammability. Hydrates such as Na2SO4·10H2O,
CaCl3·6H2O, and Na2SiO3·5H2O are examples of inorganic PCMs; their benefits are in
a large latent heat (~300 kJ/m3), but, as disadvantages, phase separation and a large
subcooling. The eutectic PCMs are organic compounds or Al-Si alloys. Respect to sensible
heat storage, the latent ones have the energy density one order of magnitude higher and
the release temperature is stable, but higher cost and some technical disadvantages as poor
long-term stability, corrosion issues, phase separations and low conductivity and low heat
release [170].

If latent and sensible heat have, respectively, a commercial demonstration and devel-
oped technological maturity, the Thermochemical energy storage (TCES) is still in the R&D
phase. The potential of this technology is very attractive, as its energy density is six times
the latent one and as the latent heat storage the energy recovery and the heat storage are
performed at the same temperature. Another important advantage is the transportability of
the storage media, decoupling the production site from the storage site [173]. The working
principle behind this system is to select some reversible compounds and exploit the heat
available from RER to start their endothermic reaction, then the obtained reaction products
are stored and, when it is required, making them available as reactants for the exothermic
reaction. Examples of reversible reactions, used in the TCES, are metal redox pairs, metal
hydride reactions, carbonate decomposition, ammonia decompositions, and inorganic
hydroxide reactions [170].

The general reaction formula for redox pairs is based on the reduction reaction

MxOy+z(s) → MxOy(s) +
z
2

O2(g) ∆Hr > 0 (44)

and on the oxidation reaction

MxOy(s) +
z
2

O2(g) → MxOy+z(s) ∆Hr < 0 (45)

The metal pairs generally involved are Co3O4/CoO, BaO2/BaO, CuO/Cu2O, Fe-Co
and Mn2O3/Mn3O4. During the reaction O2(g) is absorbed and released within a tem-
perature range between 350 ◦C and 1000 ◦C. The research activity is focused on solving
the issues related to this kind of technology such sintering, softening, and agglomera-
tion [170,174–179].

The metal hydride system consists in the exploitation of the behavior of some metals
and alloys, which can release hydrogen starting from metal hydride and generate metal
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hydride from hydrogen and the metal form in precise temperature and pressure conditions.
The following general reversible reaction describes this behavior:

MHn + ∆Hr ↔ M +
n
2

H2 (46)

The advantage of these storage materials is the higher stability, but the main draw-
backs are the low thermal conductivity, which leads to higher costs because of complex
engineering design to improve the heat transfer, and high operative pressure due to the
high equilibrium pressure of MHn system [170].

The high amount of heat released by carbonate decomposition reaction attracts the
interests as possible TCES candidate. The raw material low cost and the high energy
density are the key factors which drive the research in these years [180].

The Ammonia decomposition system harness the reversible Ammonia reaction:

2NH3(g)↔ N2(g) + 3H2(g) (47)

Starting with the research of Luzzi et al. [181], the process has started to be a possible
TCES candidate. The National University of Australia has designed a complete cycle for
exploiting the heat of CSP plant with ammonia as storage medium. The ammonia usage
can increase the temperature of the heat transfer fluid medium from 350 ◦C to 650 ◦C,
which is the temperature of a supercritical Rankine cycle [182]. However, some defects
need to be solved such the long storage safety, the high operative pressures, as well as the
difficult chemical reaction conditions and finally to enhance the reaction yield [170].

The inorganic hydroxide system employs the heat released by hydroxides decomposi-
tion such as Mg(OH)2 and Ca(OH)2. The main benefits are the low costs of the raw materials
and their nanotoxicities, anyway the poor heat transfer proprieties and, for Mg(OH)2, the
cycle stability are the main problems to be fixed [182]. Ca(OH)2/CaO systems suffer the
same heat transfer problem, sintering and corrosion also are two aspects which limit their
usage, but the sodium hydroxide has a good gas-solid reaction performance [170–184].

3.3. Hydrogen Storage

Similar to TCES, chemical energy storage (CES) exploits the compounds formation
energy to store off-peak and renewable energy. Harnessing chemical bonding, it is possible
to realize new energy carriers that can easily be stocked and transported, decoupling power
plants from the power consumer site locations.

Hydrogen storage is one of the most noticeable form of CES, it is renewable and
non-toxic, it is the element most abundant in the universe and it is largely employed in
industrial processes. In fact, the two highest hydrogen consumes worldwide are related to
refinery demand and to ammonia production.

The hydrogen exploiting is composed by three different phases: production, storage,
and electricity production.

There are different technologies and systems for Hydrogen production such as Elec-
trolysis, high-temperature electrolysis, Plasma arc decomposition, Water thermolysis,
Thermochemical water splitting, PV electrolysis, Photocatalysis, Photo-electrolysis, Dark
fermentation, Hybrid thermochemical cycles, Coal gasification, Bio-photolysis, Photo-
fermentation, Fossil fuel reforming, Thermochemical conversion of biomass and biofuel
reforming. Dincer et al. [185] analyzed the financial impact, the energy and exergy effi-
ciencies for all the previous production methods, the environmental impact and the social
cost of carbon. The average normalized rankings show as Hybrid thermochemical cycles
(7.57/10), followed by Thermochemical water splitting (7.17/10) and Photo-fermentation
(6.56/10) are promising new future solutions in producing Hydrogen. What done by
Dincer et al. in [186] is resumed in [185] and extended by means of the 3-S approach.
Hydrogen systems are analyzed by sources, systems and services and the results show as
solar has the higher overall performance index (7.40/10) as energy source for Hydrogen
production, followed by wind (6/10). As production systems, electrical systems (7.60/10)
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and thermal-based systems (6.60/10) have the highest overall performance index and,
as storage options, nanomaterials are the best solutions, considering the overall index
(8.40/10) followed by chemical and metal hydrides, (6.80/10) and (6.60/10) respectively.

Hydrogen storage is still one of the main difficulties in hydrogen harnessing. Currently
the options for Hydrogen storage are three: liquid form, metal hydrides form and gaseous
form. The liquifying process requires low temperature (20 K) and, consequently, the
energy cost is very high, about the 30% of the energy contained in the hydrogen [187].
The most used method to store hydrogen is the gaseous form by means of steel tanks at
200–250 bars, but, on the other hand, because of low molecular mass, the stored hydrogen
quantity is very low. Higher pressures can guarantee higher ratio of stored hydrogen to
weight, but researchers are still studying materials which withstand these pressures [154].
Portarapillo et al. [188] instead they investigate the possibility of storing hydrogen in salt
caverns thus creating a high-pressure storage, since the operating pressures vary from
60 bar up to 200 bar, reaching energy densities equal to 300 kWhel/m3 at 200 bar. The study
also conducted a risk analysis on the management of such storage. The risk assessment
identifies jet fire, unconfined vapor cloud explosion (UVCE), and toxic chemical release as
possible outcomes, but the most frequent outcome is UVCE. However, the analysis reveals
how the cost-benefit ratio is actually entirely in favor of this type of storage. Another
solution is to adopt metal hydrides nanoparticles. The adsorption and desorption of
hydrogen is a reversible reaction and can guarantee an endless number charging and
discharging cycles (theoretically), but the major drawbacks are related to metal-hydrides
low mass adsorption capacities [154] and low velocities. However, in last decades a large
number of studies have been made and it can be demonstrated that nano-scaling affects the
kinetic and yield of adsorption and desorption reactions on metal-hydrides. This evidence
leads to the opportunity to tailor specific nanoparticles for each required application and
open to the future to make this applicable to large-scale applications [189].

Hydrogen can be used in different ways, for example, to feed fuel cells, boilers coupled
with steam turbines, gas turbines, internal combustion engines, etc. In [190], market
mechanisms are analyzed to find profitability by hydrogen production and exploiting,
only with high-capacity systems, high internal rates of return (from 15% to 21%) can be
achieved. The hydrogen can be helpful for energy arbitrage and provision of ancillary
electrical services or sold as industrial commodity (e.g., petroleum refining). This is true if
hydrogen is sold at its industrial price and not as equivalent energy commodity at natural
gas price. The investment rates are also advantageous at lower hydrogen price if carbon
credits and electrical tariffs are considered in the market mechanism.

Under a technological point a view, fuel cells cover different applications such as
transportation, stationary and portable power generation. Oldenbroek et al. [191] designed
a 2000 households smart city area of 180,000 m2 (residential area) and 57,000 m2 of service
sectors building, fully powered by renewables (solar and wind), where 2800 fuel cell electric
vehicles are used not only for transportation purpose, but also as generators, providing
energy during unavailability of the renewable sources. The cost analysis demonstrates
the effectiveness of the solution, with an energy cost for heating, power and transport of
15 M€/year, this cost will decrease in the future down to 2.5 M€/year (which corresponds
to a cost of 600 €/year per household) in the mid/century scenario.

Hydrogen can be used also for natural gas blending, obtaining a gas mixture (Hydro-
methane) of hydrogen (10–20%) and natural gas as the other component of the blend.
Higher H2 percentages reduce too much the mixture thermal power, causing embrittlement
of materials; higher leakages; and require technical improvements of burners, boilers,
and engines to make possible the use of the mixture [192,193]. Staffell et al. [194] investi-
gated Hydro-methane as fuel for ICE, reaching higher efficiency and lowering pollutants
emissions such as CO, CO2, and HC.

H2 can also be used alone to feed engines and gas turbines. Chiesa et al. [195]
investigated the possibility to use H2 as fuel for a gas turbine. The first difference in
employing H2 is in the reduction of the stochiometric flame temperature to 2300 K, to
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avoid excessive NOx formation. To adapt the difference in volume flow rate, because of the
difference of fuels, three solutions are analyzed: the use of Variable Guide Vanes (VGV),
increase of pressure ratio, and re-engineering of the gas turbine. VGV solution is the most
practicable one in terms of efficiency. The efficiency reduction is 0.9% in case of temperature
reduction by means of Nitrogen dilution and 1.9% when steam is used. The other two
solutions, on the other hand, provide a much larger power output. Cappelletti et al. [196]
used a lean hydrogen premixed burner with the possibility to control velocity flow rates,
premixing level and equivalent ratio limit. The results show the different NOx formation
mechanism respect to a natural gas burner. In natural gas burners high premixing levels are
desirable to control the NOx thermal formation, but in hydrogen burners high premixing
levels lead to high concentrations of dissociated H2 and O2, promoting NNH formation,
which is the main source of NOx formations at low temperature. In Hydrogen burners the
thermal mechanism accounts only for the 20% of the global NOx formation.

3.4. Comparison of ESS

Starting from Table 5, it is therefore possible to make further considerations on the
strengths of each of the four technologies considered, but above all to make considerations
on what could be the future scenarios that will characterize the ESS panorama. The indexes
on which present and future performance will be considered are therefore: Power and
energy density, Capital Cost, Lifecycle, and Maturity Level.

Power and energy density are both important as they determine the size of the storage.
TES and HES have at least one order of magnitude higher values in both indexes than
CAES and PHES. Quite comparable results are obtained instead if the lifecycle is taken into
consideration, only the HES have a duration slightly lower than the average of the other
technologies. The analysis dimensions of the Capital Cost and the Maturity level taken into
consideration jointly offer an interesting starting point as regards the future developments
of the ESS. PHES represent the most mature technology from the technological point of
view of storage systems. This fact combined with the low Energy Capital Cost and the high
Power Capital Costs values make this technology the main choice for strategic long-term
storage reserves. However, being the most mature technology and also the one most
intrinsically linked to the hydrogeological characteristics of the site, PHES are the systems
with the most limited future prospects.

The natural evolution of the PHES is the CAES which has very similar values on the
proposed analysis dimensions, but which presents a different energy accumulation process
as seen previously. In fact, the CAES can be presented as long and medium term ESS, thus
going to fulfil tasks such as black start or as the resolution of congestion in transmission
networks. Furthermore, CAES is a technology that is not yet fully mature, which means
that it still has ample room for improvement.

The TES has very similar characteristics to the CAES and is also even more com-
pact system, making its application even more advantageous, in fact the interest in this
technology is increasingly growing in scientific literature.

A separate discussion must be made for the HES. HES is currently the most disadvan-
taged technology, as evidenced by the lower net values on all five analysis indexes. As
previously highlighted, the main difficulties are related to the high energy cost required
for hydrogen production and the difficulty of storing it. However, it is the technology
with the most potential, as it can be used from power and voltage quality to long-term
storage. Furthermore, as highlighted in Section 3.3, the birth of a real Hydrogen Economy is
studied with great interest in the literature, and Power-to-Gas is one of the most promising
alternatives for a gradual transition from the carbon economy [197].

It is therefore clear that the second step after the correct sizing of the network lies
in its correct management, especially considering how the electricity network is now
interconnected with gas and district heating networks. This is why the strategic importance
in sizing the networks by combining DGs with dedicated ESS lies not only in decreasing
the uncertainties deriving from the uncertainties of renewable sources, but also with a view
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to reducing the operating costs of the network. CAES, HES, and TES prove to be valid
solutions also with a view to reducing the management costs of interconnected networks.
According to this, Mirzaei et al. [198] have developed a model based on the IGDT method
that is able to guarantee the optimal dispatch of an interconnected networks systems in
which the electricity, the gas and heating domestic networks are analyzed and resolved
together to find the optimal global solution. The IGDT method is a method that allows
managing uncertainties by eliminating the use of probability distribution function or other
techniques such as Monte Carlo simulation approach. The model in question also makes
use of a CAES system which can accumulate power at off-peak hours to release it at on-peak
hours. The model is also tested on an integrated system composed by a 30-node heating
system, a 6-node natural gas network and a modified 6-node electric power system. The
obtained results show how the operating costs considering an integrated network are
different from the operating costs of the individual systems. For example, the operating
costs of the power system increase by 11% due to the pressure drop in the gas network,
due to the demand for domestic heating. Furthermore, the use of an ESS multi-carrier
brings about a 1.3% reduction in the operating costs of the integrated system as well as
reducing the impact of the wind energy by 20% on the operating cost of the entire system.
The effect of CAES also affects network management strategies, increasing reliability by
20% and reducing the risk levels inherent in the implementation of risk seeker strategies to
below 60%.

Nazari-Heris et al. [199] instead examine the HESs, in the power to hydrogen form,
analyzing how this technology can improve the operation of an integrated network system.
Furthermore, in this case, one of the tasks of the HES is to reduce the uncertainties related
to the use of the wind source and for which a CvaR risk-stochastic programming approach
is implemented. The model is tested on system composed by a 30-node heating system, a
6-node natural gas network and a modified 6-node electric power system. What emerges
is that by dedicating the off-peak production of the wind source to the production of
Hydrogen, it is possible to prevent wind power curtailment, with the consequence that by
converting hydrogen into gas fuel, the flow of fuel sent to gas power plants is increased.
Furthermore, by jointly evaluating the constraints of the electricity, gas, and heat networks,
it is possible to draw up a schedule for the optimal dispatching of the three energy carriers,
thus guaranteeing the lowest operating costs of the system.

4. Conclusions

A new paradigm in power generation is emerging where environmental, economic,
and technical drivers are contributing to promoting Distributed Generation as a valid
alternative to the Centralized generation. To exploit the maximum benefits from DGs, it
is necessary to correctly design the distribution grid and the right DGs sites and size, as
well as the mathematical model for their management, which better takes into account
the aleatory demand and the stochastic nature of the renewable sources. In this paper, an
overview of the mathematical models for the distribution grid design has been carried
out, focusing in particular on conventional methods. A comparative analysis between the
different methods was carried out using the IEEE 33 and IEEE 69 network models as case
studies. To evaluate the performance for different methods, the complete OPF model was
used as a benchmark. The analysis shows that in terms of performance the mixed EA-OPF
method is advantageous and easily adaptable to increasingly complex networks.

Coupling DGs with ESS leads to decisive technical and economical improvements of
the distribution grids, enhancing stability and reliability of the power supply. The second
part of the paper, indeed, is focused on the review of ESS, CAES, PHES, TES, and Hydrogen
storage. In particular the Power-to-Gas, i.e., converting electric energy excess in off-peak
conditions in an alternative energy carrier, is considered as a possible feasible solution to
promote a slow and gradual transition from a fossil fuel generation model to a renewable
one, e.g., employing Hydro-methane in transport, residential, and industrial sector.
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It emerges from the work which analytical method integrated with the OPF method
can be an efficient (short computational time) and complete (accuracy of the solution) way
to describe and design a distribution grid under all physical and operational constraints.
In this context this paper suggests focusing in particular on HES for the high perspectives
of development and the high permeability of this technology in all the society sectors It is
therefore evident the need to integrate networks mathematical modeling also with methods
that predict the behavior of the ESS within the distributed grids, as these technologies will
soon become increasingly strategic both for the physical management of the network and
because they able to guarantee the lowest operating costs. The real challenge lies in building
reliable cost functions and work curves for the ESS that allow their implementation in the
network model. This arduous challenge can be completed only through the technological
progress of the considered technology, as only through the degree of maturity of the
technology itself it is possible to identify the correct definition of all the required parameters,
both physical and economic.
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Abbreviations

BDG Branches that the DG generated power passes through
CAES Compressed Air Energy Storage
CES Chemical Energy Storage
CP Collapse point of the voltage [Volt]
CSP Concentrated Solar Plant
DGs Distributed Generators
DNO Distribution Network Operators
EH Energy Hub
ESS Energy Storage Systems
HS Hydrogen Storage
IEA International Energy Agency
OF Objective Function
OPF Optimal Power Flow
PCMs Phase Change Materials
PHES Pumped Hydro Energy Storage
PV Photovoltaic
RER Renewable Energy Resources
TCES Thermochemical Energy Storage
TES Thermal Energy Storage
Symbols
C specific Heat Capacity [J/(kg K)]
δi voltage angles at bus i [rad]
∆h height difference [m]
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∆T temperature difference [K]
E energy [J]
g gravity acceleration [m/s2]
Iai active current at the bus i [Ampere]
Iri reactive current at the bus i [Ampere]
λ loading parameter
m mass [kg]
N total branches number
NDG number of distributed generators
NB number of busses
PCPF

D Load active power increment directions of loads in the CPF [W]
Poi

D Load active power at base case [W]
PDi Active power demand at bus i [W]
PDGi Optimal active power capacity of DG at bus i [W]
Pi Active power injection at bus i [W]
PL total active power losses [W]
PF Power Factor
QCPF

D Load active power increment directions of loads in the CPF [VA]
Qoi

D Load active power at base case [VA]
QDi Reactive power demand at bus i [W]
Qi Reactive Power injection at bus i [W]
rij resistance between bus i and j [Ohm]
Vi voltage magnitude at bus i [Volt]
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15. Huda, A.S.N.; Živanović, R. Large-scale integration of distributed generation into distribution networks: Study objectives, review
of models and computational tools. Renew. Sustain. Energy Rev. 2017, 76, 974–988. [CrossRef]

16. Liew, S.; Strbac, G. Maximising penetration of wind generation in existing distribution networks. IEE Proc. Gener. Transm. Distrib.
2002, 149, 256–262. [CrossRef]

17. Currie, R.; Ault, G.; Fordyce, R.; Macleman, D.; Smith, M.; McDonald, J. Actively managing wind farm power output. IEEE Trans.
Power Syst. 2008, 23, 1523–1524. [CrossRef]

18. Blanco, H.; Faaij, A. A review at the role of storage in energy systems with a focus on power to gas and long-term storage. Renew.
Sustain. Energy Rev. 2018, 81, 1049–1086. [CrossRef]

19. Mohod, S.W.; Aware, M.V. Energy storage to stabilize the weak wind generating grid. In Proceedings of the 2008 Joint International
Conference on Power System Technology and IEEE Power India Conference, New Delhi, India, 12–15 October 2008. [CrossRef]

20. Colmenar-Santos, A.; Reino-Rio, C.; Borge-Diez, D.; Collado-Fernández, E. Distributed generation: A review of factors that can
contribute most to achieve a scenario of DG units embedded in the new distribution networks. Renew. Sustain. Energy Rev. 2016,
59, 1130–1148. [CrossRef]

21. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley and Sons: Hoboken, NJ, USA, 2001; Volume 16.
22. Harrison, G.P.; Piccolo, A.; Siano, P.; Wallace, A.R. Exploring the tradeoffs between incentives for distributed generation

developers and DNOs. IEEE Trans. Power Syst. 2007, 22, 821–828. [CrossRef]
23. Khetrapal, P. Distributed Generation: A Critical Review of Technologies, Grid Integration Issues, Growth Drivers and Potential

Benefits. Int. J. Renew. Energy Dev. 2020, 9, 189–205. [CrossRef]
24. Ehsan, A.; Yang, Q. Optimal integration and planning of renewable distributed generation in the power distribution networks: A

review of analytical techniques. Appl. Energy 2018, 210, 44–59. [CrossRef]
25. Harrison, G.P.; Wallace, A.R. Optimal power flow evaluation of distribution network capacity for the connection of distributed

generation. IEE Proc. Gener. Transm. Distrib. 2015, 152, 115–122. [CrossRef]
26. Gautam, D.; Mithulananthan, N. Optimal DG placement in deregulated electricity market. Electr. Power Syst. Res. 2007, 77,

1627–1636. [CrossRef]
27. Ochoa, L.F.; Dent, C.J.; Harrison, G.P. Distribution network capacity assessment: Variable DG and active networks. IEEE Trans.

Power Syst. 2010, 25, 87–95. [CrossRef]
28. Ochoa, L.F.; Harrison, G.P. Minimizing energy losses: Optimal accommodation and smart operation of renewable distributed

generation. IEEE Trans. Power Syst. 2011, 26, 198–205. [CrossRef]
29. Vovos, P.; Bialek, J. Direct incorporation of fault level constraints in optimal power flow as a tool for network capacity analysis.

IEEE Trans. Power Syst. 2005, 20, 2125–2134. [CrossRef]
30. Wallace, A.; Harrison, G.P. Planning for optimal accommodation of dispersed generation in distribution networks. In Proceedings

of the CIRED 17th International Conference on Electric Distribution, Barcelona, Spain, 12–15 May 2003.
31. Momoh, J.A.; Xia, Y.; Boswell, G.D. An approach to determine Distributed Generation (DG) benefits in power networks. In

Proceedings of the 2008 40th North American Power Symposium, Calgary, AB, Canada, 28–30 September 2008.
32. Vovos, P.N.; Kiprakis, A.E.; Wallace, A.R.; Harrison, G.P. Centralized and distributed voltage control: Impact on distributed

generation penetration. IEEE Trans. Power Syst. 2007, 22, 476–483. [CrossRef]
33. Algarni, A.A.S.; Bhattacharya, K. Disco operation considering DG units and their goodness factors. IEEE Trans. Power Syst. 2009,

24, 1831–1840. [CrossRef]
34. Dent, C.J.; Ochoa, L.; Harrison, G. Network distributed generation capacity analysis using OPF with voltage step constraints.

IEEE Trans. Power Syst. 2010, 25, 296–304. [CrossRef]
35. Dent, C.J.; Ochoa, L.; Harrison, G.; Bialek, J.W. Efficient secure AC OPF for network generation capacity assessment. IEEE Trans.

Power Syst. 2010, 25, 575–583. [CrossRef]
36. Vovos, P.N.; Harrison, G.P.; Wallace, A.R.; Bialek, J.W. Optimal power flow as a tool for fault level-constrained network capacity

analysis. IEEE Trans. Power Syst. 2005, 20, 734–741. [CrossRef]
37. Wang, C.; Nehrir, M. Analytical approaches for optimal placement of distributed generation sources in power systems. IEEE

Trans. Power Syst. 2004, 19, 2068–2076. [CrossRef]
38. Acharya, N.; Mahat, P.; Mithulananthan, N. An analytical approach for DG allocation in primary distribution network. Int. J.

Electr. Power Energy Syst. 2006, 28, 669–678. [CrossRef]
39. Hung, D.Q.; Mithulananthan, N.; Bansal, R. Analytical expressions for DG allocation in primary distribution networks. IEEE

Trans. Energy Convers. 2010, 25, 814–820. [CrossRef]
40. Vatani, M.; Alkaran, D.S.; Sanjari, M.J.; Gharehpetian, G.B. Multiple distributed generation units allocation in distribution

network for loss reduction based on a combination of analytical and genetic algorithm methods. IET Gener. Transm. Distrib. 2016,
10, 66–72. [CrossRef]

41. Mahmoud, K.; Yorino, N.; Ahmed, A. Optimal distributed generation allocation in distribution systems for loss minimization.
IEEE Trans. Power Syst. 2016, 31, 960–969. [CrossRef]

42. Hung, D.Q.; Mithulananthan, N.; Lee, K.Y. Determining PV penetration for distribution systems with time-varying load models.
IEEE Trans. Power Syst. 2014, 29, 3048–3057. [CrossRef]

43. Khan, H.; Choudhry, M.A. Implementation of distributed generation (IDG) algorithm for performance enhancement of distribu-
tion feeder under extreme load growth. Int. J. Electr. Power Energy Syst. 2010, 32, 985–997. [CrossRef]

http://doi.org/10.1016/j.rser.2017.03.069
http://doi.org/10.1049/ip-gtd:20020218
http://doi.org/10.1109/TPWRS.2008.926722
http://doi.org/10.1016/j.rser.2017.07.062
http://doi.org/10.1109/ICPST.2008.4745219
http://doi.org/10.1016/j.rser.2016.01.023
http://doi.org/10.1109/TPWRS.2007.895176
http://doi.org/10.14710/ijred.9.2.189-205
http://doi.org/10.1016/j.apenergy.2017.10.106
http://doi.org/10.1049/ip-gtd:20041193
http://doi.org/10.1016/j.epsr.2006.11.014
http://doi.org/10.1109/TPWRS.2009.2031223
http://doi.org/10.1109/TPWRS.2010.2049036
http://doi.org/10.1109/TPWRS.2005.856975
http://doi.org/10.1109/TPWRS.2006.888982
http://doi.org/10.1109/TPWRS.2009.2030358
http://doi.org/10.1109/TPWRS.2009.2030424
http://doi.org/10.1109/TPWRS.2009.2036809
http://doi.org/10.1109/TPWRS.2005.846070
http://doi.org/10.1109/TPWRS.2004.836189
http://doi.org/10.1016/j.ijepes.2006.02.013
http://doi.org/10.1109/TEC.2010.2044414
http://doi.org/10.1049/iet-gtd.2015.0041
http://doi.org/10.1109/TPWRS.2015.2418333
http://doi.org/10.1109/TPWRS.2014.2314133
http://doi.org/10.1016/j.ijepes.2010.02.006


Energies 2021, 14, 4270 38 of 43

44. Hung, D.Q.; Mithulananthan, N.; Lee, K.Y. Optimal placement of dispatchable and Non dispatchable renewable DG units in
distribution networks for minimizing energy loss. Int. J. Electr. Power Energy Syst. 2014, 55, 179–186. [CrossRef]

45. Hung, D.Q.; Mithulananthan, N.; Bansal, R.C. Integration of PV and BES units in commercial distribution systems considering
energy loss and voltage stability. Appl. Energy 2014, 113, 162–170. [CrossRef]

46. Jurado, F.; Cano, A. Optimal placement of biomass fuelled gas turbines for reduced losses. Energy Convers. Manag. 2006, 47,
2673–2681. [CrossRef]

47. Hamedi, H.; Gandomkar, M. A straightforward approach to minimizing unsupplied energy and power loss through DG
placement and evaluating power quality in relation to load variations over time. Int. J. Electr. Power Energy. Syst. 2011, 35, 93–96.
[CrossRef]

48. Shayani, R.A.; De Oliveira, M.A.G. Photovoltaic generation penetration limits in radial distribution systems. IEEE Trans. Power
Syst. 2011, 26, 1625–1631. [CrossRef]

49. Porkar, S.; Poure, P.; Abbaspour-Tehrani-fard, A.; Saadate, S. A novel optimal distribution system planning framework imple-
menting distributed generation in a deregulated electricity market. Electr. Power Syst. Res. 2010, 80, 828–837. [CrossRef]

50. Chang, R.W.; Mithulananthan, N.; Saha, T.K. Novel mixed-integer method to optimize distributed generation mix in primary distri-
bution systems. In Proceedings of the Power Engineering Conference (AUPEC), Brisbane, QLD, Australia, 25–28 September 2011.

51. Atwa, Y.M.; El-Saadany, E.F.; Salama, M.M.A.; Seethapathy, R. Optimal renewable resources mix for distribution system energy
loss minimization. IEEE Trans. Power Syst. 2010, 25, 360–370. [CrossRef]

52. Ruhaizad, I.; Azah, M.; Ahmed, N.A.; Mohd Zamri, C.W. Optimal DG Placement and Sizing For Voltage Stability Improvement
Using Backtracking Search Algorithm. In Proceedings of the Conference on Artificial Intelligence, Energy and Manufacturing
Engineering (ICAEME’2014), Kuala Lumpur, Malaysia, 9–10 June 2014.

53. Kumar, A.; Gao, W. Optimal distributed generation location using mixed integer non-linear programming in hybrid electricity
markets. IET Gener. Transm. Distrib. 2010, 4, 281–298. [CrossRef]

54. Rueda-Medina, A.C.; Franco, J.F.; Rider, M.J.; Padilha-Feltrin, A.; Romero, R. A mixed-integer linear programming approach for
optimal type, size and allocation of distributed generation in radial distribution systems. Electr. Power Syst. Res. 2013, 97, 133–143.
[CrossRef]

55. Wang, Z.; Chen, B.; Wang, J.; Kim, J.; Begovic, M.M. Robust optimization based optimal DG placement in microgrids. IEEE Trans.
Smart Grid 2014, 5, 2173–2182. [CrossRef]

56. Al Abri, R.S.; El-Saadany, E.F.; Atwa, Y.M. Optimal placement and sizing method to improve the voltage stability margin in a
distribution system using distributed generation. IEEE Trans. Power Syst. 2013, 28, 326–334. [CrossRef]

57. Nadarajah, M.; Oo, T.; Phu, L.V. Distributed generator placement in power distribution system using genetic algorithm to reduce
losses. Thammasat Int. J. Sci. Technol. 2004, 9, 55–62.

58. Borges, C.L.T.; Falcao, D.M. Optimal distributed generation allocation for reliability, losses, and voltage improvement. Int. J.
Electr. Power Energy Syst. 2006, 28, 413–420. [CrossRef]

59. Singh, R.K.; Goswami, S.K. Optimum allocation of distributed generations based on nodal pricing for profit, loss reduction, and
voltage improvement including voltage rise issue. Int. J. Electr. Power Energy Syst. 2010, 32, 637–644. [CrossRef]

60. Shaaban, M.F.; Atwa, Y.M.; El-Saadany, E.F. DG allocation for benefit maximization in distribution networks. IEEE Trans. Power
Syst. 2013, 28, 639–649. [CrossRef]

61. Singh, D.; Singh, D.; Verma, K.S. GA based optimal sizing & placement of distributed generation for loss minimization. Int. J.
Electr. Comput. Eng. 2007, 2, 556–562.

62. Teng, J.-H.; Liu, Y.-H.; Chen, C.-Y.; Chen, C.-F. Value-based distributed generator placements for service quality improvements.
Int. J. Electr. Power Energy Syst. 2007, 29, 268–274. [CrossRef]

63. Singh, D.; Singh, D.; Verma, K.S. Multiobjective optimization for DG planning with load models. IEEE Trans. Power Syst. 2009, 24,
427–436. [CrossRef]

64. Singh, R.K.; Goswami, S.K. Optimum siting and sizing of distributed generations in radial and networked systems. Electr. Power
Compon. Syst. 2009, 37, 127–145. [CrossRef]

65. Zangeneh, A.; Jadid, S.; Rahimi-Kian, A. Promotion strategy of clean technologies in distributed generation expansion planning.
Renew. Energy 2009, 34, 2765–2773. [CrossRef]

66. Soroudi, A.; Ehsan, M.; Zareipour, H. A practical ecoenvironmental distribution network planning model including fuel cells and
non-renewable distributed energy resources. Renew. Energy 2011, 36, 179–188. [CrossRef]

67. Kamalinia, S.; Afsharnia, S.; Khodayar, M.E.; Rahimikian, A.; Sharbafi, M.A. A combination of MADM and genetic algorithm
for optimal DG allocation in power systems. In Proceedings of the 2007 42nd International Universities Power Engineering
Conference, Brighton, UK, 4–6 September 2007.

68. Ma, Y.; Yang, P.; Guo, H.; Wu, J. Power source planning of wind-PV-biogas renewable energy distributed generation system.
Power Syst. Technol. 2012, 9, 001.

69. Liao, G.-C. Solve environmental economic dispatch of Smart MicroGrid containing distributed generation system e using chaotic
quantum genetic algorithm. Int. J. Electr. Power Energy Syst. 2012, 43, 779–787. [CrossRef]

70. Tautiva, C.; Cadena, A.; Rodriguez, F. Optimal placement of distributed generation on distribution networks. In Proceedings of
the 2009 44th International Universities Power Engineering Conference (UPEC), Glasgow, UK, 1–4 September 2009.

http://doi.org/10.1016/j.ijepes.2013.09.007
http://doi.org/10.1016/j.apenergy.2013.08.069
http://doi.org/10.1016/j.enconman.2005.10.033
http://doi.org/10.1016/j.ijepes.2011.10.001
http://doi.org/10.1109/TPWRS.2010.2077656
http://doi.org/10.1016/j.epsr.2009.12.008
http://doi.org/10.1109/TPWRS.2009.2030276
http://doi.org/10.1049/iet-gtd.2009.0026
http://doi.org/10.1016/j.epsr.2012.12.009
http://doi.org/10.1109/TSG.2014.2321748
http://doi.org/10.1109/TPWRS.2012.2200049
http://doi.org/10.1016/j.ijepes.2006.02.003
http://doi.org/10.1016/j.ijepes.2009.11.021
http://doi.org/10.1109/TPWRS.2012.2213309
http://doi.org/10.1016/j.ijepes.2006.07.008
http://doi.org/10.1109/TPWRS.2008.2009483
http://doi.org/10.1080/15325000802388633
http://doi.org/10.1016/j.renene.2009.06.018
http://doi.org/10.1016/j.renene.2010.06.019
http://doi.org/10.1016/j.ijepes.2012.06.040


Energies 2021, 14, 4270 39 of 43

71. Celli, G.; Pilo, F. Optimal distributed generation allocation in MV distribution networks. In Proceedings of the PICA 2001,
Innovative Computing for Power-Electric Energy Meets the Market, 22nd IEEE Power Engineering Society, International
Conference on Power Industry Computer Applications, Sydney, NSW, Australia, 20–24 May 2001.

72. Kuri, B.; Redfem, M.A.; Li, F. Optimisation of rating and positioning of dispersed generation with minimum network disruption.
In Proceedings of the Power Engineering Society General Meeting, Denver, CO, USA, 6–10 June 2004.

73. Niknam, T.; Ranjbar, A.M.; Shirani, A.R.; Mozafari, B.; Ostadi, A. Optimal operation of distribution system with regard to
distributed generation: A comparison of evolutionary methods. In Proceedings of the Fortieth IAS Annual Meeting, Conference
Record of the 2005 Industry Applications Conference, Hong Kong, China, 2–6 October 2005; Volume 4.

74. Niknam, T.; Ranjbar, A.M.; Shirani, A.R. An approach for Volt/Var control in distribution network with distributed generation.
Int. J. Sci. Technol. Sci. Iran. 2005, 12, 34–42.

75. Afsari, F. Multiobjective optimization of distribution networks using genetic algorithms. In Proceedings of the 5th International
Symposium on Communication Systems, Networks, and Digital Signal Processing, Patras, Greece, 19–21 July 2006.

76. Pisica, I.; Bulac, C.; Eremia, M. Optimal distributed generation location and sizing using genetic algorithms. In Proceedings of the
2009 15th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil, 8–12 November 2009.

77. Celli, G.; Ghiani, E.; Mocci, S.; Pilo, F. A multi-objective formulation for the optimal sizing and siting of embedded generation in
distribution networks. In Proceedings of the 2003 IEEE Bologna Power Tech Conference, Bologna, Italy, 23–26 June 2003.

78. Haesens, E.; Espinoza, M.; Pluymers, B.; Goethals, I.; Thong, V.V.; Driesen, J.; Belmanss, R.; de Moor, B. Optimal placement and
sizing of distributed generator units using genetic optimization algorithms. Electr. Power Qual. Util. J. 2005, 11, 97–104.

79. Kumar, V.; Kumar, H.C.R.; Gupta, I.; Gupta, H.O. DG integrated approach for service restoration under cold load pickup. IEEE
Trans. Power Deliv. 2010, 25, 398–406. [CrossRef]

80. Ochoa, L.F.; Padilha-Feltrin, A.; Harrison, G.P. Time-series-based maximization of distributed wind power generation integration.
IEEE Trans. Energy Convers. 2008, 23, 968–974. [CrossRef]

81. Teng, J.-H.; Luor, T.-S.; Liu, Y.-H. Strategic distributed generator placements for service reliability improvements. In Proceedings
of the IEEE Power Engineering Society Summer Meeting, Chicago, IL, USA, 21–25 July 2002; Volume 2.

82. Moeini-Aghtaie, M.; Dehghanian, P.; Hosseini, S.H. Optimal Distributed Generation placement in a restructured environment via
a multi-objective optimization approach. In Proceedings of the 16th Electrical Power Distribution Conference, Bandar Abbas,
Iran, 19–20 April 2011.

83. Yang, N.-C.; Chen, T.-H. Evaluation of maximum allowable capacity of distributed generations connected to a distribution grid
by dual genetic algorithm. Energy Build. 2011, 43, 3044–3052. [CrossRef]

84. Sheng, W.; Liu, K.Y.; Liu, Y.; Meng, X.; Li, Y. Optimal placement and sizing of distributed generation via an improved nondomi-
nated sorting genetic algorithm II. IEEE Trans. Power Deliv. 2015, 30, 569–578. [CrossRef]

85. Ganguly, S.; Samajpati, D. Distributed generation allocation on radial distribution networks under uncertainties of load and
generation using genetic algorithm. IEEE Trans. Sustain. Energy 2015. [CrossRef]

86. Evangelopoulos, V.A.; Georgilakis, P.S. Optimal distributed generation placement under uncertainties based on point estimate
method embedded genetic algorithm. IET Gener. Transm. Distrib. 2014, 389–400. [CrossRef]

87. Sutthibun, T.; Bhasaputra, P. Multi-objective optimal distributed generation placement using simulated annealing. In Pro-
ceedings of the ECTI-CON2010: The 2010 ECTI International Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology, Chiang Mai, Thailand, 19–21 May 2010.

88. Aly, A.I.; Hegazy, Y.G.; Alsharkawy, M.A. A simulated annealing algorithm for multi-objective distributed generation planning.
In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010.

89. Vallem, M.R.; Mitra, J. Siting and sizing of distributed generation for optimal microgrid architecture. In Proceedings of the 37th
Annual North American Power Symposium, Ames, IA, USA, 25 October 2005.

90. Ghadimi, N.; Ghadimi, R. Optimal allocation of distributed generation and capacitor banks in order to loss reduction in
reconfigured system. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 1099–1104.

91. Mitra, J.; Vallem, M.R.; Singh, C. Optimal deployment of distributed generation using a reliability criterion. IEEE Trans. Ind. Appl.
2016, 52, 1989–1997. [CrossRef]

92. Dharageshwari, K.; Nayanatara, C. Multiobjective optimal placement of multiple distributed generations in IEEE 33 bus radial
system using simulated annealing. In Proceedings of the 2015 International Conference on Circuits, Power and Computing
Technologies, Nagercoil, India, 19–20 March 2015.

93. Abbagana, M.; Bakare, G.A.; Mustapha, I.; Musa, B.U. Differential evolution based optimal placement and sizing of two
distributed generators in a power distribution system. J. Eng. Appl. Sci. 2012, 4, 61–70.

94. Gunda, J.; Khan, N.A. Optimal location and sizing of DG and shunt capacitors using differential evolution. Int. J. Soft Comput.
2011, 6, 128–135. [CrossRef]

95. Arya, L.D.; Koshti, A.; Choube, S.C. Distributed generation planning using differential evolution accounting voltage stability
consideration. Int. J. Electr. Power Energy Syst. 2012, 42, 196–207. [CrossRef]

96. Estabragh, M.R.; Mohsen, M. Optimal allocation of DG regarding to power system security via DE technique. In Proceedings of
the 2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, Jordan,
6–8 December 2011.

http://doi.org/10.1109/TPWRD.2009.2033969
http://doi.org/10.1109/TEC.2007.914180
http://doi.org/10.1016/j.enbuild.2011.07.025
http://doi.org/10.1109/TPWRD.2014.2325938
http://doi.org/10.1109/TSTE.2015.2406915
http://doi.org/10.1049/iet-gtd.2013.0442
http://doi.org/10.1109/TIA.2016.2517067
http://doi.org/10.3923/ijscomp.2011.128.135
http://doi.org/10.1016/j.ijepes.2012.04.011


Energies 2021, 14, 4270 40 of 43

97. Hejazi, H.A.; Hejazi, M.A.; Gharehpetian, G.B.; Abedi, M. Distributed generation site and size allocation through a techno
economical multi-objective Differential Evolution Algorithm. In Proceedings of the 2010 IEEE International Conference on Power
and Energy, Kuala Lumpur, Malaysia, 29 November–1 December 2010.

98. Slimani, L.; Bouktir, T. An Ant colony optimization for solving the Optimal Power Flow Problem in medium-scale electrical
network. In Proceedings of the First International Conference on Electrical Systems PCSE’05, Oum El Bouaghi University, Oum
El Bouaghi, Algeria, 9–11 May 2005. [CrossRef]

99. Dong, W.; Li, Y.; Xiang, J. Optimal sizing of a stand-alone hybrid power system based on battery/hydrogen with an improved ant
colony optimization. Energies 2016, 9, 785. [CrossRef]

100. Tolabi, H.B.; Ali, M.H.; Rizwan, M. Simultaneous Reconfiguration, Optimal Placement of DSTATCOM, and Photovoltaic Array in
a Distribution System Based on Fuzzy-ACO Approach. IEEE Trans. Sustain. Energy 2015, 6, 210–218. [CrossRef]

101. El-Zonkoly, A.; El-Zonkoly, A. Optimal placement of multi-distributed generation units including different load models using
particle swarm optimization. Swarm Evol. Comput. 2011, 1, 50–59. [CrossRef]

102. Padma, L.M.; Veera Reddy, V.C.; Usha, V. Optimal DG placement for minimum real power loss in radial distribution systems
using PSO. J. Theor. Appl. Inf. Technol. 2010, 13, 107–116.

103. Kansal, S.; Sai, B.; Tyagi, B.; Kumar, V. Optimal placement of distributed generation in distribution networks. Int. J. Eng. Sci.
Technol. 2011, 3, 47–55. [CrossRef]

104. Pandi, V.R.; Zeineldin, H.H.; Xiao, W. Determining optimal location and size of distributed generation resources considering
harmonic and protection coordination limits. IEEE Trans. Power Syst. 2013, 28, 1245–1254. [CrossRef]

105. Alinejad-Beromi, Y.; Sedighizadeh, M.; Sadighi, M. A particle swarm optimization for sitting and sizing of distributed generation
in distribution network to improve voltage profile and reduce THD and losses. In Proceedings of the 2008 43rd International
Universities Power Engineering Conference, Padua, Italy, 1–4 September 2008.

106. Kansal, S.; Kumar, V.; Tyagi, B. Optimal placement of different type of DG sources in distribution networks. Int. J. Electr. Power
Energy Syst. 2013, 53, 752–760. [CrossRef]

107. Ashari, Y.M.; Soeprijanto, A. Optimal distributed generation (DG) allocation for losses reduction using improved particle swarm
optimization (IPSO) method. J. Basic. Appl. Sci. Res. 2012, 2, 7016–7023.

108. Su, S.-Y.; Lu, C.-N.; Chang, R.-F.; Gutierrez-Alcaraz, G. Distributed generation interconnection planning: A wind power case
study. IEEE Trans. Smart Grid 2011, 2, 181–189. [CrossRef]

109. Arasi, S.M.; Sasiraja, R.M. Optimal Location of DG Units with Exact Size for the Improvement of Voltage Stability Using SLPSO.
IJLRES 2015, 7, 679–690.

110. Ganguly, S.; Sahoo, N.C.; Das, D. Multi-objective planning of electrical distribution systems using particle swarm optimization.
In Proceedings of the Electric Power and Energy Conversion Systems, EPECS’09, International Conference, Sharjah, United Arab
Emirates, 10–12 November 2009.

111. Niknam, T.; Ranjbar, A.M.; Ostadi, A.; Shirani, A.R. A new approach based on ant algorithm for Volt/Var control in distribution
network considering distributed generation. Iran. J. Sci. Technol. Trans. B 2005, 29, 1–15.

112. Niknam, T. An approach based on particle swarm optimization for optimal operation of distribution network considering
distributed generators. In Proceedings of the IECON 2006—32nd Annual Conference on IEEE Industrial Electronics, Paris, France,
6–10 November 2006.

113. Raj, P.A.-D.-V.; Senthilkumar, S.; Raja, J.; Ravichandran, S.; Palanivelu, T.G. Optimization of distributed generation capacity for
line loss reduction and voltage profile improvement using PSO. Elektrika J. Electr. Eng. 2008, 10, 41–48.

114. Wong, L.Y.; Abdul Rahim, S.R.; Sulaiman, M.H.; Aliman, O. Distributed generation installation using particle swarm optimization.
In Proceedings of the 2010 4th International Power Engineering and Optimization Conference (PEOCO), Shah Alam, Malaysia,
23–24 June 2010.

115. Wenxin, L.; Cartes, D.A.; Venayagamoorthy, G.K. Particle swarm optimization based defensive islanding of large scale power sys-
tem. In Proceedings of the 2006 IEEE International Joint Conference on Neural Network, Vancouver, BC, Canada, 16–21 July 2006.

116. Hajizadeh, A.; Hajizadeh, E. PSO-based planning of distribution systems with distributed generations. Int. J. Electr. Electron. Eng.
2008, 2, 33–38.

117. Mohammadi, M.; Nasab, M.A. PSO based multiobjective approach for optimal sizing and placement of distributed generation.
Res. J. Appl. Sci. Eng. Technol. 2011, 2, 832–837.

118. Zareiegovar, G.; Rezvani Fesaghandis, R.; Azad, M.J. Optimal DG location and sizing in distribution system to minimize losses,
improve voltage stability, and voltage profile. In Proceedings of the 2012 17th Conference on Electrical Power Distribution,
Teheran, Iran, 2–3 May 2012.

119. Maciel, R.S.; Rosa, M.; Miranda, V.; Padilha-Feltrin, A. Multi-objective evolutionary particle swarm optimization in the assessment
of the impact of distributed generation. Electr. Power Syst. Res. 2012, 89, 100–108. [CrossRef]

120. Devi, S.; Geethanjali, M. Optimal location and sizing determination of distributed generation and DSTATCOM using particle
swarm optimization algorithm. Int. J. Electr. Power Energy Syst. 2014, 62, 562–570. [CrossRef]

121. Jamian, J.J.; Mustafa, M.W.; Mokhlis, H. Optimal multiple distributed generation output through rank evolutionary particle
swarm optimization. Neurocomputing 2015, 152, 190–198. [CrossRef]

122. Golshan, M.E.H.; Arefifar, S.A. Optimal allocation of distributed generation and reactive sources considering tap positions of
voltage regulators as control variables. Int. Trans. Electr. Energy Syst. 2007, 17, 219–239. [CrossRef]

http://doi.org/10.13140/2.1.3402.2088
http://doi.org/10.3390/en9100785
http://doi.org/10.1109/TSTE.2014.2364230
http://doi.org/10.1016/j.swevo.2011.02.003
http://doi.org/10.4314/ijest.v3i3.68421
http://doi.org/10.1109/TPWRS.2012.2209687
http://doi.org/10.1016/j.ijepes.2013.05.040
http://doi.org/10.1109/TSG.2011.2105895
http://doi.org/10.1016/j.epsr.2012.02.018
http://doi.org/10.1016/j.ijepes.2014.05.015
http://doi.org/10.1016/j.neucom.2014.11.001
http://doi.org/10.1002/etep.130


Energies 2021, 14, 4270 41 of 43

123. Golshan, M.E.H.; Arefifar, S.A. Distributed generation, reactive sources and network-configuration planning for power and
energy-loss reduction. IEE Proceed. Gener. Transm. Distrib. 2006, 153, 127–136. [CrossRef]

124. Maciel, R.S.; Padilha-Feltrin, A. Distributed generation impact evaluation using a multi-objective Tabu Search. In Proceedings of
the 2009 15th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil, 8–12 November 2009.

125. Mori, H.; Iimura, Y. Application of parallel tabu search to distribution network expansion planning with distributed generation.
In Proceedings of the 2003 IEEE Bologna Power Tech Conference, Bologna, Italy, 23–26 June 2003.

126. Pereira, B.R.; Martins da Costa, G.R.M.; Contreras, J.; Mantovani, J.R.S. Optimal distributed generation and reactive power
allocation in electrical distribution systems. IEEE Trans. Sustain. Energy 2016, 7, 975–984. [CrossRef]

127. Arias, N.B.; Franco, J.F.; Lavorato, M.; Romero, R. Metaheuristic optimization algorithms for the optimal coordination of plug-in
electric vehicle charging in distribution systems with distributed generation. Electr. Power Syst. Res. 2017, 142, 351–361. [CrossRef]

128. Mardaneh, M.; Gharehpetian, G.B. Siting and sizing of DG units using GA and OPF based technique. In Proceedings of the 2004
IEEE Region 10 Conference TENCON, Chiang Mai, Thailand, 24 November 2004.

129. Harrison, G.P.; Piccolo, A.; Siano, P.; Wallace, A.R. Distributed generation capacity evaluation using combined genetic algorithm
and OPF. Int. J. Emerg. Electr. Power Syst. 2007, 8, 1–13. [CrossRef]

130. Harrison, G.P.; Piccolo, A.; Siano, P.; Wallace, A.R. Hybrid GA and OPF evaluation of network capacity for distributed generation
connections. Electr. Power Syst. Res. 2008, 78, 392–398. [CrossRef]

131. Naderi, E.; Seifi, H.; Sepasian, M.S. A Dynamic Approach for Distribution System Planning Considering Distributed Generation.
IEEE Trans. Power Deliv. 2012, 27, 1313–1322. [CrossRef]

132. Hussain, I.; Kumar Roy, A. Optimal distributed generation allocation in distribution systems employing modified artificial bee
colony algorithm to reduce losses and improve voltage profile. In Proceedings of the IEEE-International Conference On Advances
In Engineering, Science And Management (ICAESM-2012), Tamil Nadu, India, 30–31 March 2012; pp. 565–570.

133. Gandomkar, M.; Vakilian, M.; Ehsan, M. A genetic–based tabu search algorithm for optimal dg allocation in distribution networks.
Electr. Power Compon. Syst. 2005, 33, 1351–1362. [CrossRef]

134. Elgerd, O.I. Electric Energy Systems Theory: An Introduction; McGraw-Hill: New York, NY, USA, 1971.
135. Hung, D.Q.; Mithulanantham, N. Multiple distributed generator placement in primary distribution networks for loss reduction.

IEEE Trans. Ind. Electron. 2013, 60, 1700–1708. [CrossRef]
136. Hung, D.Q.; Mithulananthan, N. Alternative analytical approaches for renewable DG allocation for energy loss minimization. In

Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; Volume 18. [CrossRef]
137. Elmitwally, A. A new algorithm for allocating multiple distributed generation units based on load centroid concept. Alex. Eng. J.

2013, 52, 655–663. [CrossRef]
138. Bala, J.L.; Kuntz, P.A.; Pebles, M.N. Optimum capacitor allocation using a distribution-analyzer-recorder. IEEE Trans. PWRD

1997, 12, 464–469.
139. Kashem, M.A.; Le, A.D.T.; Negnevitsky, M.; Ledwich, G. Distributed generation for minimization of power losses in distribution

systems. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006.
140. Mirzaei, M.; Jasni, J.; Hizam, H.; Wahab, N.I.A.; Mohamed, S.E.G. An analytical method for optimal sizing of different types of

DG in a power distribution system. In Proceedings of the 2014 IEEE International Conference on Power and Energy (PECon),
Kuching, Malaysia, 1–3 December 2014; pp. 309–314. [CrossRef]

141. Carpentier, J. Contribution a l’etude du dispatching economique. Ser. 8 Bull. de la Société Française des Electriciens 1962, 3, 431–447.
142. Abdi, H.; Beigvand, S.D.; La Scala, M. A review of optimal power flow studies applied to smart grids and microgrids. Renew.

Sustain. Energy Rev. 2017, 71, 742–766. [CrossRef]
143. Geidl, M.; Andersson, G. Optimal power flow of multiple energy carriers. IEEE Trans Power Syst. 2007, 22, 145–155. [CrossRef]
144. Madrigal, M.; Ponnambalam, K.; Quintana, V.H. Probabilistic optimal power flow. In Proceedings of the IEEE Canadian

Conference on Electrical and Computer Engineering, Waterloo, ON, Canada, 25–28 May 1998.
145. Li, Y.; Li, W.; Yan, W.; Yu, J.; Zhao, X. Probabilistic optimal power flow considering correlations of wind speeds following different

distributions. IEEE Trans. Power Syst. 2014, 29, 1847–1854. [CrossRef]
146. Li, X.; Li, Y.; Zhang, S. Analysis of probabilistic optimal power flow taking account of the variation of load power. IEEE Trans.

Power Syst. 2008, 23, 992–999.
147. Kashem, M.; Ganapathy, V.; Jasmon, G.; Buhari, S.M. A novel method for loss minimization in distribution networks. In

Proceedings of the International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, London,
UK, 4–7 April 2000.

148. Baran, M.E.; Wu, F.F. Optimum sizing of capacitor placed on radial distribution systems. IEEE Trans. Power Deliv. 1989, 4, 735–743.
[CrossRef]

149. Nagarajua, S.K.; Sivanagarajub, S.; Ramanac, T.; Satyanarayanac, S.; Prasadd, P.V. A novel method for optimal distributed
generator placement in radial distribution systems. Distrib. Gener. Alter. Energy J. 2011, 26, 7–19. [CrossRef]

150. IEA. International Energy Agency. Technology Roadmap Energy Storage. 2014. Available online: https://www.iea.org/
publications/freepublications/publication/TechnologyRoadmapEnergystorage.pdf (accessed on 20 May 2020).

151. Sandia National Laboratories and U.S. Department of Energy (DOE) Global Energy Storage Database. 2018. Available online:
https://www.energystorageexchange.org/projects (accessed on 7 June 2018).

http://doi.org/10.1049/ip-gtd:20050170
http://doi.org/10.1109/TSTE.2015.2512819
http://doi.org/10.1016/j.epsr.2016.09.018
http://doi.org/10.2202/1553-779X.1517
http://doi.org/10.1016/j.epsr.2007.03.008
http://doi.org/10.1109/TPWRD.2012.2194744
http://doi.org/10.1080/15325000590964254
http://doi.org/10.1109/TIE.2011.2112316
http://doi.org/10.1109/PESGM.2012.6344863
http://doi.org/10.1016/j.aej.2013.08.011
http://doi.org/10.1109/PECON.2014.7062462
http://doi.org/10.1016/j.rser.2016.12.102
http://doi.org/10.1109/TPWRS.2006.888988
http://doi.org/10.1109/TPWRS.2013.2296505
http://doi.org/10.1109/61.19266
http://doi.org/10.1080/15453669.2011.10388608
https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapEnergystorage.pdf
https://www.iea.org/publications/freepublications/publication/TechnologyRoadmapEnergystorage.pdf
https://www.energystorageexchange.org/projects


Energies 2021, 14, 4270 42 of 43

152. Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for largescale grid
storage. Energy Environ. Sci. 2018, 11, 2696–2767. [CrossRef]

153. Krishan, O.; Suhang, S. An updated review of energy storage systems: Classification and applications in distributed generation
power systems incorporating renewable energy resources. Int. J. Energy Res. 2019, 43, 6171–6210. [CrossRef]

154. Khan, N.; Dilshad, S.; Khalid, R.; Kalair, A.R.; Abas, N. Review of energy storage and transportation of energy. Energy Storage
2019, 1, e49. [CrossRef]

155. Siritoglou, P.; Oriti, G.; Van Bossuyt, D. Distributed Energy-Resource Design Method to Improve Energy Security in Critical
Facilities. Energies 2021, 14, 2773. [CrossRef]

156. Zhou, B.; Liu, X.; Cao, Y.; Li, C.; Chung, C.Y.; Chan, K.W. Optimal scheduling of virtual power plant with battery degradation
cost. IET Gener. Transm. Distrib. 2016, 10, 712–725. [CrossRef]

157. Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Optimal operational planning of scalable DC microgrid with demand response,
islanding, and battery degradation cost considerations. Appl. Energy 2019, 237, 695–707. [CrossRef]

158. Song, Z.; Feng, S.; Zhang, L.; Hu, Z.; Hu, X.; Yao, R. Economy analysis of second-life battery in wind power systems considering
battery degradation in dynamic processes: Real case scenarios. Appl. Energy 2019, 251, 113411. [CrossRef]

159. Nazari-Heris, M.; Mohammadi-Ivatloo, B.; Anvari-Moghaddam, A.; Razzaghi, R. A Bi-Level Framework for Optimal Energy
Management of Electrical Energy Storage Units in Power Systems. IEEE Access 2020, 8, 216141–216150. [CrossRef]

160. Energy Storage Association. Compressed Air Energy Storage (CAES); Energy Storage Association: Washington, DC, USA, 2017;
pp. 1–3.

161. Nikolaidis, P.; Poullikkas, A. A comparative review of electrical energy storage systems for better sustainability. J. Power Technol.
2017, 97, 220–245.

162. Budt, M.; Wolf, D.; Span, R.; Yan, J. A review on compressed air energy storage: Basic principles, past milestones and recent
developments. Appl. Energy 2016, 170, 250–268. [CrossRef]

163. Fuchs, G.; Lunz, B.; Leuthold, M.; Sauer, D.U. Overview of nonelectrochemical storage technologies. In Electrochemical Energy
Storage for Renewable Sources and Grid Balancing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 89–102.

164. Lund, P.D.; Lindgren, J.; Mikkola, J.; Salpakari, J. Review of energy system flexibility measures to enable high levels of variable
renewable electricity. Renew. Sustain. Energy Rev. 2015, 45, 785–807. [CrossRef]

165. Wang, J.; Ma, L.; Lu, K.; Miao, S.; Wang, D.; Wang, J. Current research and development trend of compressed air energy storage.
Syst. Sci. Control. Eng. 2017, 5, 434–448. [CrossRef]

166. Ding, Y.; Tong, L.; Zhang, P.; Li, Y.; Radcliffe, J.; Wang, L. Chapter 9—Liquid air energy storage. In Storing Energy; Letcher, T.M.,
Ed.; Elsevier: Oxford, UK, 2016; pp. 167–181. [CrossRef]

167. Maisonnave, O.; Moreau, L.; Aubrée, R.; Benkhoris, M.-F.; Neu, T.; Guyomarc’H, D. Optimal energy management of an
underwater compressed air energy storage station using pumping systems. Energy Convers. Manag. 2018, 165, 771–782. [CrossRef]

168. Dincer, I. Thermal energy storage systems as a key technology in energy conservation. Int. J. Energy Res. 2002, 26, 567–588.
[CrossRef]

169. Sarbu, I.; Sebarchievici, C. A comprehensive review of thermal energy storage. Sustainability 2018, 10, 191. [CrossRef]
170. Liu, D.; Xin-Feng, L.; Bo, L.; Si-Quan, Z.; Yan, X. Progress in thermochemical energy storage for concentrated solar power: A

review. Int. J. Energy Res. 2018, 42, 4546–4561. [CrossRef]
171. Kearney, D.; Herrmann, U.; Nava, P.; Kelly, B.; Mahoney, R.; Pacheco, J.; Cable, R.; Potrovitza, N.; Blake, D.; Price, H. Assessment

of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field. J. Sol. Energy Eng. 2003, 125, 170–176. [CrossRef]
172. Fernandes, D.; Pitié, F.; Cáceres, G.; Baeyens, J. Thermal energy storage: How previous findings determine current research

priorities. Energy 2012, 39, 246–257. [CrossRef]
173. Wei, L.; Wei, C.; Wang, D. Research and development of thermochemical energy storage based on hydrated salt. Refrig. Air Cond.

2017, 17, 14–21.
174. Hutchings, K.; Wilson, M.; Larsen, P.; Cutler, R. Kinetic and thermodynamic considerations for oxygen absorption/desorption

using cobalt oxide. Solid State Ion. 2006, 177, 45–51. [CrossRef]
175. Muroyama, A.P.; Schrader, A.J.; Loutzenhiser, P.G. Solar electricity via an Air Brayton cycle with an integrated two-step

thermochemical cycle for heat storage based on Co3O4/CoO redox reactions II: Kinetic analyses. Sol. Energy 2015, 122, 409–418.
[CrossRef]

176. Carrillo, A.J.; Moya, J.; Bayón, A.; Jana, P.; O’Shea, V.A.D.L.P.; Romero, M.; Gonzalez-Aguilar, J.; Serrano, D.P.; Pizarro, P.;
Coronado, J.M. Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus
mixed ones. Sol. Energy Mater. Sol. Cells 2014, 123, 47–57. [CrossRef]

177. Agrafiotis, C.; Tescari, S.; Roeb, M.; Schmücker, M.; Sattler, C. Exploitation of thermochemical cycles based on solid oxide redox
systems for thermochemical storage of solar heat. Part 3: Cobalt oxide monolithic porous structures as integrated thermochemical
reactors/heat exchangers. Sol. Energy 2015, 114, 459–475. [CrossRef]

178. Block, T.; Schmücker, M. Metal oxides for thermochemical energy storage: A comparison of several metal oxide systems. Sol.
Energy 2016, 126, 195–207. [CrossRef]

179. Haseli, P.; Jafarian, M.; Nathan, G. High temperature solar thermochemical process for production of stored energy and oxygen
based on CuO/Cu2O redox reactions. Sol. Energy 2017, 153, 1–10. [CrossRef]

http://doi.org/10.1039/C8EE01419A
http://doi.org/10.1002/er.4285
http://doi.org/10.1002/est2.49
http://doi.org/10.3390/en14102773
http://doi.org/10.1049/iet-gtd.2015.0103
http://doi.org/10.1016/j.apenergy.2019.01.040
http://doi.org/10.1016/j.apenergy.2019.113411
http://doi.org/10.1109/ACCESS.2020.3038841
http://doi.org/10.1016/j.apenergy.2016.02.108
http://doi.org/10.1016/j.rser.2015.01.057
http://doi.org/10.1080/21642583.2017.1377645
http://doi.org/10.1016/B978-0-12-803440-8.00009-9
http://doi.org/10.1016/j.enconman.2018.04.007
http://doi.org/10.1002/er.805
http://doi.org/10.3390/su10010191
http://doi.org/10.1002/er.4183
http://doi.org/10.1115/1.1565087
http://doi.org/10.1016/j.energy.2012.01.024
http://doi.org/10.1016/j.ssi.2005.10.005
http://doi.org/10.1016/j.solener.2015.08.038
http://doi.org/10.1016/j.solmat.2013.12.018
http://doi.org/10.1016/j.solener.2014.12.037
http://doi.org/10.1016/j.solener.2015.12.032
http://doi.org/10.1016/j.solener.2017.05.025


Energies 2021, 14, 4270 43 of 43

180. Chacartegui, R.; Alovisio, A.; Ortiz, C.; Valverde, J.; Verda, V.; Becerra, J. Thermochemical energy storage of concentrated solar
power by integration of the calcium looping process and a CO2 power cycle. Appl. Energy 2016, 173, 589–605. [CrossRef]

181. Luzzi, A.; Lovegrove, K. A solar thermochemical power plant using ammonia as an attractive option for greenhouse-gas
abatement. Energy 1997, 22, 317–325. [CrossRef]

182. Dunn, R.; Lovegrove, K.; Burgess, G. A Review of Ammonia-Based Thermochemical Energy Storage for Concentrating Solar
Power. Proc. IEEE 2012, 100, 391–400. [CrossRef]

183. Kato, Y.; Yamashita, N.; Kobayashi, K.; Yoshizawa, Y. Kinetic study of the hydration of magnesium oxide for a chemical heat
pump. Appl. Therm. Eng. 1996, 16, 853–862. [CrossRef]

184. Rougé, S.; Criado, Y.A.; Soriano, O.; Carlos Abanades, J. Continuous CaO/Ca(OH)2 fluidized bed reactor for energy storage: First
experimental results and reactor model validation. Ind. Eng. Chem. Res. 2017, 56, 844–852. [CrossRef]

185. Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 2015,
40, 11094–11111. [CrossRef]

186. Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218,
835–849. [CrossRef]

187. Revankar, S.T. Chemical Energy Storage. In Storage and Hybridization of Nuclear Energy; Elsevier: Amsterdam, The Netherlands,
2019; Chapter 6; pp. 177–227.

188. Portarapillo, M.; Di Benedetto, A. Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns. Energies 2021, 14, 2856.
[CrossRef]

189. Schneemann, A.; White, J.L.; Kang, S.; Jeong, S.; Wan, L.F.; Cho, E.S.; Heo, T.W.; Prendergast, D.; Urban, J.J.; Wood, B.C.; et al.
Nanostructured Metal Hydrides for Hydrogen Storage. Chem. Rev. 2018, 118, 10775–10839. [CrossRef]

190. Walker, S.B.; van Lanen, D.; Fowler, M.; Mukherjee, U. Economic analysis with respect to Power-to-Gas energy storage with
consideration of various market mechanisms. Int. J. Hydrogen Energy 2016, 41, 7754–7765. [CrossRef]

191. Oldenbroek, V.; Verhoef, L.A.; van Wijk, A.J. Fuel cell electric vehicle as a power plant: Fully renewable integrated transport and
energy system design and analysis for smart city areas. Int. J. Hydrogen Energy 2017, 42, 8166–8196. [CrossRef]

192. MHYBUS Project. Available online: https://www.mhybus.eu/en/mhybus_en.htm (accessed on 20 May 2021).
193. Lewandowska-Bernat, A.; Desideri, U. Opportunities of power-to-gas technology in different energy systems architectures. Appl.

Energy 2018, 228, 57–67. [CrossRef]
194. Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and

fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [CrossRef]
195. Chiesa, P.; Lozza, G.; Mazzocchi, L. Using Hydrogen as Gas Turbine Fuel. J. Eng. Gas Turbines Power 2005, 127, 73–80. [CrossRef]
196. Cappelletti, A.; Martelli, F. Investigation of a pure hydrogen fueled gas turbine burner. Int. J. Hydrogen Energy 2017, 42,

10513–10523. [CrossRef]
197. Kosowski, P.; Kosowska, K. Valuation of Energy Security for Natural Gas—European Example. Energies 2021, 14, 2678. [CrossRef]
198. Mirzaei, M.A.; Nazari-Heris, M.; Zare, K.; Mohammadi-Ivatloo, B.; Marzband, M.; Asadi, S.; Anvari-Moghaddam, A. Evaluating

the impact of multi-carrier energy storage systems in optimal operation of integrated electricity, gas and district heating networks.
Appl. Therm. Eng. 2020, 176, 115413. [CrossRef]

199. Heris, M.-N.; Mirzaei, M.A.; Asadi, S.; Mohammadi-Ivatloo, B.; Zare, K.; Jebelli, H.; Marzband, M. Evaluation of hydrogen
storage technology in risk-constrained stochastic scheduling of multi-carrier energy systems considering power, gas and heating
network constraints. Int. J. Hydrogen Energy 2020, 45, 30129–30141. [CrossRef]

http://doi.org/10.1016/j.apenergy.2016.04.053
http://doi.org/10.1016/S0360-5442(96)00131-4
http://doi.org/10.1109/JPROC.2011.2166529
http://doi.org/10.1016/1359-4311(96)00009-9
http://doi.org/10.1021/acs.iecr.6b04105
http://doi.org/10.1016/j.ijhydene.2014.12.035
http://doi.org/10.1016/j.jclepro.2019.02.046
http://doi.org/10.3390/en14102856
http://doi.org/10.1021/acs.chemrev.8b00313
http://doi.org/10.1016/j.ijhydene.2015.12.214
http://doi.org/10.1016/j.ijhydene.2017.01.155
https://www.mhybus.eu/en/mhybus_en.htm
http://doi.org/10.1016/j.apenergy.2018.06.001
http://doi.org/10.1039/C8EE01157E
http://doi.org/10.1115/1.1787513
http://doi.org/10.1016/j.ijhydene.2017.02.104
http://doi.org/10.3390/en14092678
http://doi.org/10.1016/j.applthermaleng.2020.115413
http://doi.org/10.1016/j.ijhydene.2020.08.090

	Introduction 
	Optimization Methods for Correct Placement of Renewable Distributed Generators 
	Analytical Techniques 
	Exact Loss Formula 
	Loss Sensitivity Factor 

	Optimal Power Flow 
	Numerical Results 

	Energy Storage Systems 
	Compressed Air Energy Storage 
	Thermal Energy Storage 
	Hydrogen Storage 
	Comparison of ESS 

	Conclusions 
	References

