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Abstract
We present AFQN (Approximate Fast Qn), a novel algorithm for approximate computation of the Qn scale estimator in a
streaming setting, in the sliding window model. It is well-known that computing the Qn estimator exactly may be too costly
for some applications, and the problem is a fortiori exacerbated in the streaming setting, in which the time available to process
incoming data stream items is short. In this paper we show how to efficiently and accurately approximate the Qn estimator.
As an application, we show the use of AFQN for fast detection of outliers in data streams. In particular, the outliers are
detected in the sliding window model, with a simple check based on the Qn scale estimator. Extensive experimental results
on synthetic and real datasets confirm the validity of our approach by showing up to three times faster updates per second.
Our contributions are the following ones: (i) to the best of our knowledge, we present the first approximation algorithm for
online computation of the Qn scale estimator in a streaming setting and in the sliding window model; (ii) we show how to
take advantage of our UDDSKETCH algorithm for quantile estimation in order to quickly compute the Qn scale estimator;
(iii) as an example of a possible application of the Qn scale estimator, we discuss how to detect outliers in an input data
stream.

Keywords Data streams · Qn estimator · Sliding window model · Outliers

1 Introduction

In this paper we deal with the problem of computing approx-
imately the Qn scale estimator when the input is a data
stream. Qn is a robust measure of dispersion [17]; it is a
rank-based estimator proposed by Rousseeuw and Croux, a
statistic based on absolute pairwise differences which does
not require location estimation.

It is worth recalling here that statistical robustness comes at
a cost, since computing the Qn estimator is computationally

� Massimo Cafaro
massimo.cafaro@unisalento.it

Italo Epicoco
italo.epicoco@unisalento.it; italo.epicoco@cmcc.it

Catiuscia Melle
catiuscia.melle@unisalento.it

Marco Pulimeno
marco.pulimeno@unisalento.it

1 University of Salento, Via per Monteroni 73100 Lecce, Italy

2 Euro-Mediterranean Centre on Climate Change Foundation,
Via Augusto Imperatore 16, Lecce, Italy

expensive as we shall see. The challenge is therefore to
design a streaming algorithm working in the sliding window
model [6, 15], able to quickly provide an approximation for
the Qn estimator for each item in the input data stream. More-
over, the quality of such an approximation must be high,
with regard to the accuracy. We shall show how to approx-
imately compute the Qn estimator by using our UDDS-
KETCH algorithm [7] for quantile estimation.

As an application, we deal with the problem of analyz-
ing an input data stream to detect anomalies, also known as
outliers. Formally, we will denote by σ a data stream con-
sisting of a sequence of n items drawn from a universe U .
In general, depending on the specific application, items may
be duplicated and may correspond to abstract or real enti-
ties, such as IP addresses, graph edges, points, geographical
coordinates, numbers etc. A detailed survey discussing data
streams and fundamental streaming algorithms is [15].

Given the input stream, we process its items using the
sliding window model [6, 15]. In this model, the freshness
of recent items is captured either by a time window, i.e., a
temporal interval of fixed size in which only the most recent
items are taken into account or by an item window, i.e. a
window containing a predefined number of recent items;
detection of outliers is strictly related to those items falling
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in the window. The items in the stream become stale over
time, since the window periodically slides forward.

We are provided with a potentially infinite input stream
whose items are numbers, and our task is to determine the
outliers. Distinguishing inliers and outliers is a notoriously
difficult problem even in the simplest case of a static input
dataset. An outlier is traditionally defined as an observation
which markedly deviates from the other members of a
dataset, and searching for outliers requires finding those
observations which appear to be inconsistent with the rest
of the data [11]. Therefore, outliers are often thought as
anomalies; they may arise either because of human or
instrument errors, fraudulent behaviour, changes or system’s
faults, natural deviations in populations, etc.

Detecting an outlier may indicate a system abnormal
running condition such as an engine defect, an anomalous
object in an image, an intrusion with malicious intension
inside a system, a fault in a production line, etc. An outlier
detection system accomplishes the task of monitoring data
in order to reveal anomalous instances. A comprehensive
list of outlier detection use-cases is given in [11].

Owing to the underlying nature of the input stream,
outliers’ detection becomes particularly challenging and
relevant. A data stream is usually characterized by the high
rate of items’ arrivals and by its length, which may be
unbounded. As an immediate consequence, processing the
items of a stream to compute a function of the input is
quite hard, given that an algorithm is only allowed a single
pass over the data stream items. In particular, each item
is only seen just once, and must be quickly processed and
discarded. Typically, processing an item must be done in
constant time. Another problem is strictly related to the
potentially unbounded length of the stream, which implies
that the data items can not be stored, making infeasible
processing the input at a later time. Indeed, in many cases
the task requires near real-time processing of the stream.

Determining the outlierness of an item centered in the
current window requires computing a score based on the Qn

estimator; we shall show that our AFQN algorithm is both
fast and accurate and is therefore a valid alternative to the
exact but computationally expensive Qn estimator.

To recap, our contributions are the following ones:

– to the best of our knowledge, we present the first
approximation algorithm for online computation of the
Qn scale estimator in a streaming setting and in the
sliding window model;

– we show how to take advantage of our UDDSKETCH

algorithm for quantile estimation in order to quickly
compute the Qn scale estimator;

– as an example of a possible application of the Qn scale

estimator, we discuss how to detect outliers in an input
data stream.

This paper is organized as follows. In Section 2, we
introduce the Qn estimator and discuss related work. We
describe our AFQN algorithm in Section 3. As an applica-
tion, we present in Section 4 a robust statistical approach to
outlier detection. Section 5 provides extensive experimental
results. Our conclusions are drawn in Section 6.

2 Related work

TheQn estimator is a robust statistical method for univariate
data. Given a set {x1, x2, . . . , xn}, the Qn statistic was
initially defined by its authors [17] as

Qn = 2.2219
{∣∣xi − xj

∣∣ ; i < j
}
(k)

(1)

where k ≈ (
n
2

)
/4 and the notation {·}(k) denotes computing

the kth order statistics on the set. However, the authors
slightly modified the definition in (1) by taking into account
that
(

h − 1
2

)
+ 1 ≤ k ≤

(
h

2

)
, (2)

where h = �n/2� + 1. The final definition is

Qn = dn 2.2219
{∣∣xi − xj

∣∣ ; i < j
}
(k)

, (3)

where k = (
h
2

)
and dn is a correction factor which depends

on n. From a statistical perspective, the breakdown point of
Qn is 50%, i.e., the estimator is robust enough to counter
the negative effects of almost 50% large outliers without
becoming extremely biased. In addition, its Gaussian effi-
ciency is about 82%, i.e., it is an efficient estimator since it
needs fewer observations than a less efficient one to achieve
a given performance. To better understand how efficient the
Qn estimator is, it is worth recalling here that the MAD
(Median Absolute Deviation about the median of the data)
estimator [9] provides an efficiency of only about 36%.

Consider a static dataset consisting of n items. Comput-
ing the Qn estimator naively requires determining the set of
the absolute pairwise differences, whose size is quadratic in
n. Then, the differences must be sorted in order to deter-
mine the kth order statistic. Therefore, the naive approach
requires in the worst case O(n2 lg n) time. A slightly better
algorithm requires O(n2) time in the worst case, by using
the SELECT algorithm [1] which is linear in the input size
in the worst case; again, the input size refers to the size
of the set of the absolute pairwise differences. Since the
SELECT algorithm is only of theoretical interest, selecting
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the kth order statistic is usually done with the QUICKSE-
LECT algorithm [8, 10] which is extremely fast. However,
QUICKSELECT is linear in the input size only on average
(expected computational complexity).

Croux and Rousseeuw [5] proposed the first offline algo-
rithm with worst case complexity O(n lg n), taking advan-
tage of an algorithm designed by Johnson and Mizoguchi
[12] to determine the kth order statistic in a matrix which
is required to have nonincreasing rows and columns, of the
form

U = X + Y = {
xi + yj ; 1 ≤ i, j ≤ n

}
, (4)

where the vectorsX and Y are sorted usingO(n lg n) time in
the worst case. The key idea is to use the matrix U of order
n without actually computing all of its entries, since this
would require O(n2) time. This is coupled with a pruning
strategy which allows discarding those numbers that can not
be the kth order statistic.

In order to reduce the problem of computing the Qn

estimator to the problem of selecting an order statistic using
the matrix U , Croux and Rousseeuw noted that

{∣∣xi − xj

∣∣ ; i < j
}
(k)

= {
x(i) − x(n−j+1); 1 ≤ i, j ≤ n

}
(k∗) , (5)

where k∗ = k + n + (
n
2

)
.

In the previous equation, x(1) ≤ . . . ≤ x(n) are the sorted
observations (we recall that x1, . . . , xn are the unsorted
observations). It follows that, defining the vectors X =
{x(1), . . . , x(n)} and Y = {−x(n), . . . , −x(1)}, Croux and
Rousseeuw can apply the Johnson and Mizoguchi algorithm
to the matrix obtained considering those observations whose
indexes are such that 1 ≤ i, j ≤ n:

U = X + Y = (
x(i) − x(n−j+1)

)
, 1 ≤ i, j ≤ n. (6)

A minor difference is that the Johnson and Mizoguchi
algorithm requires that the vectors X and Y be in non-
increasing order; Croux and Rousseeuw use, instead, the
nondecreasing order.

The first algorithm working in a streaming setting has
been proposed by [16]. The algorithm works in the sliding
window model; let s be the window size. The window is
initially empty, and incoming observations from the stream
are added to the window until the window reaches its
size. Once the window is full, a new incoming observation
triggers a window’s update: the new observation is added to
the window, and the oldest observation is removed from it.

In order to compute the Qn estimator during a window’s
update, the algorithm reuses the same consideration of Croux
and Rousseeuw: givenX = {x1, . . . , xs}, k′ = (�s/2�+1

2

)
and

k = k′ + s + (
s
2

)
, it holds that

{∣∣xi −xj

∣∣ , i <j
}
(k′) =

{
x(i)−x(s−j+1), 1≤ i, j ≤s

}
(k)

. (7)

It follows that in this case the algorithm must compute
the kth order statistic of U = X + (−X). The algorithm
maintains a bufferB of size b = O(s), storing matrix entries
u(k−�(b−1)/2�), . . . , u(k+�b/2�), centered on the kth order
statistic. The buffer is initially populated using a variant of
the Croux and Rousseeuw algorithm. The implementation
relies on the use of AVL trees, respectively for X, −X and
the buffer B. Insertion and deletion of an item in the trees
triggers a computation of the new position of the kth order
statistic in B. If the kth order statistic is no longer in B,
then B is recomputed using the offline algorithm of Croux
and Rousseeuw. In the worst case, [16] requires O(s lg s)

time. The authors prove that, “for a constant signal with
stationary noise, the expected amortized time per update is
O(lg s)”. However, it is worth remarking here that, in order
to achieve this expected amortized time, the authors assume
that the rank of each data point in the set of all data points
is equiprobable, which of course is not always the case.

In [2] we presented FQN (Fast Qn), a novel streaming
algorithm working in the sliding window model for
computing the Qn estimator with worst case O(s) running
time, where s is the window’s size. FQN outperforms
[16] with regard to speed and does not assume anything
related to the underlying distribution of the input stream.
Our algorithm maintains two different permutations of the
current window: the former is the permutation related to the
actual order of arrival of the observations from the stream,
the latter is instead the sorted permutation. Maintaining
the sorted permutation can be done in O(s) by mimicking
the way InsertionSort [4] inserts an item. Then, in order
to compute the kth order statistic of the absolute pairwise
differences, we cleverly reuse, adapting it to our context, an
algorithm by Mirzaian and Arjomandi [14]. This algorithm
determines the kth order statistic in O(s) worst case time.

3 The AFQN algorithm

Our AFQN algorithm dynamically maintains and processes
consecutive windows arising from the input stream. Let W

be our sliding window and xi the ith item in the input
stream. We let the size of W be s = 2w + 1, where w is the
semi-window size.

Besides the window, AFQN exploits a sketch data
structure provided by our recent UDDSKETCH algorithm
[7] for quantile estimation. The sketch is used to insert
and remove as needed the differences required to compute
the Qn estimator. Formally, we recall that given a set
{x1, x2, . . . , xn}, we need a clever way to compute the kth
order statistic of the set

{∣∣xi − xj

∣∣ ; i < j
}
where k =

(�n/2�+1
2

)
. In particular, the size of the set of differences is

(n × (n − 1))/2 = O(n2).
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When the algorithm starts, the window W is empty. We
insert the items in W one at a time; after inserting s items,
the window is full. Each time we insert an item xi , we also
insert its corresponding i − 1 differences with the previous
items into the sketch. Therefore, for each item we insert at
most O(s) differences, so that when the window is full for
the first time the sketch contains (s × (s − 1))/2 = O(s2)

differences.
Once the first window has been processed, each time

a new item arrives from the stream the window and the
sketch are updated as follows. The algorithm processes
the stream in windows W =< xi−2w, . . . , xi > of size
s (implemented as a circular buffer). The window slides
one item ahead when a new item xi+1 arrives from the
input stream, we remove from W the least recent (in the
temporal sequence of item arrivals) item xi−2w and we
also delete the s − 1 differences between xi−2w and the
other s − 1 items in W from the sketch. We then proceed
inserting the new item xi+1 into W along with the s − 1
differences between xi+1 and the other s−1 items in W into
the sketch.

As explained, handling a new item’s arrival only requires
O(s) sketch insertions and deletions, so that we avoid
computing all of theO(s2) differences each time a new item
arrives from the input stream. In order to compute the kth
order statistic related to the current window W , we simply
query the sketch determining the quantile corresponding to
k = (�s/2�+1

2

)
. Figure 1 depicts how the algorithm works,

whilst Algorithm 5 refers to the pseudocode for AFQN.
We now discuss in details our UDDSKETCH algorithm.
UDDSKETCH is based on the same data structure used by

the DDSKETCH algorithm [13]. This data structure supports
the following operations: inserting an item, deleting an item,
collapsing the data structure if required and querying it
for quantile estimation. However, DDSKETCH guarantees

good accuracy only for selected input distributions, whilst
our algorithm provides better accuracy for almost all of
the possible input distributions. We achieved this result by
engineering a new collapsing procedure which is able to
uniformly distribute the error committed. The accuracy is
defined as follows.

Definition 1 q-quantile. Denoting with S a multi-set of size
n defined over R and with R(x) the rank of an item x, i.e.,
the number of items in S which are smaller than or equal
to x, then the lower (respectively upper) q-quantile item
xq ∈ S is the item x whose rankR(x) in S is �1 + q(n − 1)�
(respectively 	1 + q(n − 1)
) for 0 ≤ q ≤ 1.

As an example, x0 and x1 are respectively the minimum
and maximum item in S, whilst x0.5 corresponds to the
median. Relative accuracy is defined as follows.

Definition 2 Relative accuracy. An item x̃q is an α-accurate
q-quantile if, for a given q-quantile item xq ∈ S, |x̃q− xq | ≤
αxq . A sketch data structure is an α-accurate (q0, q1)-sketch
if it can output α-accurate q-quantiles for q0 ≤ q ≤ q1.

The sketch data structure is a set of buckets. In the
sequel, we shall assume without loss of generality that the
input consists of items x ∈ R≥0 (owing to the fact that
the absolute differences are greater than or equal to zero;
nevertheless, the algorithm can also handle negative values:
this requires using another sketch in which an item x ∈
R<0 is handled by inserting −x). The algorithm must be
initialized using two input parameters, α and m. The former
is the user’s defined accuracy, and the latter is the maximum
number of buckets that can be used. If inserting an item
requires adding a new bucket and the number of buckets
exceeds m, then a collapsing procedure is executed in order

Fig. 1 Algorithm’s details
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to satisfy the constraint on m; collapsing the sketch reduces
the number of buckets to at most m.

Bucket boundaries are defined with regard to the quantity
γ = 1+α

1−α
. Let the ith bucket be Bi , with index i = 	lgγ x
.

The input items x such that γ i−1 < x ≤ γ i fall in the bucket
Bi , which is just a counter variable initialized to zero. To
insert an item x into the sketch, if the corresponding bucket
already exists the algorithm simply increments that bucket’s
counter by one, otherwise the new bucket is added to the
sketch, and then its counter is set to one. Symmetrically,
an item is deleted decrementing by one the corresponding
bucket’s counter; if the counter’s value becomes zero, its
bucket is removed from the sketch. At the beginning, the
sketch is empty, and the buckets are dynamically added
or removed as required. We point out here that the bucket
indexes are dynamic as well, since they depend on both the
input items and the γ value.

The insertion procedure may of course cause the sketch
to grow without bounds. To prevent this, the algorithm exe-
cutes a collapsing procedure when the number of buckets
exceeds the maximum number of m buckets. The pseu-
docode for UDDSKETCH insertion of an item x into the
sketch S is shown as Algorithm 1, whilst Algorithm 2 refers
to the pseudocode for deleting an item.

In the original DDSKETCH algorithm the collapse is
applied to the first two buckets whose counters’ values are
greater than zero (or, alternatively, it can be done on the
last two buckets). Denoting respectively by By and Bz, with
y < z, the first two buckets, the collapsing procedure adds

the count stored by By to Bz, then By is removed from the
sketch.

Our UDDSKETCH algorithm uses a carefully designed
uniform collapsing procedure. Instead of collapsing only the
first two buckets with counts greater than zero, we collapse
them all, in pairs. Consider a pair of indices (i, i + 1), with
i being an odd index and Bi �= 0 or Bi+1 �= 0. When
processing this pair of buckets we create and add to the
sketch a new bucket whose index is j = 	 i

2
, and set its
counter’s value to the sum of the Bi and Bi+1 counters’
values. This new bucket replaces the two collapsed buckets
which are then evicted from the sketch. The pseudocode of
our uniform collapse procedure is shown as Algorithm 3.

Quantile estimation can be done by using the Query
procedure, whose pseudocode is shown as Algorithm 4. The
input is a quantile 0 ≤ q ≤ 1. To estimate the quantile
value, the procedure determines the index of the first bucket
with count greater than zero, and then it sums the next
counters’ values greater than zero until the sum is less than
or equal to q(n − 1). Letting i be the index of the last
bucket considered, the final estimation is obtained as x̃q =
2γ i/(γ + 1). A theoretical bound on the accuracy and the
actual accuracy achieved experimentally by UDDSKETCH

on several distributions is available in [7].
Since the computational complexity of inserting an

item into the sketch is in the worst-case O(1), it follows
that inserting the s differences requires at most O(s).
Therefore, for a theoretical perspective, AFQN shares the
same complexity of FQN; however, as we shall show in
Section 5, in practice, AFQN is faster.
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4 A robust statistical approach to outlier
detection

An outlier detector working in streaming can be designed
using a temporal window which slides forward one item
at a time. Denoting with W the current window and by w

the semi-window size, the algorithm processes the stream in
windows W =< σi−2w, . . . , σi > of size s = 2w+1. Once
the first window has been processed, the new one is obtained
by sliding the window one item ahead when the next item
arrives from the stream. Letting i − 2w be the index of the
first item in a window W (i.e., the oldest one), then the item
under test in W is the one located at the index i − w.

Traditionally, outlier detection has been based on the z-
scores of the observations given by zscore = x−μ

σ
where

x denotes the observation under test, and μ and σ denote
respectively the mean and the standard deviation of the
observations. A different outlierness test has been proposed
in [18], using robust estimators such as the median and the
MAD (Median Absolute Deviation from the median of the
observations): (x − median(W))/MAD.

As an example application for outlier detection, we use
a slightly different z-score, in which we substitute the
Qn estimator in place of MAD, obtaining the following
outlierness test: |x − median(W)|/Qn. The reasons for
preferring theQn estimator to MAD are its greater Gaussian
efficiency (82% versus 36%) and its ability to deal with
skewed distributions [17].

Denoting the item under test with x = σi−w, in order
to determine whether x is an outlier we proceed as follows.
We begin computing the quantile q according to Eq. 3 by
considering only the values in the current window. Next, we
determine med , the value of W corresponding to the median
order statistic and compute qn, the Qn dispersion for the
window W .

Table 1 Metrics utilized

Metric Definition

Recall = TP
TP+FN

Precision = TP
TP+FP

F1 score = 2∗(Recall∗Precision)
(Recall+Precision)

J (A, B) = |A∩B|
|A∪B|

TP denotes true positives, FP false positives, TN true negatives, FN
false negatives. A and B are two countable finite sets

Let t be a scalar integer acting as a multiplier of the
Qn dispersion. In practice, t is used to control the degree
of outlierness of an item. To determine if an item x is an

Table 2 Synthetic data: experiments carried out

Distribution Parameters

beta α = 2, β = 1/4

chi-squared ν = 3

exponential λ = 1/2

gamma α = 1, β = 2

half-normal θ = 1/2

inverse gaussian μ = 2, λ = 1

log-normal μ = 1, σ = 3

normal μ = 1, σ = 3

pareto k = 3, α = 0.75

poisson μ = 3

uniform min = 0, max = 100000

zipf n = 100000000, ρ = 1.2
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Fig. 2 Implementation’s details

outlier, we check the following condition (corresponding to
the devised outlierness test): |x − med| > t · qn; if the
condition is true, then x is an outlier, otherwise x is an
inlier (i.e., a normal observation). In practice, the condition
|x − med| > t · qn identifies as outliers those points that
are not within t times the Qn dispersion from the sample
median; regarding t , a commonly used value is t = 3 [3,
19]. The pseudocode is shown as Algorithm 6.

5 Experimental results

In this Section, we present and discuss experimental results,
thoroughly comparing our algorithms FQN and AFQN. The
former exactly determines the Qn values for its input data
stream, whilst the latter provides an approximation for the
Qn values. However, we do not directly compare the two
algorithms with regard to the obtained Qn values, owing
to the fact that the accuracy of UDDSKETCH has been
thoroughly analyzed, both theoretically and experimentally
in [7]. Rather, we shall compare the results obtained by the
two algorithms when the computed Qn values are used for
outlier detection as discussed in Section 4.

In particular, we shall compare and contrast the algo-
rithms with regard to their speed, measured as the number of
updates per second, and with regard to their accuracy related
to the detection of the outliers in the input data stream. For
this purpose, the following metrics shall be reported: Recall,
Precision, F1 score and Jaccard similarity between the sets
of outliers determined by the algorithms. We shall assume
that the set of outliers determined by FQN is the ground
truth, i.e., the reported outliers are the actual outliers.

Table 1 reports the metrics used. Recall is related to the
number of false negatives, and ranges between 0 and 1. It
is 1 when there are no false negatives, i.e. all of the true
outliers have been correctly reported in output, and it is
0 when no true outlier is reported. Similarly, precision is
related to false positives. Its value ranges between 0 and 1, it

is 1 when there are no false positives, i.e., no false outlier is
reported in output and it is 0 when all of the items reported
are false outliers. The F1 measure takes into account both
recall and precision, being their harmonic mean. F1 is 1
when both precision and recall are 1, and is 0 if either the
precision or the recall is 0. Finally, the Jaccard similarity
J (A, B) of two sets A and B is defined as the ratio |A∩B|

|A∪B| ;
when the setsA and B are both empty, the Jaccard similarity
is defined as J (A, B) = 1.

The AFQN algorithm has been implemented in C++.
The source code has been compiled using the Apple clang
compiler v11.0.3 on macOS Big Sur version 11.1 with
the following flags: -Os -std=c++14. The tests have been
carried out on an Apple MacBook Pro laptop equipped with
32 GB of RAM and a 2.6 GHz exa-core Intel Core I7
processor with 12 MB of cache level 3. The source code
is freely available for inspection and for reproducibility
of results1. The tests have been performed on synthetic
datasets, according to the distributions shown in Table 2;
moreover, we also perform our experiments on a real
dataset, kindly provided by Yahoo as part of its Webscope
program2: Yahoo! Synthetic and real time-series with
labeled anomalies, version 1.0. In particular, we have added
the results obtained running the experiments on the dataset
real 17 available in the A1Benchmark within the whole
dataset, considering this dataset both with and without the
provided human curated annotations which explicitly report
the anomalies. This dataset contains 1424 items, 227 of
which have been annotated as outliers.

It is worth noting here that, once again, computing the
median in Algorithm 6 could be done approximately by
using another instance of an UDDSKETCH data structure,
since the median is just another quantile. However, we
recall that our purpose is to compare, ceteris paribus, the
results obtained by the two algorithms when the computed

1https://github.com/cafaro/AFQN
2http://research.yahoo.com

https://github.com/cafaro/AFQN
http://research.yahoo.com
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Qn values are used for outlier detection; since in FQN

we compute the median exactly, had we approximately
computed the median in AFQN we would have unfairly
biased the obtained results.

The median of the windowW can be computed exactly in
the worst case in O(s) time by using the SELECT algorithm
[1] but, as already observed in Section 2, the QUICKSELECT
algorithm [8, 10] is much faster and is therefore the

algorithm used in practice, despite being linear in the input
size only on average.

In the streaming setting, the median can be computed
exactly in O(1); the key idea is to maintain the window in
sorted order, so that the median can be directly accessed
in constant time. This requires handling two different
permutations of the window: one is W , which represents the
actual order in which incoming items arrive from the stream,

Fig. 3 Precision, Recall, F1 score and Jaccard Similarity varying the UDDSketch initial accuracy parameter: beta, chisquare and exponential
distributions
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and the other is Π , which represents the sorted permutation
of the items in the window. Therefore, a tradeoff is in place:
we use additional space (2s total space instead of s, but
note that the amount of space used is still O(s)) for the
data structure representing Π , but in return we are able to
compute the median exactly in O(1).

In our implementation Π is an array, storing the items
π1, · · · , πs . To maintain Π in sorted order, items are
inserted in Π as in InsertionSort [4]. Note that we do not
sort Π : upon a new item’s arrival, we remove the least
recent (in the temporal sequence of item arrivals) item;
since the previous window was already sorted, removing the

Fig. 4 Precision, Recall, F1 score and Jaccard Similarity varying the UDDSketch initial accuracy parameter: gamma, halfnormal and
inversegaussian distributions
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least recent item leaves the window sorted. The new item is
inserted using the InsertionSort insertion procedure, which
requires O(s) worst case time. Indeed, we can simply use a
backward linear scan of Π from right to left until we find
the index, call it j , where the new item must be inserted.
Then, we insert it by sliding all of the items πj+1, · · · , πs

one position to the right. Alternatively, a binary search [4]
can be used to determine the index j in time O(lg s), but
the total time required for the insertion in Π is still O(s),
owing to the need to shift all of the items πj+1, · · · , πs one
position to the right. When the window’s size s increases,
this implementation is, in practice, experimentally faster

Fig. 5 Precision, Recall, F1 score and Jaccard Similarity varying the UDDSketch initial accuracy parameter: lognormal, normal and pareto
distributions
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Fig. 6 Precision, Recall, F1 score and Jaccard Similarity varying the UDDSketch initial accuracy parameter: poisson, uniform and zipf
distributions

than using the QUICKSELECT algorithm, even though the
computational complexity is the same, O(s). Figure 2
depicts the implementation.

For each distribution, the algorithms have been executed
three times and their results have been averaged. Figures 3,
4, 5 and 6 depict the precision, recall, F1 score and Jaccard
similarity achieved by our AFQN algorithm varying its initial

accuracy parameter and fixing the number m of buckets to
s/2, where s is the window’s size. As shown, AFQN provides
excellent accuracy in practice for all of the distributions
under test, even using a very tiny amount of buckets, equal
to one half of the window’s size. Only for the halfnormal
and normal distributions the use of 100 or 200 buckets
is not enough to achieve accuracy values greater than 0.9
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Fig. 7 Updates per second varying the UDDSketch initial accuracy parameter and the sketch size: beta, chisquare and exponential distributions
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Fig. 8 Updates per second varying the UDDSketch initial accuracy parameter and the sketch size: gamma, halfnormal and inversegaussian
distributions
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Fig. 9 Updates per second varying the UDDSketch initial accuracy parameter and the sketch size: lognormal, normal and pareto distributions
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Fig. 10 Updates per second varying the UDDSketch initial accuracy parameter and the sketch size: poisson, uniform and zipf distributions



I. Epicoco et al.

(we recall here that 1.0 is the maximum score for each of
the accuracy metrics under consideration). However, even
for these two distributions the accuracy results are anyway
extremely high.

The accuracy values obtained must be also discussed
from the perspective of the actual running time required to
achieve them. Figures 7, 8, 9 and 10 depict the running time
of both FQN and AFQN with regard to the number of updates
per second (higher values are better). In particular, we vary
both the initial accuracy parameter and the number m of
buckets (s/2, s, 3s/2 and 2s).

Regarding AFQN we show the updates per second when
varying its initial accuracy parameter. As shown, AFQN is
always faster than FQN with the notable exception of the
poisson and zipf distributions. Even though the computational
complexity of both FQN and AFQN is the same, i.e., linear
in the window’s size, the constant hidden by the asymptotic
notation O(s) (in which s denotes the window’s size) is dif-
ferent, leading to these experimental results, in which AFQN is
shown to be empirically faster in general than FQN. Regarding

the specific behaviour of FQN related to the poisson and
zipf distributions, the reason why FQN beats AFQN with
regard to the number of updates/s is that these are discrete
distributions with a few distinct items. In this case, FQN has
an advantage owing to how its selection algorithms works
[2]. In particular, AFQN is up to three times faster than FQN

when using a very small number of buckets (equal to 100) and
up to two times faster when using a greater number of buckets
(in the range 200-500 buckets). Therefore, the experiments
confirm the validity of our approach: AFQN proves to be
extremely fast whilst providing, simultaneously, excellent
accuracy in almost all of the cases of practical interest.

Regarding the real dataset, Figs. 11 and 12 depict
the experimental results. In particular, the former picture
refers to the dataset without the provided human curated
annotations which explicitly report the anomalies; therefore,
we assume that the set of outliers determined by FQN is
the ground truth, i.e., the reported outliers are the actual
outliers. The latter picture refers instead to the dataset when
considering the annotations as ground truth. It is worth

Fig. 11 Precision, Recall, F1 score, Jaccard Similarity and updates/s varying the UDDSketch initial accuracy parameter: Yahoo A1Benchmark
real 17 dataset without annotations
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Fig. 12 Precision, Recall, F1 score and Jaccard Similarity varying the UDDSketch initial accuracy parameter: Yahoo A1Benchmark real 17
dataset with annotations

noting here that, owing to its length, we choose to process
the dataset using an appropriate windows’ size. Therefore,
in our experiments we vary the window’ size from 301 to
501 using a step size equal to 50.

As shown in Fig. 11, the behaviour of AFQN does not
change when processing a real dataset. Finally, Fig. 12
shows that the F1 score when considering the annotations
is consistently beyond the value 0.8, and therefore the Qn

scale estimator provides very good outlier recognition.

6 Conclusions

In this paper we have introduced AFQN (Approximate Fast
Qn), a novel algorithm for approximate computation of the
Qn scale estimator in a streaming setting. The need for
approximate estimation of the Qn estimator arises owing
to the fact that exact computation may be too costly for
some applications, and the problem is a fortiori exacerbated
in the streaming setting, in which the time available to
process incoming data stream items is short. We designed
AFQN to approximate the Qn estimator quickly and with
high accuracy. As an application, we have also shown the
use of AFQN for fast detection of outliers in data streams.
The incoming items are processed in the sliding window
model, with a simple check based on the Qn scale estimator.
Extensive experimental results on synthetic and real datasets
have confirmed the validity of our approach, since AFQN is
actually fast and can provide almost exact results.
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