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 In this research work, a fast and lightweight AES-128 cypher based on the 

Xilinx ZCU102 FPGA board is presented, suitable for 5G communications. 

In particular, both encryption and decryption algorithms have been 

developed using a pipelined approach, so enabling the simultaneous 

processing of the rounds on multiple data packets at each clock cycle. Both 

the encryption and decryption systems support an operative frequency up to 

220 MHz, reaching 28.16 Gbit/s maximum data throughput; besides, the 

encryption and decryption phases last both only ten clock periods. To 

guarantee the interoperability of the developed encryption/decryption system 

with the other sections of the 5G communication apparatus, synchronization 

and control signals have been integrated. The encryption system uses only 

1631 CLBs, whereas the decryption one only 3464 CLBs, ascribable, mainly, 

to the Inverse Mix Columns step. The developed cypher shows higher 

efficiency (8.63 Mbps/slice) than similar solutions present in literature. 
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1. INTRODUCTION  

Network security is the set of preventive measures, both hardware, and software, to protect files, 

drivers, and directories from unauthorized access, modification, destruction, and to provide secure 

communication between a sender and a receiver. The three primary security goals for secure transmission are 

confidentiality, integrity, and authentication; the confidentiality is ensured by the cryptography, which is a 

procedure of encoding a plaintext into an unintelligible format (encryption), known as ciphertext, through the 

use of a key, and allowing only the receiver to retrieve the original data by means of an identical key or a 

different one (decryption). Hence, a cryptographic process is mainly based on two components: a 

cryptographic algorithm and at least one secret key. The cryptographic systems are classified into two 

categories, based on how the keys are used, namely symmetric key cryptography (SKC), known as private 

key cryptography, and asymmetric key cryptography (AKC), known as public-key cryptography. In the first 

one, the two users have the same private key, employed to encrypt and decrypt the data. In contrast, in the 

latter, the senders and receivers use two keys; a public key employed for encoding the plaintext, known to 

both entities, and a private key for decoding the ciphertext. The best-known symmetric encryption algorithms 

include the already outdated data encryption standard (DES) and its successor, namely the advanced 

encryption standard (AES) [1]-[3]; instead, the asymmetric encryption algorithm most widespread is the 

rivest shamir adleman (RSA) [4].  

https://creativecommons.org/licenses/by-sa/4.0/
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With the evolution of 5G technology, new architecture, technologies, traffic strategies have been 

introduced, opening new challenges to be faced for ensuring security [5]-[8]. Specifically, several typologies 

of security are required, given the wide range of applications involved in 5G technologies, such as enhanced 

mobile broadband, massive and critical machine-type communication. For instance, internet of things (IoT) 

applications, featured by open and shared network architectures, cloud computing, virtualization, and polling 

technology require the development of a secure air interface to prevent information leakage [9]-[14]. 

Furthermore, access to a huge amount of nodes, with low latency, and high throughput is the prerogative of 

5G, also considering nodes with limited computational resources, and power consumption [15]; therefore, 

lightweight and reliable security algorithms are required to support these applications [16]-[18]. The 5G 

systems use protection mechanisms for signal and user plane traffic, through encryption and integrity 

protection mechanisms [19]-[21]. Therefore, several reliable and well-known encryption algorithms from 4G 

systems have been extended to the 5G ones, such as SNOW 3G, AES-counter mode (CTR), and ZUC, as 

well as for integrity protection, AES-CMAC, SNOW 3G, and ZUC are commonly used [22]. 

The AES is the most widespread symmetric cypher, chosen in 2001 by the US National Institute of 

standards and technology (NIST), as a mandatory solution in several commercial and industrial systems. It 

operates on 128-bit data blocks, similarly to Rijndael cypher, available in three versions according to the 

keys' length, namely 128-bit, 192-bit, and 256-bit, and developable both in hardware and software [23]. The 

ciphertext is obtained through a given number of rounds, depending on the key length; for AES-128, ten 

rounds are required, each round, except the first, includes three layers, namely the key addition layer 

(corresponding to AddRoundKey operation), substitution layer (corresponding to SubtitutionByte operation), 

and the diffusion layer (corresponding to ShiftRows and MixColumns operations). Exceptions are made for 

the AddRoundKey function in the first round and the absence of the MixColumns operation in the last round. 

The field programmable gate array (FPGA) platforms are employed in several applications, like 

video and imaging processing [24]-[26], military and medical applications [27]-[32], automotive, electronics 

for high-speed processing [33], [34], and more, thanks to their great reconfigurability and processing 

capacity. Furthermore, the FPGAs are widely applied to communication applications, specifically, to 

efficiently develop hardware implementations of encryption/decryption algorithms, exploiting the high 

performances and quick development time, and parallel implementation offered by these platforms [35]-[39]. 

Several cryptographic implementations, from fully pipelined to low-cost and low power consumption 

architectures, have been proposed in the scientific literature. Specifically, in [40], the authors proposed two 

efficient implementations of the encrypt-only AES-128 algorithm on the XC7Z010clq225-3 FPGA device, 

involving partial loop unrolling and multi-stage pipelining solutions; both developed implementations 

consume about 455 mW of dynamic power. Furthermore, Guzmàn et al. presented an FPGA-based 

implementation of the AES-128 algorithm, on Xilinx Virtex 5, operating in electronic codebook (ECB) and 

counter (CTR) modes. In the two methods, the implementation obtains a data throughput equal to 34.89 

Gbit/s for encryption and 25.5 Gbit/s for the decryption. In [41], the authors introduced a high-throughput 

AES-128 implementation on the FPGA platform, based on the content addressable memory (CAM) scheme 

and high-efficiency SubBytes block. The proposed design supports a 75.3 MHz maximum operational 

frequency with a 32 Gbit/s throughput value. Zodpe et al. developed a new generation scheme for Sbox and 

initial key, applicable to AES implementations, by using the pseudo noise (PN) sequence generator [42]. The 

proposed solution was tested on several FPGA platforms, demonstrating significant improvements in data 

throughput values. Furthermore, the authors in [43] introduced a secret multi-dimensional symmetric 

encryption algorithm, based on substitution-permutation network and supporting high-speed processing in six 

dimensions; a parallel encryption structure, employing a 128-bit block for each dimension, has been 

implemented, so allowing to manage large data volumes. 

In the present manuscript, an FPGA high-throughput AES-128 cypher is presented, thought for 5G 

communications. Specifically, a pipelined framework has been used to implement the AES-128 

encryption/decryption system, enabling parallel elaboration of multiple data packets every clock cycle, and 

thus higher throughput; the proposed implementation employs a 32 bit 16 x 16 Sbox for speeding up the 

processing time of the AES-128 rounds. The simulations and on-field tests demonstrated that an operating 

frequency up to 220 MHz is supported by both encryption and decryption blocks, allowing 

encryption/decryption time of just ten clock cycle, and accepting and providing data packets each clock 

cycle, resulting in a maximum throughput over 28 Gbit/s (namely, 128
𝑏𝑖𝑡

𝑝𝑎𝑐𝑘𝑒𝑡
× 220𝑀𝐻𝑧 = 28.16 𝐺𝐻𝑧). A 

Zynq Ultrascale+MPSoC ZCU102 board (produced by Xilinx Inc.), using Zynq Ultrascale+ XCZU9EG-

2FFVB1156E multiprocessor system-on-chip (MPSoC), has been employed for developing the 

encryption/decryption blocks, and support a maximum operating frequency equal to 350 MHz [44]. 

In addition, a fast key expansion algorithm has been implemented, combining, through GF 

functions, the previous sub-key with the current sub-key transformed by the Sbox; therefore, the key 
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expansion step lasts just 174.55 ns for deriving the 44 words from the encryption key. Besides, the proposed 

VHSIC-very high-speed circuits-hardware description language (VHDL) encryption/decryption system 

includes several control signals for synchronizing it with the data generator block and the 

modulator/demodulator, respectively; also, different blocks have been added for testing the developed 

encryption/decryption block, by placing in a deterministic way an error into the incoming data packet and 

checking the correctness of the resulting encrypted/decrypted packet, indicated by a suitable error signal. A 

suitable mechanism has been developed to substitute the encryption key in every instant of the encryption 

process, resulting in the loss of just three data packets in each substitution process. The simulation results and 

on-field tests have demonstrated the proper operation of both encryption and decryption blocks and higher 

efficiency in the utilization of hardware resources (i.e. 8.63 Mbps/slices) than similar implementations 

present in the scientific literature. 

The rest of the paper is organized as follows: the section 2 reports the design and implementation of 

the proposed encryption and decryption systems and all the VHDL sections developed to verify their 

operation. Section 3 presents the results of post-implementation and post-synthesis simulations carried out on 

the cascade system of the cypher and decryptor. Finally, in the fourth section, the performances of the 

proposed encryption/decryption system are discussed, comparing them with similar implementations reported 

in the literature. 

 

 

2. RESEARCH METHOD 

The Xilinx Vivado Design Suite has been used for developing the proposed encryption/decryption 

system, exploiting the wide range of tools offered to the designers. The block diagram related to the 

encryption system is shown in Figure 1, along with all the blocks for testing its correct operation; the AXI 

Stream bus provides the 128-bit plaintext data packets in input and ciphered packets in output from the 

cypher. The function of all the implemented blocks is following described: 

− Insert Error block to insert an error into a packet included in the internal table of the Data Generator 

block (blue box in Figure 1). 

− Clock generator block to generate the 220 MHz system clock to all blocks (purple box in Figure1); 

− Key_Generator block for providing the encryption key to the Key_to_write block, which loads the key 

into the memory registers by AXI Lite bus; also, this block changes the encryption key. 

− Data Generator provides the 128-bit plaintext data packets to the AES_AXIS_KEY encryption section 

(yellow box in Figure 1). 

− Key_to_write block for loading the encryption key into the memory registers, through the AXI Lite bus, 

implementing all the controls required for this operation (orange box in Figure 1). 

− AES_AXIS_KEY block encrypts the incoming plaintext data packets, taking in input the 128-bit plaintext 

data packets, the encryption key, the clock signal, and the synchronization signals used to manage the 

loading of the new encryption key into the first in first out (FIFO) registers (highlighted in red in  

Figure 1). 

− Pattern Verificator for checking the compliance of the encrypted packets with the input plaintext data, 

notifying an error signal eventually if an error is detected (grey box in Figure 1). 

The first step performed AES_AXIS_KEY block concerning the key expansion, aimed to obtain the 

11 subkeys used in the 10 rounds constituting the AES algorithm. The developed implementation uses a 16 X 

16 Sbox constituted by 32-bit elements, unlike the 8-bit of the classic implementation, thus speeding up the 

different operations involving it, but with higher resource utilization. A LUT-based implementation has been 

preferred over combinatorial-based solutions for Sbox, since the main goal of the proposed 

encryption/decryption implementation is the data throughput rather that the utilization of hardware resources, 

given the large memory capabilities offered by the FPGA platform; in fact, Sbox solutions based on LUT 

offer better performances from a processing time point of view at the expense of area occupation. The key 

expansion phase starts with the validation of the new key, generating the expansion_key_start signal, once 

the new key is rightly loaded from the registers; the whole key expansion operation lasts 174.55 ns to obtain 

the 44 words from the encryption key. The pseudo-code related to the key_expansion step is the following: 

− for round_counter<11 

− if round count=0 then out_valid=0 end 

− current_key[0-31]=precedent_key[0-31] xor Sbox_4(precedent_key[96-103] or 

Sbox_4(precedent_key[104-111] or Sbox_4(precedent_key[112-119] or Sbox_4(precedent_key[120-

127] xor rcon(round_count) end 

− current_key[32-63]= precedent_key[32-63] xor current_key[0-31] end 

− current_key[64-95]= precedent_key[64-95] xor current_key[32-63] end 

− current_key[96-127]= precedent_key[32-63] xor current_key[64-95], round_count++ end 
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− return current_key end 

− round_counter=0; 

− end for 

 

 
 

Figure 1. Block diagram of the proposed encryption system, obtained by the Xilinx Vivado design tool 

 

 

This operation consists of 11 iterations, in each of which the key is validated, at first, and then the 

four words for each sub-key are obtained combining the previous sub-keys with the current key transformed 

by the Sbox; the rcon method is a round constant added to the result of the two sub-functions. Once the 11 

sub-keys are obtained, the implemented algorithm generates the encrypted data by carrying out the ten 

iterations (the ten rounds) required by the AES 128 standard; in the first round (round_0), the plaintext data 

packets (in_plain_data) are combined through xor operation with the cipher_key_table which contains the 

key to be used not yet expanded; red box in Figure 2(a). After obtaining the intermediate data in the first 

round, the following nine rounds are carried out, in each of which the SubstituteBytes, ShiftRow, 

MixColumns, AddRoundKey operations are performed. The code section that recalls the nine rounds, 

developed in the AES_AXIS_KEY block, is shown in Figure 2(b). However, each round operates on the words 

resulted from the previous round. Thus, the new intermediate data is updated up to the last round (round 9), 

which provides the data for the round 10, where the last Add Round Key function is carried out; in  

Figure 3(a), the operations involved in each round of AES-128 algorithm are shown. After the ninth round, 

the Add_round_key function is applied to the last intermediate data, called intermediate_data(9) Figure 3(b). 

The Pattern_Verificator block has been equipped with a second table, allowing us to use another 

key; when a different key is used for the encryption, this event is received by the two signals key_1 and 

key_2, which indicates to the Pattern_verificator which table refers. These two signals are generated from the 

Key_Generator block and supplied directly to the Pattern_verificator block. This last is synchronized with 

the encryption block by a pulse on the m00_axis_tvalid pin provided at the encryption end, signalling the 

availability of the following data packet.  

Also, two flag signals have been added, namely a synchronization flag and a signal to indicate the 

packet Data_Generator table provided to AES_AXIS_KEY block, enabling to the Pattern_Verificator the 

tracking of incoming packets, checking the corresponding ones inside its internal table. In addition, as 

mentioned above, after writing in the register and resetting the key_valid bit, the algorithm performs the key 

expansion operation, lasting 174.5 ns; during this phase, the change of the sub-keys causes the loss of three 

packets; these incorrect packets are reported externally through a pin called invalid_packets which goes high 

when wrong encrypted packets occur at the AES_AXIS_KEY block output and return low when the packets 

are encrypted correctly. An error_sig signal, provided by Pattern_verificator, indicates errors in encrypted 

data packets through a low level in correspondence to the wrong data packet.  

The key substitution system is an essential feature for every communication system because a 

periodic key substitution is needed for ensuring the security of the transmitted data. Considering the 

AES_AXIS_KEY block, it accepts, by Data_Generator, a synchronization signal, called s00_axis_tvalid, to 
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signal the presence of the next data packet on the AXI bus; also, the encryption block accepts another 

synchronization signal from Pattern_verificator, called m00_axis_tready, for indicating when this last is 

available to receive a new data packet. Moreover, the s00_axis_tready signal has been configured, which 

indicates when the encryption block is ready to accept a new plaintext data packet; this signal is reset, only 

when the m00_axis_tready signal is reset. If the Pattern_verificator notifies its unavailability to load a new 

encrypted data packet, bringing so the m00_axis_tready signal to a low logic level, the encryption block, 

communicates to the Data_Generator its unavailability to accept new plaintext data packets, bringing so the 

s00_axis_tready signal to a low logical level. One of the primary contributions of the proposed framework is 

constituted by the control and synchronization mechanisms, above described, essential for the operation of 

the entire encryption/decryption system, guaranteeing its compatibility with the other functional blocks 

included in the communication system. 

 

 

 
(a) 

 

 

 
 

(b) 

 

Figure 2. This figure are, (a) VHDL implementation of the first round (round_0) of AES algorithm, where the 

Add Round Key operation on the plaintext data packet is carried out; (b) code section associated with the 

nine intermediate rounds that carry out the operations required by the AES algorithm 
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(a) 
 

 

 
(b) 

 

Figure 3. This figure are, (a) Operations involved in the first nine rounds of AES-128 algorithm, where the 

intermediate result of the round (out_intermediate_data) is stored for the next one; (b) generation of the 

encrypted data packet (out_cipher_data) from intermediate data produced from round 9 

(intermediate_data(9), blue box) 
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By storing the intermediate results obtained from each round (i.e. 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑑𝑎𝑡𝑎(𝑖), 𝑖 =
1, … .9), a pipelined strategy has been implemented, performing the ten rounds on consecutive data packets, 

at the same time, thus enabling the elaboration of a new packet only when the processing on the previous 

packets is concluded. In this way, parallel elaboration on successive packets is obtained, thus improving the 

usage of hardware resources, and enabling higher data throughput. As aforementioned, the proposed AES 

implementation is featured by a round's processing time equal to only a clock cycle, providing an encrypted 

data packet every clock period. Moreover, the implementation of the AES-128 decryption algorithm has been 

carried out, similarly to the encryption system, parallelizing many logical operations on each clock period; 

specifically, a 16X16 State matrix was employed, also in this case, containing 32-bits elements and not of 8 

bits as in the case of the standard implementation. The proposed implementation starts with key expansion, 

carried out with the same Sbox employed for the encryption process. The description process consists of ten 

rounds, involving the correspondent inverse operations to encryption, viz InvShiftRows, InvSubBytes, and 

InvMixColumns. The inverse functions are all obtained using matrix implementations represented by four 16 

X 16 matrices with 32-bit elements (named sbox_decoding_0, sbox_decoding_1, sbox_decoding_2, and 

sbox_decoding_3), combined by xor operation to derive the intermediate data of the different rounds. This 

solution allows to reduce the time duration of the decryption operation to just ten clock cycles; nevertheless, 

this implementation requires more FPGA hardware resources. In order to test the decryption implementation, 

several VHDL blocks have been employed, with functionalities similar to those used for the encryption 

system. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Behavioral simulations of the cascade system including the encryption and decryption sections 

Although the Xilinx ZCU102 platform is featured by 350 MHz maximum operating frequency, post-

implementation simulations produced a negative worst negative slack (WNS) for clock frequencies higher 

than 220 MHz, indicating clock signal propagation issues. To overcome this problem, the clock frequency 

has been reduced to 220 MHz and employing the Explore strategy offered by the Vivado tool, thus resulting 

in a WNS value of 0.005 ns, related to the encryption task, and 0.008 ns for the decryption one. The 

behavioural simulations on the system composed of the encryption and decryption sections connected in 

cascade have been performed, using a 220 MHz clock frequency as shown in Figures 4 and 5. In Figure 4, 

the waveforms related to the encryption/decryption process are shown, obtained by feeding the encryption 

system with plaintext packets every 40.86 ns, corresponding to a date-rate of about 3 Gbit/s (
128𝑏𝑖𝑡

40.86 𝑛𝑠
=

3.132 𝐺𝑏𝑖𝑡/𝑠). As evident, the encrypted packets are processed by the encryption block output after ten 

clock periods (i.e. 10 × 4.54 𝑛𝑠 = 45.4 𝑛𝑠), and loaded by the decryption section on the following clock 

rising edge; this last is decrypted and provided in output to the decryption system after only ten clock cycle. 

Hence, the whole encryption/decryption process lasts only 20 clock periods equal to 90.8 ns (for 220 MHz 

clock frequency). As evident, the control and synchronizing signals have been implemented for ensuring the 

interoperability between the developed encryption/decryption system and the different components integrated 

into the communication system. 

 

 

 
 

Figure 4. Temporal trends of the waveforms related to the encryption/decryption providing the plaintext data 

packets every 40.86 ns (data-rate 3.123 Gbit/s) 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 5, October 2021 :  4221 - 4232 

4228 

 
 

Figure 5. Temporal trends of the waveforms related to the encryption/decryption providing the plaintext data 

packets on every rising edge of the 220 MHz clock signal (every 4.54 ns) 

 

 

Afterwards, the behavioural simulation is carried out, providing plaintext data packets to the input of 

the encryption block, on the rising edges of the clock signal. The time interval required for the encryption and 

decryption remains 90.8 ns. The combined system can elaborate and provide encrypted data on the rising 

edges of the synchronization signal, obtaining 28.16 Gbit/s data-rate (220 𝑀𝐻𝑧 × 128 𝑏𝑖𝑡 = 28.16 𝐺𝑏𝑖𝑡/𝑠); 

this is indicated by the status of s00_axis_tvalid signal, generated by the AES_AXIS_KEY block, which 

remains to a high level for the whole operating time of the system (blue box in Figure 5), index of the 

continuous availability of the encryption block to receive a new plaintext data packet. Also, the error_sig, 

provided by Pattern Verificator, indicates the correct operation of the designed encryption/decryption 

section, since it remains at a low level for all the operation time, indicating that the decrypted data packets 

are identical to the corresponding ones provided to the encryptor input (yellow box in Figures 4 and 5). 

 

3.2.  Post-synthesis and post-implementation simulations of the encryption and decryption systems 

In this section, the real resource utilization of the FPGA-ZCU102 device related to the developed 

AES-128 implementation is derived by post-synthesis and post-implementation simulations. Therefore, the 

post-synthesis simulations are carried out on both encryption and decryption sections providing data packets 

on each clock period and with a 220 MHz clock frequency; the simulation results of the FPGA area 

utilization are summarized in Table 1. Subsequently, the simulation was repeated providing, every 40.86 ns, 

the data packets to the encryption/decryption block input, obtaining the same resource utilization. Besides, 

the post-synthesis simulation was performed on the encryption section, after the removal of the blocks added 

to test the developed implementation, leaving just the blocks required by the encryption process. In this case, 

the resources needed for the system synthesis are 4.76% of lookup table (LUT) and 0.71% of flip flop (FF) 

respect to the overall resources of Zynq Ultrascale+ XCZU9EG-2FFVB1156E MPSoC, corresponding to 

1631 configurable logic blocks (CLBs); therefore, a reduction of 0.72 % has been obtained for LUT 

utilization and 0.07% for FF compared to the complete scheme. The post-synthesis simulations on the 

decryption system were carried out, providing the encrypted data packets both on the clock rising edges and 

every 40.86 ns, obtaining the same resource utilization as shown in Table 1. 

Similarly, the simulation has been repeated, after the removal of all the blocks not involved in the 

decryption; in this condition, 10.11% of LUTs, 0.71% of FF, and 0.25% of global buffer (BUFG) have been 

used, corresponding to 3464 CLBs, thus obtaining a reduction of 0.53% for LUTs and 0.08% for FF, 

compared the complete decryption system. It is evident that the decipherer requires more FPGA resources 

than the cypher, attributable to the four matrix implementations of Inverse SubBytes, Inverse ShiftRows, and 

Inverse MixColumns functions. Anyway, this latter corresponds most of the used hardware resources, due to 

the inverse matrix elements and their related implementation, based on LUT [45]. 

Besides, the post-implementation simulations were carried out for the encryption, decryption 

systems, and the one consisting of both blocks' cascade to check that the parameters resulting from the 

simulation have acceptable values to ensure the regular operation of the algorithm. The simulations 

demonstrated that for a clock frequency higher than 220 MHz, a positive worst negative slack (WNS) value 

could not be obtained, thus indicating clock routing issues. Specifically, for 220 MHz operative frequency, 

and setting the Explorer implementation strategy, the resulting WNS parameter value was equal to 0.005 ns 

and 0.008 ns relatively to the encryption and decryption sections, respectively. Also, the encryption and 
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decryption sections arranged into a cascade configuration was tested by the post-implementation simulation. 

In particular, the occupation of the FPGA's resources turned out to be 15% LUTs 1% FFs 1% I/O ports 1% 

BUFG besides a further 25% area utilization was obtained ascribable to the IP Clocking Wizard section for 

generating the main clock as shown in Figure 6(a); also, the WSN value of the combined system was equal to 

0.056 ns (dashed blue box in Figure 6(b)). The total-on-chip power, defined as the sum of device and design 

power consumptions, for the encryption and decryption system arranged into a cascade configuration, is 

equal to 1.768 W (red dashed box in Figure 6(c)), with 26.7 °C junction temperature, ensuring 73.3 °C of 

thermal margin, providing the data packets at each clock cycle. 

 

 

Table 1. Summarizing table with reported utilization of the FPGA resources corresponding to the encryption 

and decryption sections produced by the post-synthesis simulations 
Simulation Resource Estimation Available Utilization [%] 

Encryption system LUT 15029 274080 5.48 

FF 4296 548160 0.78 

CLB 1879 600000 0.31 
Encryption block LUT 13043 274080 4.76 

FF 3877 548160 0.71 

CLB 1631 600000 0.27 
Decryption system LUT 29156 274080 10.64 

FF 4339 548160 0.79 
BUFG 1 404 0.25 

CLB 3642 600000 0.61 

Decryption block LUT 27713 274080 10.11 
FF 3912 548160 0.71 

BUFG 1 404 0.25 

CLB 3464 600000 0.58 

 

 

 
 

(a) 

 

 

  
 

(b) 

 

(c) 

 

Figure 6. Pictures captured by the Project Manager, after the post-implementation simulation, employing a 

220 MHz clock frequency and Explore strategy for the implementation: (a) resource utilization section, (b) 

timing section, and (c) power section 

 

 

By comparing our solution with another pipelined AES-128 implementation, reported in [46], on a 

comparable FPGA platform, the first shows a higher efficiency (8.63 Mbps/slices), compared to the latter 

(2.99 Mbps/slices), indicating better exploitation of hardware resources to obtain a given data throughput. 
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Besides, considering the high-throughput AES implementation reported in [47], our encryption system gets a 

slightly lower maximum data throughput (-5.3%), but also uses fewer FPGA's resources (namely, -39.7%), 

thus reaching a higher value of hardware resource utilization efficiency (+56.9%). By comparing our 

encryption/decryption solution with the implementation reported in [48], our system shows a considerably 

higher efficiency (+ 92.9%). 

Afterwards, the bitstream file of the designed system, consisting of the encryption and decryption 

sections arranged into a cascade configuration, was generated and, then, loaded on the FPGA-ZCU102 board. 

In this way, the encrypted data packets, provided in output by the encryption block, are immediately loaded 

by the decryption block, which processes them in only ten clock periods; the whole encryption/decryption 

operation lasts only 20 clock periods. Also, the IP integrated logical (IL) analyzer has been added to the 

Block Design, to monitor the interest signals. The system was successfully tested for both the aforementioned 

operative conditions, namely furnishing the plaintext data packets every 40.86 ns (i.e. 3.13 Gbit/s) and every 

clock cycle (i.e. 28.16 Gbit/s). 

 

 

4. CONCLUSION 

The proposed research work presents a high-speed and lightweight implementation of AES-128 

cypher for 5G communication systems, on a Xilinx ZCU102 FPGA platform. A pipelined framework has 

been employed, both for the encryption and decryption tasks, so enabling the contemporary elaboration of 

several data packets in the same clock cycle. A maximum working frequency of 220 MHz was obtained to 

ensure a positive WNS value in the post-implementation simulations, thus reaching 28.16 Gbit/s maximum 

data rate (i.e. 220 𝑀𝐻𝑧 × 128 𝑏𝑖𝑡); the encryption and decryption times last both just ten clock periods. 

Some control and synchronization signals have been implemented to ensure the interoperability of the 

proposed encryption/decryption section with the other ones included in the communication system. The 

hardware resources used by the encryption system was only 1631 CLBs, as well as the decryption one 

employs 3464 CLBs, mainly due to the LUT-based Inverse MixColums operation. The encryption system 

shows a higher efficiency (8.63 Mbps/slices) compared to other similar implementations present in the 

scientific literature. 
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