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a b s t r a c t

A theoretical framework is presented for a (copula-based) notion of dissimilarity be-
tween continuous random vectors and its main properties are studied. The proposed
dissimilarity assigns the smallest value to a pair of random vectors that are comonotonic.
Various properties of this dissimilarity are studied, with special attention to those
that are prone to the hierarchical agglomerative methods, such as reducibility. Some
insights are provided for the use of such a measure in clustering algorithms and a
simulation study is presented. Real case studies illustrate the main features of the whole
methodology.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A clustering method aims at visualizing the relationships among objects, say x1, . . . , xm, so that one can understand
heir main features. In particular, hierarchical clustering methods represent the relationships between m objects based on
heir (pairwise) dissimilarities in the form of a tree, where each leaf corresponds to one of the original objects, namely xi,
nd each interior node represents a subset or cluster of objects. Moreover, agglomerative hierarchical clustering algorithms
uild trees in a bottom-up approach, beginning with n singleton clusters of the form {xi} and, then, merging the two closest
lusters at each stage, until only one cluster remains. The resulting binary tree formed by this process can also provide
n intuitive graphical representation in terms of a dendrogram. See, for instance, Everitt et al. (2011), Hastie et al. (2009)
nd Hennig et al. (2016).
According to the different applications, x1, . . . , xm may have various nature and interpretation. Here, we suppose that

they are sample data from the continuous random variables (r.v.’s hereafter) X1, . . . , Xm defined on the same probability
space. Moreover, we consider hierarchical clustering algorithms that can visualize a specific kind of association (similarity)
among the r.v.’s. We recall that measures of association capture the many facets of dependence relationships, from classical
linear correlation coefficients to indices for detecting concordance, tail dependence, radial symmetry, etc. In their study,
the contribution of copula methods to describe (mainly, continuous) r.v.’s has been largely recognized (see, e.g., Durante
and Sempi, 2016; Gijbels et al., 2021; Grothe et al., 2014; Joe, 2015; Mai and Scherer, 2012; Nelsen, 2006; Salvadori et al.,
2007 and references therein).
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In the literature, the use of (copula-based) hierarchical clustering procedures is mainly two-fold. First, such algorithms
ave been employed to guide the process of model building (and selection), especially in high dimensions. For instance,
luster algorithms have been used in Górecki et al. (2017) for the identification of a nested Archimedean structure, and
n Czado et al. (2012) and Dißmann et al. (2013) for the determination of a vine copula model, among others. Moreover, a
rocedure is illustrated in Côté and Genest (2015) for selecting the tree structure of a risk aggregation model by combining
ierarchical clustering techniques with a distance metric based on Kendall’s tau. Finally, in Perreault et al. (2019), an
terative algorithm is proposed to group variables into clusters with exchangeable dependence.

Second, hierarchical clustering procedures have been used to detect comovements of r.v.’s (especially, in time series).
n financial time series, for instance, these methods start with the use of (Pearson) correlation coefficient and some of its
ariants (see, for instance, Bonanno et al., 2004; Everitt et al., 2011) and, then, benefit from the copula approach especially
hen the detection of extreme dependence is of interest (De Luca and Zuccolotto, 2011, 2017b,a; Durante et al., 2014,
015). Related clustering methods can be built from other measures of association/concordance (Bonanomi et al., 2019;
i Lascio et al., 2017), mutual information (Kojadinovic, 2004), as well as from a dissimilarity derived from the empirical
opula (Disegna et al., 2017; Kojadinovic, 2010). Notice that the above procedures differ from model-based clustering
echniques, which aim to group observations from the same subpopulation of a multivariate mixture distribution (see,
.g., Kosmidis and Karlis, 2016; Marbac et al., 2017) and from the CoClust algorithm, which aims to group observations
ccording to the multivariate dependence structure of the data generating copula (see Di Lascio and Giannerini, 2019).
Motivated by the interest in clustering methods of (agglomerative) hierarchical type, we introduce and formalize a

otion of dissimilarity between two subsets of r.v.’s. Such a dissimilarity measure assigns the smallest value to two subsets
f r.v.’s that are pairwise comonotonic (see, e.g., Dhaene et al., 2002; Koch and De Schepper, 2011; Puccetti and Scarsini,
010; Puccetti and Wang, 2015). Moreover, this measure is of probabilistic nature, i.e. it depends on the joint probability
istribution function of the involved variables, and is copula-based, i.e. it is invariant under monotonically increasing
ransformations of the involved r.v.’s.

Specifically, we investigate whether a dissimilarity measure can satisfy some desirable theoretical properties (for
xample, reducibility) that are satisfied by some classical clustering methods based on Euclidean distances.
The paper is organized as follows. First, we define the general framework where our dissimilarity concept is build

p (Section 2) and, in particular, we introduce some desirable properties that a dissimilarity may satisfy with particular
mphasis on those properties that are prone to the hierarchical agglomerative methods. In Section 3, we consider and
ompare to each other various examples of dissimilarity mappings, including those methods based on linkage functions.
oreover, in Section 4 we show how the dissimilarity can be used to detect various kinds of stochastic dependence of
random vector. From the computational side, we hence provide a simulation study in order to show how algorithms
ased on linkage and pairwise dissimilarities work in a finite sample and discuss their advantages and disadvantages
Section 4.1). Real case studies illustrate the whole methodology (Section 5). Remarkably, we also present a case when
he use of novel dissimilarity measures (not based on linkage functions) may be beneficial in the detection of global
ependencies. Section 6 summarizes the main findings.

. The framework

Throughout this manuscript, we consider r.v.’s defined on the same probability space (Ω, F ,P). We denote by FX the
probability distribution function of a r.v. X and by F (−1)

X its generalized inverse (see, e.g., Embrechts and Hofert, 2013).
We recall that, for a continuous r.v. X , the composition FX ◦ X is uniformly distributed on I := [0, 1] (see, e.g., Durante
and Sempi, 2016). Let X⃗ be a continuous random vector, i.e. X⃗ = (X1, . . . , Xm). In view of Sklar’s Theorem, the copula of
X⃗ is the distribution function of (FX1 (X1), . . . , FXm (Xm)).

For the sake of completeness, we recall that the copula M is defined by M(u1 . . . , um) = min{u1, . . . , um} for all
u1, . . . , um in I. In particular, two continuous r.v.’s X and Y are said to be comonotonic if their copula is equal to M .
Comonotonicity of r.v.’s can also be expressed in one of the following equivalent ways:

(a) (X, Y ) d
= (F (−1)

X (U), F (−1)
Y (U)), where U is a uniform random variable;

(b) there exists a r.v. Z such that (X, Y ) d
= (f1(Z), f2(Z)) for some increasing functions f1, f2.

See, e.g., Dhaene et al. (2002) and Puccetti and Scarsini (2010).
In the following, let m ≥ 2 be an integer which will be kept fixed. We consider a (finite) set X = {X1, . . . , Xm} of

continuous r.v.’s. Any subset of X will be denoted by upper-case black-board letters, e.g. X. Let P0(X ) denote the set of
all non-empty subsets of X .

Given a subset X = {X1, . . . , Xk} ⊂ X composed of k r.v.’s, we indicate by X⃗ a vector representation of X, i.e. a
k–dimensional random vector whose coordinates are distinct elements from X. Clearly, the vector representation of any
X need not be unique.

Here, we aim at quantifying how two non-empty subsets of X (not necessarily equal in cardinality) are similar or,
analogously, how we can define a suitable dissimilarity index between them. The main properties that this index should
satisfy are illustrated in the following.

A dissimilarity index is a mapping d̃ that assigns to every pair (X,Y) ∈ P0(X ) × P0(X ) a value in [0, +∞[ with the
following properties:
2
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(Ã1) d̃(X,Y) = 0 holds for all X = {X1, . . . , Xm1},Y = {Y1, . . . , Ym2} ∈ P0(X ) such that the r.v.’s X1, . . . , Xm1 , Y1, . . . , Ym2
are all pairwise comonotonic.

(Ã2) d̃(X,Y) = d̃(Y,X) holds for all X,Y ∈ P0(X ).
(Ã3) The identity

d̃(X,Y) = d̃(X1,Y1)

holds for all X,Y,X1,Y1 ∈ P0(X ) such that there exist some vector representations of X,Y,X1,Y1 for which it
holds (X⃗, Y⃗) d

= (X⃗1, Y⃗1).
(Ã4) The identity

d̃
(
X,Y

)
= d̃

(
{T1(X1), . . . , Tm1 (Xm1 )}, {Y1, . . . , Ym2}

)
holds for all X = {X1, . . . , Xm1},Y = {Y1, . . . , Ym2} ∈ P0(X ) and every set of strictly increasing transformations
{T1, . . . , Tm1}.

Condition (Ã1) implies that d̃({X}, {Y }) = 0 when X and Y are comonotonic. Thus, roughly speaking, this index
quantifies the closeness of the joint distribution of (X, Y ) to the upper bound of the related Fréchet class (see, also, Cifarelli
and Regazzini, 2017; Durante et al., 2016 for an historical overview). In general, by extending slightly the notation
in Puccetti and Scarsini (2010), the dissimilarity index between two subsets X and Y is minimal when any vector
representation of X is strongly comonotonic with any vector representations of Y.

Condition (Ã2) expresses a natural symmetry property of d̃. Condition (Ã3), instead, states that the dissimilarity index is
law-invariant, as the various notions of association considered in the literature. At this point note that conditions X⃗ d

= X⃗1

and Y⃗ d
= Y⃗1 are essential since the above law-invariance is limited to pairs of subsets of fixed size and fixed distribution;

for instance, d̃
(
{X1, X2}, {Y1, Y2}

)
can be different from d̃

(
{X1}, {X2, Y1, Y2}

)
.

Condition (Ã4), together with (Ã2), states that the dissimilarity index between X and Y is invariant under strictly
increasing transformations of their respective elements and, hence, it does not depend on the univariate distribution
functions of the involved r.v.’s. Therefore, since it is precisely the copula which captures those properties of the joint
distribution which are invariant under strictly increasing transformations, the dissimilarity index is a copula-based
concept.

Remark 2.1. Notice that the previous conditions, especially (Ã1), distinguishes the proposed methodology with other
methods that enable the detection of all types of functional dependencies among variables (see, e.g., Kojadinovic, 2004).
Indeed, the proposed dissimilarity index essentially aims at finding monotonic functional dependencies among the
involved r.v.’s.

Due to the above stated rank-invariant property of the dissimilarity, without loss of generality, we can introduce a
dissimilarity index by considering r.v.’s that are uniformly distributed on I (i.e. working directly in the class of copulas).
Before formalizing this aspect (see next Theorem 2.1), we need some preliminary definitions.

Let L0(Im) denote the space of all m-dimensional random vectors with uniform margins on I.

Definition 2.1. For all m1,m2 ∈ N with 2 ≤ m1 + m2 ≤ m,

dm1,m2 : L0(Im1 ) × L0(Im2 ) → [0, +∞[

is called a (m1,m2)-dissimilarity function if it satisfies the following properties:

(1) For every (X⃗, Y⃗) ∈ L0(Im1 ) × L0(Im2 )

dm1,m2 (X⃗, Y⃗) = 0, (2.1)

when the copula of (X⃗, Y⃗) is equal to the comonotonicity copula M .
(2) For every (X⃗, Y⃗) ∈ L0(Im1 ) × L0(Im2 )

dm1,m2 (X⃗, Y⃗) = dm1,m2 (σ1(X⃗), σ2(Y⃗)) (2.2)

holds for all σ1 and σ2 permuting the coordinates of a vector from Im1 and Im2 , respectively.
(3) The identity

dm1,m2 (X⃗, Y⃗) = dm1,m2 (X⃗1, Y⃗1) (2.3)

holds for all (X⃗, Y⃗), (X⃗1, Y⃗1) ∈ L0(Im1 ) × L0(Im2 ) with (X⃗, Y⃗) d
= (X⃗1, Y⃗1).

Properties (2.1) and (2.3) are direct translations of (Ã1) and (Ã3) in a copula setting; the latter property (2.3) states
that the dissimilarity between two vectors is law-invariant (and hence only depends on the copula involved).

Property (2.2) states that the dissimilarity between two vectors does not change when the components of each vector
are permuted. Roughly speaking, the dissimilarity does depend on the components of a random vector, but not on the
order they are considered (so, it is a property about sets not vectors).

All the dissimilarity functions can be glued together into the following concept.
3
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Definition 2.2. An extended dissimilarity function (of degree m) is a map

d :

⋃
2≤m1+m2≤m

L0(Im1 ) × L0(Im2 ) → [0, +∞[

whose restriction dm1,m2 := d|L0(Im1 )×L0(Im2 ) to L0(Im1 ) × L0(Im2 ) is a (m1,m2)-dissimilarity function for all m1,m2 ∈ N with
≤ m1 + m2 ≤ m, such that, for every (X⃗, Y⃗) ∈ L0(Im1 ) × L0(Im2 ), it holds

dm1,m2 (X⃗, Y⃗) = dm2,m1 (Y⃗, X⃗). (2.4)

Roughly speaking, an extended dissimilarity function allows to assign a degree of dissimilarity to any pair of random
vectors, regardless of the respective dimension. The condition given by (2.4) simply ensures that the dissimilarity has
some natural symmetry related to (Ã2).

Theorem 2.1 demonstrates that the notion of extended dissimilarity function is consistent with the notion of
dissimilarity index.

Theorem 2.1. The following statements hold:

(a) Let d be an extended dissimilarity function. Then, the mapping

d̃:P0(X ) × P0(X ) → [0, +∞[,

given, for every X = {X1, . . . , Xm1} and Y = {Y1, . . . , Ym2}, by

d̃
(
X,Y

)
:= dm1,m2

(
(FX1 (X1), . . . , FXm1

(Xm1 )), (FY1 (Y1), . . . , FYm2
(Ym2 ))

)
, (2.5)

is a dissimilarity index.
(b) Let d̃ be a dissimilarity index. Then, the map

d :

⋃
2≤m1+m2≤m

L0(Im1 ) × L0(Im2 ) → [0, +∞[,

given by

d
(
(X1, . . . , Xm1 ), (Y1, . . . , Ym2 )

)
:= d̃

(
{X1, . . . , Xm1}, {Y1, . . . , Ym2}

)
,

is an extended dissimilarity function.

Proof. Consider assertion (a). First, consider that (2.5) is well-defined since, in view of property (2.2), it does not depend
on the specific vector representation of {X1, . . . , Xm1} and {Y1, . . . , Ym2}. Note that, for continuous distributions functions
FX , the composition FX ◦ X is uniformly distributed on I. Therefore, for every set of r.v.’s {X1, . . . , Xm1}, the transformed
vector satisfies (FX1 (X1), . . . , FXm1

(Xm1 )) ∈ L0(Im1 ). Moreover, (Ã1), (Ã2) and (Ã3) are direct consequences of properties
(2.1), (2.4) and (2.3) of Definitions 2.1 and 2.2. Finally, (Ã4) follows from (2.3) and the fact that FT◦X (T ◦ X) = FX (X) for
every strictly increasing function T .

Assertion (2) is straightforward. □

It follows from the previous result that, from now on, we can express the dissimilarity index in terms of suitable
properties of the extended dissimilarity function d.

Before introducing basic examples of such functions, we present here some additional desirable properties they may
satisfy. First, we present some local properties, i.e. properties that are satisfied by the restriction dm1,m2 of the extended
dissimilarity function d for any possible choice of m1,m2 with 2 ≤ m1 + m2 ≤ m.

(L1) Monotonicity with respect to lower orthant order
For all 2 ≤ m1 + m2 ≤ m and for all (X⃗, Y⃗), (X⃗′, Y⃗′) ∈ L0(Im1 ) × L0(Im2 ), (X⃗, Y⃗) ⪯lo (X⃗′, Y⃗′) in the lower orthant
order implies dm1,m2 (X⃗′, Y⃗′) ≤ dm1,m2 (X⃗, Y⃗).

(L1c) Monotonicity with respect to concordance order
For all 2 ≤ m1 +m2 ≤ m and for all (X⃗, Y⃗), (X⃗′, Y⃗′) ∈ L0(Im1 )× L0(Im2 ), (X⃗, Y⃗) ⪯C (X⃗′, Y⃗′) in the concordance order
implies dm1,m2 (X⃗′, Y⃗′) ≤ dm1,m2 (X⃗, Y⃗).

(L2) Rotation invariance
For all 2 ≤ m1 +m2 ≤ m and for every (X⃗, Y⃗) ∈ L0(Im1 )× L0(Im2 ), it holds dm1,m2 (X⃗, Y⃗) = dm1,m2 (1m1 − X⃗, 1m2 − Y⃗),
where 1n is a vector with all n components equal to 1.

(L3) Continuity
For all 2 ≤ m1 + m2 ≤ m, any sequence {Z⃗k = (X⃗, Y⃗)k}k∈N ⊆ L0(Im1 ) × L0(Im2 ) and any vector Z⃗ = (X⃗, Y⃗) ∈

L0(Im1 ) × L0(Im2 ), if Z⃗k weakly converges to Z⃗ (as k tends to +∞), then limk→∞ dm1,m2 (X⃗, Y⃗)k = dm1,m2 (X⃗, Y⃗).

Property (L1) (respectively, (L1c)) implies that the dissimilarity degree is decreasing with respect to lower orthant (also

called PLOD) order (respectively, concordance order). For the definitions of these orderings see, for instance, Nelsen (2006),

4
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Müller and Stoyan (2002). Since the upper bound of a random vector in the lower orthant (respectively, concordance) order
is given by the comonotonic case, this property simply means that the dissimilarity degree tends to vanish as soon as one is
approaching the comonotonic case. Notice that, in the bivariate case, lower orthant and concordance order coincide, while
in higher dimensions concordance order implies lower orthant order, but not vice versa (see, e.g., Joe, 1990; Müller and
Scarsini, 2000). Consequently, monotonicity with respect to lower orthant order (L1) implies monotonicity with respect
to concordance order (L1c).

Property (L2) expresses the invariance of the dissimilarity degree with respect to the total reflection of the involved
andom vectors. The practical aspect of this property is that a change of sign in all the r.v.’s does not influence the
lustering output. Notice that this property may not be desirable when the dissimilarity degree should distinguish lower
nd upper tail behaviour of random vectors (see Section 3.3 and, in particular, Remark 3.3).
Property (L3) ensures that the dissimilarity degree is continuous with respect to weak convergence. This latter property

s usually required, for instance, for various measures of concordance (see, e.g., Fuchs, 2016b; Scarsini, 1984; Taylor, 2016)
ut it does not apply to the tail dependence coefficient (see Section 3.3).
Now, we provide some global properties of an extended dissimilarity function d that connect the values of the

dissimilarity at a given dimension, say m1+m2, with the values that it assumes at lower (respectively, higher) dimensions:

(G1) Reducibility
For all 3 ≤ m1 + m2 + m3 ≤ m and for every (X⃗′, X⃗′′, Y⃗) ∈ L0(Im1 ) × L0(Im2 ) × L0(Im3 ) such that X⃗′, X⃗′′, and Y⃗ are
pairwise disjoint, if

dm1,m2 (X⃗′, X⃗′′) ≤ min
{
dm1,m3 (X⃗′, Y⃗), dm2,m3 (X⃗′′, Y⃗)

}
, (2.6)

then the inequality

min
{
dm1,m3 (X⃗′, Y⃗), dm2,m3 (X⃗′′, Y⃗)

}
≤ dm1+m2,m3 (X⃗, Y⃗) (2.7)

holds, where X := X′
∪ X′′.

(G1s) Strict reducibility
(G1) holds with (2.7) being strict for some 3 ≤ m1 +m2 +m3 ≤ m and at least one (X⃗′, X⃗′′, Y⃗) ∈ L0(Im1 )× L0(Im2 )×
L0(Im3 ), where X := X′

∪ X′′ and X′, X′′ and Y are pairwise disjoint.
(G2) Comonotonic invariance

For all 3 ≤ m1 + m2 ≤ m with 2 ≤ m1, the identity

dm1,m2 (X⃗, Y⃗) = dm1−1,m2 (X⃗′, Y⃗)

holds whenever X⃗′ ∈ L0(Im1−1) and (X⃗, Y⃗) ∈ L0(Im1 ) × L0(Im2 ) are random vectors such that X′
∪ {X} = X, where

X ∈ X is comonotonic with at least one element of X′.

All these properties have an intuitive stochastic interpretation. Property (G1) is usually referred to as reducibility
roperty (see, e.g., Kojadinovic, 2010). It guarantees that the dissimilarity degree between two random vectors X⃗ and

⃗ is larger than the dissimilarity degree between Y⃗ and (at least) a subvector of X⃗. Roughly speaking, increasing the
iversity inside each group decreases the similarity between the groups.

xample 2.1. Given three r.v.’s X ′, X ′′, Y , property (G1) ensures that, if (2.6) holds, i.e. (X ′, X ′′) is the most similar pair
among (X ′, X ′′), (X ′, Y ) and (X ′′, Y ), then

d1,1(X ′, X ′′) ≤ d2,1((X ′, X ′′), Y ).

The related property (G1s) says, furthermore, that there exist specific dependence structures such that the dissimilarity
egree between X⃗ and Y⃗ is strictly larger than the dissimilarity degree between Y⃗ and a subvector of X⃗. Clearly, property
G1s) implies property (G1), although the converse implication is not true (see Theorem 3.2).

On the other side, property (G2) ensures that the dissimilarity degree between X⃗′ and Y⃗ does not change if we add to X⃗′

nother random variable that is comonotone with at least one element of X⃗′. Property (G2) is similar to the point proportion
dmissible property considered for data points in Fisher and Van Ness (1971) that states that ‘‘if after we duplicate one
r more points any number of times and reapply the procedure the boundaries of the clusters are not changed at any
tage’’. Here, in fact, we recall that two comonotonic r.v.’s are equal up to increasing transformations (see, e.g., Durante
nd Sempi, 2016).
Obviously, because of the symmetry of the dissimilarity function in (2.4), properties (G1), (G1s) and (G2) can be also

eformulated for the second argument of the involved dissimilarity functions.

. Extended dissimilarity functions: properties and examples

In the following section, we provide various examples of dissimilarity functions and we study whether they satisfy
ome of the previously introduced properties. Recall that, in view of property (2.3), any (m1,m2)-dissimilarity function
iming at quantifying the proximity degree of two random vectors X⃗ and Y⃗ of dimension m and m , respectively, only
1 2

5
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depends on the (m1 + m2)-dimensional copula C of the random vector (X⃗, Y⃗). Thus, in some cases, it could be also
convenient to define the dissimilarity functions directly in terms of C .

Moreover, for the sake of a concise use of copulas and their margins, for L ⊆ {1, . . . ,m}, we define the map
ηL : Im × Im → Im given coordinatewise by

(
ηL(u, v)

)
ℓ
:=

{
uℓ, ℓ ∈ {1, . . . ,m}\L,
vℓ, ℓ ∈ L,

nd, for l ∈ {1, . . . ,m}, we put ηl := η{l}. We denote by 0 the vector with all entries equal to 0, by 1 the vector with all
entries equal to 1 and by C k the collection of all k-dimensional copulas, 2 ≤ k ≤ m. For any subset L = {l1, . . . , l|L|} ⊆

{1, . . . ,m} with 2 ≤ |L| ≤ m such that li < lj for all i, j ∈ {1, . . . , |L|} with i < j, we further define by TL(C) the lower
imensional margin of the copula C related to the indices of the components of C belonging to L.

xample 3.1.

• The identity TL(M) = M holds for every L ⊆ {1, . . . ,m} with 2 ≤ |L| ≤ m.
• The identity TL(Π ) = Π holds for every L ⊆ {1, . . . ,m} with 2 ≤ |L| ≤ m. Here, Π is the independence copula given,

for all u1, . . . , um in I, by Π (u1, . . . , um) =
∏m

i=1 ui.
• For all 3 ≤ m1 + m2 + m3 ≤ m and for every random vector (X⃗′, X⃗′′, Y⃗) ∈ L0(Im1 ) × L0(Im2 ) × L0(Im3 ) with copula

C(X⃗′,X⃗′′,Y⃗) ∈ Cm1+m2+m3 , the copulas C(X⃗′,Y⃗) ∈ Cm1+m3 and C(X⃗′′,Y⃗) ∈ Cm2+m3 satisfy

C(X⃗′,Y⃗) = T{1,...,m1+m2+m3}\{m1+1,...,m1+m2}

(
C(X⃗,Y⃗)

)
and C(X⃗′′,Y⃗) = T{m1+1,...,m1+m2+m3}

(
C(X⃗,Y⃗)

)
.

For every k such that 2 ≤ k ≤ m, we further define the map [· , ·] : C k
× C k

→ R introduced, e.g., in Fuchs (2016a)
nd given by

[C,D] :=

∫
Ik
C(u) dQ D(u),

here Q D denotes the probability measure associated with the copula D. The map [. , .] is linear with respect to convex
ombinations in both arguments and is therefore called a biconvex form. Moreover, the map [· , ·] satisfies [M,M] = 1/2
nd [Π, Π] = 1/2k.
The following technical result will be needed in the following and it is reported here.

emma 3.1. Consider 2 ≤ k ≤ m and C ∈ C k satisfying T{i,j}(C) = M for some i, j ∈ {1, . . . , k} with i ̸= j.

(i) Then Q C
[{

u ∈ Ik
⏐⏐ ui = uj

}]
= 1.

(ii) The identity
∫
Ik f (u) dQ

C (u) =
∫
Ik f (ηi(u, uj ei)) dQ C (u) holds for every measurable function f : Ik → R.

(iii) The identity C(u 1) = C(ηi(u 1, 1)) holds for every u ∈ I.
(iv) Then [C, C] = [T{1,...,k}\{i}(C), T{1,...,k}\{i}(C)].
(iv) The identity Ti,l(C) = Tj,l(C) holds for every l ∈ {1, . . . , k}\{i, j}.

roof. For p, q ∈ {1, . . . , k} with p ̸= q, we define the projection proj{p,q} : Ik → I2, given by proj{p,q}(u) := (up, uq). Then

(Q C )proj{i,j} [[0, v1] × [0, v2]] = C(η{i,j}(1, v1 ei + v2 ej)) = (T{i,j}(C))(v1, v2) = M(v1, v2),

or every v ∈ I2 and hence (Q C )proj{i,j} = Q T{i,j}(C) = QM which implies

Q C
[{u ∈ Ik | ui < uj}] = (Q C )proj{i,j} [{v ∈ I2 | v1 < v2}] = QM

[{v ∈ I2 | v1 < v2}] = 0

hus, Q C
[{u ∈ Ik | ui = uj}] = 1 which proves (i) and, immediately, implies (ii). Now, consider u ∈ I. Then, (ii) yields

C(u 1) =

∫
Ik

χ[0,u 1](v) dQ C (v) =

∫
Ik

χ[0,u 1]
(
ηi(v, vj ei)

)
dQ C (v) =

∫
Ik

k∏
l=1,l̸=i

χ[0,u](vl) dQ C (v) = C(ηi(u 1, 1)),
6
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where χB denotes the indicator function with respect to the set B. This proves (iii). Moreover, (ii) together with (Fuchs,
015, Theorem 5.3.1) yields

[C, C] =

∫
Ik
C(u) dQ C (u) =

∫
Ik
C(ηi(u, uj ei)) dQ C (u)

=

∫
Ik

∫
Ik

χ[0,ηi(u,uj ei)](v) dQ
C (v)dQ C (u)

=

∫
Ik

∫
Ik

χ[0,ηi(u,uj ei)](ηi(v, vj ei)) dQ C (v)dQ C (u)

=

∫
Ik

∫
Ik

k∏
l=1,l̸=i

χ[0,ul](vl) dQ C (v)dQ C (u)

=

∫
Ik

∫
Ik

χ[0,ηi(u,1 ei)](v) dQ
C (v)dQ C (u) =

∫
Ik
C(ηi(u, 1 ei)) dQ C (u)

= [T{1,...,k}\{i}(C), T{1,...,k}\{i}(C)].

This proves (iv). Finally, consider l ∈ {1, . . . , k}\{i, j}. Applying (ii) we obtain(
Ti,l(C)

)
(v1, v2) =

∫
I2

χ[0,v1]×[0,v2](w1, w2) dQ Ti,l(C)(w1, w2)

=

∫
I2

χ[0,v1]×[0,v2](w1, w2) d
(
Q C)

proj{i,l}
(w1, w2)

=

∫
Ik

χ[0,v1]×[0,v2](proj{i,l}(u)) dQ C (u)

=

∫
Ik

χ[0,v1]×[0,v2](ui, ul) dQ C (u)

=

∫
Ik

χ[0,v1]×[0,v2](uj, ul) dQ C (u) =
(
Tj,l(C)

)
(v1, v2),

for every (v1, v2) ∈ I2. This proves (v). □

3.1. Extended dissimilarity functions based on linkage methods and a pairwise dissimilarity function

First, we introduce dissimilarity functions that are defined in a similar way as in the classical hierarchical clustering
algorithms, i.e. via single, average and complete linkage.

Consider a (1, 1)-dissimilarity function d1,1 and m1,m2 ∈ N with 2 ≤ m1 + m2 ≤ m. We define the maps
dm1,m2
min , dm1,m2

ave , dm1,m2
max : L0(Im1 ) × L0(Im2 ) → R+ by letting

dm1,m2
min (X⃗, Y⃗) := min

{
d1,1(X, Y )

⏐⏐ X ∈ X, Y ∈ Y
}
,

dm1,m2
ave (X⃗, Y⃗) :=

1
m1 m2

∑
X∈X

∑
Y∈Y

d1,1(X, Y ),

dm1,m2
max (X⃗, Y⃗) := max

{
d1,1(X, Y )

⏐⏐ X ∈ X, Y ∈ Y
}
.

It is straightforward to show that, for all 2 ≤ m1 + m2 ≤ m, dm1,m2
min , dm1,m2

ave and dm1,m2
max are (m1,m2)-dissimilarity

functions. Thus, they can be extended as mappings from
⋃

2≤m1+m2≤m L0(Im1 )× L0(Im2 ) to [0, +∞[ denoted, respectively,
y dmin, dave, dmax. The mappings dmin, dave and dmax are called, respectively, the single, average and complete extended
issimilarity functions induced by d1,1.
In the sequel, we focus on the extended dissimilarity function based on the following (1, 1)-dissimilarity functions (see

ection 3.2)

d1,1β (X, Y ) :=
1
2

− C(X,Y )
( 1
2 ,

1
2

)
, (3.1)

d1,1φ (X, Y ) :=
1
2

−
[
C(X,Y ),M

]
, (3.2)

d1,1τ (X, Y ) :=
1
2

−
[
C(X,Y ), C(X,Y )

]
, (3.3)

d1,1ρ (X, Y ) :=
1
3

−
[
C(X,Y ), Π

]
. (3.4)
7
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The function d1,1β is related to the pairwise version of medial correlation coefficient (also known as Blomqvist’s beta), d1,1φ

is related to the pairwise version of Spearman’s footrule, and the functions d1,1τ and d1,1ρ are related to pairwise Kendall’s
tau and pairwise Spearman’s rho. In Section 3.2 we list some properties of these (1, 1)-dissimilarity functions.

In the following we study whether single, average and complete extended dissimilarity functions satisfy some desirable
properties; having in mind that, in the bivariate case, lower orthant and concordance order coincide, the next result is
straightforward.

Theorem 3.1. Let dmin, dave and dmax be the extended dissimilarity functions induced by d1,1. Then:

(i) dmin, dave and dmax satisfy (L1) and (L1c) whenever d1,1 is decreasingly monotone with respect to lower orthant order;
(ii) dmin, dave and dmax satisfy (L2) whenever d1,1(X, Y ) = d1,1(1 − X, 1 − Y ) for all X, Y ∈ L0(I);
(iii) dmin, dave and dmax satisfy (L3) whenever d1,1 is continuous with respect to weak convergence.

In the following theorem we show that the single, the average and the complete extended dissimilarity functions
satisfy some of the global properties introduced above.

Theorem 3.2. Let dmin, dave and dmax be the extended dissimilarity functions induced by d1,1. Then:

(i) dmin satisfies (G1) and (G2), but fails to satisfy (G1s);
(ii) dave satisfies (G1);
(iii) dmax satisfies (G1) and (G2).

Proof. We first prove (G1). To this end, consider 3 ≤ m1 + m2 + m3 ≤ m, the random vector (X⃗′, X⃗′′, Y⃗) ∈ L0(Im1 ) ×
0(Im2 )×L0(Im3 ) satisfying dm1,m2 (X⃗′, X⃗′′) ≤ min

{
dm1,m3 (X⃗′, Y⃗), dm2,m3 (X⃗′′, Y⃗)

}
such that X′, X′′ and Y are pairwise disjoint

and put X := X′
∪ X′′. Then

min
{
dm1,m3
min (X⃗′, Y⃗), dm2,m3

min (X⃗′′, Y⃗)
}

= min
{
min

{
d1,1(X, Y )

⏐⏐ X ∈ X′, Y ∈ Y
}
,min

{
d1,1(X, Y )

⏐⏐ X ∈ X′′, Y ∈ Y
}}

= min
{
d1,1(X, Y )

⏐⏐ X ∈ X, Y ∈ Y
}

= dm1+m2,m3
min (X⃗, Y⃗).

Thus, dmin satisfies (G1), but cannot satisfy (G1s). Moreover,

min
{
dm1,m3
ave (X⃗′, Y⃗), dm2,m3

ave (X⃗′′, Y⃗)
}

= min

{
1

m1 m3

∑
X∈X′

∑
Y∈Y

d1,1(X, Y ),
1

m2 m3

∑
X∈X′′

∑
Y∈Y

d1,1(X, Y )

}

≤
m1

m1 + m2

1
m1 m3

∑
X∈X′

∑
Y∈Y

d1,1(X, Y ) +
m2

m1 + m2

1
m2 m3

∑
X∈X′′

∑
Y∈Y

d1,1(X, Y )

=
1

(m1 + m2)m3

∑
X∈X

∑
Y∈Y

d1,1(X, Y )

= dm1+m2,m3
ave (X⃗, Y⃗),

and

min
{
dm1,m3
max (X⃗′, Y⃗), dm2,m3

max (X⃗′′, Y⃗)
}

= min
{
max

{
d1,1(X, Y )

⏐⏐ X ∈ X′, Y ∈ Y
}
,max

{
d1,1(X, Y )

⏐⏐ X ∈ X′′, Y ∈ Y
}}

≤ max
{
max

{
d1,1(X, Y )

⏐⏐ X ∈ X′, Y ∈ Y
}
,max

{
d1,1(X, Y )

⏐⏐ X ∈ X′′, Y ∈ Y
}}

= max
{
d1,1(X, Y )

⏐⏐ X ∈ X, Y ∈ Y
}

= dm1+m2,m3
max (X⃗, Y⃗).

Thus, the average and complete extended dissimilarity functions satisfy (G1).
Now, we prove property (G2). To this end, consider 3 ≤ m1 + m2 ≤ m with 2 ≤ m1, X⃗′ ∈ L0(Im1−1) and

(X⃗, Y⃗) ∈ L0(Im1 ) × L0(Im2 ) such that X′
∪ {X ′′

} = X, where X ′′
∈ X is comonotonic with some element X ′

∈ X′. Then,
by Lemma 3.1 and property (2.3), the identity d1,1(X ′, Y ) = d1,1(X ′′, Y ) holds for every Y ∈ Y, and we obtain

dm1,m2
min (X⃗, Y⃗) = min

{
d1,1(X, Y )

⏐⏐ X ∈ X, Y ∈ Y
}

= min
{
d1,1(X, Y )

⏐⏐ X ∈ X′, Y ∈ Y
}

= dm1−1,m2
min (X⃗′, Y⃗),

and

dm1,m2 (X⃗, Y⃗) = max
{
d1,1(X, Y )

⏐⏐ X ∈ X, Y ∈ Y
}

= max
{
d1,1(X, Y )

⏐⏐ X ∈ X′, Y ∈ Y
}

= dm1−1,m2 (X⃗′, Y⃗).
max max

8
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Thus, the single and complete extended dissimilarity functions satisfy (G2). □

We now present some sufficient condition on d1,1 such that both the average and complete extended dissimilarity
unctions satisfy (G1s).

orollary 3.1. Assume that d1,1 is strictly monotonically decreasing with respect to the lower orthant order, i.e. (X, Y ) ≺lo
X ′, Y ′) in the lower orthant order implies d1,1(X ′, Y ′) < d1,1(X, Y ). Then dave and dmax satisfy (G1s).

roof. Consider m ≥ 3, m1 = m2 = m3 = 1 and the m–dimensional copula C given by

C(u) := Π (u) −
1
3

(
(1 − u1)(1 − u2) + (1 − u1)(1 − u3) + (1 − u2)(1 − u3)

) 3∏
i=1

u4−i
i

m∏
i=4

ui. (3.5)

To check that this function is actually a copula it is enough to compute its density). Then, for every random vector
X ′, X ′′, Y ) ∈ L0(I) × L0(I) × L0(I) having copula T{1,2,3}(C), we have

(X ′′, Y ) ≺lo (X ′, Y ) ≺lo (X ′, X ′′)

nd hence d1,1(X ′, X ′′) < min
{
d1,1(X ′, Y ), d1,1(X ′′, Y )

}
as well as

min
{
d1,1(X ′, Y ), d1,1(X ′′, Y )

}
<

1
2
d1,1(X ′, Y ) +

1
2
d1,1(X ′′, Y ) = d1+1,1

ave (X⃗, Y ),

min
{
d1,1(X ′, Y ), d1,1(X ′′, Y )

}
< max

{
d1,1(X ′, Y ), d1,1(X ′′, Y )

}
= d1+1,1

max (X⃗, Y ),

where X = X ′
∪ X ′′. Therefore, dave and dmax satisfy (G1s). □

Remark 3.1. Notice that the single, average and complete extended dissimilarity functions induced by d1,1 := f ◦ρ, where
ρ is the pairwise Spearman’s correlation and f is a strictly decreasing function, are strictly monotonically decreasing with
respect to the lower orthant order (see, e.g., Ahn and Fuchs, 2020).

The following example shows that the condition stated in Corollary 3.1 is sufficient, but not necessary.

Example 3.2. Consider the map d1,1β given by (3.1), m ≥ 3, m1 = m2 = m3 = 1 and the copula C given by (3.5). Further,
note that d1,1β fails to be strictly monotonically decreasing with respect to the lower orthant order: to verify this, it is
enough to consider two copulas with the same value in the point (0.5, 0.5), like ordinal sums of two copulas with respect
to the partition ([0, 0.5], [0.5, 1]). Then, for every random vector (X ′, X ′′, Y ) ∈ L0(I)×L0(I)×L0(I) having copula T{1,2,3}(C),
we have

d1,1β (X ′, X ′′) ≤ min
{
d1,1β (X ′, Y ), d1,1β (X ′′, Y )

}
< d1+1,1

ave (X⃗, Y ),

d1,1β (X ′, X ′′) ≤ min
{
d1,1β (X ′, Y ), d1,1β (X ′′, Y )

}
< d1+1,1

max (X⃗, Y ),

where X = X ′
∪ X ′′. Indeed, we have

d1,1β (X ′, X ′′) =
1
4

+
1
3

1
27 ,

min
{
d1,1β (X ′, Y ), d1,1β (X ′′, Y )

}
=

1
4

+
1
3

2
27 ,

d1+1,1
ave (X⃗, Y ) =

1
4

+
1
3

3
27 ,

d1+1,1
max (X⃗, Y ) =

1
4

+
1
3

4
27 .

hus, the average and complete extended dissimilarity functions induced by d1,1β satisfy (G1s). By applying the above
copula, it is straightforward to check that also the average and complete extended dissimilarity functions induced by
d1,1φ and d1,1τ given by (3.2) and (3.3), satisfy (G1s). We notice that such dissimilarity functions both fail to be strictly
monotonically decreasing with respect to the lower orthant order.

The next example shows that the average extended dissimilarity function may fail to satisfy (G2) for specific choices
of d1,1.

Example 3.3. Consider d1,1β given by (3.1). Further, consider m ≥ 4, m1 = 3, m2 = 1 and the m–dimensional copula C
iven by

C(u) := min{u1, u2}

(
m∏

ui −
1
2

(1 − u3)(1 − u4)
m∏

ui

)
,

i=3 i=3

9
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which is the copula of a random vector with two independent sub-vectors (see e.g. Durante and Sempi, 2016). Then, for
every random vector X⃗ = (X1, X2, X3)′ ∈ L0(I3) and every r.v. Y ∈ L0(I) such that (X⃗, Y ) has copula T{1,2,3,4}(C) and hence
1 and X2 are comonotonic, the average extended dissimilarity function induced by d1,1β satisfies

d3,1ave(X⃗, Y ) ̸= d2,1ave((X1, X3), Y ).

ndeed, we obtain d3,1ave(X⃗, Y ) =
1
4 +

1
3

1
25

̸=
1
4 +

1
2

1
25

= d2,1ave((X1, X3), Y ). Thus, the average extended dissimilarity function
based on d1,1β fails to satisfy (G2). By applying the above copula, it is straightforward to check that also the average
extended dissimilarity functions induced by d1,1φ , d1,1τ and d1,1ρ given, respectively, by (3.2), (3.3) and (3.4) fail to satisfy
(G2).

We conclude by noticing that the extended dissimilarity functions based on single, average and complete linkage
share the same structural drawback: They take into account solely information about the pairwise dependence structure.
Therefore, for each of these extended dissimilarity functions, the value of an (m1,m2)-dissimilarity function of a random
vector depends on its bivariate margins only. The next result is hence evident.

Corollary 3.2. Consider a (1, 1)-dissimilarity function d1,1, some constant c ≥ 0, 2 ≤ m1 + m2 ≤ m and let (X⃗, Y⃗) ∈

L0(Im1 ) × L0(Im2 ) be a random vector satisfying d1,1(X, Y ) = c for every X ∈ X and every Y ∈ Y. Then dm1,m2
min (X⃗, Y⃗) =

dm1,m2
ave (X⃗, Y⃗) = dm1,m2

max (X⃗, Y⃗) = c.

Example 3.4. Consider 2 ≤ m1 + m2 ≤ m with m ≥ 3 and the copula C : Im → I given by

C(u) := Π (u) +

m∏
i=1

ui(1 − ui).

Then C ̸= Π and since m ≥ 3 we have TL(C) = Π for every L ⊆ {1, . . . ,m} with |L| = 2 (note that the second term on
the right hand side vanishes when putting uj = 1 for some j ∈ {1, . . . ,m}\L), and the identities

dm1,m2
min (X⃗, Y⃗) = dm1,m2

min (X⃗′, Y⃗′),

dm1,m2
ave (X⃗, Y⃗) = dm1,m2

ave (X⃗′, Y⃗′),
dm1,m2
max (X⃗, Y⃗) = dm1,m2

max (X⃗′, Y⃗′),

hold for every random vector (X⃗, Y⃗) ∈ L0(Im1 )×L0(Im2 ) with copula C and every random vector (X⃗′, Y⃗′) ∈ L0(Im1 )×L0(Im2 )
with copula Π . Thus, neither the single nor the average nor the complete extended dissimilarity function distinguishes
between pairwise independence and global independence.

3.2. Extended dissimilarity functions based on measures of multivariate association

In this section we study extended dissimilarity functions which are derived from various measures of multivariate
association (see, e.g., Nelsen, 2006; Schmid et al., 2010). Contrarily to the dissimilarity functions based on linkage methods,
here we rely on global measures of association which do not only depend on the pairwise association. Thus, in principle,
the derived dissimilarity functions could be able to detect high-dimensional features that are not apparent with the latter
methods. To this end, for m1,m2 ∈ N with 2 ≤ m1 + m2 ≤ m, we define the maps dm1,m2

β , dm1,m2
φ , dm1,m2

τ , dm1,m2
ρ from

L0(Im1 ) × L0(Im2 ) to [0, +∞[ by letting

dm1,m2
β (X⃗, Y⃗) :=

1
2

− C(X⃗,Y⃗)
( 1
2

)
= M

( 1
2

)
− C(X⃗,Y⃗)

( 1
2

)
,

dm1,m2
φ (X⃗, Y⃗) :=

1
2

−
[
C(X⃗,Y⃗),M

]
=

∫
I
(M(u 1) − C(X⃗,Y⃗)(u 1)) dλ(u),

dm1,m2
τ (X⃗, Y⃗) :=

1
2

−
[
C(X⃗,Y⃗), C(X⃗,Y⃗)

]
=

[
M,M

]
−
[
C(X⃗,Y⃗), C(X⃗,Y⃗)

]
,

dm1,m2
ρ (X⃗, Y⃗) :=

1
m1 + m2 + 1

−
[
C(X⃗,Y⃗), Π

]
=

∫
Im1+m2

(M(u) − C(X⃗,Y⃗)(u)) dλ
m1+m2 (u).

The function dm1,m2
β is related to the multivariate version of medial correlation coefficient (also known as Blomqvist’s

beta) that was introduced by Nelsen (2003) (see also Úbeda-Flores, 2005), whose n-dimensional version is given by(
2nC

( 1
2

)
− 1

)
/(2n−1

− 1). The function dm1,m2
φ is related to the multivariate version of Spearman’s footrule considered

in Úbeda-Flores (2005). The functions dm1,m2
τ and dm1,m2

ρ are related to some multivariate versions of Kendall’s tau and
Spearman’s rho (see, for instance, Joe, 2015; Schmid et al., 2010; Taylor, 2016).
10
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Theorem 3.3. For all 2 ≤ m1 + m2 ≤ m, dm1,m2
β , dm1,m2

φ , dm1,m2
τ and dm1,m2

ρ are (m1,m2)-dissimilarity functions, and thus,
the maps

dβ , dφ, dτ , dρ :

⋃
2≤m1+m2≤m

L0(Im1 ) × L0(Im2 ) → [0, +∞[,

with dβ |L0(Im1 )×L0(Im2 ):= dm1,m2
β , dφ |L0(Im1 )×L0(Im2 ):= dm1,m2

φ , dτ |L0(Im1 )×L0(Im2 ):= dm1,m2
τ and dρ |L0(Im1 )×L0(Im2 ):= dm1,m2

ρ are
extended dissimilarity functions. Moreover,

(i) dβ satisfies (L1), (L1c), (L3), (G1), (G1s) and (G2).
(ii) dφ satisfies (L1), (L1c), (L3), (G1), (G1s) and (G2).
(iii) dτ satisfies (L1c), (L2), (L3), (G1), (G1s) and (G2).
(iv) dρ satisfies (L1), (L1c), (L3), but fails to satisfy (G1), (G1s) and (G2).

Proof. We first prove the local properties and then, step by step, all the global properties. Since C ξ
( 1
2

)
= C

( 1
2

)
,

C ξ ,M] = [C,M], [C ξ , C ξ
] = [C, C] and [C ξ , Π] = [C, Π] for every C ∈ C k, every permutation ξ of Ik, where C ξ is

the copula obtained from C by permuting its arguments, and for every 2 ≤ k ≤ m (see Fuchs, 2016a, Theorem 5.2), it
ollows that dβ , dφ , dτ and dρ are extended dissimilarity functions. It is evident that dβ satisfies (L1), (L1c) and (L3), and
t is immediate from Fuchs (2016a, Theorems 3.6, 4.3, 4.4 and 5.2) that dφ and dρ satisfy (L1), (L1c) and (L3) and that dτ

satisfies (L1c), (L2) and (L3).
Now, consider 3 ≤ m1 + m2 + m3 ≤ m, the random vector (X⃗′, X⃗′′, Y⃗) ∈ L0(Im1 ) × L0(Im2 ) × L0(Im3 ) such that X′, X′′

nd Y are pairwise disjoint and (2.6) holds, and put X := X′
∪ X′′. Then

C(X⃗,Y⃗)
( 1
2

)
≤ C(X⃗,Y⃗)

(
η{m1+1,...,m1+m2}

( 1
2 , 1

))
=
(
T{1,...,m1+m2+m3}\{m1+1,...,m1+m2}

(
C(X⃗,Y⃗)

))( 1
2

)
= C(X⃗′,Y⃗)

( 1
2

)
,

C(X⃗,Y⃗)
( 1
2

)
≤ C(X⃗,Y⃗)

(
η{1,...,m1}

( 1
2 , 1

))
=
(
T{m1+1,...,m1+m2+m3}

(
C(X⃗,Y⃗)

))( 1
2

)
= C(X⃗′′,Y⃗)

( 1
2

)
,

and, by Fuchs (2015, Theorem 5.3.1) and Example 3.1, we obtain[
C(X⃗,Y⃗),M

]
≤

∫
Im1+m2+m3

C(X⃗,Y⃗)
(
η{m1+1,...,m1+m2}(u, 1)

)
dQM (u)

=
[
T{1,...,m1+m2+m3}\{m1+1,...,m1+m2}

(
C(X⃗,Y⃗)

)
, T{1,...,m1+m2+m3}\{m1+1,...,m1+m2}(M)

]
=
[
C(X⃗′,Y⃗),M

]
,[

C(X⃗,Y⃗),M
]

≤

∫
Im1+m2+m3

C(X⃗,Y⃗)
(
η{1,...,m1}(u, 1)

)
dQM (u)

=
[
T{m1+1,...,m1+m2+m3}

(
C(X⃗,Y⃗)

)
, T{m1+1,...,m1+m2+m3}(M)

]
=
[
C(X⃗′′,Y⃗),M

]
,

as well as[
C(X⃗,Y⃗), C(X⃗,Y⃗)

]
≤

∫
Im1+m2+m3

C(X⃗,Y⃗)
(
η{m1+1,...,m1+m2}(u, 1)

)
dQ C(X⃗,Y⃗) (u)

=
[
T{1,...,m1+m2+m3}\{m1+1,...,m1+m2}

(
C(X⃗,Y⃗)

)
, T{1,...,m1+m2+m3}\{m1+1,...,m1+m2}(C(X⃗,Y⃗))

]
=
[
C(X⃗′,Y⃗), C(X⃗′,Y⃗)

]
,[

C(X⃗,Y⃗), C(X⃗,Y⃗)
]

≤

∫
Im1+m2+m3

C(X⃗,Y⃗)
(
η{1,...,m1}(u, 1)

)
dQ C(X⃗,Y⃗) (u)

=
[
T{m1+1,...,m1+m2+m3}

(
C(X⃗,Y⃗)

)
, T{m1+1,...,m1+m2+m3}(C(X⃗,Y⃗))

]
=
[
C(X⃗′′,Y⃗), C(X⃗′′,Y⃗)

]
.

Thus,

min
{
dm1,m3

β (X⃗′, Y⃗), dm2,m3
β (X⃗′′, Y⃗)

}
≤ dm1+m2,m3

β (X⃗, Y⃗),

min
{
dm1,m3

φ (X⃗′, Y⃗), dm2,m3
φ (X⃗′′, Y⃗)

}
≤ dm1+m2,m3

φ (X⃗, Y⃗),

min
{
dm1,m3

τ (X⃗′, Y⃗), dm2,m3
τ (X⃗′′, Y⃗)

}
≤ dm1+m2,m3

τ (X⃗, Y⃗),

which implies that dβ , dφ and dτ satisfy (G1). In Examples 3.5 and 3.6 we show that the extended dissimilarity functions
d , d and d satisfy also (G1s), and that d fails to satisfy (G1) and (G1s).
β φ τ ρ

11
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Finally, consider 3 ≤ m1 +m2 ≤ m with 2 ≤ m1, X⃗′ ∈ L0(Im1−1) and (X⃗, Y⃗) ∈ L0(Im1 )× L0(Im2 ) such that X′
∪ {X ′′

} = X,
here X ′′

∈ X is comonotonic with some element X ′
∈ X′. Without loss of generality, denote by i the position of X ′′

ithin the vector (X⃗, Y⃗). Then, Lemma 3.1 and Example 3.1 yield

C(X⃗,Y⃗)(u 1) = C(X⃗,Y⃗)(ηi(u 1, 1)) = (T{1,...,m1+m2}\{i}(C(X⃗,Y⃗)))(u 1) = C(X⃗′,Y⃗)(u 1),

or every u ∈ I and, hence,[
C(X⃗,Y⃗),M

]
=

∫
Im1+m2

C(X⃗,Y⃗)(u) dQ
M (u)

=

∫
I
C(X⃗,Y⃗)(u 1) dλ(u) =

∫
I
C(X⃗′,Y⃗)(u 1) dλ(u)

=

∫
Im1−1+m2

C(X⃗′,Y⃗)(u) dQ
M (u) =

[
C(X⃗′,Y⃗),M

]
,

nd Lemma 3.1 together with Example 3.1 implies

[C(X⃗,Y⃗), C(X⃗,Y⃗)] =
[
T{1,...,m1+m2}\{i}

(
C(X⃗,Y⃗)

)
, T{1,...,m1+m2}\{i}

(
C(X⃗,Y⃗)

)]
= [C(X⃗′,Y⃗), C(X⃗′,Y⃗)].

Thus,

dm1,m2
β (X⃗, Y⃗) = dm1−1,m2

β (X⃗′, Y⃗),

dm1,m2
φ (X⃗, Y⃗) = dm1−1,m2

φ (X⃗′, Y⃗),

dm1,m2
τ (X⃗, Y⃗) = dm1−1,m2

τ (X⃗′, Y⃗),

hich implies that dβ , dφ and dτ satisfy (G2). In Example 3.7 we show that the extended dissimilarity function dρ fails to
atisfy (G2). □

The following example shows that the extended dissimilarity functions dβ , dφ and dτ satisfy (G1s).

xample 3.5. Consider m ≥ 3, m1 = m2 = m3 = 1 and the product copula Π . Then, for every random vector
X ′, X ′′, Y ) ∈ L0(I) × L0(I) × L0(I) having copula T{1,2,3}(Π ), the extended dissimilarity functions dβ , dφ and dτ satisfy

d1,1β (X ′, X ′′) ≤ min
{
d1,1β (X ′, Y ), d1,1β (X ′′, Y )

}
< d1+1,1

β (X⃗, Y ),

d1,1φ (X ′, X ′′) ≤ min
{
d1,1φ (X ′, Y ), d1,1φ (X ′′, Y )

}
< d1+1,1

φ (X⃗, Y ),

d1,1τ (X ′, X ′′) ≤ min
{
d1,1τ (X ′, Y ), d1,1τ (X ′′, Y )

}
< d1+1,1

τ (X⃗, Y ),

here X = X ′
∪ X ′′. Indeed, we have

d1,1β (X ′, X ′′) = min
{
d1,1β (X ′, Y ), d1,1β (X ′′, Y )

}
=

2
8 < 3

8 = d1+1,1
β (X⃗, Y ),

d1,1φ (X ′, X ′′) = min
{
d1,1φ (X ′, Y ), d1,1φ (X ′′, Y )

}
=

2
12 < 3

12 = d1+1,1
φ (X⃗, Y ),

d1,1τ (X ′, X ′′) = min
{
d1,1τ (X ′, Y ), d1,1τ (X ′′, Y )

}
=

2
8 < 3

8 = d1+1,1
τ (X⃗, Y ).

Thus, the extended dissimilarity functions dβ , dφ and dτ satisfy (G1s).

We conclude this section by showing that the extended dissimilarity function dρ fails to satisfy (G1), (G1s) and (G2).

Example 3.6. Consider m ≥ 6, m1 = m2 = m3 = 2 and the product copula Π . Then, for every random vector
(X⃗′, X⃗′′, Y⃗) ∈ L0(I2) × L0(I2) × L0(I2) having copula T{1,...,6}(Π ), the extended dissimilarity function dρ satisfies

d2,2ρ (X⃗′, X⃗′′) = min
{
d2,2ρ (X⃗′, Y⃗), d2,2ρ (X⃗′′, Y⃗)

}
> d2+2,2

ρ (X⃗, Y⃗),

where X = X⃗′ ∪ X⃗′′. Indeed, we have

d2,2ρ (X⃗′, X⃗′′) = min
{
d2,2ρ (X⃗′, Y⃗), d2,2ρ (X⃗′′, Y⃗)

}
=

616
4480

>
570
4480

= d2+2,2
ρ (X⃗, Y⃗).

Thus, the extended dissimilarity function dρ fails to satisfy (G1) and also (G1s).

Example 3.7. Consider m ≥ 4, m1 = 2, m2 = m− 2 and the copula C : I2 × Im−2
→ I given by C(u, v) := M(u)Π (v), see

e.g. Durante and Sempi (2016). Then, for every random vector X⃗ = (X1, X2)′ ∈ L0(I2) and every random vector Y⃗ ∈ L0(I2)
such that (X⃗, Y⃗) has copula T{1,2,3,4}(C) and hence X1 and X2 are comonotonic, the extended dissimilarity function dρ

satisfies

d2,2ρ (X⃗, Y⃗) ̸= d1,2ρ (X1, Y⃗).

Indeed, we obtain d2,2(X⃗, Y⃗) =
14

̸=
15

= d1,2(X , Y⃗). Thus, the extended dissimilarity function d fails to satisfy (G2).
ρ 120 120 ρ 1 ρ

12
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Remark 3.2. The choice of some normalizing constants in the definition of dissimilarity functions based on measures of
association is crucial. In particular, the direct use of multivariate versions of these measures may be flawed in some cases,
as the following example indicates.

Consider the measure of concordance Kendall’s tau κ (see, e.g., Genest et al., 2011) and, for m1,m2 ∈ N with
≤ m1 + m2 ≤ m, define the map dm1,m2

κ : L0(Im1 ) × L0(Im2 ) → [0, +∞[ by letting

dm1,m2
κ (X⃗, Y⃗) := 1 − κ(X⃗, Y⃗) =

[
M,M

]
−
[
C(X⃗,Y⃗), C(X⃗,Y⃗)

][
M,M

]
−
[
Π, Π

] =
dm1,m2

τ (X⃗, Y⃗)[
M,M

]
−
[
Π, Π

] .
hen (G1) is equivalent to the inequality κ(X⃗, Y⃗) ≤ max

{
κ(X⃗′, Y⃗), κ(X⃗′′, Y⃗)

}
for all 3 ≤ m1 + m2 + m3 ≤ m and for all

(X⃗′, X⃗′′, Y⃗) ∈ L0(Im1 )× L0(Im2 )× L0(Im3 ), where X := X′
∪X′′ and X′, X′′ and Y are pairwise disjoint. Now, consider m ≥ 4

and the copula C : Im → I given by

C(u) := Π (u) +

m∏
i=1

ui

4∏
i=1

(1 − ui).

Then, for every random vector (X ′, X ′′, Y⃗) ∈ L0(I) × L0(I) × L0(I2) having copula T{1,2,3,4}(C), the above inequality reduces
to κ(X⃗, Y⃗) ≤ 0 where X := X ′

∪ X ′′. However, straightforward calculation yields κ(X⃗, Y⃗) =
2

567 which contradicts (G1).
Thus, although dm1,m2

τ satisfies (G1), dm1,m2
κ may fail to satisfy (G1).

3.3. Extended dissimilarity functions based on multivariate tail dependence

In this section we study an extended dissimilarity function based on a modified version of the classical lower tail
dependence coefficient (see, e.g., Durante and Sempi, 2016). This kind of dissimilarity concept is useful in order to detect
different tail association in random vectors. In the literature, similar concepts have been considered for the analysis of
financial time series. See, e.g., De Luca and Zuccolotto (2011), Durante et al. (2015), Ji et al. (2018) and Yang et al. (2018).

For m1,m2 ∈ N with 2 ≤ m1 + m2 ≤ m, we define the function dm1,m2
LTD : L0(Im1 ) × L0(Im2 ) → [0, +∞[ by letting

dm1,m2
LTD (X⃗, Y⃗) := 1 − lim sup

u→0+

C(X⃗,Y⃗)(u1)
u

.

Notice that, provided that the above limit superior coincides with the limit inferior, then d1,1 = 1 − λL, where λL is the
lower tail dependence coefficient of (X, Y ).

Theorem 3.4. For all 2 ≤ m1 + m2 ≤ m, dm1,m2
LTD is a (m1,m2)-dissimilarity function, and thus,

dLTD :

⋃
2≤m1+m2≤m

L0(Im1 ) × L0(Im2 ) → [0, +∞[,

with dLTD|L0(Im1 )×L0(Im2 ):= dm1,m2
LTD is an extended dissimilarity function satisfying (L1), (L1c), (G1), (G1s) and (G2).

Proof. It is straightforward to show that dLTD is an extended dissimilarity function satisfying (L1) and (L1c).
Now, consider 3 ≤ m1 + m2 + m3 ≤ m, the random vector (X⃗′, X⃗′′, Y⃗) ∈ L0(Im1 ) × L0(Im2 ) × L0(Im3 ) such that (2.6)

olds, X′, X′′ and Y are pairwise disjoint and put X := X′
∪ X′′. Then

C(X⃗,Y⃗)(u1) ≤ C(X⃗,Y⃗)
(
η{m1+1,...,m1+m2}(u1, 1)

)
=
(
T{1,...,m1+m2+m3}\{m1+1,...,m1+m2}

(
C(X⃗,Y⃗)

))
(u1)

= C(X⃗′,Y⃗)(u1),

C(X⃗,Y⃗)(u1) ≤ C(X⃗,Y⃗)
(
η{1,...,m1}(u1, 1)

)
=
(
T{m1+1,...,m1+m2+m3}

(
C(X⃗,Y⃗)

))
(u1)

= C(X⃗′′,Y⃗)(u1),

for every u ∈ I, and thus, min
{
dm1,m3
LTD (X⃗′, Y⃗), dm2,m3

LTD (X⃗′′, Y⃗)
}

≤ dm1+m2,m3
LTD (X⃗, Y⃗). This proves (G1). In Example 3.8 we show

hat the extended dissimilarity function dLTD satisfies (G1s).
Finally, consider 3 ≤ m1 +m2 ≤ m with 2 ≤ m1, X⃗′ ∈ L0(Im1−1) and (X⃗, Y⃗) ∈ L0(Im1 )× L0(Im2 ) such that X′

∪ {X ′′
} = X,

here X ′′
∈ X is comonotonic with some element X ′

∈ X′. Without loss of generality, denote by i the position of X ′′

ithin the vector (X⃗, Y⃗). Then Lemma 3.1 yields C(X⃗,Y⃗)(u1) = C(X⃗,Y⃗)(ηi(u1, 1)) = (T{1,...,m1+m2}\{i}(C(X⃗,Y⃗)))(u1) = C(X⃗′,Y⃗)(u1)
or every u ∈ I and hence dm1,m2

LTD (X⃗, Y⃗) = dm1−1,m2
LTD (X⃗′, Y⃗). This proves (G2) and, hence, the assertion. □

The following example shows that the extended dissimilarity function dLTD satisfies (G1s).
13



S. Fuchs, F.M.L. Di Lascio and F. Durante Computational Statistics and Data Analysis 159 (2021) 107201

c

w

4

c
w
a

t

w

m
(
i
d

E

Example 3.8. Consider m ≥ 3, m1 = m2 = m3 = 1, and the copula C : Im → I given by

C(u) :=

(
m∑
i=1

u−1/2
i − (n − 1)

)−2

,

which is the Clayton copula with parameter 1/2. Then, for every random vector (X ′, X ′′, Y ) ∈ L0(I) × L0(I) × L0(I) having
opula T{1,2,3}(C), the extended dissimilarity function dLTD satisfies

d1,1LTD(X
′, X ′′) ≤ min

{
d1,1LTD(X

′, Y ), d1,1LTD(X
′′, Y )

}
< d1+1,1

LTD (X⃗, Y ),

here X = X ′
∪ X ′′. Indeed, we have

d1,1LTD(X
′, X ′′) = min

{
d1,1LTD(X

′, Y ), d1,1LTD(X
′′, Y )

}
=

3
4

<
8
9

= d1+1,1
LTD (X⃗, Y ).

Thus, the extended dissimilarity function dLTD satisfies (G1s).

Remark 3.3.

(1) Notice that dLTD does not satisfy (L2), since lower and upper tail behaviour of a copula may be different.
(2) Note also that dLTD does not satisfy (L3). To this end, consider, for instance, the bivariate copula Ck that is an ordinal

sum of (M, Π ) with respect to ([0, 1/k], [1/k, 1]) (see, e.g., Durante and Sempi, 2016). Then Ck tends to Π , as k
tends to +∞ with d1,1LTD(Π ) = 1, but d1,1LTD(Ck) = 0 for every k ≥ 2.

(3) In particular then also d1,1LTD does not satisfy (L3) and this hence transfers to the extended dissimilarity functions
based on linkage methods dmin, dave and dmax (compare Theorem 3.1).

. The hierarchical clustering procedure

Here, we summarize how a general agglomerative hierarchical algorithm based on extended dissimilarity functions
an be implemented (see, for instance, Everitt et al., 2011; Gordon, 1987; Kojadinovic, 2004). To this end, we remind that
e aim at determining a suitable partition of the (finite) set X = {X1, . . . , Xm} of m ≥ 3 continuous r.v.’s into non-empty
nd non-overlapping classes.
Given a dissimilarity index d̃ induced by some extended dissimilarity function

d :

⋃
2≤m1+m2≤m

L0(Im1 ) × L0(Im2 ) → [0, +∞[,

he different steps of an agglomerative hierarchical clustering algorithm based on d are given below:

(1) Each object of X forms a class.
(2) For each pair of classes X and Y, one computes d̃(X,Y).
(3) A pair of classes having the smallest dissimilarity degree, say {X1,Y1}, is identified, then the composite class X1∪Y1

is formed and the number of classes is decremented.
(4) Steps (2), (3) and (4) are repeated until the number of classes is equal to 1.

The hierarchy of classes built by the clustering algorithm can be hence represented by means of a dendrogram, from
hich a suitable partition of X can be derived (see, for instance, Everitt et al., 2011).
Now, while these steps are common to any agglomerative algorithm, the use of the extended dissimilarity function

ay provide some important insights into the agglomerative hierarchical algorithm. In fact, the procedure can use: either
a) the information about the pairwise dependence, as in the dissimilarity function based on linkage methods; or (b) the
nformation about their global (higher dimensional) copula. The latter method, in particular, will allow us to detect those
ependencies that only appear in higher dimensions, a feature that can be quite appealing in applications.

xample 4.1. As an illustrative example, consider a set X formed by 6 pairwise independent r.v.’s such that X =

{X1, X2, X3} and Y = {Y1, Y2, Y3} are, respectively, globally dependent. For instance, we may assume that they are coupled
with a trivariate FGM copula with parameters θ1 and θ2, respectively (θ1 > θ2).

Now, every dissimilarity index based on classical linkage methods cannot recognize the difference among the two
groups and its related dendrogram would be similar to the representation in Fig. 1 (left). However, if we consider the
dissimilarity index based on multivariate Kendall’s tau, then the procedure could produce a different output and recognize
the dendrogram structure as in Fig. 1 (right).

Apart from the case when the probability law of the X = {X1, . . . , Xm} (m ≥ 3) is known (i.e. by some fitting
procedures and/or expert opinion), the information about X is usually recovered from some available observations, which
can be considered as random sample from X1, . . . , Xm, denoted by (xij) with i = 1, . . . , n and j = 1, . . . ,m. In such a case,
depending on the dissimilarity functions, specific estimation procedures should be adopted.
14
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Fig. 1. Two illustrative examples of dendrogram representation of a random vector based on different extended dissimilarity functions. See
Example 4.1.

Example 4.2. Consider the case when a dissimilarity function dm1,m2 can be expressed as a smooth function of a given
easure of association µ for (m1 + m2)-dimensional random vectors, say

dm1,m2 = f (µ).

hen, in view of a suitable application of continuous mapping theorem, a (plug-in) estimator of dm1,m2 is given by

d̂m1,m2 = f (µ̂),

where µ̂ is a convenient estimator of µ. Such a procedure can be, for instance, applied to the dissimilarity functions
considered in Section 3.2.

Remark 4.1. In the case of multivariate time series, i.e. when, for a fixed j, (xij) presents a time-varying behaviour,
t is common to apply the hierarchical algorithm not directly on the historical time series, but on the residual time
eries obtained after fitting each univariate time series with an appropriate time-varying model (like ARMA–GARCH
pecification). Such a general framework is described, for instance, in Patton (2012) (see also Acar et al., 2019; Krupskii
nd Joe, 2020) and applied, among others, in De Luca and Zuccolotto (2011) and Durante et al. (2014).

In general, every dissimilarity function has a strong impact on the clustering procedure, since each one can have a
uite different interpretation. However, when extended dissimilarity functions based on different linkage methods are
onsidered, it would be convenient to compare them since they are defined from the same bivariate dissimilarity function.
elow, via a simulation study, we check whether the choice of the linkage method may have a relevant impact on the
erformance of the algorithm.

.1. A simulation study about linkage methods

Here, we compare the performance of hierarchical clustering methods where the extended dissimilarity functions are
ased on average, single and complete linkage method, while the pairwise dissimilarities are obtained from d1,1β , d1,1φ ,
1,1
ρ and d1,1τ . Notice that, since these pairwise dissimilarities are based on classical measures of association, their (non-
arametric) estimation is grounded on the (classical) empirical versions of these measures, as described in Genest et al.
2013), Schmid et al. (2010), Úbeda-Flores (2005) among others (see also Example 4.2).

First, we consider the following setup. A random vector X⃗ of dimension m = 15 is constructed in the following way:

• the random vector is formed by three independent subvectors, say (X⃗1, X⃗2, X⃗3);
• the dimension mi of each X⃗i is randomly chosen from 2 to 11 to ensure that each group has 2 elements and

m1 + m2 + m3 = m;
• each X⃗i is distributed according to a copula generated from four different copula models, namely Clayton, Frank,

Gumbel and equicorrelated Gaussian (for the definition of these families, see, e.g., Durante and Sempi, 2016), with
pairwise Kendall’s tau equal to τ .

For B = 500 replications, the simulation study is then performed simulating N independent realizations (N ∈

50, 100, 250}) from X⃗ with τ ∈ {0.1, 0.2, 0.3}. Hence, for each simulated scenario the Adjusted Rand Index (Hubert
nd Arabie, 1985) (ARI, hereafter) is calculated to measure the agreement between the obtained partition and the true
ne. Here, the partition is obtained by cutting the dendrogram so that three groups are derived.
The distribution of ARI for each scenario is shown in Figs. 2–5.
As the results for the four copula models are very similar, we only comment those obtained for the Clayton copula and

hown in Fig. 2. We remind that a larger Adjusted Rand Index means a higher agreement between two partitions and the
aximum value of the index is 1. As one could have expected, the lower is the degree of dependence among the variables
15
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Fig. 2. Boxplots of ARI (y-axis) by varying (i) pairwise dissimilarity measure among d1,1β , d1,1φ , d1,1ρ and d1,1τ and (ii) linkage method among the
verage, single (minimum) and complete (maximum) one (x-axis starting with the average linkage and d1,1β , continuing with the single linkage and
1,1
β and ending with the complete linkage and d1,1τ ), (iii) Kendall’s τ = (.1, .2, .3) (panels by cols), and (iv) sample size N = 50, 100, 250 (panels by
ows). Data simulated from independent groups with a Clayton copula within each group (see text).

f a group, the harder is for the hierarchical clustering algorithm to identify the true partition. Moreover, the larger is

he sample size, the better are the results for a given dependence degree. As far as linkage methods are concerned, one

an see that, remarkably differences appear only when the dependence level is really low, i.e. lower than 0.3. In these

ases, irrespectively from the dissimilarity measures, the average linkage method appears to be more satisfactory than
he complete and the single ones. As for the pairwise dissimilarity function, d1,1β appears to be the worst choice in case of

eak dependence among groups. Overall, the average linkage performed the best, which confirms its potential frequently
roved in the literature (Hall, 1968; Eisen et al., 1998; Bottegoni et al., 2006; Kumar and Deo, 2012), especially when d1,1φ ,
1,1
ρ and d1,1τ are used.

Since the choice of the copula family seems to be irrelevant in the previous simulation, we fix one specific family,

amely Clayton class, and perform a similar simulation study in higher dimensions. Specifically, we consider a random

ector X⃗ of dimension m ∈ {60, 120} such that:

• the random vector is formed by K ∈ {6, 10} independent subvectors, say X⃗i;
• the dimension mi of each X⃗i is m/K ;
• each X⃗i is distributed according to a Clayton copula with pairwise Kendall’s tau equal to τ .
16
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Fig. 3. Boxplots of ARI (y-axis) by varying (i) pairwise dissimilarity measure among d1,1β , d1,1φ , d1,1ρ and d1,1τ and (ii) linkage method among the
verage, single (minimum) and complete (maximum) one (x-axis starting with the average linkage and d1,1β , continuing with the single linkage and
1,1
β and ending with the complete linkage and d1,1τ ), (iii) Kendall’s τ = (.1, .2, .3) (panels by cols), and (iv) sample size N = 50, 100, 250 (panels by
ows). Data simulated from independent groups with a Frank copula within each group (see text).

or B = 500 replications, the simulation study is then performed simulating N independent realizations (N ∈ {100, 250})
rom X⃗ with τ ∈ {0.1, 0.2, 0.3}.

The results can be seen from Figs. 6 to 9.
Summarizing, both for K = 6 and K = 10, the average linkage performs better than the other two linkages, while

he single linkage is the worst one. The complete linkage shows a performance similar to the average linkage when
> 0.1. There are no remarkable differences among dissimilarities by varying m in {60, 120} and the slight differences
re remarkably reduced as when τ > 0.1 and N = 250, cases where all the measures show an almost perfect performance
except for the single linkage and d1,1β ).

. Applications

In order to show the ability of our methodology in the statistical practice, we present some empirical analysis.

.1. Analysis of gene expressions

First, we focus on the NCI60 data set which is available in the R package made4 (Culhane et al., 2005) and contains
44 gene expression (log-ratio measurements) rows and 60 cell line columns. Gene expressions have been extracted
y using the cDNA spotted microarray technology (Ross et al., 2000) and pre-processed as described by Culhane et al.
2003). The study has been carried out by the National Cancer Institute’s (NCI) Developmental Therapeutics Program
17
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Fig. 4. Boxplots of ARI (y-axis) by varying (i) pairwise dissimilarity measure among d1,1β , d1,1φ , d1,1ρ and d1,1τ and (ii) linkage method among the
verage, single (minimum) and complete (maximum) one (x-axis starting with the average linkage and d1,1β , continuing with the single linkage and
1,1
β and ending with the complete linkage and d1,1τ ), (iii) Kendall’s τ = (.1, .2, .3) (panels by cols), and (iv) sample size N = 50, 100, 250 (panels by
ows). Data simulated from independent groups with a Gumbel copula within each group (see text).

DTP) and human tumour cell lines have been derived from patients with leukaemia (LEUK), melanoma (MELAN), non-
mall colon lung (NSCLC), colon (COLON), central nervous system (CNS), ovarian (OVAR), renal (RENAL), breast (BREAST)
nd prostate (PROSTATE) cancers. Here, we divided the human tumour cell lines in two groups according to the (bivariate)
endall’s τ and using 0.3 as cut-off. Precisely, for each subset of human tumour cell lines, i.e. for each kind of tumour, the
airwise Kendall’s τ correlation matrix has been computed. If at least 60% (59.4% for the BREAST cancer group) of pairwise
orrelation coefficients is greater than or equal to 0.3, then that kind of tumour has been considered as ‘tumour with
igh dependence’, otherwise it has been classified as ‘tumour with low dependence’. The rationale is to show empirical
esults comparable with the scenarios simulated in the performed Monte Carlo studies. Hence, as for the tissues with low
ependence (τ < 0.3) we have 8 BREAST, 9 NSCLC, and 6 OVAR, while as for the tissues with high dependence (τ ≥ 0.3)
e have 6 CNS, 7 COLON, 6 LEUK, 8 MELAN, 2 PROSTATE, and 8 RENAL.
Tables 1 and 2 show the obtained results. Coherently with the simulation results, when the dependence is low

see Table 1), any linkage method, irrespectively of the kind of extended dissimilarity function, is seldom able to
ecognize the true partition, whereas, when the dependence is mild or high (see Table 2), then the single linkage method
ppears to perform badly while the average and the complete are very good competitors. Here, one may argue that the
lobal properties and, particularly the reducibility property (G1), can play a role in explaining these performance (see
heorem 3.2). In addition, we notice that the kind of dissimilarity measure appears to have an impact on the goodness
f the final partition only when the average linkage method is used, in this case dρ appears to be the best dissimilarity
easure.
The second example concerns the data set discussed in Notterman et al. (2001) containing the transcript of 7086 human

RNAs from 4 normal tissues and 4 adenoma tissues. By applying the hierarchical clustering we want to evaluate the
18
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Fig. 5. Boxplots of ARI (y-axis) by varying (i) pairwise dissimilarity measure among d1,1β , d1,1φ , d1,1ρ and d1,1τ and (ii) linkage method among the
verage, single (minimum) and complete (maximum) one (x-axis starting with the average linkage and d1,1β , continuing with the single linkage and
1,1
β and ending with the complete linkage and d1,1τ ), (iii) Kendall’s τ = (.1, .2, .3) (panels by cols), and (iv) sample size N = 50, 100, 250 (panels by
ows). Data simulated from independent groups with an equicorrelated Gaussian copula within each group (see text).

Table 1
NCI60 data: ARI index of hierarchical clustering of low (< 0.3) dependent
tissues by varying dissimilarity measure and linkage method.

dβ dφ dρ dτ

Average 0.056 0.056 0.043 0.039
Single 0.056 0.056 0.056 0.056
Complete −0.024 0.005 0.039 0.039

Table 2
NCI60 data: ARI index of hierarchical clustering of high (≥ 0.3) dependent
tissues by varying dissimilarity measure and linkage method.

dβ dφ dρ dτ

Average 0.547 0.743 0.820 0.574
Single 0.116 0.076 0.076 0.298
Complete 0.752 0.752 0.691 0.773

capability of distinguishing the two tissue types. In this empirical case, all tissues have a quite high Kendall’s τ correlation
> 0.607) and high Spearman’s ρ correlation (> 0.766). The resulting clusterings by varying dissimilarity measure and
linkage method are shown in Table 3 and Fig. 10. Note that we are here using the Rand Index (Rand, 1971) instead of its
adjusted version since the number and the size of groups are very small.
19
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Fig. 6. Boxplots of ARI (y-axis) by varying (i) pairwise dissimilarity measure among d1,1β , d1,1φ , d1,1ρ and d1,1τ and (ii) linkage method among the
verage, single (minimum) and complete (maximum) one (x-axis starting with the average linkage and d1,1β , continuing with the single linkage and
1,1
β and ending with the complete linkage and d1,1τ ), (iii) Kendall’s τ = (.1, .2, .3) (panels by cols), and (iv) clustering size (total number of variables)
= 60,120 (panels by rows). Sample size is equal to N = 100 and data are simulated from K = 6 independent Clayton copulas of dimension m/K .

Table 3
Notterman’s data: Rand index of hierarchical clustering results by varying
dissimilarity measure and linkage method.

dβ dφ dρ dτ

Average 0.464 0.464 0.464 0.464
Single 0.464 0.464 0.464 0.464
Complete 1.000 0.464 0.571 0.464

The dissimilarity measure dβ and the complete linkage method is the only combination able to perfectly recognize the
wo tissue types, thus supporting the concept that genome-wide expression profiling may permit a classification of solid
umours. Again, the effect of the kind of dissimilarity measure appears to be irrelevant.

Here, it is interesting to note that the extended dissimilarity functions dβ , dφ and dτ based on measures of multivariate
dependence (see Section 3.2) perfectly group the tissues (Rand index equal to 1). For the extended dissimilarity function
dρ , however, the obtained Rand index equals 0.5714 since two adenoma tissues have been clustered with the normal
ones. Thus, one may argue that this performance is due to the fact that dρ does not satisfy the reducibility property (G1)
(see Theorem 3.3).

Noteworthy, the dissimilarity dτ in its multivariate version is the most computationally heavy measure.
Finally, for the sake of illustration, we discuss the steps of the clustering procedure by means of the extended

dissimilarity function dτ (see Section 3.2). Table 4 provides the merging steps together with the corresponding values
of dτ and multivariate Kendall’s tau (see, e.g., Genest et al., 2011; Fuchs et al., 2019).

As can be seen from the values of Kendall’s tau there is a huge 4- and also 8-dimensional dependence between the
tissues. Thus, it seems as if the multivariate versions of dβ , dφ and dτ perform entirely satisfactory when the r.v.’s are highly
dependent and the sample size is large enough. Again, one may also conclude from the values of dτ that the reducibility
property is crucial.

5.2. Analysis of financial time series

Here, we provide an illustration of a copula-based clustering procedure based on financial time series. To this end,
we consider the dataset formed by the end-day prices of the 505 constituents of the Standard & Poor 500 index (S&P
20



S. Fuchs, F.M.L. Di Lascio and F. Durante Computational Statistics and Data Analysis 159 (2021) 107201

a
d
m

a
f
(
(
s

m
t
h

d

t
a
g

Fig. 7. Boxplots of ARI (y-axis) by varying (i) pairwise dissimilarity measure among d1,1β , d1,1φ , d1,1ρ and d1,1τ and (ii) linkage method among the
verage, single (minimum) and complete (maximum) one (x-axis starting with the average linkage and d1,1β , continuing with the single linkage and
1,1
β and ending with the complete linkage and d1,1τ ), (iii) Kendall’s τ = (.1, .2, .3) (panels by cols), and (iv) clustering size (total number of variables)
= 60,120 (panels by rows). Sample size is equal to N = 250 and data are simulated from K = 6 independent Clayton copulas of dimension m/K .

Table 4
Notterman’s data: Steps of the hierarchical clustering procedure via dissimilarity function
based on multivariate Kendall’s tau.
Merging variables dτ Kendall’s tau

5 and 7 0.061 0.756
6 and 8 0.068 0.728
1 and 2 0.076 0.696
3 and 4 0.095 0.620
(5, 7) and (6, 8) 0.124 0.717
(1, 2) and (3, 4) 0.159 0.637
(1, 2, 3, 4) and (5, 6, 7, 8) 0.209 0.579

hereafter) observed in the financial crisis of 2007–2008 is analysed, by complementing the analysis performed in Di Lascio
et al. (2017). The dataset is available in the R package qrmdata (Hofert and Hornik, 2016), where the data are classified
ccording to the Global Industry Classification Standard sector information. We consider 756 daily log-returns recorded
rom 2007-01-01 to 2009-12-31 on 461 constituents which have not missing data and belong to the following sectors
the number of companies in each sector is in parenthesis): Consumer discretionary (77), Consumer staples (33), Energy
36), Financials (84), Health care (51), Industrials (62), Information technology (59), Materials (25), Telecommunications
ervices (5), and Utilities (29).
Following the copula-based approach for the analysis of time series (see, e.g., Patton, 2012), we fit a suitable marginal

odel to each of the 461 constituents to remove serial dependence. In particular, based on (Di Lascio et al., 2017) we adopt
he ARMA(1,1)-GARCH(1,1) model with innovations following a Student-t distribution. Once the corresponding residuals
ave been extracted, hierarchical clustering algorithms are applied by varying dissimilarity measures and linkage methods.
Table 5 shows the agreement between the sector classification given by S&P index and the group composition

etermined for each considered combination of a dissimilarity measure and a linkage method (here, ARI is used).
As it can be seen, single linkage method shows the worst agreement irrespective from the dissimilarity measure. On

he contrary, the performance of the average and the complete linkage method appears quite different from each other
nd, on this set of data, the complete linkage outperforms the average linkage. As expected, however, the benchmark
roup composition provided by sectors reflects poorly the comovements of financial time series.
21
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Fig. 8. Boxplots of ARI (y-axis) by varying (i) pairwise dissimilarity measure among d1,1β , d1,1φ , d1,1ρ and d1,1τ and (ii) linkage method among the
verage, single (minimum) and complete (maximum) one (x-axis starting with the average linkage and d1,1β , continuing with the single linkage and
1,1
β and ending with the complete linkage and d1,1τ ), (iii) Kendall’s τ = (.1, .2, .3) (panels by cols), and (iv) clustering size (total number of variables)
= 60,120 (panels by rows). Sample size is equal to N = 100 and data are simulated from K = 10 independent Clayton copulas of dimension m/K .

Table 5
S&P 500: ARI index between the S&P sector classification and the group
composition provided by hierarchical clustering with different dissimilarity
measures and linkage methods.

dβ dφ dρ dτ

Average 0.003 0.006 0.003 0.003
Single 0.002 0.003 0.003 0.003
Complete 0.331 0.337 0.320 0.370

When we consider a dissimilarity function based on the (pairwise) lower tail dependence coefficient discussed in
Section 3.3 computed using the nonparametric estimator by Schmid and Schmidt (2007), the agreement between the
obtained group composition and the benchmark sector-wise group composition is even worse. In fact, the ARI index
equals 0.003 for the average, 0.001 for the single, and 0.175 for the complete linkage method. In other words, as expected,
grouping by economic/financial sectors may not reflect the real comovements of time series, especially in bearish periods.

6. Conclusions

We have provided a theoretical foundation for the study of hierarchical clustering algorithms based on (rank-based)
dissimilarity measures. To this end, we have introduced and studied dissimilarity functions for continuous random vectors,
which are based on the use of copulas. Novel properties of a dissimilarity have been considered (see Table 6) and various
dissimilarity measures have been analysed with respect to their main features (see Table 7).

The obtained results may provide computational and practical insights that may guide for the choice of the most
appropriate dissimilarity function for the problem at hand.

Finally, we would like to remark that the simulations and the empirical analysis have been performed in R Core Team
R (2020), also by means of the package (Hofert et al., 2020).
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Fig. 9. Boxplots of ARI (y-axis) by varying (i) pairwise dissimilarity measure among d1,1β , d1,1φ , d1,1ρ and d1,1τ and (ii) linkage method among the
verage, single (minimum) and complete (maximum) one (x-axis starting with the average linkage and d1,1β , continuing with the single linkage and
1,1
β and ending with the complete linkage and d1,1τ ), (iii) Kendall’s τ = (.1, .2, .3) (panels by cols), and (iv) clustering size (total number of variables)
= 60,120 (panels by rows). Sample size is equal to N = 250 and data are simulated from K = 10 independent Clayton copulas of dimension m/K .

Table 6
Properties of dissimilarity functions.
(L1) Order preserving property (lower orthant order)

(L1c) Order preserving property (concordance order)
(L2) Radially symmetry
(L3) Continuity/Weak convergence
(G1) Reducibility property
(G1s) Strict reducibility property
(G2) Comonotonic invariance

Table 7
Summary of the properties satisfied (symbol:

√
), not satisfied (symbol: ×),

or satisfied under specific conditions on d1,1 (symbol: ∗) by the extended
dissimilarity functions.

(L1) (L1c) (L2) (L3) (G1) (G1s) (G3)

Single linkage ∗ ∗ ∗ ∗
√

×
√

Average linkage ∗ ∗ ∗ ∗
√

∗ ∗

Complete linkage ∗ ∗ ∗ ∗
√

∗
√

Tail dependence
√ √

× ×
√ √ √

Blomqvist’s beta
√ √

×
√ √ √ √

Spearman’s footrule
√ √

×
√ √ √ √

Kendall’s tau ×
√ √ √ √ √ √

Spearman’s rho
√ √

×
√

× × ×
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Fig. 10. Dendrograms of the data set by Notterman et al. (2001) by varying (i) dissimilarity measure among dβ , dφ , 1 − ρ and 1 − τ by cols, and
ii) linkage method among the average, single (minimum) and complete (maximum) one by row.
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