
algorithms

Article

Lifting the Performance of a Heuristic for the
Time-Dependent Travelling Salesman Problem
through Machine Learning

Gianpaolo Ghiani *, Tommaso Adamo , Pierpaolo Greco and Emanuela Guerriero

Dipartimento di Ingegneria dell’Innovazione, Università del Salento, via per Monteroni, 73100 Lecce, Italy;
tommaso.adamo@unisalento.it (T.A.); pierpaolo.greco@unisalento.it (P.G.);
emanuela.guerriero@unisalento.it (E.G.)
* Correspondence: gianpaolo.ghiani@unisalento.it

Received: 21 October 2020 ; Accepted: 15 November 2020; Published: 14 December 2020 ����������
�������

Abstract: In recent years, there have been several attempts to use machine learning techniques to
improve the performance of exact and approximate optimization algorithms. Along this line of
research, the present paper shows how supervised and unsupervised techniques can be used to
improve the quality of the solutions generated by a heuristic for the Time-Dependent Travelling
Salesman Problem with no increased computing time. This can be useful in a real-time setting where
a speed update (or the arrival of a new customer request) may lead to the reoptimization of the
planned route. The main contribution of this work is to show how to reuse the information gained in
those settings in which instances with similar features have to be solved over and over again, as it is
customary in distribution management. We use a method based on the nearest neighbor procedure
(supervised learning) and the K-means algorithm with the Euclidean distance (unsupervised learning).
In order to show the effectiveness of this approach, the computational experiments have been carried
out for the dataset generated based on the real travel time functions of two European cities: Paris and
London. The overall average improvement of our heuristic over the classical nearest neighbor
procedure is about 5% for London, and about 4% for Paris.

Keywords: machine learning; travelling salesman problem; time-dependent travel times

1. Introduction

The development of efficient optimization methods for real-life problems is a rich and interesting
research area. If the problem is enough easy with very effective bounds and a limited dimensionality,
the analyst will be able to write a formal mathematical model and solve it with a general-purpose black
box solver. This process usually takes few days of work. Otherwise, the analyst have to design and
develop an ad-hoc heuristic that requires a huge effort during the tuning and testing phase. This time
the development process requires weeks or months depending on the experience of the analyst in the
sector and on the problem size. The use of approximate methods to solve combinatorial optimization
problems has received an increasing attention in the last years. Approximate methods sacrifice the
optimality guarantee for the sake of getting good solutions in a significantly reduced amount of time.
Constructive algorithms are a simple example of approximate methods, which generate solutions from
scratch by adding components to an initially empty partial solution, until a feasible solution is complete.
Nowadays, a class of approximate algorithms, commonly called metaheuristics, has emerged. In short,
we could say that metaheuristics are high level strategies for exploring search spaces by using different
methods to efficiently produce high-quality solutions. Techniques which constitute metaheuristic
algorithms range from simple local search procedures to complex learning processes. They are

Algorithms 2020, 13, 340; doi:10.3390/a13120340 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-9505-5869
https://orcid.org/0000-0002-8959-5017
http://dx.doi.org/10.3390/a13120340
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/12/340?type=check_update&version=2

Algorithms 2020, 13, 340 2 of 12

non-deterministic, not problem-specific, they can use domain-specific heuristics that are controlled
by the upper level strategy, they commonly incorporate mechanisms to escape from local optima and
finally they can take advantage of the search experience (adding some form of memory) to guide
the search. A broad coverage of the concepts, implementations, and applications in metaheuristics
can be found in Gendreau et al. [1]. In Adamo et al. [2] was proposed a framework to automatically
design efficient neighborhood structures for any metaheuristic from a formal mathematical model
and a reference instance population. There is a wide variety of metaheuristics. Basically we can
distinguish between single solution approaches, which focus on modify and improve a single candidate
solution (simulated annealing, iterated local search, variable neighborhood search, and guided
local search), and population-based approaches, that maintain and improve multiple candidate
solutions, often using population characteristics to guide the search (evolutionary computation, genetic
algorithms, and particle swarm optimization). Evolutionary algorithms, particle swarm optimization,
differential evolution, ant colony optimization and their variants dominate the field of nature-inspired
metaheuristics. Swarm intelligence has been proved as a technique, based on observations of nature,
which can solve NP-hard computational problems. Some concept and metaheuristics (the particle
swarm optimization algorithm and the ant colony optimization method) belonging to the smart
intelligence are presented in Slowik and Kwasnicka [3]. It is gaining popularity in solving different
optimization problems and has been used successfully for feature selection in some applications.
A comprehensive literature review of swarm intelligence algorithms and a detailed definition of
taxonomic categories was reported in [4]. Swarm optimization have been also successfully applied
to Social Cognitive Radio Network by Anandakumar and Umamaheswari [5], which proposed a
technique that utilizes machine learning methods to adapt the environmental changes, create its
own knowledge base and adjust its functionality for making dynamic data and network handover
decisions. Zhao et al. [6] developed a wind energy decision system. Evolutionary algorithms are
population-based metaheuristics that uses mechanisms inspired by biological evolution, such as
reproduction, mutation, recombination, and selection. A self-adaptive Evolutionary Algorithm
is proposed in Dulebenets et al. [7] for the berth scheduling problem. Pasha et al. [8] provided
a full comparison among Variable Neighborhood Search, Tabu Search, Simulated Annealing and
Evolutionary Algorithm to solve a model for large-scale problem instances of the Vehicle Routing
Problem. They demonstrated that the Evolutionary Algorithm outperforms the other metaheuristic
algorithms developed for the model.

In recent years there has been a flourishing of articles that try leveraging Machine Learning
(ML) to solve combinatorial optimization problems. In this context, ML may help substitute heavy
computations by a fast approximation. This is the case of learning variable and node selection in
branch-based algorithms for Mixed-Integer Linear Programming (MIP). See Lodi and Zarpellon [9] for a
recent review. A wider perspective is taken by Bengio et al. [10] that identify three broad approaches to
leveraging machine learning for combinatorial optimization problems: learning alongside optimization
algorithms, learning to configure optimization algorithms, and end-to-end learning to approximately
solve optimization problems. Some results of this line of research have been recently used in industry:
in November 2019, following the work of Bonami et al. [11], IBM announced that version 12.10 of its
well-known commercial optimization solver CPLEX implements, for the first time, a ML-based classifier
to make automatic decisions over some algorithmic settings. In particular, an ML-based classifier is
invoked by default to decide if the binary component of a Mixed-Integer Quadratic Optimization
problem should benefit from the application of a linearization procedure, which transforms the problem
into a MIP problem.

In this paper, we make use of supervised and unsupervised techniques to improve the quality
of the solutions generated by a heuristic for the Time-Dependent Travelling Salesman Problem with
no increased computing time. This can be useful in a real-time setting where a speed update (or the
arrival of a new customer request) may lead to the reoptimization of the planned route. As far as we
know, this is the first attempt to use ML to solve a time-dependent routing problem. For a comparative

Algorithms 2020, 13, 340 3 of 12

analysis of machine learning heuristics for solving the classical (time-invariant) Travelling Salesman
Problem, see Uslan and Bucak [12].

In Time-Dependent Vehicle Routing Problems, the aim is to design routes for a fleet of vehicles
on a graph whose arc traversal times vary over time, in order to optimize a given criterion, possibly
subject to side constraints. See Gendreau et al. [13] for a review of the field.

In this paper, we study the Time-Dependent Travelling Salesman Problem (TDTSP) which amounts
to find a Hamiltonian tour of least total duration on a given time-dependent graph. The TDTSP was
first addressed by Malandraki and Daskin [14]; they proposed a Mixed Integer Programming (MIP)
formulation for the problem. Subsequently, Malandraki and Dial [15] developed an approximate
dynamic programming algorithm, whilst Li et al. [16] presented two heuristics. Schneider [17] and
Harwood et al. [18] presented some meta-heuristic approaches to solve the TDTSP. Cordeau et al. [19]
showed some properties of the TDTSP and derived lower and upper bounding procedures; they also
devised a set of valid inequalities used in a branch-and-cut algorithm. Arigliano et al. [20] derived
some properties of the problem that were used in a branch-and-bound algorithm that outperformed
the Cordeau et al. [19] branch-and-cut procedure. In Adamo et al. [21] a parameterized family of lower
bounds was developed to enhance this branch-and-bound approach. Moreover, Melgarejo et al. [22]
presented a new global constraint useful in a Constraint Programming approach.

Variants of the TDTSP have been studied by [23–26] (TDTSP with Time Windows), by [27]
(Moving-Target TSP), by [28] (Robust TSP with Interval Data), and by [29–35] (Single Machine
Time-Dependent Scheduling Problem).

This paper is organized as follows. In Section 2 we present some properties and some background
information on the study area. In Section 3 we describe our ML approach. In Section 4 we describe
computational experiments on the graphs of two European cities (London and Paris). Finally, we draw
some conclusions in Section 5.

2. State of the Art

Let G = (V, A) be a directed graph, where V = {1, 2, . . . , n} is a set of vertices and A ⊆ V ×V a
set of arcs. With each arch (i, j) ∈ A is associated a travel time function τij(t) representing the time
that a vehicle, departing from i at time instant t, takes to traverse the arc and finally arrive at vertex j.
Let T = [0, T] be the time horizon (e.g., an 8-h period of a typical working day). Given a start time
t and path composed by a sequence of k nodes, i.e., pn = (i0, i1, . . . , in) with ik ∈ V and k = 0, . . . , n,
the time needed to travel from node i0 to node in can be computed recursively as:

z(pk, t) = z(pk−1, t) + τik−1,ik (t + z(pk−1, t) k = 1, . . . , n

and initialization z(p0, t) = 0. Without loss of generality, we assume that the travel time functions
are piecewise linear and satisfy the first-in-first-out (FIFO) property, i.e., the arrival time is a strictly
monotonic function of the starting time. Ghiani and Guerriero [36] proved that any continuous
piecewise linear travel time function τij(t), satisfying the FIFO property, can be generated from the
IGP model. In the IGP model the speed of the vehicle is not constant over the entire length of arc (i, j)
but it changes when the boundaries between two consecutive time periods is crossed. For any arc the
time horizon T = [0, T] is divided into Hij time slots [Tijh, Tij(h+1)], h = 0, 1, . . . , Hij − 1. Let vijh be the
travel speed between node i and node j in time slot h and Lij be the distance between the two vertices i
and j. They decomposed the travel speed for an arc (i, j) as:

vijh = δijhbhuij, (1)

where:

• uij ≥ 0 is the maximum travel speed across arc (i, j) ∈ A in all times.
• 0 < bh ≤ 1 is the best congestion factor during interval h ([Th, Th+1]);
• 0 < δijh ≤ 1 is the degradation of the congestion factor of arc (i, j) in time slot h.

Algorithms 2020, 13, 340 4 of 12

The Time-Dependent Travelling Salesman Problem amounts to find a Hamiltonian tour of least
total duration on a given time-dependent graph. Cordeau et al. [19] proposed a lower bound for the
TDTSP based on the IGP model. In particular, they proved that when ∆ = min

i,j,h
δijh = 1 solving the

time-dependent problem is equivalent to solve its time-invariant counterpart. In [36], the authors
pointed out that in IGP model the relationship among travel speeds vij(t), times τij(t) and lengths Lij
can be expressed as follows:

Lij =
∫ t+τij(t)

t
vij(µ)dµ, (2)

where it is worth noting that the IGP parameters, Lij and vij(t), can be multiplied by any positive
common factor without changing the travel time functions τij(t). This implies that Lij can be any
positive number and, consequently, the speed factorization (1) is not uniquely defined. Indeed, Ref. [21]
proved that there exists a different speed factorization for each value of uij such that uij ≥ max

h
vijh.

Adamo et al. [37] generalize all these considerations in order to improve the previous lower bounds.

3. Leveraging Machine Learning in a TDTSP Heuristic

In Section 1 we have recalled the reasons around the growing interest in applying Machine
Learning models to optimization problems. The aim of this section is show how to embed some
information gained through a ML algorithm into a simple constructive heuristic. The goal is to
improve its performance in those settings in which instances with similar features have to be solved
over and over again, as it is customary in distribution management. Instead of starting every time
from scratch, we want to insert a learning mechanism inside the heuristic in such a way it can benefit
from previous runs on other instances with similar features.

The constructive heuristic we are going to use as a baseline is the well-known nearest neighbor
procedure (NNP) that is suitable to be used in a real-time setting due to its speed. Algorithm 1 reports
its pseudocode, where V1 is the set of already visited customers.

Algorithm 1 Baseline heuristic.
1: function NN(V)
2: i← 0
3: t← 0
4: V1 ← {0}
5: while |V1| ≤ |V| do
6: j∗ ← arg min

j∈V\V1

τij(t)
7: V1 ← V1 ∪ {j∗}
8: t← t + τij∗(t)
9: i← j∗

10: end while
11: t← t + τi0(t)
12: return t, V1

In order to take advantage of the predictive capabilities of supervised ML techniques, the nearest
neighbor heuristic has been modified by the introduction of two parameters: α and f j. Parameter f j is a
prediction (obtained through a supervised ML method) of the expected time of arrival (ETA) at customer
j in an optimal solution, and α ∈ [0, 1] is a convex combination coefficient. At each iteration, a node is
selected using a modification of instruction 6 in Figure 1 as follows:

j∗ ← arg min
j∈V\V1

α · [t + τij(t)] + (1− α) · | f j − t− τij(t)| (3)

Hence the choice of the next customer to be visited is guided by a convex combination of two
terms: the arrival time t + τij(t) at the next customer (as it is typical of the NNP) and an error measure

Algorithms 2020, 13, 340 5 of 12

| f j − t− τij(t)| of forecast f j, if j is chosen as the next customer. Parameter α ∈ [0, 1] is used to balance
the cost function t + τijh with the correction factor depending on f j. In few words, if α is zero the
heuristic takes its own decisions only based on the correction factor; on the other hand, if α is 1 the
heuristic is the well-known NNP, no matter how f j looks like. In the latter case, the heuristic takes no
advantage from previous runs. Hence, α can be seen as a learning factor.

Figure 1. Extracting travel times from a snapshot.

3.1. ETA Estimation

In order to estimate the ETA of a customer j in an optimal solution, an artificial neural network
(ANN) is used in conjunction with an exact algorithm for the TDTSP [21]. The ANN we chose is a
Multilayer Perceptron Regressor (MPR) [38]. An MPR consists of at least three layers of nodes: an input
layer, one or more hidden layer and an output layer. Except for the input nodes, each node uses a
nonlinear activation function.

For each instance of the training set, the exact algorithm is used to obtain the arrival times at the
customers. In order to overcome the drawbacks described in the following subsection, the service
territory is partitioned in K zones and, for each training instance, an average zone ETA, dubbed ZETAk,
is computed for each zone k = 1, . . . , K.

The neural network has k inputs and k outputs: the inputs are constituted by the customer
distribution in the network (the number nk of customers in each of the k zones); the outputs are the k
ZETAk estimates (k = 1, . . . , K).

3.2. Customer Aggregation

In order to make the ETA predictions accurate, customers must be aggregated and the service
territory divided into a number of zones K. Of course, if K is large the predictions are expected to be
more accurate but the training phase would require a huge number of instances. On the other hand,
if K is small, the natural variability of the ETA inside a zone is large which has a detrimental effect on
the ETA estimation of individual customers.

The customer aggregation is an unsupervised learning technique that amo-unts to partition the
customers of the training set into K clusters of equal variance, minimizing the sum of intra-cluster
Euclidean distances. In our experimentation, we used a K-means algorithm [39]. Since the geographic
coordinate system is associated with the geodesic surface of the Earth, we projected customers locations
to a new planar reference system according to the EPSG projection recommended for the zone at hand.
Then the projected customers have been clustered using the K-means algorithm. The optimal number
of zones K was determined in a preliminary experimentation.

Algorithms 2020, 13, 340 6 of 12

4. Computational Experiments

Our computational experiments have been aimed to evaluate whether the use of predictions
made by ML techniques can be beneficial for a routing heuristic in a time-dependent context. To this
purpose we have implemented both the baseline heuristic (NNP) and the ML-enhanced heuristic
(referred to as ML-NNP in the following). Python (version 3.6) was used for both. The Multilayer
Perceptron Regressor implementation was taken from the sklearn neural network library (method
MLPRegressor) while the k-means implementation came from the sklearn cluster library (k-means
method). The training instances were solved to optimality (or near-optimality) using a Java
implementation of the branch-and-bound scheme proposed in [19]. A time limit of an hour was
imposed. All the codes have been tested on a Linux machine clocked at 2.67 GHz and equipped with
8 GB of RAM. We first describe the instances we have used in our experimentations.

4.1. Instances

Although Time-Dependent Vehicle Routing problems have received increased attention from
the scientific community in recent years, there is still a lack of realistic instances. To overcome this
aspect, we have generated a new set of instances based on the real travel time functions of two major
European cities: Paris and London.

During the last decade, the popularity of mobile technology and location services allowed
the creation of high quality large real-time and historical floating vehicle datasets. These data are
continuously collected by millions of users that anonymously send their GPS positions to services like
Google Traffic or TomTom Live. Only these IT big players have the availability of time-dependent data.
As a result, there is no complete dataset freely available to the entire research community.

We extracted (approximate) travel time functions as follows. Given a road map from
OpenStreetMap (in XML or PBF format) we first extracted the topology of graph G in terms of:
vertices and their geographical coordinates (latitude and longitude), arcs with attributes like length,
maximum speed uij (derived from tags or default street type speed), geometry (pillar and tower
nodes). The API provided from the GraphHopper project has been used to accomplish tasks as OSM
importation, road graph generation and routing between customers. We extended this time-invariant
graph representation by assigning a traffic profile only to time-dependent arcs. In particular, traffic data
were obtained through a two step procedure. Firstly, given the geographic coordinates of two points
at a specific zoom level, we defined a bounding box around the reference Earth area. Therefore,
at the start of every time slot h we captured a snapshot of the current map viewport augmented with
the real-time traffic layer. Next, for each arc (i, j) belonging in the bounding box we subdivided its
geometry in uniform length segments. We denoted the set of all segments endpoints for arc (i, j)
by Sij. For each point s ∈ Sij we projected the geographic coordinates over a pixel s′ of the image
plane (Figure 1). We used the Haversine formula to measure Earth distances. For each period h the
pixel s′ can assume a different color in the corresponding h-th snapshot. The color is classified using
the CIEDE2000 color distance [40] from some reference color with a preassigned traffic jam factor as
showed in Table 1.

Table 1. Color map used to extract travel times.

Ref. Color Color Name Jam1 Jam2 Description
#84CA50 green 1.0 1.0 high speed
#F07D02 orange 0.7 0.3 medium speed
#E60000 red 0.5 0.2 low speed
#9E1313 brown 0.3 0.1 very low speed

#EBE8DE gray – – background
#FFFFFF white 1.0 1.0 freeflow

Algorithms 2020, 13, 340 7 of 12

If s′ did not belong to a street, we started a neighborhood exploration procedure in order to
identify the nearest valid color. This task is executed to repair small alignment errors between the osm
map and the traffic layer image. After classification, the traffic jam factor of arc (i, j) was computed as
the mean of the jam factors associated to each geographical point s ∈ Sij. An arc was deemed to be
time-dependent if it had at least one traffic jam factor strictly lower than 1 in the time horizon.

4.2. Parameter Tuning

We have performed a preliminary tuning with the aim to select the most appropriate combination
of parameters:

• the activation function;
• the number of hidden layers;
• the training algorithm;
• the learning rate;
• the maximum number of iterations in the training phase;
• the number of zones.

Table 2 summarizes the investigated values for each parameter.

Table 2. Investigated parameter values.

Parameter Possible Values

Activation Function tanh, logistic, relu
Number of Hidden Layers (3) (4) (5) (10) (15) (20) (30) (40) (3,3) (4,4) (5,5) (10,10) (15,15) (20,20) (30,30) (40,40)
Solver sgd, lbfgs, adam
Learning Rate constant, inverse scaling, adaptive
Max. iterations 200, 300, 400, 500
Number of zones 5, 6, 7, 8, 9, 10, 11, 12

Our datasets contained approximately 6–700 instances with 50 customers each: 90% has been
assigned to the training set, while the remaining 10% to the test set. The best results, in terms of
strength of captured relationships, were obtained by the following neural network settings: three layers,
hyperbolic tangent activation function, five neurons in the hidden layer, LBFGS solver and constant
learning rate.

As far as customer aggregation is concerned, it was necessary to project customers locations to
a new planar reference system. According to the EPSG projection, we used the Transverse Mercator
Projection for London and the Lambert Zone II Projection for Paris.

For London, 8 clusters gave the best results in terms of coefficient of determination (R2), whilst
for Paris 6 zones were the best case for neural network performance. Tables 3 and 4 summarize the
neural network mean errors (in minutes) for each zone. The R2 scores (=0.53 for the London instances
and =0.60 for the Paris instances) suggest a moderate effect size.

Table 3. Mean errors in the London instances .

Zone Mean Error Mean Absolute Error Standard Error

1 7.68 36.78 55.16
2 −4.61 29.23 37.19
3 8.32 26.94 35.51
4 −1.93 27.34 36.87
5 −2.68 28.78 46.21
6 8.69 56.68 69.21
7 2.54 24.60 32.31
8 6.68 54.00 64.84

Average 3.09 35.54 47.16

Algorithms 2020, 13, 340 8 of 12

Table 4. Mean errors in the Paris instances.

Zone Mean Error Mean Absolute Error Standard Error

1 −1.02 18.55 23.74
2 2.40 15.29 20.14
3 0.74 19.69 24.30
4 −2.78 28.85 36.53
5 5.53 44.65 52.49
6 1.33 24.00 29.55

Average 1.03 25.17 31.13

4.3. Computational Results

The computational results are presented in Tables 5 and 6. For each of the two testsets, we report:

• the name of the test instance,
• the objective value z0 in minutes of the NNP solution,
• the objective value z1 in minutes of the ML-NNP solution,
• the percentage of improvement DEV of z1 with respect to z0.

Table 5. Computational results for the London testset.

Instance z0 z1 DEV% Instance z0 z1 DEV%

10_I_1 406.13 406.13 0.00 10_I_10 484.56 447.78 7.59

10_I_11 449.64 449.64 0.00 10_I_12 614.67 524.43 14.68

10_I_13 444.23 443.87 0.08 10_I_14 486.83 476.72 2.08

10_I_15 453.19 451.05 0.47 10_I_16 515.56 469.16 9.00

10_I_17 517.51 497.65 3.84 10_I_19 466.79 466.79 0.00

10_I_2 526.66 447.68 15.00 10_I_20 428.63 414.95 3.19

10_I_23 491.50 447.15 9.02 10_I_24 510.02 473.05 7.25

10_I_25 470.01 468.86 0.24 10_I_26 489.47 484.20 1.08

10_I_27 492.53 458.75 6.86 10_I_28 507.26 456.07 10.09

10_I_29 440.37 436.33 0.92 10_I_30 449.90 449.90 0.00

10_I_31 474.33 443.42 6.52 10_I_32 464.37 443.46 4.50

10_I_33 401.02 390.20 2.70 10_I_34 422.61 401.68 4.95

10_I_36 502.89 441.57 12.19 10_I_37 464.31 460.60 0.80

10_I_38 540.78 527.42 2.47 10_I_39 531.83 489.67 7.93

10_I_40 503.19 503.06 0.03 10_I_41 468.83 460.46 1.78

10_I_5 480.03 439.48 8.45 10_I_6 457.51 448.56 1.96

10_I_7 429.42 429.42 0.00 10_I_9 420.89 420.89 0.00

1_I_2 497.99 479.33 3.75 1_I_26 472.87 436.01 7.80

1_I_27 491.03 442.35 9.91 1_I_28 448.76 440.16 1.92

1_I_29 476.59 428.66 10.06 1_I_3 473.71 434.48 8.28

1_I_30 415.91 413.30 0.63 1_I_31 477.35 472.73 0.97

1_I_32 503.70 457.25 9.22 1_I_33 423.53 396.61 6.36

1_I_34 498.12 473.91 4.86 1_I_35 411.64 411.64 0.00

1_I_36 497.65 463.28 6.91 1_I_37 447.20 440.50 1.50

1_I_39 468.47 458.62 2.10 1_I_4 460.05 458.39 0.36

1_I_40 468.46 457.96 2.24 1_I_42 469.45 452.29 3.66

1_I_44 466.47 411.89 11.70 1_I_45 485.20 480.50 0.97

1_I_46 473.24 440.80 6.85 1_I_47 462.35 451.22 2.41

1_I_48 493.13 431.62 12.47 1_I_49 481.59 453.77 5.78

1_I_5 427.22 403.86 5.47 1_I_50 487.52 442.95 9.14

1_I_51 449.49 429.09 4.54 1_I_53 404.83 363.48 10.21

In our implementations, the maximum running time of both algorithms is only a few seconds or
even a fraction of a second. Therefore we prefer not to report these figures. As shown in Tables 5 and 6,

Algorithms 2020, 13, 340 9 of 12

the overall average improvement of ML-NNP over NNP is 4.77% for London, while 3.87% for Paris.
It is worth noting that in the worst case ML-NNP gives the same performance of NNP, while in the
best case can produce a solution with an improvement up to 15% (more than 70 min over a typical
working day of 8 h).

Table 6. Computational results for the Paris testset.

Instance z0 z1 DEV% Instance z0 z1 DEV%

0_I_0 328.71 324.94 1.15 0_I_100 318.16 317.09 0.34

0_I_101 309.36 305.77 1.16 0_I_102 317.81 295.56 7.00

0_I_103 349.52 345.77 1.07 0_I_104 363.87 330.92 9.06

0_I_105 366.60 356.27 2.82 0_I_106 344.89 321.21 6.87

0_I_107 349.68 330.46 5.50 0_I_108 322.95 308.71 4.41

0_I_109 355.49 317.67 10.64 0_I_10 341.40 325.10 4.77

0_I_110 302.99 302.99 0.00 0_I_111 344.07 336.45 2.21

0_I_112 361.19 329.37 8.81 0_I_113 339.78 328.51 3.32

0_I_114 326.10 318.03 2.48 0_I_115 328.84 327.61 0.37

0_I_116 337.34 315.94 6.34 0_I_117 334.44 331.77 0.80

0_I_118 329.44 307.59 6.63 0_I_119 349.89 341.47 2.41

0_I_11 353.87 347.72 1.74 0_I_120 340.53 332.81 2.27

0_I_121 336.74 317.04 5.85 0_I_122 316.01 292.70 7.38

0_I_123 379.26 336.27 11.33 0_I_124 344.95 328.87 4.66

0_I_125 314.78 314.78 0.00 0_I_126 349.34 329.46 5.69

0_I_127 337.81 337.81 0.00 0_I_128 338.07 317.47 6.09

0_I_129 324.69 319.44 1.62 0_I_12 323.21 323.21 0.00

0_I_130 357.66 336.79 5.83 0_I_131 305.09 305.09 0.00

0_I_132 299.75 279.76 6.67 0_I_133 325.39 316.83 2.63

0_I_134 348.87 312.39 10.46 0_I_135 376.12 334.26 11.13

0_I_136 320.55 311.08 2.96 0_I_137 320.33 314.02 1.97

0_I_138 320.04 308.52 3.60 0_I_139 335.29 332.52 0.83

0_I_13 329.99 301.86 8.52 0_I_140 317.49 317.49 0.00

0_I_141 364.98 336.72 7.74 0_I_142 323.90 319.11 1.48

0_I_143 302.36 302.15 0.07 0_I_144 310.60 310.60 0.00

0_I_145 276.94 267.63 3.36 0_I_146 344.77 303.90 11.85

0_I_147 360.36 328.85 8.75 0_I_148 296.80 292.53 1.44

0_I_149 357.70 342.24 4.32 0_I_14 307.80 307.80 0.00

0_I_150 333.85 324.11 2.92 0_I_151 349.22 319.25 8.58

0_I_152 333.04 328.54 1.35 0_I_153 292.33 291.41 0.32

0_I_154 347.20 320.46 7.70 0_I_155 383.86 363.29 5.36

0_I_156 322.72 312.77 3.08 0_I_157 317.25 312.05 1.64

0_I_159 324.43 321.24 0.98 0_I_15 344.14 329.78 4.17

0_I_160 302.85 302.85 0.00 0_I_161 345.81 344.50 0.38

0_I_162 370.24 361.01 2.49 0_I_163 317.24 313.21 1.27

0_I_164 300.10 300.10 0.00 0_I_165 320.44 314.03 2.00

0_I_166 366.52 340.85 7.00 0_I_168 333.84 327.67 1.85

0_I_169 326.60 316.67 3.04 0_I_16 376.84 325.67 13.58

0_I_17 334.56 327.77 2.03 0_I_1 313.16 300.76 3.96

Algorithms 2020, 13, 340 10 of 12

5. Conclusions

In this paper, we have leveraged a mix of unsupervised and supervised Machine Learning
techniques in a heuristic for the Time-Dependent Travelling Salesman Problem. Our approach makes
use of ETA predictions provided by a feedforward neural network trained on past instances solved to
optimality or near-optimality. Computational results on two European cities show the advantage of
embedding ML methods into an optimization algorithm. As far as we know, this is the first attempt to
use ML to tackle a Time-Dependent Vehicle Routing problem. The main limitations of such approach
are related to the definition of a population of training instances and the determination of the best
solution for that instances; the best known solution algorithm could need several hours to determine
such a solution.

Future research could be focused on the definition of new features for the neural network in order
to provide a more reasonable and substantial effect in the heuristic; moreover, other machine learning
strategies could be tried (for instance decision trees). Finally, a new fast heuristic, probably better
than nearest neighbor algorithm, could be produced by embedding the ETA estimation in the linear
programming model introduced by Adamo et al. [37].

Author Contributions: Methodology, P.G.; software, E.G.; formal analysis, T.A.; project administration, G.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research was partially supported by the Ministero dell’Istruzione, dell’Università e della
Ricerca Scientifica (MIUR) of Italy. This support is gratefully acknowledged. The authors also thank Federico
Liquori and Marco D’Amato for their help with programming.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Michel, G.; Potvin, J.Y. (Eds.) Handbook of Metaheuristics; Springer: Berlin/Heisenberg, Germany, 2010;
Volume 2.

2. Adamo, T.; Ghiani, G.; Grieco, A.; Guerriero, E.; Manni, E. MIP neighborhood synthesis through semantic
feature extraction and automatic algorithm configuration. Comput. Oper. Res. 2017, 83, 106–119.

3. Slowik, A.; Kwasnicka, H. Nature inspired methods and their industry applications—Swarm intelligence
algorithms. IEEE Trans. Ind. Inform. 2018, 14, 1004–1015. [CrossRef]

4. Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm intelligence algorithms for feature selection: A review.
Appl. Sci. 2018, 8, 1521. [CrossRef]

5. An akumar, H.; Umamaheswari, K. A bio-inspired swarm intelligence technique for social aware cognitive
radio handovers. Comput. Electr. Eng. 2018, 71, 925–937. [CrossRef]

6. Zhao, X.; Wang, C.; Su, J.; Wang, J. Research and application based on the swarm intelligence algorithm and
artificial intelligence for wind farm decision system. Renew. Energy 2019, 134, 681–697. [CrossRef]

7. Dulebenets, M.A.; Kavoosi, M.; Abioye, O.; Pasha, J. A self-adaptive evolutionary algorithm for the berth
scheduling problem: Towards efficient parameter control. Algorithms 2018, 11, 100. [CrossRef]

8. Pasha, J.; Dulebenets, M.A.; Kavoosi, M.; Abioye, O.F.; Wang, H.; Guo, W. An Optimization Model and
Solution Algorithms for the Vehicle Routing Problem With a “Factory-in-a-Box”. IEEE Access 2020, 8,
134743–134763. [CrossRef]

9. Lodi, A.; Zarpellon, G. On learning and branching: A survey. Top 2017, 25, 207–236. [CrossRef]
10. Bengio, Y.; Lodi, A.; Prouvost, A. Machine learning for combinatorial optimization: A methodological tour

d’horizon. arXiv 2018, arXiv:abs/1811.06128.
11. Philpott, A.B. Continuous-time shortest path problems and linear programming. SIAM J. Control. Optim.

1994, 32, 538–552. [CrossRef]
12. Uslan, V.; Bucak, I.O. A comparative study of machine learning heuristic algorithms to solve the traveling

salesman problem. In Proceedings of the 3rd International Conference on the Applications of Digital
Information Web Technologies (ICADIWT), Istanbul, Turkey, 12–14 July 2010.

http://dx.doi.org/10.1109/TII.2017.2786782
http://dx.doi.org/10.3390/app8091521
http://dx.doi.org/10.1016/j.compeleceng.2017.09.016
http://dx.doi.org/10.1016/j.renene.2018.11.061
http://dx.doi.org/10.3390/a11070100
http://dx.doi.org/10.1109/ACCESS.2020.3010176
http://dx.doi.org/10.1007/s11750-017-0451-6
http://dx.doi.org/10.1137/S0363012991196414

Algorithms 2020, 13, 340 11 of 12

13. Gendreau, M.; Ghiani, G.; Guerriero, E. Time-dependent routing problems: A review. Comput. Oper. Res.
2015, 64, 189–197. [CrossRef]

14. Malandraki, C.; Daskin, M.S. Time Dependent Vehicle Routing Problems: Formulations, Properties and
Heuristic Algorithms. Transp. Ence 1992, 26, 185–200. [CrossRef]

15. Malandraki, C.; Dial, R.B. A restricted dynamic programming heuristic algorithm for the time dependent
traveling salesman problem. Eur. J. Oper. Res. 1996, 90, 45–55. [CrossRef]

16. Li, F.; Golden, B.; Wasil, E. Solving the time dependent traveling salesman problem. In The Next Wave in
Computing, Optimization, and Decision Technologies; Volume 29 of Operations Research/Computer Science
Interfaces Series; Sharda, R., Voß, S., Golden, B., Raghavan, S., Wasil, E., Eds.; Springer: Berlin/Heisenberg,
Germany, 2005; pp. 163–182.

17. Schneider, J. The time-dependent traveling salesman problem. Phys. Stat. Mech. Appl. 2002, 314, 151–155.
[CrossRef]

18. Harwood, K.; Mumford, C.; Eglese, R. Investigating the use of metaheuristics for solving single vehicle
routing problems with time-varying traversal costs. J. Oper. Res. Soc. 2013, 64, 34–47. [CrossRef]

19. Cordeau, J.-F.; Ghiani, G.; Guerriero, E. Analysis and Branch-and-Cut Algorithm for the Time-Dependent
Travelling Salesman Problem. Transp. Sci. 2014. [CrossRef]

20. Arigliano, A.; Calogiuri, T.; Ghiani, G.; Guerriero, E. A branch-and-bound algorithm for the time-dependent
travelling salesman problem. Networks 2018, 72, 382–392. [CrossRef]

21. Adamo, T.; Ghiani, G.; Guerriero, E. An enhanced lower bound for the time-dependent travelling salesman
problem. Comput. Oper. Res. 2020, 113, 104795. [CrossRef]

22. Melgarejo, P.A.; Laborie, P.; Solnon, C. A time-dependent no-overlap constraint: Application to urban
delivery problems. In International Conference on AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems; Springer: Berlin/Heisenberg, Germany, 2015; pp. 1–17.

23. Albiach, J.; Sanchis, J.M.; Soler, D. An asymmetric TSP with time windows and with time-dependent travel
times and costs: An exact solution through a graph transformation. Eur. J. Oper. Res. 2008, 189, 789–802.
[CrossRef]

24. Arigliano, A.; Ghiani, G.; Grieco, A.; Guerriero, E.; Plana, I. Time-dependent asymmetric traveling salesman
problem with time windows: Properties and an exact algorithm. Discret. Appl. Math. 2019, 261, 28–39.
[CrossRef]

25. Hewitt, M.; Boland, N.; Vu, M.D.; Savelsbergh, M. Solving Time Dependent Traveling Salesman with Time
Windows Problems. Available online: http://www.optimization-online.org/DB_FILE/2018/05/6640.pdf
(accessed on 30 November 2020).

26. Agustín, M.; Isabel, M.; Juan, J.M.B. An integer programming approach for the time-dependent traveling
salesman problem with time windows. Comput. Oper. Res. 2017, 88, 280–289.

27. Helvig, C.S.; Robins, G.; Zelikovsky, A. The moving-target traveling salesman problem. Algorithms 2003, 49,
153–174. [CrossRef]

28. Montemanni, R.; Barta, J.; Mastrolilli, M.; Gambardella, L.M. The robust traveling salesman problem with
interval data. Transp. Sci. 2007, 41, 366–381. [CrossRef]

29. Gouveia, L.; Voß, S. A classification of formulations for the (time-dependent) traveling salesman problem.
Eur. J. Oper. Res. 1995, 83, 69–82. [CrossRef]

30. Fox, K.R.; Gavish, B.; Graves, S.C. An n-constraint formulation of the (time-dependent) traveling salesman
problem. Oper. Res. 1980, 28, 1018–1021. [CrossRef]

31. Godinho, M.T.; Gouveia, L.; Pesneau, P. Natural and extended formulations for the time-dependent traveling
salesman problem. Discret. Appl. Math. 2014, 164, 138–153. [CrossRef]

32. Miranda-Bront, J.J.; Méndez-Díaz, I.; Zabala, P. An integer programming approach for the time-dependent
TSP. Electron. Notes Discret. Math. 2010, 36, 351–358. [CrossRef]

33. Picard, J.C.; Queyranne, M. The time-dependent traveling salesman problem and its application to the
tardiness problem in one-machine scheduling. Oper. Res. 1978, 26, 86–110. [CrossRef]

34. Stecco, G.; Cordeau, J.F.; Moretti, E. A branch-and-cut algorithm for a production scheduling problem with
sequence-dependent and time-dependent setup times. Comput. Oper. Res. 2008, 35, 2635–2655. [CrossRef]

35. Wiel, R.J.V.; Sahinidis, N.V. An exact solution approach for the time-dependent traveling-salesman problem.
Nav. Res. Logist. 1996, 43, 797–820. [CrossRef]

http://dx.doi.org/10.1016/j.cor.2015.06.001
http://dx.doi.org/10.1287/trsc.26.3.185
http://dx.doi.org/10.1016/0377-2217(94)00299-1
http://dx.doi.org/10.1016/S0378-4371(02)01078-6
http://dx.doi.org/10.1057/jors.2012.17
http://dx.doi.org/10.1287/trsc.1120.0449
http://dx.doi.org/10.1002/net.21830
http://dx.doi.org/10.1016/j.cor.2019.104795
http://dx.doi.org/10.1016/j.ejor.2006.09.099
http://dx.doi.org/10.1016/j.dam.2018.09.017
http://www.optimization-online.org/DB_FILE/2018/05/6640.pdf
http://dx.doi.org/10.1016/S0196-6774(03)00075-0
http://dx.doi.org/10.1287/trsc.1060.0181
http://dx.doi.org/10.1016/0377-2217(93)E0238-S
http://dx.doi.org/10.1287/opre.28.4.1018
http://dx.doi.org/10.1016/j.dam.2011.11.019
http://dx.doi.org/10.1016/j.endm.2010.05.045
http://dx.doi.org/10.1287/opre.26.1.86
http://dx.doi.org/10.1016/j.cor.2006.12.021
http://dx.doi.org/10.1002/(SICI)1520-6750(199609)43:6<797::AID-NAV2>3.0.CO;2-

Algorithms 2020, 13, 340 12 of 12

36. Ghiani, G.; Guerriero, E. A Note on the Ichoua, Gendreau, and Potvin (2003) Travel Time Model. Transp. Sci.
2014, 48, 458–462. [CrossRef]

37. Adamo, T.; Ghiani, G.; Guerriero, E. On path ranking in time-dependent graphs. arXiv 2020,
arXiv:abs/2009.07588.

38. Aggarwal, C. Neural Networks and Deep Learning; Springer: Berlin/Heisenberg, Germany, 2018.
39. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of

the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June–18
July 1965; Volume 1, pp. 281–297.

40. Luo, M.R.; Cui, G.; Rigg, B. The development of the cie 2000 colour-difference formula: Ciede2000.
Color Res. Appl. 2001, 26, 340–350. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1287/trsc.2013.0491
http://dx.doi.org/10.1002/col.1049
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art
	Leveraging Machine Learning in a TDTSP Heuristic
	ETA Estimation
	Customer Aggregation

	Computational Experiments
	Instances
	Parameter Tuning
	Computational Results

	Conclusions
	References

