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Introduction
Breast cancer is one of the leading causes of cancer-associated 

death among the female population worldwide [1]. In Italy, breast 
cancer affected about 52,000 new cases out of a total of 178,000 cases 
of all female cancers in 2018 [2]. Magnetic Resonance Imaging (MRI) 
is becoming more and more important in the clinical workflow of 
patients affected by breast carcinoma, because it enables the visual 
differentiation of normal tissues from pathological lesions owing to 
the increment of vascularity and capillary permeability of the latter  

 
[3-6]. Breast tumor can be classified into two broad types: in situ and 
invasive. The former is further subdivided into ductal and lobular, 
based on growth patterns and cytological characteristics. Ductal 
carcinoma in situ (DCIS) is more common than lobular carcinoma 
in situ (LCIS), accounting for 30-50% of all mammography-detected 
breast cancers [7,8], and consists in neoplastic cells within the 
ductal epithelium of the breast. It normally does not infiltrate 
through the basal membrane. The most common malignant lesion 
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ARTICLE INFO Abstract
 

Breast cancer is the most common malignant tumor in women worldwide. Its 
early diagnosis relies on radiology and clinical evaluation, supplemented by biopsy 
confirmation. Technological advances in medical imaging, especially in the field of 
artificial intelligence, allow to address clinical challenges in cancer detection and 
classification, as well as in the assessment of treatment response, and in monitoring 
disease progression. Radiomics allows to extract features from images, related to tumor 
size, shape, intensity, and texture, providing comprehensive tumor characterization. In 
this paper, we briefly review some Radiomics approaches in breast cancer, focusing on 
the non-invasive distinction between in-situ and infiltrating breast tumors, and present 
a preliminary test using Radiomics signatures in DCE-MRI and machine learning, aimed 
to investigate the feasibility of distinguishing infiltrating cancer from ductal carcinoma 
in situ (DCIS) diagnosed by preoperative core needle biopsy.

Abbreviations: MRI: Magnetic Resonance Imaging; DCIS: Ductal Carcinoma In Situ; 
IDC: Invasive Ductal Carcinoma; DCE: Dynamic Contrast-Enhanced; ADC: Apparent 
Diffusion Coefficient; SVM: Support Vector Machine Algorithm; GLCM: Gray-Level Co-
Occurrence Matrices; GLDM: Gray Level Dependence Matrices; GLSZM: Gray Level Size 
Zone Matrices; LOPO: Leave-One-Patient-Out
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is invasive ductal carcinoma (IDC) and accounts for approximately 
70% of all malignant cases [9,10]. In recent years, there has been a 
decrease in number of deaths associated with breast cancer, due to 
earlier diagnosis, as well as to the introduction of advanced surgical 
techniques [11].

The identification of diagnostic and prognostic markers that 
enable the implementation of more targeted drug therapies 
remains a priority in the era of precision medicine [12]. Over the 
last years, the scientific community has been showing an increasing 
interest for the potentiality of quantitative imaging for clinical 
purposes, encouraged by the significant advancements within the 
medical image analysis field. This exponential interest led to the 
development of Radiomics, a new field of research that aims at 
the conversion of all the information contained in digital medical 
images into quantifiable features, and the subsequent mining of 
this data. These computational features, normally related to tumor 
size, shape, intensity, and texture, may be associated with clinical 
outcomes, genetic alterations and other characteristics of the 
lesion, defining what is called tumor Radiomics signature [13]. In 
this way, Radiomics seems able to offer imaging biomarkers useful 
to diagnosis and to predict the response to therapy and the risk of 
recurrence [14]. In this paper, a small review of the applications 
of Radiomics to breast cancer is given, particularly targeted at the 
non-invasive distinction between in-situ and infiltrative tumors, 
and the preliminary results of a limited case study are reported. 

Radiomics for Infiltrative vs In-Situ Distinction

Only recently (mainly after 2015), Radiomics approaches were 
applied to breast cancer [15], with the majority of studies being 
published in 2017 [12]. Among these studies, Radiomics  was mainly 
investigated with MRI and focused on the ability of predicting 
malignancy, response to neoadjuvant chemotherapy, prognostic 
factors, molecular subtypes and risk of recurrence [12,14,16]. Some 
recent studies addressed the distinction between in situ and invasive 
breast cancer. For DCIS, upstaging to IDC at surgical excision occurs 
in roughly 25% of cases [17]. Failure to diagnose invasive cancer 
prior to surgery may have numerous implications. Normally, DCIS 
does not have metastatic potential. Thus, evaluation of regional or 
distant lymph nodes is usually not performed. Secondly, treatments 
are different between these two groups, so patients with IDC may 
need to undergo additional surgical procedures. This leads to the 
need to find different approaches to avoid unnecessary treatments 
in patients with non-invasive tumors, and many efforts should 
be made to achieve a diagnostic test for differentiation of in situ 
from invasive breast cancer. Although a few studies examine a 
pharmacological intervention as solution [18,19], others would 
prefer the Watch & Wait approach instead of immediate surgery, 
which obviously avoids aggressive intervention [20]. 

In literature, there are still few reports that address the issue 
of characterizing invasive and non-invasive breast lesions. Drukker 
et al. [21] adopted a random forest classifier in a leave-one-out 
training/testing paradigm on Radiomics features extracted from 

dynamic contrast-enhanced (DCE-MRI) images (58 DCIS and 190 
IDC) in the task of distinguishing between in situ and invasive breast 
cancer. They assessed the performance of the classifier by using the 
area under the receiver operating characteristic curve (AUC) which 
was 0.90. Li et al. [22] investigated the feasibility of predicting 
invasive breast cancer from in situ through a Radiomics approach 
on mammography: they extracted 569 Radiomics features from 
microcalcifications of 161 pure DCIS and 89 IDC, and evaluated 
various combinations of feature selection and classification 
methods. The optimal machine learning method was achieved 
using both Radiomics and routinely clinical imaging characteristics 
(AUC = 0.72). Another research group [23] addressed this problem 
by evaluating whether the apparent diffusion coefficient (ADC) 
extracted through diffusion-weighted MRI (DWI) could be used as a 
biomarker able to differentiate in situ from non-invasive DCIS. DWI 
measures the random movement of water molecules (i.e. Brownian 
movement) therefore depicting the diffusivity of the examined 
tissue, providing a surrogate marker for tissue micro-structure 
and densities of the cells [24,25]. The principle underlying the 
use of ADC to discriminate between in situ and invasive cancer, is 
that the latter spreads throughout the breast tissue by degrading 
tissue structure by means of proteolytic activity. Thus, tissue 
changes and chronic inflammatory reaction to proteolysis lead 
to a relative or absolute reduction of extracellular water content. 
What is then expected, is a reduction of ADC of invasive compared 
with non-invasive cancer. In order to prove the hypothesis, Bickel 
et al. [23] analyzed 21 DCIS and 155 IDC, finding ADC mean values 
significantly different between the two groups (p<0.001 and AUC 
= 0.89) [23]. Bhooshan et al. [26] analyzed DCE-MRI from 132 
benign, 71 DCIS and 150 IDC in which they employed a Radiomics 
approach in order to discriminate in situ vs invasive breast tumors, 
but also between metastatic and non metastatic lesions, obtaining 
AUC = 0.83. In particular, they used combined computer-extracted 
MR imaging kinetic and morphologic features with the task of 
classifying between DCIS and IDC, and - within the invasive tumors 
- further classified into negative or positive axillary lymph node 
involvement. Finally, Zhe et al. [27] tried a deep learning approach 
on breast MRI for predicting of invasive disease following the 
diagnosis of DCIS. They adopted a transfer learning strategy, in 
which a pre-trained network (GoogleNet) was used on 131 DCIS 
images as a starting point followed by a deep feature based method, 
where the feature map of a certain layer of the pre-trained model 
was used as features to train a support vector machine algorithm 
(SVM), through a classical machine learning approach. They 
obtained AUC = 0.70, highlighting the fact that convolutional neural 
networks could potentially be used to predict DCIS upstaging. 

A Case Study
In this section we report the preliminary results of a Radiomics 

investigation focused on the distinction between DCIS and IDC. The 
purpose was to determine the capability of machine learning to 
build statistics models for diagnosis, classification, and prediction 
based on Radiomics signatures in preoperative DCE-MRI. 
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We used a dataset of 30 anonymized DCE-MRI scans of breast 
cancer (25 DCIS and 5 IDC) acquired at the ‘Di Summa-Perrino’ 
Hospital of Brindisi (Italy). The MRI sequence used was dynamic 
eTHRIVE with fat suppression, on a Philips Achieva 1.5 T MRI 
equipment. A Region-Of-Interest (ROI) of the lesion was manually 
delimited slice per slice for each case by an expert radiologist in the 
post-contrast images. After 3D tumour segmentation, the images 
were resampled to isometric 1-mm pixel size and Radiomics 
features were extracted from the ROI. We computed 18 first order 
histogram features, and several textural features quantifying intra-
tumor heterogeneity: 22 features from gray-level co-occurrence 
matrices (GLCM), 16 from gray-level run length matrices (GLRLM), 
14 from gray level dependence matrices (GLDM), and 16 from gray 
level size zone matrices (GLSZM) [28]. Before classification we used 
recursive feature elimination to discriminate the redundant and 
irrelevant data. The Extreme Gradient Boosting (XGBoost) classifier 
(an implementation of gradient boosted decision trees) [29] was 
used in a leave-one-patient-out (LOPO) cross-validation scheme. At 
each iteration the features were normalized to [0,1] using min–max 
normalization on the training subjects and subsequently applying 
the calculated normalization parameters   to each test patient 
features. Performance for the classification task was assessed 
using different metrics, such as average precision-recall, balanced 
accuracy, confusion matrix, Matthews correlation coefficient 
and AUC from ROC curve (Receiver Operating Characteristic). 
All hyperparameters of XGBoost classifier were optimized for 
our unbalanced dataset. Preprocessing, feature extraction and 
classification were implemented using python 3.7 and pyradiomics 
(https://pyradiomics.readthedocs.io/en/latest/index.html).The 
evaluation of the trained classifier reported an average precision-
recall score of 0.38, a balanced accuracy score of 0.76, a Matthews 
correlation coefficient of 0.52 and a ROC curve with an AUC of 0.72. 
The model correctly classified 26 subjects.

Conclusion
The non-invasive, reliable, pre-operative distinction between 

infiltrative and in-situ breast cancer represents an important 
challenge in the biomedical field. The contribution reported in 
our preliminary monocentric work aims to provide an automated 
clinical diagnosis tool and shows a final balanced accuracy score of 
0.76. Its main limitation consists in the small sample size and the 
obvious imbalance of diagnoses towards infiltrating breast tumors. 
In order to make the system able to generalize, and therefore to 
increase its quality, it is necessary to increase the size of the dataset, 
experimenting methods to make the dataset less unbalanced. In 
perspective, this result is expected to be achieved by involving 
different hospitals, thus creating a multicenter study.
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