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Abstract	
This	 paper	 develops	 a	 new	mathematical	model	 for	 a	 capacitated	 solid	 step	 fixed-

charge	transportation	problem.	The	problem	is	formulated	as	a	two-stage	transportation	
network	 and	 considers	 the	 option	 of	 shipping	 multiple	 items	 from	 the	 plants	 to	 the	
distribution	centers	(DC)	and	afterwards	from	DCs	to	customers.	In	order	to	tackle	such	
an	 NP-hard	 problem,	 we	 propose	 two	 meta-heuristic	 algorithms;	 namely,	 Simulated	
Annealing	 (SA)	and	 Imperialist	Competitive	Algorithm	(ICA).	Contrary	 to	 the	previous	
studies,	 new	 neighborhood	 strategies	 maintaining	 the	 feasibility	 of	 the	 problem	 are	
developed.	 Additionally,	 the	 Taguchi	 method	 is	 used	 to	 tune	 the	 parameters	 of	 the	
algorithms.	 In	 order	 to	 validate	 and	 evaluate	 the	 performances	 of	 the	 model	 and	
algorithms,	 the	 results	 of	 the	 proposed	 SA	 and	 ICA	 are	 compared.	 The	 computational	
results	 show	 that	 the	 proposed	 algorithms	 provide	 relatively	 good	 solutions	 in	 a	
reasonable	 amount	 of	 time.	 Furthermore,	 the	 related	 comparison	 reveals	 that	 the	 ICA	
generates	superior	solutions	compared	to	the	ones	obtained	by	the	SA	algorithm.		
	
Keywords:	 Step	 fixed-charge	 transportation;	 Two-stage;	 solid;	 Simulated	 Annealing;	
Imperialist	competitive	algorithm.		
	
1. Introduction	
Networks	have	been	proved	useful	in	modeling	real-world	problems	and	are	widely	

used	to	represent	a	variety	of	systems	including	transportation	and	logistics.	There	are	
several	 studies	 on	 transportation	 problems	 leading	 to	 new	 models	 and	 methods.	
Transportation	 network	 design,	 as	 one	 of	 the	 most	 important	 fields	 of	 supply	 chain	
management,	 provides	 a	 great	 opportunity	 to	 reduce	 logistics	 costs.	Hitchcock	 (1941)	
presented	the	first	formulation	of	the	classical	Transportation	Problem	(TP)	as	a	network	
optimization	problem.	The	TP	 is	 a	 practically	 important	 and	well-known	optimization	
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problem.	It	is	an	integral	part	of	logistics	and	supply	chain	management	which	is	critical	
for	decreasing	costs	and	improving	service	quality	(Zhang	et	al.,	2016).		
A	 traditional	 TP	 can	 be	 stated	 as	 a	 set	 of	 sources	 and	 destinations	 with	 variable	

transportation	costs	between	each	source	and	destination	pair	based	on	the	number	of	
transported	units.	Destinations’	demand	and	capacities	of	the	sources	are	given.	The	goal	
is	to	determine	the	number	of	products	transported	from	each	source	to	each	destination	
in	order	to	minimize	the	total	transportation	cost	(Sanei	et	al.,	2015).	An	assumption	in	
traditional	 transportation	problems	 is	 to	 consider	 the	direct	 cost	between	 two	parties	
according	 to	 the	 number	 of	 units	 transported.	 However,	 in	 most	 of	 the	 real-world	
applications,	 particularly	 in	 distribution,	 besides	 variable	 transportation	 costs,	 a	 fixed	
cost	for	opening	each	arc	is	considered	which	is	generally	independent	of	the	transported	
amounts.		
A	 Fixed-Charge	Transportation	 Problem	 (FCTP)	 can	 be	 applied	 to	many	 real-world	

problems	such	as	distribution,	production,	scheduling,	and	location.	In	these	cases,	fixed	
costs	may	 include	highway	charges,	 setup	costs	 in	production	systems,	 landing	 fees	at	
airports	or	maintenances	costs	of	roads	(Mingozzi	and	Roberti,	2017).	The	fixed-charge	
problem	was	introduced	by	Hirsch	and	Dantzig	(1954).	Later,	Balinski	(1961)	formulated	
the	fixed-charge	transportation	problem	(FCTP),	described	its	features,	and	presented	the	
first	 approximate	 algorithm	 for	 its	 solution.	 Several	 exact	 solution	 algorithms	 were	
proposed	for	solving	the	FCTP	including	Kowalski	et	al.	(2014)	and	Adlakha	et	al.	(2010).	
Due	 to	 the	 fact	 that	 an	 FCTP	 is	 a	 nondeterministic	 polynomial-time	 hard	 (NP-hard)	
problem	(Hirsch	and	Dantzig,	1954),	 the	 computational	 time	 to	obtain	exact	 solutions	
increases	in	an	exponential	manner.	Therefore,	as	the	size	of	the	problem	increases,	its	
solution	 becomes	 more	 complicated	 and	 time-consuming	 (Hajiaghaei-Keshteli	 et	 al.,	
2010).	To	deal	with	such	an	NP-hard	problem	several	approximations	(e.g.,	Adlakha	and	
Kowalski	 (2015)),	 heuristics	 (e.g.,	 (Adlakha	 and	 Kowalski,	 2003,	 Aguado,	 2009))	 and	
metaheuristics	(e.g.,	(Kannan	et	al.,	2014,	El-Sherbiny	and	Alhamali,	2013,	Pramanik	et	al.,	
2015,	Sadeghi-Moghaddam	et	al.,	2017))	have	been	developed.	

Over	the	years,	several	extensions	have	been	proposed	in	order	to	involve	numerous	
concepts	and	assumptions	including	solid	FCTP	(e.g.	(Giri	et	al.,	2015)),	multi-stage	FCTP	
((Calvete	et	al.,	2016,	Shirazi	et	al.,	2015),	multi-item	FCTP	(e.g.	(Khurana	and	Adlakha,	
2015,	Fakhri	and	Ghatee,	2016,	Munguía	et	al.,	2017)),	multi-objective	(Chen	et	al.,	2017,	
Khurana	and	Adlakha,	2015)and	step	FCTP	 (e.g.(Sanei	 et	 al.,	 2015,	Rajabi	 et	 al.,	 2013,	
Molla-Alizadeh-Zavardehi	 et	 al.,	 2014a,	 Molla-Alizadeh-Zavardehi	 et	 al.,	 2014b,	 El-
Sherbiny,	2012)).	
A	solid	transportation	problem	is	an	extension	of	the	FCTP,	in	which	different	types	of	

conveyances	 (e.g.,	 trucks,	 trains,	 ships	 and	 cargo	 flights)	 participate	 in	 the	 shipping	
products.	As	the	conveyances	capacity	is	a	critical	parameter	in	transportation	problems,	
capacity	restrictions	are	taken	into	account,	besides	the	source	and	demand	constraints	
in	solid	TP.		In	other	words,	if	only	one	single	type	of	conveyance	is	considered,	then	the	
problem	will	convert	to	the	traditional	TP.		To	solve	the	solid	FCTP	problem,	Ojha	et	al.	
(2010)	presented	a	genetic	algorithm	for	a	multi-objective	and	multi-commodity	variant	
of	 the	 problem	 with	 fuzzy	 resource	 and	 demand	 as	 well	 as	 considering	 discount	 in	
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transportation	costs.	 In	addition,	Yang	and	Liu	(2007)	studied	the	solid	FCTP	problem	
under	 a	 fuzzy	 environment.	 They	 designed	 a	 hybrid	 intelligent	 algorithm,	 using	 fuzzy	
simulation	and	a	Tabu	Search	 (TS)	algorithm,	 to	 solve	 the	 solid	FCTP.	They	presented	
three	decision	models	with	several	criteria	and	provided	the	solution	of	two	small	sized	
coal	transportation	problems.		Giri	et	al.	(2015)	presented	an	approach	for	solving	a	fully	
fuzzy	solid	multi-item	FCTP	in	both	balanced	and	unbalanced	types.	All	parameters	and	
decision	variables	are	considered	to	be	fuzzy	in	their	model.	They	also	investigated	and	
solved	the	solid	FCTP	variant	of	the	problem	that	considers	the	parameters	as	uncertain	
and	the	decision	variables	as	not	 fuzzy.	One	small-sized	 instance	 is	defined	to	perform	
several	numerical	experiments	and	the	results	are	compared	with	the	previous	studies.	
Finally,	they	claimed	that	their	approach	works	better	than	the	approach	presented	by	
Kumar	et	al.	(2011).	Later,	Gupta	et	al.	(2016)	presented	a	note	on	paper	Giri	et	al.	(2015)	
stating	 that	 their	 assumptions	 are	 not	 correct	 and	 hence	 their	 claim	 is	 to	 be	 rejected.	
Among	 the	more	 recent	works	 on	 the	 solid	 FCTP,	we	 can	 refer	 to	 (Chen	 et	 al.,	 2017,	
Golmohamadi	et	al.,	2017).	Chen	et	al.	(2017)	studied	the	uncertain	bi-criteria	solid	FCTP	
and	considered	transportation	time	as	a	second	objective	function	in	addition	to	the	cost	
criterion.	Golmohamadi	et	al.	(2017)	employed	six	new	meta-heuristics	to	solve	a	fuzzy	
solid	FCTP.	The	transportation	type	they	considered	is	based	on	the	batch	transformation	
of	 products.	 They	 compared	 the	 results	 of	 seven	 large-scale	 problems	 by	 using	 their	
proposed	 algorithms.	 	 Another	 important	 aspect	 of	 transportation	 problems	 is	 how	
products	are	distributed	in	a	supply	chain.	The	shipment	of	products	may	be	directly	from	
sources	 to	 customers	 or	 it	 may	 be	 accomplished	 via	 distribution	 centers	 (DCs).	 The	
presence	of	DCs	 is	modeled	as	a	 two-stage	 supply	 chain	problem.	Several	 studieshave	
been	 conducted	 on	 FCTP	while	 considering	 two-stage	 networks.	 (e.g.	 (Ekşioğlu	 et	 al.,	
2007,	Jawahar	and	Balaji,	2009,	Panicker	et	al.,	2013)).	
A	 Step	 Fixed-Charge	 Transportation	 Problem	 (SFCTP)	 is	 another	 variant	 of	 FCTP,	

where	the	fixed	charge	is	proportional	to	the	amount	to	be	shipped.	The	SFCTP	is	known	
to	be	an	NP-super	hard	problem	because	of	the	step	function	structure	of	the	objective	
function	 (Kowalski	 and	 Lev,	 2008).	 The	 SFCTP	 has	 not	 yet	 been	 well-probed.	 It	 was	
originally	 introduced	 by	 Sandrock	 (1988)	 but	 the	 extended	 formulation	 of	 SFCTP	has	
been	 proposed	 by	 Kowalski	 and	 Lev	 (2008).	 They	 also	 presented	 a	 simple	 heuristic	
algorithm	to	solve	only	small-sized	instances	of	the	SFCTP.	Another	approach	to	tackle	
this	problem	was	proposed	by	El-Sherbiny	(2012)	who	developed	an	alternate	Mutation	
based	Artificial	Immune	(MAI)	algorithm	and	introduced	and	compared	sixteen	different	
mutation	 functions	 in	 MAI	 algorithm.	 Unlike	 Kowalski	 and	 Lev	 (2008),	 El-Sherbiny's		
algorithm	(2012)	is	applicable	to	solve	large-scale	problems.	In	addition,	Molla-Alizadeh-
Zavardehi	et	al.	(2014a)	presented	a	spanning	tree	based	genetic	and	memetic	algorithms	
to	 solve	 the	SFCTP.	They	provided	 solutions	 for	both	small-	 and	 large-sized	 instances.	
Another	study	on	the	Step	fixed-charge	solid	transportation	problem	was	developed	by	
Sanei	et	al.	(2015),	who	proposed	a	dual	decomposition	approach	based	on	Lagrangian	
relaxation.	 Their	 approach	 has	 the	 ability	 to	 solve	 large-scale	 instances.	 A	 Lagrangian	
heuristic	has	also	been	used	to	produce	upper	bounds.	Table	1	illustrates	the	features	of	
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the	published	papers	on	FCTP	which	are	most	relevant	to	the	present	research.	This	table	
and	the	literature	review	on	the	SFCTP	reveal	the	following	gaps:	
	

1) Up	to	now,	there	is	no	any	study	on	the	multi-item	SFCTP	(all	available	papers	have	
modeled	transportation	of	single	product).	

2) Single	 stage	 is	 the	 only	 network	 structure	 that	 has	 been	 employed	 in	 SFCTP	
literature,	i.e.	involving	only	direct	the	transfer	mode	for	the	demand	satisfaction.	

3) None	of	 the	studies	on	SFCTP	has	considered	the	capacity	restriction	which	 is	an	
important	 issue	 in	 transportation	problems.	However,	 in	 real-world	applications,	
capacity	restrictions	of	 the	roads	enforce	vehicles	 to	 transport	goods	with	excess	
capacity.		

4) Only	one	single	work	has	been	proposed	on	solid	SFCTP	(Sanei	et	al.,	2015).		

	

Table	1	
Characteristics	of	the	FCTP	in	the	literature	review	

Paper	 Solid	 Step	 Multi-
item	

Number	of	stages Capacity	
constraint	one	 two 

Yang	and	Liu	(2007)	 ü	 	 	 ü	 	 	
Ekşioğlu	et	al.,	(2007)	 	  ü	  ü	 ü	
Kowalski	and	Lev	(2008)		 	 ü	 	 ü	 	 	
Balaji	and	Jawahar	(2010)	 ü	 	 	 	 ü	 	
Hajiaghaei-Keshteli	et	al.,	(2010)	  	 	 ü 	 	
Ojha	et	al.	(2010)	 ü	 	 	 ü	 	 	
El-Sherbiny	(2012)	 	 ü	 	 ü	 	 	
Panicker	et	al.	(2013)		 	 	 	 	 ü	 	
Rajabi	et	al.	(2013)	 	 ü	 	 ü	 	 	
Molla-Alizadeh-Zavardehi	et	al.	
(2014b)	 	 ü	 	 ü	 	 	

Kannan	et	al.	(2014)  	 	 	 	 ü	 	
Molla-Alizadeh-Zavardehi	et	al.	
(2014a)	 	 ü	 	 ü	 	 	

Giri	et	al.	(2015)	 ü	 	 ü	 ü	 	 	
Thiongane	et	al.	(2015)	 	 	 ü	 ü	 	 ü	
Pramanik	et	al.	(2015)	 	 	 	 	 ü	 ü	
Sanei	et	al.	(2015)	 ü	 ü	 	 ü	 	 	
Fakhri	and	Ghatee	(2016)	   ü	 ü 	 ü	
Calvete	et	al.	(2016)	 	 	 	 	 ü	 	
Munguía	et	al.	(2017)	 	 	 ü	 ü	 	 	
Chen	et	al.	(2017)	 ü	 	 	 ü	 	 	
This	study	 ü	 ü	 ü	 	 ü	 ü	

	

		In	order	to	fill	the	aforementioned	gaps	and	to	get	closer	to	real-world	applications,	we	
formulate	and	solve	a	new	variant	of	the	SFCTP	as	a	two-stage	supply	chain	problem	in	
which	 multiple	 commodities	 are	 shipped	 from	 sources	 (plants)	 to	 destinations	
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(customers)	 via	 a	 set	 of	 potential	 depots	 (as	 distribution	 centers).	 Note	 that	 several	
conveyances	with	different	capacity	can	be	assigned	for	transportation	in	every	stage.	The	
aim	of	the	proposed	model	is	to	minimize	the	total	transportation	costs	including	variable	
costs	 and	 two	 types	 of	 fixed	 charges.	 In	 other	 words,	 a	 two-stage,	 multi-item,	 solid,	
capacitated	SFCTP	problem	is	investigated	in	this	paper.	In	order	to	find	a	good	quality	
solution	for	the	problem,	we	use	both	heuristics	and	metaheuristics.	Another	contribution	
of	this	paper	is	developing	new	neighborhood	procedures	for	the	metaheuristics.	
The	rest	of	the	paper	is	organized	as	follows:	section	2	describes	the	problem	definition	

and	 the	 mathematical	 model	 while	 sections	 3	 presents	 the	 solution	 procedures	 via	
Simulated	Annealing	(SA)	and	Imperialist	Competitive	Algorithm	(ICA),	respectively.	In	
Section	 4,	 numerical	 experimental	 results	 are	 provided	 to	 assess	 the	 efficiency	 of	 the	
proposed	algorithms,	 and	 section	5	presents	 the	 sensitivity	analysis.	 Finally,	 Section	6	
concludes	the	paper	and	recommends	some	areas	for	further	research.		

	

2. Problem	definition	and	mathematical	model	
In	this	section,	we	model	a	multi-item,	capacitated	solid	step	FCTP.	A	two-stage	supply	

chain,	 including	 sources,	 distribution	 centers	 and	 customers	 (destinations)	 is	 also	
considered.	 Finding	 suitable	 connections	 (or	 arcs)	 between	 facilities	 as	 well	 as	 the	
quantity	 of	 shipment	 on	 each	 arc,	 while	 meeting	 the	 demand,	 source,	 and	 capacity	
constraints	are	the	aims	of	the	problem.	The	objective	function	is	the	minimization	of	the	
transportation	costs	 that	consist	of	 two	types:	a	variable	cost	which	 is	unit-based	(i.e.,	
proportional	to	the	number	of	transported	units)	and	the	fixed	charge	that	is	independent	
of	 the	 amount	 of	 commodity	 to	 be	 transported.	 The	 fixed	 charge	 will	 be	 paid	 if	 any	
nonzero	 amount	 of	 commodity	 is	 transported	 between	 a	 source	 and	 a	 destination.	
Because	of	the	stepwise	manner	of	the	problem,	there	are	two	types	of	fixed	charges	for	
each	 stage	 in	 the	model.	When	 the	amount	of	product	 is	 less	 than	a	 certain	 threshold	
(denoted	as	Aijl	for	the	first	stage	and	�̅�jkl	for	the	second	stage)	the	first	fixed	charge	type	
is	applied	and	when	the	amount	transported	exceeds	the	step	parameter	the	extra	fixed	
charge	will	be	added	to	the	fixed	transportation	cost.	Extra	fixed	charge	happens	within	
the	transportation	sector	when	different	technologies	are	available	for	the	shipping	and	
larger	amount	of	products	will	require	the	use	of	a	more	expensive	technology.	This	also	
happens	 when	 the	 supply	 chain	 uses	 the	 auction	 paradigm	 for	 procuring	 its	
transportation	need	and	the	shipping	cost	will,	thus,	increase	in	a	step-wise	manner	as	
more	conveyances	characterized	by	a	higher	bidding	cost	are	needed.	
A	schematic	representation	of	the	two-stage,	multi-item,	solid	FCTP	is	shown	in	Fig.	1.	

Possible	connections	are	represented	by	arrays	and	the	aim	is	to	find	the	links	leading	to	
the	minimum	total	costs.		
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Fig.	1.	Structure	of	the	two-stage	FCTP	supply	chain 

	
2.1	Notations	
The	model	sets	and	indices	are	as	follows:	
 

	

	

	

The	model’s	parameters	are	as	follows:	
 

Demand	at	customer	k	for	item	p	  
Supply	at	source	i	for	item	p 	
Capacity	of	conveyance	l 	
Capacity	of	arc	(i,	j)	for	conveyance	l  
Capacity	of	arc	(j,	k)	for	conveyance	l  
Shipping	cost	per	unit	transported	from	source	i	to	DC	j	by	conveyance	l	for	item	p  
Shipping	cost	per	unit	transported	from	DC	j	to	customer	k	by	conveyance	l	for	item	p  
Fixed-charge	from	source	i	to	DC	j	by	conveyance	l	for	item	p  
Fixed-charge	from	DC	j	to	customer	k	by	conveyance	l	for	item	p  
Extra	fixed-charge	from	source	i	to	DC	j	by	conveyance	l	for	item	p  
Extra	fixed-charge	from	DC	j	to	customer	k	by	conveyance	l	for	item	p  
Amount	of	products	for	the	first	stage	𝐴jkl	
Amount	of	products	for	the	second	stage	�̅�jkl	

	
In	addition	to	some	auxiliary	state	variables	that	we	will	introduce	within	the	model,	our	
decision	variables	are	as	follows: 

kpd

ips

lcap

ijlr

jklr

ijlpc

jklpc

,1ijlf

,1jklf

,2ijlf

,2jklf

Set	of	sources,	indexed	by		 
Set	of	distribution	centers,	indexed	by	  
Set	of	customers,	indexed	by	  

,	indexed	by	conveyancesSet	of	  
Set	of	items,	indexed	by	  

i IÎI
j JÎJ

k KÎK
l LÎL

p PÎP

Plant 1 

Plant 2 

Plant I 

. 

. 

. 

DC 1 

DC 2 

DC J 

. 

. 

. 

Customer 1 

. 

. 

. 

Customer 2 

Customer K 

Item 1 

Item 2 

Item 3 

Item P 

. . . 

Conveyance 1 Conveyance 2 Conveyance L . . . 
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 Amount	of	item	p	transported	from	source	i	to	DC	j	by	conveyance	l  

 Amount	of	item	p	transported	from	DC	j	to	customer	k	by	conveyance	l  

	
A	binary	variable	that	takes	value	1	if		any	product	is	transported	between	source	i	to	

DC	j	by	conveyance	l		

	 A	binary	variable	that	takes	value	1	if		more	than	 	is	transported	between	source	i	

to	DC	j	by	conveyance	l		

	
A	binary	variable	 that	 takes	 value	1	 if	 	any	product	 is	 transported	between	DC	 j	 to	

customer	k	by	conveyance	l	

	 A	binary	variable	that	takes	value	1	if		more	than	 	is	transported	between	DC	j	to	

customer	k	by	conveyance	l	

	
2.2	Model	Formulation 

Min	𝑍	= 	 (1)	

s.t.	

	 (2)	

	 (3)	

	
(4) 

	 (5) 
	
	

(6) 

	
(7) 

	
(8) 

	
(9) 

	 (10) 

	 (11)	

ijlpx

jklpx

,1ijly

,2ijly ijlA

,1jkly

,2jkly jklA

{ } { }

{ } { }

,1 ,1 ,2 ,2
1 1 1 1 1 1 1

,1 ,1 ,2 ,2
1 1 1 1 1 1 1

I J L P I J L

ijlp ijlp ijl ijl ijl ijl
i j l p i j l

J K L P J K L

jklp jklp jkl jkl jkl jkl
j k l p j k l

c x f y f y

c x f y f y

= = = = = = =

= = = = = = =

+ + +

+ +

åååå ååå

åååå ååå

1 1
,

J L

ijlp ip
j l

x s i I p P
= =

£ " Î " Îåå

1 1
,

J L

jklp kp
j l

x d k K p P
= =

= " Î " Îåå

1 1 1
,

I L K L

ijlp jklp
i l k l

x x j J p P
= = =

= " Î " Îåå åå

1
, j , l

P

ijlp ijl
p
x r i I J L

=

£ " Î " Î " Îå

1
, k , l

P

jklp jkl
p
x r j J K L

=

£ " Î " Î " Îå

0 , , ,ijlpx i I j J l L p P³ " Î " Î " Î " Î

0 , k , ,jklpx j J K l L p P³ " Î " Î " Î " Î

1,1

1 for 0
, ,

0 otherwise

P

ijlp
pijl

x
y i I j J l L=

ì
>ï= " Î " Î " Îí

ï
î

å

1 1
,

J K

jklp l
j k

x cap l L p P
= =

£ " Î Îåå
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(12)	

	

(13)	

	

(14)	

	
The	objective	 function	(1)	 is	 the	step	cost	 function	and	minimizes	the	total	variable	

costs	and	fixed	charges.	Constraint	(2)	is	the	supply	constraint	and	it	guarantees	that	the	
total	 quantity	 shipped	 to	 distribution	 centers	 does	 not	 exceed	 the	 source’s	 capacity.	
Similarly,	 the	 demand	 satisfaction	 is	 represented	 by	 Constraint	 (3)	 stating	 that	 the	
quantity	shipped	from	distribution	centers	to	customers	should	be	equal	to	the	customer	
demand.	Constraint	(4)	represents	the	flow	conservation	showing	that	the	total	quantity	
shipped	 from	 sources	 to	 distribution	 centers	 is	 equal	 to	 the	 quantity	 shipped	 from	
distribution	 centers	 to	 customers.	 Constraints	 (5)	 and	 (6)	 imply	 that	 the	 amount	 of	
products	shipped	with	each	conveyance	does	not	exceed	its	capacity.	Constraints	(7)	and	
(8)	are	arcs	capacity	constraints.	Constraints	(9)	and	(10)	represent	the	non-negativity	of	
decision	 variables.	 Constraints	 set	 (11)	 assigns	 a	 value	 of	 1	 to	 	 if	 the	 product	 is	

distributed	from	source	i	to	distribution	center	j	via	conveyance	l.	Constraint	(12)	ensures	
that	 equals	to	1	if	the	number	of	products	moved	between	source	i	and	distribution	

center	j	is	more	than	 .	Constraint	(13)	enforces	variable	 	to	be	1	if	the	product	is	

moved	from	distribution	center	j	to	customer	k	via	conveyance	l.	Constraint	(14)	ensures	
that	 	 equals	 to	 1	 if	 the	 number	 of	 products	 distributed	 between	 center	 j	 and	

customer	k	is	more	than	 .		

Due	to	the	step	structure	of	objective	function,	the	binary	variables	are	dependent	to	
integer	variables.	Hence,	we	define	the	following	auxiliary	constraints.	
	

	
(15)	

	 (16)	

	 (17)	

	 (18)	
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	 (19)	

	
(20)	

	
Based	on	the	above	linearization,	our	revised	model	can	be	summarized	as	follows:	
	

Objective	Function:	(1)	
Constraints:	(2)—(10)	and	(15)—(20)			

	
3	Proposed	SA	Approach	
As	discussed	in	previous	sections,	the	step	FCTP	is	a	very	complex	class	of	the	NP-hard	

problems.	 Its	 complexity	 is	mainly	 originated	 from	 the	 step	 function	 structure	 of	 the	
objective	function	(Sandrock,	1988),	which	necessitates	using	meta-heuristic	algorithms	
to	 solve	 large-scale	 instances.	 Therefore,	 we	 propose	 here	 a	 SA	 algorithm	 (and	 ICA	
method	in	the	next	section)	for	solving	the	proposed	model.	The	SA	algorithm	is	a	well-
known	metaheuristic	 algorithm	 that	 is	 inspired	 by	 the	 physical	 annealing	 process	 of	
solids.	In	comparison	to	local	search	techniques,	the	main	advantages	of	the	SA	algorithm	
are	 its	 flexibility	 and	 ability	 to	 converge	 to	 a	 global	 solution.	 Furthermore,	 the	 SA	
algorithm	does	not	depend	on	the	restrictive	properties	of	the	model.	Hence,	it	is	quite	
adaptable	to	different	models	(Busetti,	2003).	
The	SA	is	motivated	by	the	annealing	process	in	the	metallurgical	industry	and	it	has	

the	capability	to	escape	from	being	trapped	in	local	optima	via	accepting	non-improving	
solutions	with	a	certain	probability	in	each	temperature.	It	starts	with	an	initial	solution	
and	navigates	around	it	using	a	variety	of	neighborhood	search	structures.	This	algorithm	
has	been	widely	applied	to	numerous	complicated,	combinatorial,	optimization	problems	
in	 real-life	 situations	 (Naderi	 et	 al.,	 2009,	 Manavizadeh	 et	 al.,	 2013,	 Mousavi	 and	
Tavakkoli-Moghaddam,	2013).	Fig.	2	shows	the	pseudo	code	of	our	SA	algorithm.	

Define	the	cost	function	and	set	the	parameters.	
Set	the	initial	temperature	T,	the	cooling	rate	 ,	Max	iteration,	and	Max	sub-iteration		
Generate	an	initial	seed:	
Generate	Xjklp,	using	the	equivalent	cost	matrix.		
Find	four	different	Xijlp,	matrices	using	Xjklp	and	the	following	four	matrices:	the	equivalent	cost	
matrix,	the	variable	cost	matrix,	fixed	charge	matrix	and	a	random	matrix		
Find	the	best	Xijlp	(the	Xijlp	which	has	the	smallest	total	cost).	
Set	BestSol	=	initial	seed.	
Compute	the	objective	function	(Z)	
for	it	=	1:Max	iteration	
			for	subit	=	1:Max	sub-iteration	
Generate	neighborhood	seed	
																			Apply	mutation	operators	to	Xjklp	
																													Find	Xijlp	from	new	Xjklp								
																			compute	the	total	costs	of	new	seed	(newZ)	
Compute	Delta	=	newZ	-	Z		
if	Delta	<	0		
					accept	the	neighbor	seed.	
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else		
					generate	random	number	r=Uniform[0,1],		
									if		p=exp[-Delta/T]	>	r,	
												Accept	neighbor	seed.	
												BestSol	=	neighbor	seed.	
									end	if	
end	if	
end	for	

	
end	for 											
	 	 Fig.	2.	Pseudo	code	of	our	SA	algorithm	
	
 
3.1 Solution	representation	
It	 is	important	to	select	an	appropriate	strategy	solution	representation	considering	

the	direct	effect	of	the	representation	on	the	algorithm	performance	and	the	quality	of	
results.	The	matrix	representation	is	a	basic	representation	of	transportation	problems.	
The	matrix	 contains	 the	number	of	products	 transported	between	each	pair	of	nodes;	
hence,	the	fitness	of	a	solution	can	be	evaluated	straightforwardly	(Eckert	and	Gottlieb,	
2002).	In	this	paper,	we	utilize	a	matrix	representation	to	show	the	amounts	of	products	
shipped	in	both	the	stages.		

3.2 	Equivalent	cost	
We	use	 the	 approach	 used	 by	Altassan	 et	 al.	 (2014)	 to	 find	 the	 equivalent	 cost	 for	

variable	and	fixed	charges.	According	to	this	approach,	the	equivalent	cost	is	achieved	by	
means	of	expression	(21)	and	it	helps	to	obtain	a	linear	approximation	of	the	problem.	We	
use	this	equivalent	cost	to	find	the	initial	solution.  For	an	arc	between	each	source	and	
each	 distribution	 center	 and	 for	 each	 conveyance,	 the	 corresponding	 can	 be	

expressed	by:	

	
(21)

	
	

The	equivalent	variable	cost	is	formulated	by:	
	

𝐶𝐹&'( = *

+,-.,0
1,-.

+ 𝑐&'(			𝑖𝑓				𝐴&'( ≥ 𝑀&'(

+,-.,09+,-.,:
1,-.

+ 𝑐&'(			𝑖𝑓				𝐴&'( < 𝑀&'(

		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (22)	

	

For	an	arc	between	each	distribution	center	and	each	customer	and	for	each	conveyance,	
the	corresponding	 	can	be	expressed	by: 	
	

𝑀'<( = 𝑚𝑖𝑛?∑ 𝑑<B, 𝑟'<(, 𝑐𝑎𝑝(F
BGH I	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (23) 

	

Using	expression	(23),	the	equivalent	cost	of	the	second	layer	is	as	follows:	
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(24)

	
	

Table	2	gives	the	values	of	equivalent	variable	costs,	where	B	is	a	very	large	number.		
	
Table	2.	Equivalent	variable	cost	matrix	(Yang	and	Liu,	2007)	

 Customers Distribution	center 
 	 								

    	    	Source 

         	

         	

         	

    	    0 	Distribution	
center 

       0 		
     	0   	

     0    	
        	 Demand 

	
3.3 Generating	the	initial	seed	
To	generate	the	initial	solutions,	we	use	a	heuristic	algorithm	which		is	a	modification	

of	the	Balaji	and	Jawahar'	algorithm	(2010)	and	that	can	be	described	as	below:	
	

Step	1:	The	demand	values	are	allocated	to	Xjklp	using	the	equivalent	variable	cost	matrix.	
First,	 the	minimum	value	of	 the	matrix	 is	 found	and	 then	 its	 location	 is	 chosen	 for	
allocation.	The	amount	assigned	to	this	element	is	the	minimum	of	the	relevant	values	
of	the	demand,	the	conveyance	capacity	and	the	arc	capacity.	The	allocation	continues	
until	all	demands	are	satisfied.	

Step	2:	The	number	of	units	shipped	from	each	distribution	center	is	determined	by:	
	

	
(25)

	
Step	3:	To	find	the	values	of	Xijlp,	the	values	of	Ajp	are	used.	Similar	to	Step	1,	we	use	CFijl	to	

find	the	location	for	assignment.	The	minimum	of	relevant	Ajp,	the	available	source,	the	
available	 conveyance	 and	 arc	 capacity	 will	 be	 chosen	 for	 allocation.	 This	 step	
continues	until	the	values	of	Ajp	are	completely	allocated	to	Xijlp.		

3.4 Generating	the	neighborhood	seed	
To	generate	the	neighborhood	seed,	some	mutation	operators	are	applied	to	X\ jklp	and	

then,	as	mentioned	above,	Xijlp	can	be	determined	using	X\ jklp.	In	this	work,	we	use	a	unary	
random	mutation	 that	works	 as	 follows.	 For	 every	 element	 of	X\ jklp	 a	 random	 number	
between	0	and	1	is	generated.	If	this	number	is	less	than	a	certain	mutation	rate,	then	that	
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element	is	chosen	for	mutation.	We	use	two	mutation	operators	to	find	the	neighborhood	
solutions:	 insertion	 move	 and	 swap	 mutation.	 These	 mutation	 operators,	 described	
below,	work	in	a	way	that	the	solution	remains	feasible.		

	

- Insertion	move:	 In	 this	 type	 of	mutation,	 to	 transport	 a	 part	 of	 the	 amount	 of	 a	
selected	element,	we	choose	a	new	distribution	center	and	a	new	conveyance.	Thus,	we	
select	a	random	distribution	center	and	a	random	conveyance	between	the	distribution	
centers	and	conveyances,	respectively.	Then	we	generate	a	random	number	between	1	
and	 the	 amount	 of	 selected	 element.	 This	 part	 will	 be	 transported	 from	 the	 new	
distribution	center	and	by	the	new	conveyance.	Fig.	3	shows	the	insertion	mutation.		

	
1 

	
 

 
 
 
  

1 
	

3 2 1 k	
j								

3 2 1 k	
j								

  261 1   261 1 
77  80 2 77   2 
 185  3  185  3 

 
2 

	
 

 
 
 
  

2 
	

3 2 1 k	
j							 

3 2 1 k	
j								

   1    1 
55 85+60  2 55 60  2 
  9 3   89 3 

Fig.	3.	Initial	X\ jklp	and	its	neighborhood	seed	after	applying	an	insertion	move.	
	
- Swap	mutation	
We	select	a	random	customer	and	in	the	relevant	column,	two	elements	with	different	

distribution	centers	and	different	conveyances	are	randomly	selected	and	swapped.	Fig.	
4	shows	the	suggested	swap	mutation. 	
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.swap	mutationapplying	and	its	neighborhood	seed	after		jklpX\nitial	I	.4	.Fig 
	
4 Proposed	ICA	Method	
The	 ICA	 is	 an	 evolutionary	 algorithm	 introduced	 by	 Atashpaz-Gargari	 and	 Lucas	

(2007).	ICA	is	a	population-based	algorithm	which	starts	with	an	initial	population	and	

ll

ll

ll
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then	attempts	to	eliminate	weaker	empires	in	the	imperialistic	competition	process.	This	
will	efficiently	 increase	the	probability	of	 finding	a	near-optimal	solution	and	avoiding	
local	 optimum	 (Duan	 and	 Huang,	 2014).	 Reliability,	 accuracy,	 simplicity,	 satisfactory	
convergence	speed	and	time-saving	are	the	most	notable	advantages	of	the	ICA	(Lucas	et	
al.,	2010,	Nazari-Shirkouhi	et	al.,	2010,	Kaveh	and	Talatahari,	2010,	Talatahari	et	al.,	2012,	
Khabbazi	et	al.,	2009,	Lian	et	al.,	2012,	Nia	et	al.,	2015).		For	more	details	of	the	ICA,	one	
can	refer	to	Atashpaz-Gargari	and	Lucas	(2007).		
The	pseudo	code	of	our	imperialist	competitive	algorithm	is	outlined	in	Fig.	5.	

1.	Generate	Ncountry	initial	countries	by	using	four	allocation	methods	and	select	Nimp	of	the	best	

countries	to	form	the	imperialists.		

2.	Apply	the	double	point	crossover	to	improve	the	colonies.		

3.	Check	the	colonies	and	their	relevant	costs.	In	case	a	colony	has	more	cost	compared	to	its	

empire,	their	positions	should	be	changed.		

4.	Calculate	the	power	for	all	the	imperialists.		

5.	Find	the	empire	with	the	worst	power	and	take	its	weakest	colony.	Give	the	selected	colony	

to	the	empire	with	the	highest	chance	to	own	it	(Imperialistic	competition).	

6.	Eliminate	the	empire	with	no	colonies.	

7.	If	only	one	empire	exists,	stop	otherwise	go	to	Step	2.	
Fig.	5.	Pseudo	code	of	the	ICA.	

4.1 	Generating	the	initial	empires	
As	mentioned	earlier,	 the	 ICA	as	a	population-based	algorithm	starts	with	an	 initial	

population.	Hence,	firstly,	we	generate	Ncountry	initial	countries.	The	first	three	countries	
of	the	population	are	generated	by	means	of	the	equivalent	cost	matrix,	the	variable	cost	
matrix	 and	 fixed	 charge	matrix,	 respectively.	 The	 remaining	 countries	 (Ncountry	 -3)	 are	
generated	using	a	random	matrix.	
We	select	Nimp	among	the	best	countries	to	form	the	imperialists	and	other	countries	

will	 be	 the	 colonies	 of	 those	 empires.	 These	 colonies	 are	 divided	 among	 the	 empires	
depending	on	 the	empire	power.	To	perform	 the	division,	 the	normalized	cost	of	 each	
empire	is	defined	by:	

 

	
(26)

	
where	 	is	the	nth	empire’s	cost.	
Using	the	normalized	cost,	the	normalized	power	of	each	empire	will	be	given	by:	
 

	
(27)	
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Furthermore,	the	initial	number	of	colonies	for	the	nth	imperialist	is:	
 

	
(28)	

	

where	Ncol	is	the	number	of	colonies.	In	order	to	divide	the	colonies	among	imperialists,	
N.coln	colonies	are	chosen	randomly	and	the	n-th	empire	takes	them.	
	
4.2 	Power	of	empires	
The	 total	power	of	 an	empire	depends	on	 two	 factors:	 the	power	of	 the	 imperialist	

country	as	well	as	the	power	of	its	colonies.	Hence,	to	define	the	total	power	of	an	empire,	
the	 power	 of	 the	 empire	 country	 is	 added	 to	 a	 percentage	 of	 the	 mean	 power	 of	 its	
colonies.	
	

4.3 	Movement	of	colonies	toward	their	imperialists	
The	movement	of	colonies	toward	their	empires	is	the	process	in	which	the	empires	

try	to	improve	their	colonies.	To	apply	the	movement,	we	use	a	double	point	crossover.	In	
this	 method	 for	 each	 empire	 and	 all	 of	 its	 colonies,	 we	 generate	 a	 random	 number	
between	zero	and	one,	if	this	number	is	less	than	0.5,	the	crossover	will	be	applied	to	that	
colony.	For	this	purpose,	one	or	 two	columns	of	 the	colony	are	selected	randomly	and	
replaced	with	the	corresponding	columns	of	the	relevant	imperialist.	
Despite	 empires’	 efforts	 to	 perform	 the	 above	 assimilation	 policy,	 there	 are	 some	

deviations	 in	 the	 colonies’	movements.	For	 this	purpose,	we	consider	a	deviation	 rate,	
then	we	generate,	 for	every	colony,	a	random	number	between	0	and	1.	 If	 the	random	
number	is	lower	than	the	deviation	rate,	the	corresponding	colony	is	regenerated.	If	the	
new	colony	provides	a	better	solution,	it	will	be	accepted.	
	

4.4 	Revolution	
The	revolution	operators	in	ICA	are	similar	to	mutation	operators	in	SA	(see	3.2.2).	In	

this	stage	we	generate,	for	every	colony,	a	random	number	and	revolution	occurs	for	the	
colonies	whose	selected	number	is	lower	than	the	revolution	rate.	

 
4.5 	Exchanging	the	imperialist-colony	positions		
When	 a	 colony	 moves	 towards	 its	 empire,	 it	 may	 achieve	 a	 better	 performance	

compared	to	its	corresponding	imperialist.	This	situation	happens	when	the	colony’s	cost	
becomes	lower	than	the	empire’s	cost.	In	this	case,	the	positions	of	the	empire	and	the	
colony	will	be	exchanged	and	colonies	start	moving	toward	the	new	empire	position.	

 
4.6 	Imperialistic	competition	
As	mentioned	 earlier	 the	 empires	must,	 in	 this	 algorithm,	 be	 able	 to	 increase	 their	

power	or	maintain	their	initial	power.	Hence,	in	the	imperialist	competition,	each	empire,	
that	 is	not	able	 to	 increase	 its	power,	will	 lose	 the	 competition.	During	the	 imperialist	
competition,	the	weaker	empires	will	lose	their	colonies	and	the	more	powerful	empires	
will	control	of	these	colonies.	The	empires	will	start	the	competition	for	the	worst	colonies	

. { .( )}n n colN Col round power N=
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of	the	imperialist,	which	has	the	highest	total	cost	and	the	most	powerful	empires	have	
higher	chances	to	possess	them.	
First,	 the	 possession	 probability	 of	 each	 imperialist	 is	 calculated	 based	 on	 its	 total	

power.	To	do	so,	we	need	the	normalized	total	cost	of	the	nth	empire	that	is	defined	by:	
 

	
(29)	

	

Where	TCn	 is	the	total	cost	of	the	nth	empire	and	NTCn	denotes	the	normalized	total	
cost	as	the	representative	for	the	power	of	the	empire.	The	possession	probability	of	each	
imperialist	is	as	follows:	

	

𝑃BK = L MNOK
∑ MNOK
PQR
0

L.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (30)	

Using	the	possession	probabilities,	a	mechanism	similar	to	the	roulette	wheel	in	the	
genetic	algorithm	will	be	used	to	allocate	the	weakest	colonies	to	empires.	The	weaker	
empires	will	lose	their	colonies	in	the	imperialist	competition.	An	empire	is	eliminated	
when	 it	 loses	 all	 of	 its	 colonies	 to	 other	 empires.	 Finally,	 when	 all	 weak	 empires	 are	
eliminated,	only	one	powerful	imperialist	exists	while	all	other	countries	are	its	colonies.	
In	this	stage,	the	algorithm	ends.	

5 Computational	experiments	
In	this	section,	the	performance	of	the	proposed	algorithm	is	evaluated	by	comparing	

the	results	of	ICA	algorithm	to	the	results	provided	by	SA	algorithm	and	GAMS,	as	well.	To	
solve	exactly	the	model,	we	have	used	GAMS	24.1.2	on	a	computer	with	2.0	GHz	Intel	core	
2	and	4GB	of	RAM.	First,	ten	small-sized	test	instances	with	different	sizes	are	solved	to	
investigate	the	efficiency	of	 the	proposed	algorithm.	These	 instances	are	benchmarked	
from	an	approach	proposed	in	the	literature	by	Hajiaghaei-Keshteli	et	al.,	(2010).	Table	3	
summarizes	the	values	of	the	parameters,	used	in	such	instances.	

Table	3	
Raw	data	for	parameters.		

Upper	
limit 

Lower	
limit	

parameters		Upper	
limit	

Lower	
limit	

parameters	

75	35 Fixed	charges		130	100 Demand
  

100	80 Extra	fixed	charges		180	120 Supply
 

8	3 Variable	cost
 	500	300 Conveyance	

capacity 

500	400 	
	1500	1000 capacity	rcA

 

	
5.1.	Parameters	tuning	
To	obtain	the	maximum	performance	of	the	algorithm,	it	is	crucial	to	perform	a	tuning	

phase	of	the	algorithms’	parameters.	We	have	employed	the	Taguchi	method	to	tune	the	
parameters	 due	 to	 the	 high	 influence	 of	 parameter	 tuning	 on	 the	 performance	 of	 the	
algorithms.			

max{ }n n nNTC TC TC= -

,ijl jklA A
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For	this	aim,	we	have	used	the	L9	square	matrix	design	with	four	parameters	in	three	
levels	 in	Taguchi	(see	Table	4).	To	ensure	the	accuracy,	each	experiment	 is	repeated	5	
times	and	the	average	value	of	the	experiment	is	considered.	In	Taguchi	technique,	Signal-
to-Noise	(S/N)	ratio	measures	the	variability	of	the	results.	The	higher	values	of	S/N	ratio	
represent	smaller	variability	in	the	output	variables.	Therefore,	the	optimal	factor	levels	
are	those	with	the	maximum	S/N	ratios	(Naderi	et	al.,	2009).	The	S/N	ratio	is	defined	by:	

	

(31)	
 

where	n	is	the	number	of	repetitions	of	the	experiment	in	the	same	conditions,	and	yi	is	
the	experimental	result	of	each	repetition.	
	
Table	4	
Orthogonal	array	L9	in	the	Taguchi	method.	

D C B A Experiment 
1 1 1 1 1 
2 2 2 1 2 
3 3 3 1 3 
3 2 1 2 4 
1 3 2 2 5 
2 1 3 2 6 
2 3 1 3 7 
3 1 2 3 8	
1 2 3 3 9	

	
In	this	work,	the	following	effective	parameters	are	chosen	for	tuning:	mutation	rate,	

maximum	sub-iterations	number,	T0	and	 	for	SA	algorithm	and	Ncountry,	Nimp,	revolution	
rate	and	deviation	rate	 for	 the	 imperialist	competitive	algorithm,	respectively.	Table	5	
lists	the	selected	factors	and	their	corresponding	levels.	

	

Table	5	
	SA	and	ICA	factors	and	their	levels.	

SA	 	 ICA	

Factors	 Level	1	 Level	
2	

Level	
3	

	 Factors	 Level	1	 Level	2	 Level	3	

Mutation	rate	 0.1 0.3 0.5 	 countryN
	

100	 150	 200	
Sub-iteration 15	 20	 25	 	 Nimp

 
10	 15	 20	

0T 400	 500	 600	 	 Revolution	rate 0.1 0.3 0.5 
α 	 0.9	 0.95	 0.98	 	 Deviation	rate	 0.1 0.3 0.5 

 
Fig.	6	shows	the	mean	S/N	ratio	for	each	level	of	the	SA	factors	and	Fig.	7	shows	the	

mean	S/N	ratio	plot	for	each	level	of	the	ICA.	According	to	the	obtained	results,	the	optimal	
factors	for	SA	and	ICA	are	summarized	in	Table	6.		
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Fig.	6.	Mean	S/N	ratio	plot	for	each	level	of	the	SA	factors.	

  

 
Fig.	7.	Mean	S/N	ratio	plot	for	each	level	of	the	ICA	factors.		

Table	6	
	Optimum	values	of	the	SA	and	ICA	factors.	

SA	 	 	 ICA	 	
Factor	 Value	 	 Factor	 Value	

Mutation	rate	 0.1 	 		 200	

sub-iteration 20	 	   20	

	 400	 	 Revolution	rate 0.1	
 	 0.9	 	 Deviation	rate	 0.5	
	
5.2 Experimental	results	
The	quality	of	the	produced	solutions	is	the	criteria	used	to	evaluate	the	efficiency	of	

the	algorithms.	Considering	the	difference	in	the	scales	of	the	objective	function	for	each	
instance,	it	is	not	possible	to	use	the	objective	function	values	directly.	Consequently,	we	
decided	to	run	each	problem	five	times	and	the	relative	percentage	deviation	(RPD)	and	
the	 best	 solution	 error	 (BSE)	 are	 used	 as	 the	 performance	 criteria	 for	 each	 instance.	
According	to	Ruiz	and	Stützle	(2007),	Barzinpour	et	al.	(2014)	and	Sabouhi	et	al.	(2018),	
the	RPD	and	BSE	are	obtained	as	follows:	

	

countryN

impN
0T

a
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	(32)  

(33)  

where	fAlgorithm	is	the	value	of	the	objective	function	in	each	run,	fBest	is	the	best	value	of	
objective	function	among	the	results	of	five	runs	and	fGAMS	is	the	objective	function	value	
obtained	by	using	the	GAMS	software.	

 

Table	7	
Characteristics	of	small-scale	instances.	

Instance	
No. 

Problem	characteristics 

Sources DC Customers Items Conveyances 

1 1 3 1 1 2 
2 2 2 1 1 2 
3 4 2 1 1 1 
4 3 2 2 2 2 
5 3 2 3 1 1 
6 4 3 4 2 2 
7 5 3 4 3 2 
8 6 2 2 1 1 
9 6 2 3 1 2 
10 6 3 3 2 2 
11 7 3 3 2 3 
12 8 3 4 3 4 

	
 

5.2.1 Metaheuristics	and	exact	method	comparison	on	small-sized	problems	
Table	7	shows	the	characteristics	of	the	small	instance.	Tables	8	and	9	illustrate,	for	

each	 problem	 instance,	 the	 computational	 time,	 the	 best	 and	 average	 values	 of	 the	
objective	function,	RPD,	and	BSE,	for	the	SA	and	ICA	algorithms,	respectively.		
	
Table	8	
	Comparison	of	solution	values	obtained	by	SA	and	GAMS	software. 

Instance	
No. 

Solution	method 

Average		
RPD 

Average	
BSE 

Exact	solution 	 SA 

Objective	
function 

Runtime	
(sec.) 

	 Avg.	
objective	
function 

Best	
objective	
function 

Avg.	
runtime	
(sec.) 

1 827 0.27 
0.32 
0.31 
0.5 
0.3 
3 
5 
0.4 

	 827 
1055 
911 
3968 
3602 
8744 
12731 
2270 

827 
1055 
911 
3900 
3602 
8743 
12550 
2270 

0.12 0 0 
2 1055 	 0.11 0 0 
3 911 	 0.23 0 0 
4 3846 	 0.32 0.02 0.01 
5 3602 	 0.13 0 0 
6 8104 	 1.22 0 0.08 
7 12300 	 4 0.01 0.02 
8 2270 	 0.07 0 0 

Algoritm 100Best

Best

f f
RPD

f
-

= ´

100Best GAMS

GAMS

f fBSE
f
-

= ´
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9 2717 0.3 
4 
3 
65 

	 2717 
5814 
6665 
11270 

2717 
5799 
6665 
11270 

0.09 0 0 
10 5680 	 1 0.002 0.02 
11 6144 	 2 0 0.08 
12 10522 	 10 0 0.07 

Average	 4831 6.9 	 5088 5077 1.6 0.002 0.023 
	

 

Table	9	
	Comparison	of	solution	values	obtained	by	the	ICA	and	GAMS	software.	

Instance	
No. 

Solution	method 

Average		
RPD 

Average	
BSE 

Exact	solution 	 ICA 

Objective	
function 

Runtime	
(sec.) 

	 Avg.	
objective	
function 

Best	
objective	
function 

Avg.	
runtime	
(sec.) 

1 827 0.27 
0.32 
0.31 
1 
0.3 
3 
5 
0.4 
0.3 
4 
6 
65 

	 827 
1055 
911 
3846 
3602 
8153 
12368 
2270 
2717 
5713 
6144 
10900 

827 
1055 
911 
3846 
3602 
8153 
12306 
2270 
2717 
5713 
6144 
10857 

0.12 0 0 
2 1055	 	 0.20 0 0 
3 911 	 0.21 0 0 
4 3846 	 1 0 0 
5 3602 	 0.15 0 0 
6 8104 	 1.5 0 0.006 
7 12300 	 3 0.005 0 
8 2270 	 0.14 0 0 
9 2717 	 0.19 0 0 
10 5680 	 2.5 0 0.006 
11 6144 	 2 0 0 
12 10522 	 21 0.003 0.04 

Average	 827 0.27 	 827 827 0.12 0 0 
	
	
5.2.2 Proposed	Metaheuristics	comparison	on	large-scale	problems 
In	 this	 section,	we	 aim	 to	 compare	 the	 result	obtained	 by	 the	 proposed	 algorithms	

while	solving	large-scale	instances.	To	make	such	a	comparison	between	SA	and	ICA,	the	
percent	reduction	of	the	best	solution	(%	PRBS)	and	the	percent	reduction	of	the	average	
solution	(%	PRAS)	are	used	(Barzinpour	et	al.,	2014).	
	

(34)  
 

(35)  

	
Table	10	shows	the	characteristics	of	the	large-scale	problems	used	in	this	experiment	

and	Table	 11	 presents	 the	numerical	 results	of	 12	 instances	 solved	 by	 both	 proposed	
algorithms.	
Figs.	8	and	9	compare	the	SA	and	ICA	algorithms	in	terms	of	the	RPD	and	BSE.	As	can	

be	seen,	the	ICA	has	a	superior	performance	compared	to	the	SA	algorithm	in	both	criteria.	
	

-% 100SA ICA

SA

Best BestPRBS
Best

= ´

-% 100SA ICA

SA

Average AveragePRAS
Average

= ´



20	
 

Table	10	
Characteristics	of	large-scale	instances.	

Instance	
No. 

Problem	characteristics 

Sources DC Customers Items Conveyances 

13 9 4 5 3 4 
14 9 4 7 4 4 
15 10 5 8 5 5 
16 15 6 11 6 5 
17 20 10 11 6 6 
18 22 10 15 6 6 
19 25 10 15 6 7 
20 30 12 18 8 7 
21 35 12 20 9 9 
22 40 15 20 10 10 
23 50 10 50 5 5 
24 60 15 60 5 5 
	

Table	11	
Comparison	of	solution	values	obtained	by	SA	and	ICA.	

Instance	N
o.	

	 Solution	method %
PR
BS  

%
/PR

AS 

SA 	 ICA 
Avg.	of	the	
objective	
function 

Min.	
objective	
function 

Avg.	
runtime 

	 Avg.	of	the	
objective	
function 

Min.	
objective	
function 

Avg.	
runtime 

13 16804 16742 176 	 16345 16286 183 2.72	 2.73	
14 32301 32066 187 	 29842 29842 196 6.94	 7.61	
15 45898 45804 347 	 45682 45589 363 0.47	 0.47	
16 74296 74296 695 	 73550 72567 734 2.33	 1	
17 72269 72269 813 	 71414 71414 920 1.18	 1.18	
18 100960 100440 1350 	 101800 100830 1348 -0.39	 -0.83	
19 103680 102670 1373 	 101540 100740 1406 1.88	 2.06	
20 159594 159350 1697 	 154040 152320 1710 4.41	 3.48	
21 209320 208060 1862 	 189500 189500 2330 8.92	 9.47	
22 247050 244270 2560 	 225146 225146 2670 7.83	 8.87	
23 287520 287520 2080 	 275998 275998 2250 4	 4	
24 325340 324190 2260 	 325480 325480 2330 -0.4	 -0.04	
Avg.		 139586 138973 1228	 	 134195	 133809	 1561	 4.07	 3.33	
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Fig.	8.	Comparison	of	the	RPD	between	the	SA	and	ICA	algorithm		

	
	

	
Fig.	9.	Comparison	of	the	BSE	between	the	SA	and	ICA	algorithm		

	
Fig.	10	compares	the	execution	times	of	different	problems	in	the	exact	solution	and	

the	two	meta-heuristic	algorithms.	As	shown	in	this	chart,	 the	execution	time	of	GAMS	
increases	 exponentially	 as	 the	 problem	 size	 increases	 while	 its	 effect	 on	 the	
computational	time	of	the	meta-heuristic	algorithms	is	not	so	significant.	
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Fig.	10.	Comparison	of	runtime	between	GAMS	software,	SA	and	ICA	algorithms		

	
Finally,	we	 compared	 the	 convergence	 of	 two	proposed	 algorithms,	 and	 the	 results	

related	to	instance	7	are	depicted	in	Fig.	11.	Running	the	algorithms	for	400	iterations,	
the	best	objective	value	obtained	by	SA	is	12550	while,	the	ICA	has	a	better	performance	
achieving	12306	for	the	final	objective	function.	
	

	
Fig.	11.	Comparing	the	SA	and	ICA	on	instance7	

	

6 Sensitivity	analysis		
In	 this	 section,	 different	 sensitivity	 analyses	 are	 performed	 on	 key	 parameters	 to	

evaluate	 their	 impact	 on	 the	 transportation	 costs.	 We	 consider	 four	 groups	 of	 input	
parameters	to	perform	the	sensitivity	analyses:	arc	capacity,	conveyance	capacity,	step	
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related	 parameter	 and	 supply	 parameter.	 The	 sensitivity	 analyses	 are	 conducted	 on	
instances	7,	10	and	12	to	evaluate	the	impact	of	adjustments	in	important	parameters	on	
the	total	costs.		

6.1 Analysis	of	the	impact	of	the	conveyances	and	arc	capacities			
The	 conveyances	 capacity	 and	 arcs	 capacity	 are	 two	 influential	 factors	 in	

transportation	 problems.	 In	 this	 subsection,	 we	 investigate	 the	 impact	 of	 changing	
conveyances	capacity	and	arcs	capacity	on	the	total	transportation	costs,	independently	
and	 simultaneously.	 We	 used	 the	 same	 instances	 7,	 10	 and	 12	 to	 examine	 whether	
adjustments	in	conveyances	and	arcs	capacity	can	be	used	as	a	strategy	to	improve	the	
transportation	costs.	Fig.	12	illustrates	the	changes	in	transportation	cost	over	a	range	of	
conveyance	capacity	and	arc	capacity	levels.	A	general	insight	that	can	be	observed	is	that	
transportation	cost	increases	with	the	reduction	in	both	conveyance	and	arc	capacities.	
Regardless	of	 the	arc	 capacity	variations,	with	an	 increase	 in	 conveyance	 capacity,	 the	
transportation	cost	will	increase.	This	can	be	explained	in	this	way:	the	more	increase	in	
conveyance	capacities,	the	more	items	with	less	costly	conveyances	can	be	transported.	
In	instance	10,	for	example,	if	the	capacity	of	each	conveyance	increases	by	15%,	the	total	
costs	decrease	by	0.86%.	In	instances	7	and	10,	more	than	20%	reduction	in	conveyance	
capacity	would	make	the	model	infeasible.	For	instance	12,	this	threshold	is	30%.	
Moreover,	regardless	of	conveyance	capacity	changes,	the	total	costs	decrease	as	the	

capacity	 of	 arcs	 expands.	 This	 occurs	 because	 higher	 arc	 capacities	 provide	 an	
opportunity	to	decide	to	open	arcs	at	less	cost.	In	these	cases,	the	maximum	reduction	in	
arc	 capacity	 that	 will	 maintain	 the	 feasibility	 of	 the	 model	 is	 30%.	 Furthermore,	 in	
instance	 7,	 for	 example,	 up	 to	 25%	 increase	 in	 conveyance	 capacity	 and	 up	 to	 20%	
increase	in	arc	capacity	lead	to	a	reduction	in	the	total	costs	and	further	increase	has	no	
effect	on	the	transportation	cost.	It	is	worth	noting	that	the	changes	in	the	transportation	
cost	value	are	not	proportional	to	the	problem	size.	In	instances	7	and	10,	the	model	is	
more	 sensitive	 to	 the	 conveyance	 capacity	 variations	 than	 to	 the	 arc	 capacity,	 but	 in	
instance	12	the	slope	of	arc	capacity	curve	is	steeper	than	the	conveyance	curve.	
Not	 surprisingly,	 Figure	 12	 shows	 that	 the	 simultaneous	 changes	 in	 capacity	

parameters	lead	to	more	changes	in	the	total	costs	in	comparison	to	independent	changes	
in	 arc	 and	 conveyance	 capacities.	 Considering	 the	 above-mentioned	 explanation,	 this	
behavior	is	logical.	
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Fig.	12.	Impact	of	the	capacity	parameters	on	the	transportation	cost	

6.2 Analysis	of	the	impact	of	the	step	parameter		
The	step	parameter	is	one	of	the	key	parameters	in	step	FCTP.	In	this	section,	we	aim	

to	evaluate	the	effect	of	this	parameter	changes	on	transportation	costs.	
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Fig.	13	illustrates	the	impact	of	changes	in	the	step	parameter	on	transportation	cost.	
According	 to	 this	 figure,	 with	 the	 decrease	 in	 this	 parameter;	 an	 extra	 fixed	 cost	 is	
imposed	 on	 the	 problem.	 Increasing	 the	 value	 of	 the	 step	 parameter	 provides	 the	
opportunity	to	transport	items	at	a	lower	cost.	As	seems	to	be	obvious	from	this	figure,	
instance	7	is	more	sensitive	to	step	parameter	changes	whereas	the	changes	in	the	step	
parameter	do	not	have	a	significant	effect	on	instance	10.		

	
Fig.	13.	Impact	of	the	step	parameter	variations	on	the	transportation	cost	

	
6.3 Analysis	of	the	impact	of	the	supply		
Fig.	14	illustrates	how	the	total	cost	is	affected	by	the	changes	in	values	of	supply	in	the	

case	of	three	test	instances.	Obviously,	any	increase	in	the	supply	will	result	in	reduced	
total	cost.		All	the	three	instances	follow	similar	patterns.	In	instance	10,	for	example,	if	
the	available	supply	increases	by	20%,	the	total	cost	decreases	by	1.47%.		However,	the	
curves	related	to	different	problems	do	not	have	the	same	slope	and	the	cost-saving	value	
is	not	proportionate	to	the	problem	size.		(i.e.	instance	12	is	less	sensitive	to	the	supply	
changes	 compared	 to	 the	 other	 two	 instances).	 As	 it	 is	 obvious	 from	 Fig.	 14,	 a	 20%	
increase	in	the	supply	will	result	in	a	total	cost	decreases	of	less	than	0.5%	and	more	than	
20%	increase	has	no	significant	effect	on	the	total	costs.	
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Fig.	14.	Impact	of	the	supply	variations	on	the	transportation	cost	

	
7.	Conclusions	and	future	research	avenues	
In	this	paper,	we	have	formulated	a	two-layer,	multi-commodity	and	capacitated	solid	

SFCTP.	The	proposed	model	has	been	solved	by	two	meta-heuristic	algorithms,	namely	
SA	and	ICA.	In	order	to	calibrate	the	parameters	of	the	proposed	algorithms,	the	Taguchi	
parameter	design	method	has	been	utilized.	We	have	simulated	12	instances	using	the	SA	
and	 ICA	 algorithms	 as	well	 as	 GAMS	 software	 to	 show	 the	 efficiency	 of	 the	 proposed	
algorithms.	 The	 performance	 of	 the	 SA	 and	 ICA	 algorithms	 has	 confirmed	 that	 the	
algorithms	can	be	considered	as	viable	solutions	to	cope	with	SFCTPs.	Furthermore,	SA	
and	 ICA	algorithms	have	been	 further	 compared	on	a	 set	of	 large-scale	 instances.	The	
computational	results	have	shown	that	the	ICA	is	more	efficient	in	comparison	to	SA.	In	
addition,	 a	 sensitivity	 analyses	 study	 is	 carried	 out	 on	 four	 parameters,	 including	 arc	
capacity,	vehicle	capacity,	the	parameter	related	to	the	step	structure	of	the	problem	and	
the	supplied	parameter,	and	their	effect	on	transportation	cost	is	analyzed.	The	results	
show	that	the	transportation	cost	is	inversely	proportional	to	both	the	aforementioned	
parameters.		
As	a	direction	for	future	research,	more	investigation	can	be	carried	out	to	develop	a	

multi-step	FCTP	and	also	to	include	the	aspects	related	to	the	sustainability	in	the	FCTP	
as	well.	In	addition,	due	to	the	importance	of	the	distribution	of	perishable	goods	with	the	
highest	 possible	 quality	 in	 a	 today’s	 industry,	 the	 transportation	 of	 perishable	 or	
breakable	products	can	also	be	taken	 into	consideration	 in	the	SFCTP	as	an	additional	
constraint.	Finally,	another	direction	for	future	investigation	can	consist	in	considering	
the	effects	of	disruptions	in	transportation	links	and	facilities.		
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