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Abstract: This work aims at investigating the free torsional vibration of one-directional nanostructures
with an elliptical shape, under different boundary conditions. The equation of motion is derived
from Hamilton’s principle, where Eringen’s nonlocal theory is applied to analyze the small-scale
effects. The analytical Galerkin method is employed to rewrite the equation of motion as an ordinary
differential equation (ODE). After a preliminary validation check of the proposed formulation,
a systematic study investigates the influence of the nonlocal parameters, boundary conditions,
geometrical and mechanical parameters on the natural frequency of nanorods; the objective is to
provide useful findings for design and optimization purposes of many nanotechnology applications,
such as, nanodevices, actuators, sensors, rods, nanocables, and nanostructured aerospace systems.

Keywords: carbon nanotubes; elliptical nanorod; free vibration; Hamilton’s principle; nonlocal
elasticity; torsional vibration

1. Introduction

Small-sized structures such as nanorods, nanotubes, nanowires, nanobeams, and nanoshells
are increasingly becoming key structural elements in nano- and micro-electromechanical systems
(NEMS/MEMS), as well as in nanostructured coatings and materials for aerospace applications.
In this context, several theories and experiments have been developed in the literature to study
the mechanical, physical, electronic and thermal properties of atomic scaled structures, namely,
boron nitride nanotubes [1,2], silica carbide nanotube/wires [3,4], graphene [5,6], and carbon nanotubes
(CNTs) [7–10]. Among them, CNTs have been introduced in the late 1990s by Iijima [11,12], and have
received an increased interest among the scientific community [13–24] due to their outstanding
mechanical, thermal, and electrical properties [25–28]. CNTs can be partitioned in two parts,
namely, the single-walled carbon nanotube (e.g., SWCNT) and the multi-walled carbon nanotube
(e.g., MWCNT) [29]. It is well known that CNTs are hollow tubes rolled up by graphene sheets [11,12],
which can be described as one-dimensional structures with lengths much higher than sectional sizes.
At the same time, cross-sections are usually modeled with a circular shape, but the possible influence
of noncircular shapes on the structural response would be of paramount importance in the design and
analysis of many aircraft components and parts [30,31]. In this framework, the classical continuum
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mechanics has largely failed to verify findings at the nanoscale. This has increased the necessity of
applying novel continuum mechanics theories and atomic/molecular dynamic simulations, along with
the application of many experimental investigations and measurements in line with the high precision
of minute sizes, see references [32–37], together with the review papers [38,39].

Starting with the nonlocal elasticity theory proposed for the first time by Eringen [40–44] to
handle small-scale effects, many further works have merged nonlocal and gradient continuum
formulations to study the size-dependent response of nanorods [45–54], nanobeams [55–63],
and nanoplates/nanoshells [64–71]. More specifically, as far as the torsional vibration problem
is concerned, different works in the literature have studied the size-dependent torsional behavior of
nanorods and CNTs via theoretical and/or numerical nonlocal elasticity formulations. Ansari et al. [72]
applied two approaches, namely the strain gradient theory (SGT), and molecular dynamics (MD),
to determine the torsional vibration of CNTs, and its sensitivity to the nonlocal parameter. Fatahi-Vajari
and Imam [73] investigated the torsional vibration of SWCNTs with zigzag and armchair structures by
means of the MD, and surveyed the influence of the small-scale parameter, as well as the chiral effects
on the structural response. In addition, a double CNT system connected by a torsional elastic medium
was modeled by Arda and Aydogdu [74], for two various boundary conditions (BCs), to illustrate
the effect of the elastic medium stiffness and the small-scale parameter on the torsional vibration of
the nanostructure. Li [75] applied two reverse nonlocal models, including weakened and enhanced
models to justify the nonlocal torsional natural frequencies of CNTs, and proposed a semi-continuum
model with discrete atomic layers in the CNT cross section. In a more recent work, Aydogdu and
Arda [76] analyzed the torsional frequencies of double carbon nanotubes, based on a nonlocal elasticity
theory, while discussing the sensitivity of the response to the nonlocal parameter, the Van der Waals
force interaction, and the nanotube length. Demir and Civalek [77] investigated both the torsional and
axial vibration of microtubules based on a nonlocal continuous and discrete size-dependent rod model.
In line with the previous work, Murmu et al. [78] performed a size-dependent parametric analysis of
the torsional vibration of a single-walled CNT-buckyball system for nanoresonators, while tuning the
mass inertia for design purposes. Suzuki et al. [79] proposed an ultra-precision sculpturing method in
micro- and nano-structures for difficult-to-cut materials. More specifically, elliptical vibration cutting
(EVC) was applied with a single crystal diamond as controlled cutting and machining tool for steel
materials, while monitoring the structural vibration amplitudes. Similarly, Zhang et al. [80] applied
the EVC technology to simplify the machining process of textured surfaces. Different EVC devices
were employed, compared and verified in terms of their accuracy; the role of the elliptical vibrator was
explained in detail for the manufacturing process of micro- and nano-structures. An elliptical vibration
texturing was also adopted by Yang et al. [81] to colorize metallic surfaces with periodic micro- and
nano-scale materials, and to optimize the metal surfaces properties.

Based on the above-mentioned practical problems, even more accurate methods have been adopted
very recently to treat torsional vibrations, both analytically and/or numerically. In this framework,
Mikeš and Jirásek [82] established a numerical method for free warping structures with an elliptical
cross section, while adopting the finite element approach to handle more complicated cross sections.
Barr [83] studied the torsional vibration of a uniform rod with a rectangular cross section to investigate
the dispersion of torsional waves within rods, and its sensitivity to longitudinal stresses and inertia
effects. In addition, Stephen [84] modeled beams with an elliptical cross section, and compared the
dynamic torsional predictions by different theories. Francu et al. [85] employed the Airy functions
to analyze the stress–strain analytical expressions of warping beams with different noncircular cross
sections. Christides and Barr [86] modeled one or more pairs of symmetric cracks in uniform beams
with a noncircular cross section, for the study of their torsional vibration, and the computation of their
fundamental natural frequencies for different crack depths. In some further works by Loya et al. [87–89],
different nonlocal cracked models were proposed to treat the torsional and bending vibration of CNTs,
and their sensitivity to the nonlocal small-scale parameter, crack severity, and cracked section position,
together with different boundary conditions.
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According to the above literature review, however, there is a general lack of works focusing
on the nonlocal dynamic torsion of nanostructures with noncircular cross sections. This topic is
tackled here for elliptical nanorods in a nonlocal context, as a pioneering study of additional and
more complicated shapes of practical interest. The nonlocal governing equation of the problem is
obtained by means of Hamilton’s principle, and discretized via the Galerkin method. A systematic
investigation aims at checking the sensitivity of the nonlocal dynamic twisting response to the nonlocal
parameter, geometry parameters, and stiffness of the torsional spring, which could be of great interest
for nanostructural design.

2. Nonlocal Elasticity Theory

According to the well-known MEMS/NEMS applications of micro/nano-roads under a torsional
load (e.g., NEMS oscillators, torsional micromirrors, torsional miroscanners, etc.), nanostructures
usually feature noncircular cross sections, primarily of elliptical shape, as visible in the TEM image of
Figure 1, for a platinum nanowire on a MgO (110) substrate [90].
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Let us consider a clamped-clamped (C-C), clamped-free (C-F), and clamped-torsional spring (C-T)
nanorod, of length l, and radii a and b in the y-axis and z-axis, respectively, as depicted in Figures 2–4.
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Figure 2. Clamped-clamped (C-C) nanorod with an elliptical cross section.
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Figure 3. Clamped-free (C-F) nanorod with an elliptical cross section.
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Figure 4. Clamped-torsional (C-T) spring nanorod with an elliptical cross section.

The displacement field for any arbitrary point under a torsional vibration, is defined by the
following components

u(x, t) = ψ(y, z) ∂θ∂x

v(x, t) = −zθ(x, t)

w(x, t) = yθ(x, t)

(1)

where the x-axis corresponds to the centerline of the CNT, u,v, and w denote the displacement
components in the x, y and z direction, respectively. Besides, θ is the angular twist, and ψ(y, z)
represents the warping function, defined as ψ(y, z) = y× z

(
b2
−a2

b2+a2

)
. The strain field is, thus, governed

by the following kinematic relations

εxy = ∂u
∂y + ∂v

∂x =
(
∂ψ
∂y − z

)
∂θ
∂x

εxz =
∂u
∂z + ∂w

∂x =
(
∂ψ
∂z + y

)
∂θ
∂x

εyz =
∂v
∂z +

∂w
∂y = 0

εxx = εyy = εzz = 0

(2)

which are, in turn, related to the stress components σxy, σxz by means of the constitutive relations.
The torsional couple acting on the twisted noncircular body is, thus, expressed as [91]

M =

∫
A

(
σxy

(
∂ψ

∂y
− z

)
+ σxz

(
∂ψ

∂z
+ y

))
dA (3)
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Hamilton’s Principle

Hamilton’s principle is then employed to derive the equation of motion in the following form∫ t

0
δ(U − T + Wext)dt = 0 (4)

where U, T and Wext refers to the strain energy, the kinetic energy, and the external works, respectively.
For noncircular nanorods, the strain energy is defined in a variational form as follows

δU =

∫
V
σi jδεi jdV =

∫
V
(σxyδεxy + σxzδεxz)dV (5)

which is combined to Equation (2) to yield

δU = δ
∫
V

(
σxy

(
∂ψ
∂y − z

)
∂θ
∂x + σxz

(
∂ψ
∂z + y

)
∂θ
∂x

)
dV

= δ
∫
V

((
yσxz − zσxy

)
+

(
σxy

∂ψ
∂y + σxz

∂ψ
∂z

))
∂θ
∂x dAdx

(6)

By a further combination of Equation (6) with Equation (3) we obtain the following variational
expression for the strain energy

δU =
∫ l

0

∫
A

((
yσxz − zσxy + σxy

∂ψ
∂y + σxz

∂ψ
∂z

)
∂δθ
∂x

)
dxdA+

+
∫ l

0

∫
A

(
σxy

∂δψ
∂y + σxz

∂δψ
∂z

)
∂θ
∂x

)
dxdA

(7)

By integration of δU within a certain lapse of time [0, t] we obtain∫ t

0
δU = −

∫ t

0

∫ l

0

∂M
∂x
δθdx

dt (8)

The kinetic energy is defined as

T =
1
2

∫
V

ρ

(∂u
∂t

)2

+

(
∂v
∂t

)2

+

(
∂w
∂t

)2dV (9)

By substituting the first derivative of Equation (1) with respect to the time into Equation (9),
the kinetic energy can be rewritten as

T =
1
2

∫
V

ρ

ψ2(y, z)
(
∂2θ
∂x∂t

)2

+

(
−z
∂θ
∂t

)2

+

(
y
∂θ
∂t

)2dV = I1 + I2 (10)

where I1 and I2 include the axial and polar inertia terms, defined as

I1 =
1
2
ρ

∫ l

0

∫
A

ψ2(y, z)
(
∂2θ
∂x∂t

)2

dAdx (11)

I2 =
1
2
ρIp

∫ l

0

(
∂θ
∂t

)2

dx =
1
2

I0

∫ l

0

(
∂θ
∂t

)2

dx (12)
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Ip and I0 denote the polar moment of inertia, and mass inertia, respectively, expressed as

Ip =

∫
A

(
y2 + z2

)
dA (13)

I0 = ρIp (14)

The first variation of I1 can be determined as follows

δI1 =

∫ l

0
ρIψ

∂2θ
∂t∂x

∂2(δθ)

∂t∂x
dx +

∫ l

0
ρI2
θ

∫
A

ψδψdA (15)

where

Iψ =

∫
A

ψ2dA (16)

Iθ =

∫ l

0
ρ

(
∂2θ
∂t∂x

)
dx (17)

The first variation of I1 in the Hamilton’s principle can be expressed as∫ t

0
δI1 = ρIψ

∫ t

0

∫ l

0

∂4θ

∂x2∂t2 δθdxdt− ρIψ

∫ t

0

∂3θ

∂x∂t2 δθ

∣∣∣∣∣∣ l
0

dt (18)

whereas, the first variation of I2 is defined as

δI2 =

∫ l

0
ρIp

∂θ
∂t
∂δθ
∂t

dx = I0

∫ l

0

∂θ
∂t
∂δθ
∂t

dx (19)

By substitution of I2 in Hamilton’s principle, we calculate∫ t

0
δI2 = −I0

∫ t

0

∫ l

0

∂2θ

∂t2 dx (20)

Finally, the variation of kinetic energy can be stated as

δ
∫ t

0 T = ρIψ
∫ t

0

∫ l
0

∂4θ
∂x2∂t2 δθdxdt− ρIψ

∫ t
0

∂3θ
∂x∂t2 δθ

∣∣∣∣∣∣ l
0

dt

+
∫ t

0 Iθ
∫

A ψδψdAdt− I0
∫ t

0

∫ l
0
∂2θ
∂t2 dx

(21)

In total absence of the external work, the combination of Equations (4), (8), and (21) yields the
following equation of motion

∂M
∂x

= I0
∂2θ

∂t2 − ρIψ
∂4θ

∂x2∂t2 (22)

According to Eringen [41], the nonlocal constitutive relations of the nanostructure take the
following form

σxy − µ
2 ∂

2σxy

∂x2 = G
(
∂ψ

∂y
− z

)
∂θ
∂x

(23)

σxz − µ
2 ∂

2σxz

∂x2 = G
(
∂ψ

∂z
+ y

)
∂θ
∂x

(24)
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µ being the nonlocal parameter, which accounts for the characteristic internal length of the covalent
bonds of carbon. Thus, the nonlocal twisting moment is governed by the following relation

M− µ2 ∂
2M
∂x2 = G

∫
A

(∂ψ∂y
− z

)2

+

(
∂ψ

∂z
+ y

)2∂θ∂x
dA = GIΦ

∂θ
∂x

(25)

with

IΦ =

∫
A

(∂ψ∂y
− z

)2

+

(
∂ψ

∂z
+ y

)2dA (26)

Substituting the first derivative of Equation (22) into Equation (25) yields

M− µ2
(
I0
∂3θ

∂t2∂x
− ρIψ

∂5θ

∂x3∂t2

)
= GIΦ

∂θ
∂x

(27)

Thus, the equation of motion for noncircular nanorods, takes the following final form

ρIψ
∂4θ

∂x2∂t2 − I0
∂2θ

∂t2 + µ2
(
I0

∂4θ

∂t2∂x2 − ρIψ
∂6θ

∂x4∂t2

)
+ GIΦ

∂2θ

∂x2 = 0 (28)

3. Analytical Solution

Based on the Galerkin method, we compute the theoretical solution of Equation (28), for nanorods
with an elliptical cross-section, namely

θ(x, t) =
∞∑

n=1

Θn(x)eiωt (29)

Θn being the nth mode shape, for a fixed boundary condition, and is expressed as

Θn = Cn sin(Px) (30)

where the parameter P depends on the selected boundary condition. For a C-C, C-F, C-T, this parameter
is defined as

P = nπ/l (31)

P = (2n− 1)π/2l (32)

P = α/l (33)

where α is determined by solving the following equation [91]

tanα = −α(GIΦ/kbl) (34)

In the last relation, kb denotes the stiffness of the boundary spring. By substitution of Equation (29)
into Equation (28) we obtain the following expression for the natural frequency

ωn =

√√
GIΦP2

ρIψP2 + I0 + µ2
(
I0P2 + ρIψP4

) (35)

which can be redefined in dimensionless form as

ωn = ωn × l×

√
ρ

G
(36)
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4. Results and Discussion

This section is devoted to the numerical study of the vibration response for elliptical nanorods,
with shear modulus G = 498GPa and density ρ = 1330 kg/m3, in agreement with references [91–94].
A parametric investigation aims at checking the sensitivity of the response to some input parameters.
The analysis starts with a comparative analysis of the first four dimensionless natural frequencies,
for the reference circular case, under the assumptions a = b = 1nm, µ/l = 0.1 and l = 20nm, where we
verify the accuracy of our results with respect to the available literature [95]. Then we consider the
double effect of a varying geometrical ratio b/a between the vertical and horizontal radius, and nonlocal
parameter µ, on a nanorod of length l = 20 nm with C-C (Table 1) or C-F (Table 2) boundary conditions.
Based on the results from both tables, an increased nonlocal parameter yields a meaningless reduction
of the natural frequency. At the same time, for a fixed nonlocal parameter, an increased dimensionless
ratio b/a gets a non monotonic variation of the natural frequencies, for both the selected boundary
conditions. An increased frequency is noticed, first, for an increasing b/a ratio from 0.1 up to 1
(i.e., when the elliptic shape reverts to the circular one). The contrary occurs for b/a ratios higher than
the unit value, with an overall decrease in the vibrational frequency of the nanostructure. In this last
case, the elliptical shape becomes vertical, and the natural frequency reduces due to the decreased
momentum of inertia compared to the horizontal elliptical shape, in agreement with Equation (26).

Table 1. Comparative evaluation of the first four dimensionless natural frequencies for a C-C circular
nanorod with respect to the literature (a = b = 1nm, µ/l = 0.1, l = 20 nm ).

n = 1 n = 2 n = 3 n = 4

Present 2.9971 5.3201 6.8586 7.8247
Ref. [95] 2.9971 5.3201 6.8586 7.8247

Table 2. Free torsional vibration of C-C elliptical nanorod with a varying b/a ratio and nonlocal
parameter µ.

µ × 10−9 b/a = 0.1 b/a = 0.2 b/a = 1 b/a = 5 b/a = 10

0 0.6220 1.2082 3.1415 1.2062 0.6208
1 0.6145 1.1935 3.1035 1.1916 0.6133

1.5 0.6055 1.1760 3.0578 1.1741 0.6043
2 0.5934 1.1526 2.9971 1.1508 0.5923

A further physically consistent justification for this behavior is the fact that a twisted horizontal
elliptical cross section features a lower angular rotation at a certain lapse of time than a vertical cross
section due its higher stiffness.

Moreover, for both boundary conditions, the frequency response is symmetric with respect to
the circular limit case (i.e., when b/a = 1), with a non linear variation for both boundary conditions.
According to a comparative evaluation of results in Tables 2 and 3, C-C nanorods yield higher
frequencies than C-F structures, for the same fixed geometry and nonlocal assumptions. A C-C
structure, indeed, is expected to exhibit a stiffer behavior than a C-F one, because of the intrinsically
different nature of the two boundary conditions.

Table 3. Free torsional vibration of C-F elliptical nanorod with a varying b/a ratio and nonlocal
parameter µ.

µ × 10−9 b/a = 0.1 b/a = 0.2 b/a = 1 b/a = 5 b/a = 10

0 0.3110 1.2565 1.5708 1.2564 0.3108
1 0.3100 1.2527 1.5659 1.2525 0.3099

1.5 0.3089 1.2479 1.5600 1.2478 0.3087
2 0.3072 1.2413 1.5517 1.2412 0.3071
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All the previous results are plotted in Figures 5 and 6, for a C-C and C-F boundary condition,
respectively, where it is clearly visible that frequency computations based on a circular simplified
assumption always overestimate the actual response of a more complicated actual geometrical cross
section. All the plots in both figures, indeed, reach the peak value in the circular case (i.e., for b/a = 1),
which in turn, would be overestimated by a classical theory (i.e., for µ = 0), compared to a nonlocal
theory. This means that possible nonlocalities within nanostructures must be properly estimated (also
from an experimental standpoint) in order to provide accurate and physically consistent results.Vibration 2020, 3 FOR PEER REVIEW  10 
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A further systemic study considers the combined effect of the nonlocal parameter and stiffness of
the boundary spring (kb) on the vibration response of a C-T elliptical nanorod with a = 0.4 nm and
b = 0.2 nm (i.e., b/a = 0.5), as summarized in Table 4, and plotted in Figure 7. Based on the results,
it is worth noticing that increased torsional stiffness of kb from 0.01× 10−18 to 10× 10−18 GPa× nm3

enables higher frequencies for the same fixed nonlocality of the structure, which means a reduction in
the structural deformability. The sensitivity of the response to kb is more pronounced for lower values
of the nonlocal parameter, and reduces gradually for higher nonlocalities. Moreover, a clear decrease
in the natural frequency is observed, once again, for an increased nonlocality of the nanostructure,
while keeping fixed the torsional stiffness of the boundary spring. This reflects the great importance of
a correct modeling of boundary conditions for design purposes.

Table 4. Free torsional vibration of a C-T elliptical nanorod for a varying µ and kb. a = 0.4 nm,
b = 0.2 nm, and l = 20 nm.

kb × 10−18

(GPa × nm3)

µ × 10−9

0 1 1.5 2

0.01 1.2815 1.2774 1.2723 1.2653
0.1 1.4690 1.4628 1.4552 1.4448
1 2.1225 2.1040 2.0817 2.0515

10 2.4638 2.4351 2.4006 2.3547
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5. Concluding Remarks

The free vibration of the torsional vibration of nanorods with an elliptical cross section is explored
theoretically in this work, for three different boundary conditions, namely, a C-C, C-F, and C-T BCs.
Hamilton’s principle is selected to derive the equation of motion. A Galerkin method is here employed
to solve the governing equation of the problem, where a parametric study is performed to check for
the sensitivity of the vibration response to different parameters, including the nonlocal parameter,
the geometrical vertical-to-horizontal b/a radii, along with the boundary conditions. Based on the
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systematic investigation, it seems that an increased b/a ratio up to the unit value exhibits increasing
values of the frequency, while reaching the peak value for b/a = 1. It follows a decreasing branch for
b/a > 1, due to the reduction of the momentum of inertia compared to a horizontal state of the ellipse.
Moreover, an increased nonlocal parameter reduces the natural frequency, thus verifying the inaccuracy
of classical theories compared to the nonlocal formulations. The structural response of nanorods is also
affected by the selected boundary condition, where C-C boundaries get higher frequencies, compared
to a C-F boundary condition. In C-T nanorods, an increased stiffness of the spring provides higher
natural frequencies, under the same fixed nonlocal assumptions. This sensitivity to the stiffness of the
spring is more pronounced for lower values of the nonlocal parameter, and becomes meaningless for
higher nonlocalities. A perfect circular shape always yields the highest natural frequencies, and could
overestimate the actual twisting vibration response of a noncircular shape. These results are of great
interest for design purposes, and could be extended to more complicated noncircular cross sections as
a possible development of this work.
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