
Fast Online Computation of the Qn Estimator with Applications to the Detection

of Outliers in Data Streams

Massimo Cafaroa,∗, Catiuscia Mellea, Marco Pulimenoa, Italo Epicocoa

aUniversity of Salento, Lecce, Italy

Abstract

We present fqn (Fast Qn), a novel algorithm for online computation of the Qn scale estimator. The algorithm works in

the sliding window model, cleverly computing the Qn scale estimator in the current window. We thoroughly compare

our algorithm for online Qn with the state of the art competing algorithm by Nunkesser et al., and show that fqn (i) is

faster, requiring only O(s) time in the worst case where s is the length of the window (ii) its computational complexity

does not depend on the input distribution and (iii) it requires less space. To the best of our knowledge, our algorithm

is the first that allows online computation of the Qn scale estimator in worst case time linear in the size of the window.

As an example of a possible application, besides its use as a a robust measure of statistical dispersion, we show how

to use the Qn estimator for fast detection of outliers in data streams. Extensive experimental results on both synthetic

and real datasets confirm the validity of our approach.

Keywords: data streams, sliding window model, Qn estimator, outliers.

1. Introduction

The Qn estimator (Rousseeuw & Croux, 1993) is a robust statistical measure of dispersion. Given a set of obser-

vations, it provides a scale estimation by determining the first quartile of the pairwise absolute differences of all data

values. In statistics, there are two notions of robustness: resistance and efficiency (Mosteller & Tukey, 1977).

Resistance means that modifying a small part of the observations, even by a very large amount, does not cause the

estimate to change by a large amount as well. This property is usually measured by the so-called breakdown point,

which is defined as the fraction of incorrect observations (with arbitrarily large values) that an estimator can handle

before providing an incorrect (arbitrarily large) estimate.

Efficiency means that an efficient statistic provides an estimate very close to its optimal value when the underlying

distribution of the observations is known; from this perspective, a robust statistic provides high efficiency under many

different conditions and it needs fewer observations than a less efficient one to achieve a given performance.

It is worth noting here that, even though several statistics have one of these two robustness properties, only a

few statistics exhibit both resistance and robustness of efficiency. For instance, even though the standard deviation

is the most commonly used statistic for scale estimation, and provides an efficient estimate if the observations come

from a normal distribution, it is not robust. Indeed, it is enough to change just one value to dramatically alter the

corresponding estimate. Therefore, the standard deviation is not resistant. Moreover, it does not provide robustness

of efficiency when the observations are not normally distributed.

Among the robust statistics commonly used instead of the standard deviation, we recall here the MAD (Median

Absolute Deviation about the median of the data) estimator (Hampel, 1974) and the IQR (interquartile range) (Tukey,

1977).

Given a set of observations, the MAD is the median of the absolute deviations from the median of the observations.

Even though the MAD is a robust scale estimator, this statistics is affected by the following limitations: it is not highly

∗Corresponding author

Email addresses: massimo.cafaro@unisalento.it (Massimo Cafaro), catiuscia.melle@unisalento.it (Catiuscia Melle),

marco.pulimeno@unisalento.it (Marco Pulimeno), italo.epicoco@unisalento.it (Italo Epicoco)

Preprint submitted to Elsevier March 28, 2020

efficient for normally distributed observations and is based on the implicit assumption of symmetry, since it measures

the distance from the median, which is a measure of central location.

The IQR is defined as the difference between the 75th and the 25th percentiles, or between upper and lower

quartiles: IQR = Q3 - Q1. This estimator is not robust, since its breakdown point is only 25% (Rousseeuw & Croux,

1992).

The Qn estimator has been proposed by Rousseeuw and Croux and is a better alternative with regard to MAD. It

is a robust estimator with a breakdown point equal to 50% and a Gaussian (normal) efficiency of about 82% but, in

constrast to MAD, this estimator does not depend on symmetry.

In this paper we are concerned with the problem of computing the Qn estimator (Rousseeuw & Croux, 1993)

online. However, computing the Qn estimator by directly using its definition is costly, so that we present here fqn

(Fast Qn) a novel algorithm that can be used in a streaming context being fast without sacrificing accuracy, i.e., the

resulting algorithm provides a novel way to quickly compute exact Qn values.

The algorithm works in the sliding window model (Datar, Gionis, Indyk & Motwani, 2002; Muthukrishnan, 2005),

in which freshness of recent items is captured either by a time window, i.e., a temporal interval of fixed size in which

only the most recent items are taken into account or by an item window, i.e. a window containing a predefined number

of recent items. The items in the stream become stale over time, since the window periodically slides forward.

Besides being useful for online computation of exact Qn values, as an example of possible application of our

algorithm, we show how to use it for anomaly detection, i.e., we apply it to the problem of detecting outliers in a data

stream.

A data stream σ can be thought as a sequence of n items drawn from a universeU. In particular, the items need

not be distinct, so that an item may appear multiple times in the stream. Data streams are ubiquitous, and, depending

on the specific context, items may be IP addresses, graph edges, points, geographical coordinates, numbers etc.

Since the items in the input data stream come at a very high rate, and the stream may be of potentially infinite

length (in which case n refers to the number of items seen so far), it is hard for an algorithm in charge of processing

its items to compute an expensive function of a large piece of the input. Moreover, the algorithm is not allowed the

luxury of more than one pass over the data. Finally, long term archival of the stream is usually unfeasible. A detailed

presentation of data streams and streaming algorithms, discussing the underlying reasons motivating the research in

this area is available to the interested reader in (Muthukrishnan, 2005).

With regard to the anomaly detection application, this work is based on the following assumptions: (i) the input

is provided in a streaming fashion; (ii) the data are univariate; (iii) the data come from a parametric distribution. In

practice, we are given as input a univariate data stream whose items are real or integer numbers coming from an

unknown parametric distribution and are asked to determine its outliers.

Given the above assumptions, the most common and suitable outlier detection techniques are based on the so-

called extreme value analysis (III, 1975), which is designed for one dimensional data (even though it may be general-

ized to cover multivariate data as well).

We use extreme value analysis along with the Qn estimator, which is a robust statistical method for univariate

data, in order to detect outliers. An outlier is an observation which markedly deviates from other members of the

dataset. Looking for outliers means searching for observations which appear to be inconsistent with the rest of the

data (Hodge & Austin, 2004). Outliers arise because of human or instrument errors, natural deviations in populations,

fraudulent behaviour, changes or system’s faults, sampling errors and data processing errors.

Detecting an outlier may indicate a system abnormal running condition such as an engine defect, an anomalous

object in an image, an intrusion with malicious intension inside a system, a fault in a production line etc. An outlier

detection system accomplishes the task of monitoring data in order to reveal anomalous instances. A comprehen-

sive list of outlier detection use-cases is given in (Hodge & Austin, 2004); here, we briefly recall some of the most

important uses.

In order to guarantee the security of computer systems, it is important to collect and analyze different types of data

regarding the operating system calls, the network traffic and other user actions. The analysis may reveal that the data

show an unusual behaviour owing to malicious activity. The process of recognizing suspect activity is referred to as

intrusion detection.

Detecting fraudulent applications of credit cards is becoming increasingly important, since sensitive information

related to credit cards can be easily compromised and stolen. The challenge here is to detect unauthorized uses of

2

credit cards, which may exhibit very different patterns. For instance, this can give rise to a burst of purchases from

many different stores from a specific location or, instead, to very few but large transactions.

Another application is related to processing sensor data. Notably, sensors are becoming pervasive as connected

sources of real time data. Coupled with the rise of the IoT (Internet of Things) that means an exponential increase

related to the availability of streaming data. In particular, many applications in charge of analyzing such data need to

to able to detect sudden changes in the underlying patterns, since these changes may refer to events of interest.

For law enforcement outlier detection can provide many insights. In this field possible applications include for

instance fraud detection in financial transactions, trading activities and insurance claims. In all of the cases, being able

to correctly identify unusual patterns related to criminal offences is difficult, owing to the fact that often these patterns

can only be discovered over time through monitoring of multiple actions of an entity.

Regarding health, the goal of many medical applications is to provide patients with a medical diagnosis on the

basis of the available data, acquired by multiple devices such as MRI (Magnetic Resonance Imaging) scans, PET

(Positron Emission Tomography) scans or ECG (electrocardiogram) time-series. In this case, unusual patterns are

often signs of a disease condition.

In Earth Sciences, a huge amount of spatio-temporal data is being collected through different mechanisms such as

for instance satellites and remote sensing. These data are related to weather patterns, climate changes, or land-cover

patterns. Discovering anomalies may provide significant insights about human activities or environmental trends.

The rest of this paper is organized as follows. Section 2 introduces the Qn estimator and discusses why it can be

used as a robust statistical approach to outlier detection, whilst Section 3 presents related work. We introduce our fqn

algorithm in Section 4. The outcomes of the experiments carried out are presented and discussed in Section 5. Finally,

we draw our conclusions in Section 6.

2. The Qn scale estimator and its use for outlier detection

In statistics, Qn is a robust measure of dispersion (Rousseeuw & Croux, 1993) proposed by Rousseeuw and Croux;

it is a rank-based estimator with its statistic based on absolute pairwise differences. The statistic does not require

location estimation.

In particular, given a set {x1, x2, . . . , xn}, the value of the Qn statistic was initially defined by the authors as

Qn = 2.2219
{∣

∣

∣xi − x j

∣

∣

∣ ; i < j
}

(k)
(1)

where k ≈
(

n

2

)

/4 and the notation {·}(k) denotes computing the kth order statistics on the set. However, the authors

slightly modified the definition in equation (1) by taking into account that

(

h − 1

2

)

+ 1 ≤ k ≤

(

h

2

)

, (2)

where h = ⌊n/2⌋ + 1. The final definition is

Qn = dn 2.2219
{∣

∣

∣xi − x j

∣

∣

∣ ; i < j
}

(k)
, (3)

where k =
(

h

2

)

and dn is a correction factor which depends on n. The breakdown point (Donoho & Huber, 1983)

is one of the most popular measures of robustness of a statistical procedure. Originally introduced for location func-

tionals, it has been generalized to scale, regression and also to other situations. The breakdown point of Qn is 50%,

which means that this estimator is robust enough to counter the negative effects of almost 50% large outliers without

becoming extremely biased. Moreover, Qn exhibits a Gaussian efficiency of about 82%, i.e., it is an efficient estimator

since it needs fewer observations than a less efficient one to achieve a given performance. In contrast, the MAD

(Median Absolute Deviation about the median of the data) estimator (Hampel, 1974) provides an efficiency of about

36%.

It is worth noting here that for a static dataset of n items the size of the set of the absolute pairwise differ-

ences is quadratic in n, so that determining the kth order statistic using a naive approach requires in the worst

case O(n2 lg n) time by sorting the O(n2) differences. A better approach consist in using the Select algorithm

3

(Blum, Floyd, Pratt, Rivest & Tarjan, 1973) which is linear in the input size in the worst case, requiring O(n2). In

practice, the QuickSelect algorithm (Floyd & Rivest, 1975; Hoare, 1961) is used instead owing to its speed, despite

being linear in the input size only on average (expected computational complexity).

By means of the Qn estimator it is possible to implement an outlier detector working in a streaming fashion, using

a temporal window which slides forward one item at a time. Before providing all of the details, we review here the

underlying theory on which our outlier detector is based.

The classical rule for outlier detection based on the z-scores of the observations (Grubbs, 1969) is given by

zscore =
|x−µ|

σ
where x denotes the observation under test, and µ and σ denote respectively the mean and the standard

deviation of the observations. The z-score rule determines the number of standard deviations by which an observation

is distant from the mean. Even though the z-score test assumes that the observations come from a normal distribution,

it works well even if this assumption is not verified; anyway, a common technique to solve this problem is to transform

the observed data by scaling them.

The z-score test works quite well for observations coming from a univariate parametric distributions, in particular

with small or medium sized datasets (it is worth noting here that, even though the stream constituting the input for

our algorithm may be potentially of infinite length, we process the stream in the sliding window model, and the fixed

dimension of the window is small). Another advantage is that its implementation is simple and fast, making this test

suitable in a streaming context.

The outlierness test proposed in (Rousseeuw & Hubert, 2011), makes use of robust estimators such as the median

and the MAD (Median Absolute Deviation from the median of the observations) (Hampel, 1974): |x−median|/MAD,

where median is the median of the observations. Here, we use a slightly modified z-score, in which we substitute

the Qn estimator in place of MAD, obtaining the following outlierness test: |x − median|/Qn. The reasons for pre-

ferring the Qn estimator to MAD are its greater Gaussian efficiency and its ability to deal with skewed distributions

(Rousseeuw & Croux, 1993).

Let σ be a stream for which we want to determine outliers. The algorithm, shown in pseudo-code as Algorithm

1 determines the outliers in σ. It takes as input, besides σi, which is the ith item arriving from the stream, two

parameters w and t representing respectively the semi-window size (the full window size is 2w + 1) and a real value

acting as a multiplier of the Qn dispersion. In practice, t is used to control the degree of outlierness of an item.

The algorithm processes the stream in windows W =< σi−2w, . . . , σi > of size s = 2w + 1. Once the first window

has been processed, the new one is obtained by sliding the window one item ahead when the next item arrives from

the stream. Letting i − 2w be the index of the first item in a window W (i.e., the oldest one), the item under test in W

is the one located at the index i − w.

For instance, assume that w = 500. In this case the first window will contain the items whose index ranges from

1 to 1001, and the first item being considered for outlierness is the item whose index is 501. After processing the

window, the new one will contain the items whose index ranges from 2 to 1002 and the second item under test will be

the one whose index is 502; and so on.

Denoting the item under test with x = σi−w, in order to determine whether x is an outlier we proceed as follows.

We begin determining med, the value of W corresponding to the median order statistic. Next, we compute q, the Qn

dispersion for the window W. Then, we check the following condition (corresponding to the devised outlierness test):

|x − med| > t · q; if it is true, then x is an outlier, otherwise x is an inlier (i.e., a normal observation). In practice,

the condition |x − med| > t · q identifies as outliers those points that are not within t times the Qn dispersion from the

sample median; regarding t, a commonly used value is t = 3.

The worst case complexity of Algorithm 1 for processing a single window is O(s) + O(s lg s) + O(1) = O(s lg s).

Indeed, determining the median of the window requires O(s) (by using the QuickSelect algorithm), computing the

Qn dispersion value requires in the worst case O(s lg s) (by using the Croux and Rousseeuw (Croux & Rousseeuw,

1992) algorithm). Finally, the check for outlierness of an item can be done in O(1) constant time. However, this is a

basic, naive algorithm for computing the Qn estimator. We shall show how to improve the complexity of Algorithm 1

from O(s lg s) to O(s) worst case time by using our fqn algorithm to compute the Qn estimator instead of the Croux

and Rousseeuw algorithm.

4

Algorithm 1 Outlier Detection Using the Qn estimator

Require: σ, the input stream; w, semi-window size; t, multiplier of the Qn dispersion

Outliers← ∅

for each window W of size s = 2w + 1 in σ do

x← σi−w

med ← Median(W)

q← Qn(W)

if |x − med| > t · q then

Outliers← Outliers ∪ x

end if

end for

return Outliers

3. Related Work

In this Section, we recall the most important algorithms that have been proposed for computing the Qn estimator.

An offline algorithm with worst case complexity O(s lg s) was proposed by Croux and Rousseeuw (Croux & Rousseeuw,

1992).

Their algorithm is based on a previous work of Johnson and Mizoguchi (Johnson & Mizoguchi, 1978) that allows

determining the kth order statistic in a matrix of the form

U = X + Y =
{

xi + y j; 1 ≤ i, j ≤ s
}

, (4)

which is required to have nonincreasing rows and columns.

To this end, both vectors X and Y are sorted using O(s lg s) time in the worst case. Then, the matrix U of order s is

used, without being actually computed, as follows. Two arrays left and right are defined, in order to keep track of the

numbers on the ith row of the matrix that must still being considered as potential candidates for being the kth order

statistic. The set C of potential candidates is defined as

C =
{

Ui j; left (i) ≤ j ≤ right (i); 1 ≤ i ≤ s
}

. (5)

In practice, a pruning strategy allows discarding those numbers that can not be the kth order statistic. In each step

le f t(i) is made greater and right(i) smaller by comparison with the weighted median of the medians of the rows in

C (with weight equal to their length). Since each step requires O(s) and there are O(lg s) steps, the worst case time

required is O(s lg s).

In order to compute the Qn estimator, Croux and Rousseeuw noted that

{∣

∣

∣xi − x j

∣

∣

∣ ; i < j
}

(k)
=

{

x(i) − x(s− j+1); 1 ≤ i, j ≤ s
}

(k∗)
(6)

where k∗ = k + s +
(

s

2

)

.

Here, x(1) ≤ . . . ≤ x(s) are the sorted observations (we recall that x1, . . . , xs are the unsorted observations), so that

defining X =
{

x(1), . . . , x(s)

}

and Y =
{

−x(s), . . . ,−x(1)

}

, they can apply the Johnson and Mizoguchi algorithm to the

matrix obtained taking into account the observations whose indexes are such that 1 ≤ i, j ≤ s:

U = X + Y =
(

x(i) − x(s− j+1)

)

, 1 ≤ i, j ≤ s. (7)

Croux and Rousseeuw therefore use a different sorting order for the X and Y vectors in contrast to Johnson and

Mizoguchi: these vectors are in nondecreasing order, whilst Johnson and Mizoguchi algorithm requires nonincreasing

order. As a consequence, the virtual matrix U in the case of Croux and Rousseeuw exhibits both nondecreasing rows

and columns, and the area of interest (containing the order statistic to be found) lies in the lower triangular matrix

with regard to the antidiagonal. The upper triangular matrix with regard to the antidiagonal can be ignored (it contains

negative or zero values); the antidiagonal can be ignored as well since it contains zeros. Therefore, the arrays left and

right are initialized as follows: left(i) = s − i + 2 and right(i) = s, for all i ≥ 2.

5

To recap, the aim is to search for the kth order statistic in a set containing s(s−1)/2 items. But, the search happens

in a virtual matrix of s2 items, of which (s+1)s/2 must be discarded (the ones related to the upper triangle with regard

to the antidiagonal). Therefore, instead of searching for k, Croux and Rousseeuw search for the k∗ = k + s +
(

s

2

)

order

statistic.

In (Nunkesser, Schettlinger & Fried, 2008), the authors propose a streaming algorithm for the Qn estimator, that

we denote as nunkesser. This algorithm handles a sliding window in which a new, incoming observation is added

whilst the oldest observation is removed. This process is called a window’s update. In order to compute the Qn

estimator during an update, they reuse the same consideration of Croux and Rousseeuw: given X = {x1, . . . , xs},

k′ =
(

⌊s/2⌋+1
2

)

and k = k′ + s +
(

s

2

)

, it holds that

{∣

∣

∣xi − x j

∣

∣

∣ , i < j
}

(k′)
=

{

x(i) − x(s− j+1), 1 ≤ i, j ≤ s
}

(k)
. (8)

As a consequence, one must compute the kth order statistic of U = X + (−X).

The nunkesser algorithm maintains a buffer B of size b = O(s) that stores matrix items u(k−⌊(b−1)/2⌋), . . . , u(k+⌊b/2⌋),

centered on the kth order statistic. Initially, B is populated determining its items along with the kth order statistic

through an adapted version of the Croux and Rousseeuw algorithm. The main data structures are AVL trees, which

are balanced trees allowing inserting, deleting, finding and determining the rank of an item in O(lg s) time. These

trees are used to store X, −X and the buffer B. Each time an item is deleted or inserted using the authors’ procedures

for these tasks, the new position of the kth order statistic in B is determined. The authors return the new solution or

recompute B using the offline algorithm of Croux and Rousseeuw if the kth order statistic is not in B any more.

Clearly, the worst case running time of this algorithm is O(s lg s). However, the authors prove (see Theorem 1

in (Nunkesser, Schettlinger & Fried, 2008)) that ”for a constant signal with stationary noise, the expected amortized

time per update is O(lg s)”. We remark here that, in order to achieve this expected amortized time, the authors assume

that the rank of each data point in the set of all data points is equiprobable. In this paper, we show how to dynamically

maintain and process each of the windows originating from the input data stream in O(s) worst case time. However,

no assumption is made regarding the data points in each of the windows, so that our algorithm is far more general.

Even though the expected amortized time per update of nunkesser is better than the worst case O(s) running time of

our algorithm, we shall show in Section 5 that fqn outperforms nunkesser.

4. The fqn Algorithm

Our fqn algorithm computes the Qn estimator in a streaming fashion, without assuming anything related to the

underlying distribution of the input stream. fqn works by dynamically maintaining and processing the consecutive

windows originating from the input data stream. The key idea is to maintain the current window sorted. To this aim,

we mimic the way InsertionSort (Cormen, Leiserson, Rivest & Stein, 2009) inserts an item.

InsertionSort requires in the worst case O(s2) to sort s items, but we do not use it to sort the windows arising from

the input stream. Each time a new item arrives, we form a new window in two steps. First, we remove the least recent

(in the temporal sequence of item arrivals) item. Since the previous window was already sorted, removing the least

recent item leaves the window sorted. Now, we insert the incoming item using the InsertionSort insertion procedure,

which requires O(s) worst case time.

We need to simultaneously maintain two different permutations of the current window. One is given by the actual

order in which the items arrive from the stream, the other is the sorted permutation of the items in the window. We

use the notation W to denote the current window and σi to denote the ith item in the input stream (temporal order).

The size of W is s = 2w + 1, where w is the semi-window size and the items belonging to W after the insertion of the

item σi are those related to the sub-stream σi−2w, . . . , σi. Moreover, we denote by Π the permutation of the items in

W in which the items are in sorted order. Π stores the items [π1, . . . , πs].

Initially, the window W is empty. We insert the items in W one at a time, building the window W; we also insert the

items in Π, preserving the sorted order by means of the InsertionSort insertion procedure. After inserting s = 2w + 1

items, the window W is full. Next, when the item σi arrives, we insert it into the current window and process the

resulting window computing the Qn estimator.

Computing the kth order statistic of the absolute pairwise differences can be done in worst case O(s) time as well.

Following the same ideas discussed in previous work, we do not actually compute the O(s2) differences. Instead, we

6

determine the order statistic by using the algorithm proposed by Mirzaian and Arjomandi (Mirzaian & Arjomandi,

1985), which works as follows. Let A be a matrix of real numbers, whose order is s and in which the rows are sorted

in descending order and the columns are sorted in ascending order. Moreover, let s = ⌈ 1
2
(s+1)⌉. Then A is a submatrix

of A of order s, consisting of the odd indexed rows and columns (plus the last row and columns of A if s is even).

Letting L be a list of reals and a a real number, the rank+ and rank− of a in the list L are defined as follows:

rank+(L, a) = |{x ∈ L : x > a}|; (9)

rank−(L, a) = |{x ∈ L : x < a}|. (10)

For 1 ≤ k ≤ |L|, a is the kth smallest item of L if and only if rank−(L, a) ≤ k − 1 and rank+(L, a) ≤ |L| − k. The

selection algorithm is based on Theorem 3.1 in (Mirzaian & Arjomandi, 1985), which states that, given the matrices

A and A, for any real number a it holds that (i) rank−(A, a) ≤ 4 rank−(A, a) and (ii) rank+(A, a) ≤ 4 rank+(A, a).

Determining rank−(A, a) can be done in O(s) taking advantage of the fact that the rows and columns of A are

sorted respectively in descending and ascending order. Algorithm 2 shows how to compute rank−(A, a). Similarly,

rank+(A, a) can be determined in O(s) as well.

Algorithm 2 Determining rank−(A, a)

Require: A, a matrix of order s, with rows and columns sorted respectively in descending and ascending order; a, a

real number

j← 1

x← 0

for i = 1 to s do

while j ≤ s and Ai, j ≥ a do

j← j + 1

end while

x← x + s − j + 1

end for

return x

To select the kth item, the algorithm determines two items a and b with a ≥ b from A. Letting z denote the kth

order statistic of A, the algorithm ensures that (i) b ≤ z ≤ a and (ii) the number of items of A whose value is less

than a and greater than b is O(s). The function MAselect (Mirzaian and Arjomandi Select), shown in pseudocode as

Algorithm 3 determines the kth item of A in O(s).

The MAselect function simply calls the biselect function with parameters s, A, k1 and k2, with k1 ≥ k2. The

pair (x, y) is returned, so that x is the k1th item of A whilst y is the k2th item.

Defining

k1 =

s + 1 + ⌈ 1
4
k1⌉ if s is even

⌈ 1
4
k1 + 2s + 1⌉ if s is odd

(11)

and

k2 =

⌊

1

4
(k2 + 3)

⌋

(12)

k1 is the smallest integer such that the k1th item of A is at least as large as the k1th item of A, and k2 is the largest

integer such that the k2th item of A is no larger than the k2th item of A.

When the matrix A is of the form X + (−X) as in our algorithm, only X needs to be stored in memory, i.e., the

items of A are computed when they are actually needed, so that only a small fraction of A is used (O(s) instead of

O(s2) items).

7

The matrix is derived by the array X which is in nondecreasing order, and by the array −X which is in noincreasing

order. Owing to the different orders of X and −X, the matrix A contains nonincreasing rows and nondecreasing

columns. The area of interest is the lower triangle with regard to the main diagonal. Therefore, the Mirzaian and

Arjomandi algorithm is applied taking into account an offset value s +
(

s

2

)

as in the case of Croux and Rousseeuw, in

order to limit the computation only to the lower triangle of the virtual matrix A. The rank and pick procedure are

modified accordingly to achieve this goal.

Algorithm 3 MASelect

Require: A, a matrix of order s, with rows and columns sorted respectively in descending and ascending order; k, an

integer number

(x, y)← biselect(s, A, k, k)

return x

Algorithm 4 Biselect

Require: s, order of matrix A; A, a matrix with rows and columns sorted respectively in descending and ascending

order; k1, an integer; k2, an integer

if s ≤ 2 then

(x, y)← (k1th of A, k2th of A)

else

(a, b)← biselect(s, A, k1, k2)

ra− ← rank−(A, a)

rb+ ← rank+(A, b)

L← {Ai j : b < Ai j < a}

if ra− ≤ k1 − 1 then

x← a

else

if k1 + rb+ − s2 ≤ 0 then

x ← b

else

x ← QuickSelect(L, k1 + rb+ − s2)

end if

end if

if ra− ≤ k2 − 1 then

y← a

else

if k2 + rb+ − s2 ≤ 0 then

y← b

else

y← QuickSelect(L, k2 + rb+ − s2)

end if

end if

end if

return (x, y)

In fqn updating the windows works as follows. The permutationΠ is already sorted. Each time a new item arrives

from the stream, the oldest one is removed and the new one is inserted in both W and Π. In particular, inserting the

new item in Π in its correct position is done by using the InsertionSort insertion procedure. Then, we determine the

Qn estimator for the current window as previously described.

The pseudo-code of Algorithm 5 describes how our fqn algorithm works for online computation of exact Qn

values. The same algorithm may possibly be used for outlier detection as follows. In the loop, after inserting the

8

item σi into Π, the item x to be checked is identified as x ← σi−w. The median can be easily obtained in O(1) worst

case time as med ← πw+1, since the Π permutation is sorted. Once the Qn value has been determined, the condition

|x − med| > t · Qn identifies as outliers, again in O(1) worst case time, those points that are not within t times the Qn

dispersion from the median.

Algorithm 5 Fast Qn

Require: σi, the current item;

for each item σi do

delete σi−2w−1 from W and Π

insert σi into W

insert σi into Π using InsertionSort insertion

stat ← MASelect(Π)

Qn ← dn · 2.2219 · stat

end for

return Qn

Regarding our implementation, the main data structures are two arrays: one is a circular buffer, used to guarantee

a consistent temporal order for the items σi arriving from the stream, the other is a sorted array representing Π, which

is updated by means of the streaming InsertionSort procedure.

Algorithm 5 correctly determines the Qn estimator in worst case time and space O(s). Indeed, we process the input

stream by handling the current sliding window W and maintaining in sorted order, through the use of incremental

InsertionSort, the corresponding permutation Π. In particular, Π must be sorted as required by the Mirzaian and

Arjomandi algorithm, which is used to determine the order statistics required for computing the Qn value.

5. Experimental Results

In this Section, we present and discuss experimental results, thoroughly comparing fqn against Nunkesser et al.

algorithm, that we denote as nunkesser. Since both algorithms correctly determine the Qn values, we shall compare

the algorithms only with regard to their performances; in particular, we take into account the number of updates per

second.

The fqn and nunkesser algorithms have been implemented in C. The source code has been compiled using the

Intel C compiler v19.0.4.243 on linux CentOS 7 with the following flags: -O3 -std=c99. The tests have been carried

out on a workstation equipped with 64 GB of RAM and two 2.0 GHz exa-core Intel Xeon CPU E5-2620 with 15 MB

of cache level 3. The source code is freely available for inspection and for reproducibility of results1. The tests have

been performed on both synthetic and real datasets.

5.1. Synthetic datasets

Synthetic datasets consist of items generated according to the distributions shown in Table 1.

For each distribution, the algorithms have been executed three times and we report here the mean number of

updates per second varying w, the semi-window size from 100 to 500 in steps of 100. We fix the number of items

to be processed (i.e., checked to verify if they are outliers) to 100000. Of course, for a given value of w, in order to

process 100000 items, the dataset length must be 100000+ 2w + 1.

Results are depicted in Figure 1. As shown, fqn clearly outperforms nunkesser in all of the experiments with the

only notable exception related to the uniform distribution. As discussed in Section 3, Nunkesser et al. proved that for

a constant signal with stationary noise, the expected amortized time per update is O(lg s). This bound on the expected

amortized time, requires the assumption that the rank of each data point in the set of all data points is equiprobable.

Clearly, this is the case for the uniform distribution. On other distributions this strong assumption is not satisfied, so

that the nunkesser algorithm is subject to its worst case running time, which is O(s lg s). On the contrary, fqn does

1https://github.com/cafaro/FQN

9

Table 1: Synthetic data: experiments carried out

Distribution Parameters

beta α = 2, β = 1/4

chi-squared ν = 3

exponential λ = 1/2

gamma α = 1, β = 2

half-normal θ = 1/2

inverse gaussian µ = 2, λ = 1

log-normal µ = 1, σ = 3

normal µ = 1, σ = 3

Pareto k = 3, α = 0.75

Poisson µ = 3

uniform min = 0, max = 100000

Zipf n = 100000000, ρ = 1.2

not make any assumption on the underlying input distribution, and can dynamically maintain and process each of the

windows in O(s) worst case time.

We thoroughly analyze the nunkesser algorithm in Figure 2. We report the size of the buffer B and the percentage

of executions of the Croux and Rousseeuw algorithm; in particular, besides the normal distribution, we deal here only

with the following distributions: log-normal, Poisson and Zipf. The results obtained for the remaining distributions are

similar and we do not report them in order to save space. As shown, the running time of nunkesser can be ascribed to

two main factors: the dimension of the bufferB and the number of executions of the Croux and Rousseeuw algorithm,

which is executed when the kth order statistic is not found within the buffer.

Two different behaviours are clearly depicted in the plots. For continuous distributions (log-normal and normal)

the buffer size is linear in s so that when the kth order statistic is within the buffer, it can be determined quickly. Oth-

erwise, nunkesser executes the Croux and Rousseeuw algorithm, which is O(s lg s) in the worst case. The percentage

of executions, as shown, is not negligible and is the main factor affecting the overall running time. For discrete dis-

tributions (Poisson and Zipf), whose number of distinct items is much smaller than in the continuous case, the buffer

size exhibits a quadratic increase with regard to s. In particular, all of the time is spent searching for the kth order

statistic within a huge buffer. Indeed, as can be seen in the plots, for both the Poisson and Zipf distributions, the Croux

and Rousseeuw algorithm is never executed.

For completeness, we also discuss here a variation proposed by Nunkesser et al. in their paper (in Section 2.1

Online Algorithm). Indeed, they state: We may also introduce bounds on the size of B in order to maintain linear size

and to recompute B if these bounds are violated. We note here that in their paper Nunkesser et al. do not provide any

result regarding this variation.

We have implemented and tested this variation, denoted by nunkesser B, in which we maintain the size of B

linear by imposing the constraint that the buffer size can not exceed 2s. The experimental results show that the

performances of this variation are slightly worse with regard to the original algorithm on all of the input distributions

but the Poisson and Zipf in which the variation provides better results. However, in all of the cases, our fqn algorithm

always outperforms this variation of the nunkesser algorithm. In Figure 3, we depict the results for the log-normal,

normal, Poisson and Zipf distributions.

A detailed analysis of nunkesser B with limited buffer B is shown in Figure 4. We only report the results obtained

for the log-normal, normal, Poisson and Zipf distributions. As shown, since the maximum buffer size is limited to 2s

we report the mean buffer size. For the continuous distributions the mean buffer size is linear in s as expected. For the

Poisson and Zipf distributions, the mean buffer size is zero: in practice, for these distributions the buffer is never used

and the Croux and Rousseeuw algorithm is always executed.

Finally, regarding the space used, our algorithm only needs to store two arrays of size s, the circular buffer and the

sorted array representing Π which takes on the role of X and is used as input to the MAselect procedure. Therefore,

fqn requires O(s) space. As shown, depending on the input distribution, nunkesser may require instead up to O(s2)

10

Table 2: Statistical characteristics of the real datasets

Name Min Max Mean Median stdDev Skew

Accidents 1 275 46.1599 33 37.7459 1.63804

Kosarak 1 11018 1758.17 632 2433.03 1.73603

Nasa 0 28474 480.919 190 923.676 5.60017

Q148 15 149464496 4570.15 63 471361 315.665

Retail 0 8563 1967.7 1274 2026.74 1.07606

Webdocs 1 14842 2688.35 1181 3414.45 1.75281

space, whilst the variation nunkesser B in which the buffer is restricted to be of size at most 2s requires O(s) space

but provides worst performances for the majority of the input distributions. From a practical perspective, nunkesser

needs to maintain three data structures. These are three AVL trees, one for the X array (O(s) space), one for the Y

array (O(s) space) and one for the buffer B (with space required between Ω(s) and O(s2)). Besides the actual values,

these trees also need to store several pointers, consuming additional space.

5.2. Real datasets

The real datasets have been selected, among the ones which are publicly available, in order to represent a variety

of different application domains. Moreover, some of these datasets are widely used for many different tasks in the data

mining literature. Each of the original datasets has been pre-processed when necessary, and only the first 1,001,001

entries were retained and used for the tests. We report the most important statistical information characterizing the

datasets obtained after the pre-processing step in Table 2. A description of the datasets follows.

Accidents: This dataset contains (anonymized) traffic accident data. In particular, the data have been obtained

from the National Institute of Statistics (NIS) for the region of Flanders (Belgium) for the period 1991-2000. More

specifically, the data are obtained from the Belgian Analysis Form for Traffic Accidents that should be filled out by

a police officer for each traffic accident that occurs with injured or deadly wounded casualties on a public road in

Belgium.

Kosarak: This is a click-stream dataset of a Hungarian online news portal. It has been anonymized, and consists

of transactions, each of which is comprised of several integer items.

Nasa: Compliments of NASA and the Voyager 2 Triaxial Fluxgate Magnetometer principal investigator, Dr.

Norman F. Ness, this dataset contains several data. We selected the Field Magnitude (F1) and Field Modulus (F2)

attributes from the Voyager 2 spacecraft Hourly Average Interplanetary Magnetic Field Data. A pre-processing step

was required for this dataset: having selected the data for the years 1977-2004, we removed the unknown values

(marked as 999), and multiplied all of the values by 1000 to convert them to integers (since the original values were

real numbers with precision of 3 decimal points). The values of the two attributes were finally concatenated. In our

experiments, we read all of the values of the attribute F1, followed by all of the values of the attribute F2.

Q148: Derived from the KDD Cup 2000 data, compliments of Blue Martini, this dataset contains several data. The

ones we use for our experiments are the values of the attribute Request Processing Time Sum (attribute number 148),

coming from the “clicks” dataset. The pre-processing phase required replacing of all the missing values (appearing as

question marks) with the value 0.

Retail: This dataset contains retail market basket data coming from an anonymous Belgian store.

Webdocs: This dataset derives from a spidered collection of web html documents. All the web documents were

preliminarly filtered by removing HTML tags and the most common words (stopwords), and by applying a stem-

ming algorithm. Then, a distinct transaction containing the set of all the distinct terms (items) appearing within the

document itself has been generated from each document.

The experiments carried out on these real datasets are the same executed on synthetic data, that is, varying the

window size. The fqn algorithm was compared against the Nunkesser algorithm and its variant Nunkesser B, in

which a fixed memory bound is used. For all the real datasets under test, the experimental results clearly show that

fqn outperforms both Nunkesser and its variant Nunkesser B. In particular, Figures 5 and 6 depict respectively the

number of updates per second (in thousands) and the actual running time (in seconds). We observe that fqn provides

11

at least two times the number of updates per second (respectively, concerning the running time it is at least two times

faster) with regard to Nunkesser and Nunkesser B.

6. Conclusions

We have introduced fqn (Fast Qn), a novel algorithm for online computation of the Qn scale estimator, and showed

a possible application in the context of outlier detection in data streams. Our algorithm works in the sliding window

model, by cleverly computing the Qn scale estimator in the current window. We have shown, through extensive

experimental results on both synthetic and real datasets, that our algorithm for online Qn is faster than the state of the

art competing algorithm by Nunkesser et al. To the best of our knowledge, our algorithm is the first that allows online

computation of the Qn scale estimator in worst case time linear in the size of the window. Moreover, the computational

complexity of fqn does not depend on the input distribution. Finally, our algorithm requires less space.

12

○

○

○

○
○

△

△
△

△ △

100 200 300 400 500
0

5

10

15

20

25

30

w

U
�
�
�
��
�

/s
(�

t
�
�
�
�
�
�
�

)

○ F	
 △ Nunkesser et al.

(a) beta distribution

○

○

○

○
○

△

△

△
△

△

100 200 300 400 500
0

5

10

15

20

25

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ �� △ Nunkesser et al.

(b) chi-squared distribution

○

○

○

○
○

△

△

△
△

△

100 200 300 400 500
0

5

10

15

20

25

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ ��� △ Nunkesser et al.

(c) exponential distribution

○

○

○

○
○

△

△

△
△

△

100 200 300 400 500
0

5

10

15

20

25

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ ��� △ Nunkesser et al.

(d) gamma distribution

○

○

○

○
○

△

△

△

△
△

100 200 300 400 500
0

5

10

15

20

25

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ ��� △ Nunkesser et al.

(e) half-normal distribution

○

○

○

○
○

△

△

△
△ △

100 200 300 400 500
0

5

10

15

20

25

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ ��� △ Nunkesser et al.

(f) inverse gaussian distribution

○

○

○

○
○

△

△
△ △ △

100 200 300 400 500
0

5

10

15

20

25

30

35

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ ��� △ Nunkesser et al.

(g) log-normal distribution

○

○

○

○
○

△

△

△

△
△

100 200 300 400 500
0

5

10

15

20

25

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ ��� △ Nunkesser et al.

(h) normal distribution

○

○

○

○
○

△

△

△
△ △

100 200 300 400 500
0

5

10

15

20

25

30

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ !" △ Nunkesser et al.

(i) Pareto distribution

○

○

○

○
○

△ △ △ △ △

100 200 300 400 500
0

50

100

150

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ #$% △ Nunkesser et al.

(j) Poisson distribution

○

○

○
○ ○

△

△

△

△
△

100 200 300 400 500
0

10

20

30

40

50

6&

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ '() △ Nunkesser et al.

(k) uniform distribution

○

○

○
○

○

△ △ △ △ △

100 200 300 400 500
0

50

100

150

200

250

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ *+, △ Nunkesser et al.

(l) Zipf distribution

Figure 1: Updates per second (mean and confidence interval)

13

○

○

○

○

○

△

△

△

△

△

100 200 300 400 500
0

200

400

-..

8..

1000

w

b
u
ff
e
r
s
iz
e

○ max △ mean

(a) log-normal distribution

○

○

○

○

○

△

△

△

△

△

100 200 300 400 500
0

200

400

/00

100

1000

w

b
u
ff
e
r
s
iz
e

○ max △ mean

(b) normal distribution

○

○

○

○

○

△

△

△

△

△

100 200 300 400 500
0

50000

100000

150000

w

b
u
ff
e
r
s
iz
e

○ max △ mean

(c) Poisson distribution

○

○

○

○

○

△

△

△

△

△

100 200 300 400 500
0

100000

200000

300000

400000

500000

w

b
u
ff
e
r
s
iz
e

○ max △ mean

(d) Zipf distribution

○ ○ ○ ○ ○

100 200 300 400 500

0

5

10

15

20

w

C
R

e
2
e
3
4
57
9
:
;

(%
)

(e) log-normal distribution

○ ○ ○ ○ ○

100 200 300 400 500

0

5

10

15

20

w

C
R

<
=
<
>
?
@A
B
C
D

(%
)

(f) normal distribution

○ ○ ○ ○ ○

100 200 300 400 500

0

5

10

15

20

w

C
R

E
G
E
H
I
JK
L
M
N

(%
)

(g) Poisson distribution

○ ○ ○ ○ ○

100 200 300 400 500

0

5

10

15

20

w

C
R

O
P
O
Q
R
ST
V
W
X

(%
)

(h) Zipf distribution

Figure 2: Detailed analysis of nunkesser algorithm

○

○

○
○

○

△

△
△ △ △

◆

◆
◆ ◆ ◆

100 200 300 400 500
0

5

10

15

20

25

30

35

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ YZ[△ Nunkesser

◆ Nunkesser \

(a) log-normal distribution

○

○

○
○

○

△

△

△
△

△

◆

◆

◆
◆

◆

100 200 300 400 500
0

5

10

15

20

25

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○]^_ △ Nunkesser

◆ Nunkesser `

(b) normal distribution

○

○

○

○
○

△ △ △ △ △

◆
◆ ◆ ◆ ◆

100 200 300 400 500
0

50

100

150

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ abc △ Nunkesser

◆ Nunkesser d

(c) Poisson distribution

○

○

○
○

○

△ △ △ △ △

◆
◆ ◆ ◆ ◆

100 200 300 400 500
0

50

100

150

200

250

w

U
p
d
a
te
s
/s

(t
h
o
u
s
a
n
d
s
)

○ fgh △ Nunkesser

◆ Nunkesser i

(d) Zipf distribution

Figure 3: Updates per second including nunkesser algorithm with limited buffer B (mean and confidence interval)

14

○

○

○

○

○

100 200 300 400 500
0

200

400

jkk

lkk

1000

w

m
n
o
p

b
u
ff
e
r
s
iz
e

(a) log-normal distribution

○

○

○

○

○

100 200 300 400 500
0

200

400

qrr

srr

1000

w

u
v
w
x

b
u
ff
e
r
s
iz
e

(b) normal distribution

○ ○ ○ ○ ○

100 200 300 400 500

0

20

40

yz

{z

100

w

|
}
~
�

b
u
ff
e
r
s
iz
e

(c) Poisson distribution

○ ○ ○ ○ ○

100 200 300 400 500

0

20

40

��

��

100

w

�
�
�
�

b
u
ff
e
r
s
iz
e

(d) Zipf distribution

○ ○ ○ ○ ○

100 200 300 400 500

0

5

10

15

20

25

w

C
R

�
�
�
�
�
��
�
�
�

(%
)

(e) log-normal distribution

○ ○ ○ ○ ○

100 200 300 400 500

0

5

10

15

20

25

w

C
R

�
�
�
�
�
��
�
�
�

(%
)

(f) normal distribution

○ ○ ○ ○ ○

100 200 300 400 500

0

20

40

��

��

100

w

C
R

�
�
�
�
�
 ¡
¢
£
¤

(%
)

(g) Poisson distribution

○ ○ ○ ○ ○

100 200 300 400 500

0

20

40

¥¦

§¦

100

w

C
R

¨
©
¨
ª
«
¬
®
¯
°

(%
)

(h) Zipf distribution

Figure 4: Detailed analysis of nunkesser algorithm with limited buffer B

○

○

○ ○

○
△

△
△

△ △

▯

▯
▯ ▯ ▯

100 200 300 400 500
0

10

20

30

40

50

w

U
p
d
a
te
s
/s

(1
0
3
)

○ ±²³ △ Nunkesser ▯ Nunkesser ´

(a) Accidents

○

○

○

○
○

△

△
△ △ △

▯

▯
▯ ▯ ▯

100 200 300 400 500
0

5

10

15

20

25

30

35

w

U
p
d
a
te
s
/s

(1
0
3
)

○ µ¶· △ Nunkesser ▯ Nunkesser ¸

(b) Kosarak

○

○

○
○

○

△

△ △ △ △

▯

▯
▯ ▯ ▯

100 200 300 400 500
0

10

20

30

40

50

w

U
p
d
a
te
s
/s

(1
0
3
)

○ ¹º» △ Nunkesser ▯ Nunkesser ¼

(c) Nasa

○

○

○
○

○

△
△ △ △ △

▯
▯ ▯ ▯ ▯

100 200 300 400 500
0

20

40

½¾

¿¾

100

w

U
p
d
a
te
s
/s

(1
0
3
)

○ ÀÁÂ △ Nunkesser ▯ Nunkesser Ã

(d) Q148

○

○

○

○
○

△

△
△ △ △

▯

▯
▯ ▯ ▯

100 200 300 400 500
0

5

10

15

20

25

30

w

U
p
d
a
te
s
/s

(1
0
3
)

○ ÄÅÆ △ Nunkesser ▯ Nunkesser Ç

(e) Retail

○

○

○

○
○

△

△
△ △ △

▯

▯
▯ ▯ ▯

100 200 300 400 500
0

5

10

15

20

25

30

w

U
p
d
a
te
s
/s

(1
0
3
)

○ ÈÉÊ △ Nunkesser ▯ Nunkesser Ë

(f) Webdocs

Figure 5: Updates per seconds on real datasets, varying the window size

15

○ ○ ○ ○
○△

△
△

△

△

▯

▯

▯

▯

▯

100 200 300 400 500
0

10

20

30

40

50

w

Ì
ÍÎ
Ï

(s
e
c
o
n
d
s
)

○ ÐÑÒ △ Nunkesser ▯ Nunkesser Ó

(a) Accidents

○
○

○ ○
○

△

△

△

△

△

▯

▯

▯

▯

▯

100 200 300 400 500
0

20

40

ÔÕ

ÖÕ

w

T
im
e
(s
e
c
o
n
d
s
)

○ ×ØÙ △ Nunkesser ▯ Nunkesser Ú

(b) Kosarak

○ ○ ○ ○ ○

△

△

△

△

△

▯

▯

▯

▯

▯

100 200 300 400 500
0

10

20

30

40

50

w

T
im
e
(s
e
c
o
n
d
s
)

○ ÛÜÝ △ Nunkesser ▯ Nunkesser Þ

(c) Nasa

○ ○ ○ ○ ○

△

△

△

△

△

▯

▯

▯

▯

▯

100 200 300 400 500
0

20

40

ßà

áà

w

T
im
e
(s
e
c
o
n
d
s
)

○ âãä △ Nunkesser ▯ Nunkesser å

(d) Q148

○
○

○
○

○

△

△

△

△

△

▯

▯

▯

▯

▯

100 200 300 400 500
0

20

40

æç

èç

w

T
im
e
(s
e
c
o
n
d
s
)

○ éêë △ Nunkesser ▯ Nunkesser ì

(e) Retail

○ ○
○ ○

○△

△

△

△

△

▯

▯

▯

▯

▯

100 200 300 400 500
0

20

40

íî

ïî

100

120

w

T
im
e
(s
e
c
o
n
d
s
)

○ ðñò △ Nunkesser ▯ Nunkesser ó

(f) Webdocs

Figure 6: Running times (in seconds) on real datasets, varying the window size

16

References

Blum, M., Floyd, R. W., Pratt, V. R., Rivest, R. L., & Tarjan, R. E. (1973). Time bounds for selection. J. Comput. Syst. Sci., 7(4), 448–461.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

Croux, C. & Rousseeuw, P. J. (1992). Time-efficient algorithms for two highly robust estimators of scale. In Dodge, Y. & Whittaker, J. (Eds.),

Computational Statistics, (pp. 411–428)., Heidelberg. Physica-Verlag HD.

Datar, M., Gionis, A., Indyk, P., & Motwani, R. (2002). Maintaining stream statistics over sliding windows: (extended abstract). In Proceedings of

the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, (pp. 635–644)., Philadelphia, PA, USA. Society for Industrial

and Applied Mathematics.

Donoho, D. L. & Huber, P. J. (1983). The notion of breakdown point. In A Festschrift for Erich Lehmann (P.J. Bickel, K. Doksum and J.L. Hodges,

Jr., Eds.), (pp. 157–184). Wadsworth, Belmont, CA.

Floyd, R. W. & Rivest, R. L. (1975). Expected time bounds for selection. Commun. ACM, 18(3), 165–172.

Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1), 1–21.

Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69(346), 383–393.

Hoare, C. A. R. (1961). Algorithm 65: find. Commun. ACM, 4(7), 321–322.

Hodge, V. & Austin, J. (2004). A survey of outlier detection methodologies. Artif. Intell. Rev., 22(2), 85–126.

III, J. P. (1975). Statistical inference using extreme order statistics. Ann. Statist., 3(1), 119–131.

Johnson, D. & Mizoguchi, T. (1978). Selecting the k-th element in x + y and x 1 + x 2 + · · · + x m. SIAM Journal on Computing, 7(2), 147–153.

Mirzaian, A. & Arjomandi, E. (1985). Selection in x + y and matrices with sorted rows and columns. Information Processing Letters, 20(1), 13 –

17.

Mosteller, F. & Tukey, J. (1977). Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley series in behavioral science.

Addison-Wesley Publishing Company.

Muthukrishnan, S. (2005). Data streams: Algorithms and applications. Foundations and Trends® in Theoretical Computer Science, 1(2), 117–236.

Nunkesser, R., Schettlinger, K., & Fried, R. (2008). Applying the qn estimator online. In Preisach, C., Burkhardt, H., Schmidt-Thieme, L., &

Decker, R. (Eds.), Data Analysis, Machine Learning and Applications, (pp. 277–284)., Berlin, Heidelberg. Springer Berlin Heidelberg.

Rousseeuw, P. J. & Croux, C. (1992). Explicit scale estimators with high breakdown point. L1-Statistical analysis and related methods, 1, 77–92.

Rousseeuw, P. J. & Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88(424),

1273–1283.

Rousseeuw, P. J. & Hubert, M. (2011). Robust statistics for outlier detection. WIREs Data Mining and Knowledge Discovery, 1(1), 73–79.

Tukey, J. W. (1977). Exploratory Data Analysis, volume 2. Addison-Wesley Publishing Company, Reading, Massachusetts.

17

	Introduction
	The Qn scale estimator and its use for outlier detection
	Related Work
	The fqn Algorithm
	Experimental Results
	Synthetic datasets
	Real datasets

	Conclusions

