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Abstract: The present work studies an axisymmetric rotating truncated cone made of functionally
graded (FG) porous materials reinforced by graphene platelets (GPLs) under a thermal loading.
The problem is tackled theoretically based on a classical linear thermoelasticity approach. The
truncated cone consists of a layered material with a uniform or non-uniform dispersion of GPLs in
a metal matrix with open-cell internal pores, whose effective properties are determined according
to the extended rule of mixture and modified Halpin–Tsai model. A graded finite element method
(FEM) based on Rayleigh–Ritz energy formulation and Crank–Nicolson algorithm is here applied
to solve the problem both in time and space domain. The thermo-mechanical response is checked
for different porosity distributions (uniform and functionally graded), together with different types
of GPL patterns across the cone thickness. A parametric study is performed to analyze the effect of
porosity coefficients, weight fractions of GPL, semi-vertex angles of cone, and circular velocity, on the
thermal, kinematic, and stress response of the structural member.

Keywords: FEM; functionally graded material; porous structure; graphene platelets; rotating truncated
cone; transient thermal stress

1. Introduction

Recently, multifunctional porous structures have been largely applied in many en-
gineering applications because of their excellent properties, namely, lightweight, heat
resistance, and great energy absorption [1,2]. The presence of internal pores within a
metal matrix, however, can significantly reduce the structural stiffness [3–5], whose limi-
tations can be overcome by adopting lightweight materials with nanofillers e.g., carbon
nanotubes (CNTs) [6–8] or graphene nano-platelets (GPLs) [9]. In lightweight structures,
such nanoparticles keep their excellent potentials, especially for even dispersions within a
metal or polymer matrix [10], thus preventing any potential agglomeration of reinforce-
ments. More specifically, GPLs feature higher mechanical properties than CNTs, a lower
cost and a more special surface area and 2D geometry [11].

In such a context, FG porous structures reinforced with GPLs have increased the
attention of the recent literature to improve the efficiency and capability of structural
members, while controlling the density, size, and pattern of porosities within the material
along with the GPL distribution [12,13]. From a numerical and analytical standpoint, sev-
eral researches have investigated the influence of porosity and graphene platelets pattern
on the mechanical behavior of structures subjected to different loading and boundary
conditions. Chen et al. [13], for example, applied a Timoshenko beam theory and von
Kármán type nonlinearity to investigate the nonlinear vibration and post-buckling behav-
ior of FG-GPLs porous nanocomposite beams, whose problem was solved numerically
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based on a Ritz method and direct iterative algorithm. The same approach was then
applied by Kitipornchai et al. [14] to investigate the natural frequency and elastic buck-
ling of FG porous beams reinforced by GPLs. Yang et al. [15] focused on the buckling
behavior and natural frequency of FG graphene reinforced porous nanocomposite plates
by applying a Chebyshev–Ritz method and first order shear deformation theory (FSDT).
Meanwhile, Gao et al. [16] analyzed the nonlinear free vibration response of FG-GPLs of
porous nanocomposite plates resting on an elastic foundation, based on a classical plate
theory (CPT) and von Kármán assumptions. In such a case, the governing equations of the
problem were solved numerically by employing a differential quadrature method (DQM).
The same approach was also efficiently proposed for the static and vibration study of a
large variety of nanocomposite GPL-based shell structures combined with different higher
order theories [17–25]. Different shell theories were also proposed in [26–33] for the study
of the static and buckling response of FG-GPL porous plates and shells, while providing
useful semi-analytical solutions.

In addition, Safarpour et al. [34] performed a parametric three-dimensional (3D) study
for the bending and free vibration response of FG-GPL porous circular and annular plates
for various boundary conditions. In another work, a probabilistic stability analysis of
FG-GPLs porous beams was proposed by Gao et al. [35]. Zhou et al. [36] also studied
the vibration of FG porous rectangular plates reinforced by GPLs based on a 3D theory
of elasticity, whose equations of motion were solved numerically based on a generalized
DQM. Porous curved elements were accounted by Zho et al. [37] who studied the dynamic
instability of FG porous arches reinforced by GPLs based on a classical Euler–Bernoulli
theory as well as a Galerkin and Bolotin method. A novel computational approach was
proposed by Nguyen et al. [38] to investigate the FG-GPL porous plates, based on a
Timoshenko beam theory and polygonal mesh with Serendipity shape functions.

Nguyen et al. [39] used a three-variable high order shear deformation theory (HSDT)
and isogeometric approach to investigate the free vibration, buckling, and instability
behavior of FG-GPL porous plates. A FSDT was differently applied in [40] to investigate
the vibration and stability response of FG-GPL porous plates under an aerodynamic loading,
as useful for aerospace structural members. At the same time, Babaei et al. [41] investigated
the natural frequency and dynamic response of saturated FG porous cylindrical panels
and annular sector plates based on a 3D elasticity theory and by using a classical finite
element method (FEM) [41]. A twofold thin shell theory and HSDT was differently applied
by Zhou et al. [42] to study the nonlinear buckling response of FG porous GPL-reinforced
cylindrical shells. Asemi et al. [43] comprehensively investigated the static, free, and forced
vibration of FG porous annular sector plates reinforced by GPLs, based on a FSDT, while
applying a Rayleigh–Ritz energy formulation and finite element approach to determine
and solve the governing equations of motion, respectively. Moreover, Moradi-Dastjerdi
and Behdinan [44] proposed a third-order shear deformation theory (TSDT) and mesh-free
method to solve the stability problem of FG porous smart sandwich structures reinforced
with graphene nanocomposite layers. Phan [45] applied successfully an isogeometric
approach based on a non-uniform rational B-splines (NURBS) for the study of FG-GPL
porous nanocomposite plates via a refined plate theory. Different plate theories were also
proposed in Ref. [46] to investigate the wave propagation in FG porous plates reinforced
with GPLs, whose governing equations of the problem were derived by means of the
Hamilton’s principle.

Based on the available literature, however, a limited attention has been paid, up to
date, on the thermal stress analysis of FG-GPL structures. Only in the recent work by
Ebrahimi et al. [47], an analytical solution was proposed by the authors to analyze the
thermal buckling and forced vibration of porous GPL-reinforced nanocomposite cylindrical
shells, based on a modified couple stress theory. Refs. [48,49] also focused on the thermo-
mechanical vibration of FG curved nanobeams and truncated cones with porosities and
reinforced by GPLs, even in a nonlocal sense. A static behavior of rotating truncated conical
shells under thermo-mechanical loads was studied by Jabbari et al. [50], based on a FSDT.
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Accordingly, Mohammadjani and Shariyat [51] investigated the nonlinear thermomechan-
ical vibration of FG annular plates/disks subjected to a non-uniform thermomechanical
loading condition in a dynamic sense, by applying a 3D thermoviscoelasticity theory. A
hygro-thermo-mechanical nonlinear study was also proposed recently for curved thin and
moderately thick shallow FG panels in [52].

Deka et al. [53] presented a semi-analytical solution for FG rotating disks by enforcing
both Dirichlet and Neumann boundary conditions while implementing a homotopy pertur-
bation method (HPM) for a thermomechanical loading condition. A similar problem was
also studied by Talebitooti et al. [54] to check for the critical buckling behavior of stiffened
rotating FG cylindrical shells subjected to a thermomechanical loading, as provided by
a FSDT and DQM. More recently, a 1D finite element method has been proposed in [55]
to investigate the 3D thermoplastic response of rotating disks with variable thickness by
employing a Carrera-unified formulation (CUF). Saadatfar and Fakhri [56] studied the
response of rotating FG hybrid cylindrical shells with a piezoelectric layer under hygrother-
mal conditions. Tornabene [57] applied a general theoretical framework to survey the
dynamics of rotating doubly-curved shell structures made of FG materials. Khorsand
and Tang [58] optimized the weight of a rotating FG annular disk with variable thick-
ness subjected to a thermo-mechanical loading by using co-evolutionary particle swarm
optimization and DQMs.

Based on the available literature, in most cases the investigations focus on the steady
state and time dependent thermal stresses of cylindrical shells, where a little attention is
given to the thermoelastic behavior of conical shells under a transient thermal loading.
Starting with the preliminary work [59], the present work provides a more generalized
investigation on the transient thermal stress behavior of FG rotating cones in presence of
possible porosities. The multilayer cone is assumed to be reinforced with uniform and non-
uniform GPLs in a metallic matrix with possible open-cell internal pores. Three different
porosity distributions are assumed across the thickness direction of the structure including
uniform and two symmetric FG patterns. The parametric study also includes five different
dispersion patterns of GPL through the thickness direction. A 2D axisymmetric elasticity
theory is herein employed to define the problem which is solved numerically in time and
space, based on a classical finite element approach, Rayleigh–Ritz energy formulation and
Crank–Nicolson algorithm. A large numerical investigation checks for the sensitivity of the
transient response of FG porous truncated cone to different input parameters, including
various rotating velocities, porosity distributions, semi-vertex angles of the cone, porosity
coefficients, GPL dispersion patterns, and weight fraction of the GPL nanofillers, as useful
for design purposes as well as for different mechanical and aerospace applications, such
as high-speed centrifugal separators, gas turbines, or high-power aircraft jet engines. The
work is organized as follows: after this introduction, the theoretical basics of the problem
are defined in Section 2, whose finite element modeling is detailed in Section 3. A large
numerical investigation is presented and discussed in Section 4, whose final remarks are
reported in the concluding Section 5.

2. Theoretical Formulation
2.1. Geometry Description

Let us consider a FG-GPL porous truncated cone with length L, thickness h (along the
x direction, 0 ≤ x ≤ h), internal and external radii of the small base a and b, respectively,
and semi-vertex angle ϕ, as depicted in Figure 1. Axisymmetric cylindrical coordinates
(r, z) are assumed along the radial and axial directions, respectively. Details of porosity
distribution and GPL pattern of the structure are also reported in Figure 1.
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Figure 1. Geometry of rotating truncated cone for various porosity and GPL patterns across the x
axis (thickness direction).

2.2. Material Properties

Three different porosity distributions are assumed throughout the cone thickness
(Figure 1), i.e., two types of non-uniform symmetric distribution and a uniform one. In
the first distribution (labeled as I-D1), the porosity is nonlinearly symmetric, with a higher
density around the mid-plane rather than the inner and outer surfaces of the cone. In the
second distribution (labeled as II-D2), a non-uniform symmetric porosity is assumed, with
a higher density near the inner and outer surfaces rather than the mid-plane. For such two
cases, the material properties with porosities are defined in Equations (1) and (2), respec-
tively, whereas for a uniform distribution of porosity (labeled as D3) the material properties
read as in Equation (3). At the same time, five different GPL patterns are assumed along
the cone thickness, as represented in Figure 1 and defined in [43,60]. More specifically:

Porosity distribution 1 (Non-uniform symmetric I-D1)

α(x) = α∗[1− e0 cos(π/2− πx/h)]
c(x) = c∗[1− e0 cos(π/2− πx/h)]
k(x) = k∗[1− e0 cos(π/2− πx/h)]
E(x) = E∗[1− e0 cos(π/2− πx/h)]
G(x) = G∗[1− e0 cos(π/2− πx/h)]
ρ(x) = ρ∗[1− em cos(π/2− πx/h)]

(1)

Porosity distribution 2 (Non-uniform symmetric II-D2)

α(x) = α∗[1− e∗0(1− cos(π/2− πx/h))]
c(x) = c∗[1− e∗0(1− cos(π/2− πx/h))]
k(x) = k∗[1− e∗0(1− cos(π/2− πx/h))]
E(x) = E∗[1− e∗0(1− cos(π/2− πx/h))]
G(x) = G∗[1− e∗0(1− cos(π/2− πx/h))]
ρ(x) = ρ∗[1− e∗0(1− cos(π/2− πx/h))]

(2)
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Uniform porosity distribution (D3)

α(z) = α∗Θ
c(z) = c∗Θ
k(z) = k∗Θ
E(z) = E∗Θ
G(z) = G∗Θ
ρ(z) = ρ∗Θ′

(3)

The following equations are also applied for evaluating x [61]

x =
√
(rn − rin)

2 + (zn − zin)
2

rin =
(tan(π−ϕ)rn−zn−a tan( π

2 −ϕ))
tan(π−ϕ)−tan( π

2 −ϕ)

zin = tan
(

π
2 − ϕ

)
(rin − a)

(4)

when ϕ = 0 (cylinder), it is x = rn − a, h = b − a. In the previous relations, x is the
normal space of points through the thickness of the cone from the inner surface; rn and zn
refer to the radius and height of an arbitrary point in the domain; rin and zin refer to the
radius and height of points at the inner surface changing from a to (a + L tan ϕ) and from
0 to L, respectively. Moreover, E(x), G(x), ρ(x), c(x), α(x), k(x) stand for the modulus of
elasticity, shear stiffness, mass density, specific heat capacity, thermal expansion coefficient,
and heat conduction coefficient of the porous nanocomposite cone, respectively. At the
same time, E∗, G∗, ρ∗, c∗, α∗, k∗ are the similar properties of GPL cone without any porosity.
Furthermore, e0 and e∗0 (0 ≤ e0(e∗0) < 1) are the coefficients of porosity belonging to D1
and D2, respectively; em and e∗m stand for the coefficients of mass density related to D1 and
D2, respectively; Θ and Θ′ stand for the variables of a uniform porosity distribution. As
the size and density of the internal cavities increase, the porosity increases, leading to a
reduction in the material properties. The influence of the material properties of open-cell
metal foams [62–64] is defined mathematically by Equation (5), from which we can derive
the Relation (6) between e0 and em, as follows

E(z)
E∗

=

(
ρ(z)
ρ∗

)2
(5)


1− em cos

(
π
2 −

πx
h
)
=
√

1− e0
(

π
2 −

πx
h
)

1− e∗m
(
1− cos

(
π
2 −

πx
h
))

=
√

1− e∗0
(
1−

(
π
2 −

πx
h
))

Θ′ =
√

Θ

(6)

The mass of FG-GPL truncated cone is assumed to be identical, such that
h/2∫
0

√
1− e∗0

(
1− cos

(
π
2 −

πx
h
))

dx =
h/2∫
0

√
1− e0 cos

(
π
2 −

πx
h
)
dx

h/2∫
0

√
Θdx =

h/2∫
0

√
1− e0 cos

(
π
2 −

πx
h
)
dx

(7)

here employed to determine e∗0 and Θ for a known value of e0. It can be observed that e∗0
rises by enhancing e0. When e0 reaches 0.6, e∗0 (=0.9612) is near to the upper bound. This
justifies the selection of e0 ∈ [0, 0.6], as applied hereafter.

Based on a Halpin–Tsai micromechanics model [65], the elasticity modulus for the
nanocomposite without porosities E∗ is defined as

E∗ =
3
8

(
1 + εGPL

L ηGPL
L VGPL

1− ηGPL
L VGPL

)
Em +

5
8

(
1 + εGPL

W ηGPL
W VGPL

1− ηGPL
W VGPL

)
(8)



Appl. Sci. 2022, 12, 3932 6 of 26

εGPL
L =

2lGPL
tGPL

(9)

εGPL
w =

2wGPL
tGPL

(10)

ηGPL
L =

EGPL − Em

EGPL + εGPL
L Em

(11)

ηGPL
w =

EGPL − Em

EGPL + εGPL
W Em

(12)

where EGPL and Em refer to the elasticity modulus of GPLs and metallic matrix, respectively,
lGPL, wGPL, and tGPL refer to the length, width, and thickness of nanofiller platelets, and
VGPL is the volume content of GPLs. The rule of mixture [66] is used to compute the mass
density, Poisson’s ratio, heat capacitance, heat conductivity coefficient, and heat expansion
coefficient of the nanocomposite, namely,

ρ∗ = ρGPLVGPL + ρm(1−VGPL) (13)

v∗ = vGPLVGPL + vm(1−VGPL) (14)

c∗ = cGPLVGPL + cm(1−VGPL) (15)

k∗ = kGPLVGPL + km(1−VGPL) (16)

α∗ = αGPLVGPL + αm(1−VGPL) (17)

where ρGPL, ρm, νGPL, νm, cGPL, cm, kGPL, km, αGPL, αm stand for the mass density of GPLs,
mass density of metal matrix, Poisson’s ratio of GPLs, Poisson’s ratio of metal matrix,
specific heat capacity of GPLs, specific heat capacity of metal matrix, heat conduction
coefficient of GPLs, heat conduction coefficient of metal matrix, thermal expansion coeffi-
cient of GPLs, thermal expansion coefficient of metal matrix, respectively. Moreover, the
Poisson’s ratio is kept constant for open-cell metal foams [67]. The shear modulus G∗ of
the nanocomposite reads as follows

G∗ =
E∗

2(1 + v∗)
(18)

The volume content of GPLs, VGPL, changes across the cone thickness for various
dispersion patterns, as follows

VGPL(z) =



ti1[1− cos (π
2 −

πx
h )] GPL X

ti2[1− cos (πx
2h )] GPL A

ti3 GPL UD

ti4[cos (πx
2h )] GPL V

ti5[sin (πx
h )] GPL O


(19)

where ti1, ti2, and ti3 denote the top limit of the VGPL, and i = 1, 2, 3 corresponding to
porosity distributions 1, 2, and 3, respectively. VT

GPL is estimated by applying the nanofiller
weight fraction ∆GPL into Equation (19),

VT
GPL =

∆GPLρm

ρGPL + ∆GPL(ρm − ρGPL)
(20)
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which is used to derive ti1, ti2, and ti3 by the following relation

VT
GPL

h/2∫
−h/2

ρ(z)
ρc

dx =



ti1

h/2∫
−h/2

[1− cos(π/2− πx/h)] ρ(z)
ρc

dx

ti2

h/2∫
−h/2

[1− cos(πx/2h)] ρ(z)
ρc

dx

ti3

h/2∫
−h/2

ρ(z)
ρc

dx

ti4

h/2∫
−h/2

[cos(πx/2h)] ρ(z)
ρc

dx

ti4

h/2∫
−h/2

[sin(πx/h)] ρ(z)
ρc

dx

(21)

2.3. Heat Transfer Equation

The heat conduction equation can be defined in axisymmetric cylindrical coordinates as

1
r

∂

∂r

(
rkr(x)

∂T
∂r

)
+

∂

∂z

(
kz(x)

∂T
∂z

)
= ρ(x)C(x) ∂T/∂t (22)

where the heat generation rate has been neglected, T is the temperature, and kr(x) and kz(x)
stand for the heat conduction coefficients in the radial and axial direction, respectively.

The thermal boundary conditions are considered as

T(r, z, 0) = T0 (23)

T(rin, z, t) = T1 = T0 + T0 sin
(πz

L

)
(1− exp(c0t)) (24)

T(r, 0, t) = T(r, L, t) = T(rout, z, t) = T0 (25)

where T0 refers to the temperature at t = 0, c0 is a constant value, rout is the radius of points
at the external surface that changes from b to b + L tan ϕ.

2.4. Thermo-Elasticity Equations

Based on a classical linear thermo-elasticity theory, the strain field for an axisymmetric
problem reads as follows

[ε] =


εrr
εθθ

εzz
εrz

 = [d][q] (26)

with

[q] =
{

u
v

}
, [d] =


∂
∂r 0
1
r 0
0 ∂

∂z
1
2

∂
∂z

1
2

∂
∂r

 (27)

and u and v refer to the displacement components across the r and z directions, respectively.
Moreover, the kinematic relations read as follows [59]

[σ] =


σrr
σθθ

σzz
τrz

 =
[

Dd
]
([ε]− [εT ]), [εT ] = α(x)∆T


1
1
1
0

 (28)
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where ∆T = T − T0 is the temperature estimated from the heat conduction equation. In
addition, [ε] stands for the elastic strain and [εT ] denotes the thermal strain field stemming
from the temperature variation. The elastic stiffness matrix

[
Dd
]

is defined as [68]

[
Dd
]
=

E(x)
(1 + υ)(1− 2υ)


1− υ υ υ 0

υ 1− υ υ 0
υ υ 1− υ 0
0 0 0 1−2υ

2

 (29)

The FG-GPL porous truncated cone is simply supported on its two bases, such that
the following kinematic boundary conditions are enforced

u(r, 0) = u(r, L) = 0 (30)

3. Finite Element Modelling

The problem is solved numerically by using the finite element method. In such a
context, we approximate the cone in the r − z plane of revolution by means of shape

functions [N(r, z)d]
(e)

. Based on a Kantorovich approximation, we define the thermal
distribution for each element (e) as follows

[q](e) = [N(r, z)d]
(e)
[δ](e) (31)

T(r, z, t)(e) = [N(r, z)t]
(e)
[T(t)](e), [N(r, z)t]

(e)
=
[
Ni Nj Nk Nl Nm Nn

]
,

[T(t)](e) =



T(t)i
T(t)j
T(t)k
T(t)l
T(t)m
T(t)n


(32)

[N(r, z)d]
(e)

=

[
Ni 0 Nj 0 Nk 0 Nl 0 Nm 0 Nn 0
0 Ni 0 Nj 0 Nk 0 Nl 0 Nm 0 Nn

]

Ni =
(r23(z−z3)−z23(r−r3))(r46(z−z6)−z46(r−r6))

(r23z13−z23r13)(r46z16−z46r16)

Nj =
(r31(z−z1)−z31(r−r1))(r54(z−z4)−z54(r−r4))

(r31z21−z31r21)(r54z24−z54r24)

Nk =
(r21(z−z1)−z21(r−r1))(r56(z−z6)−z56(r−r6))

(r21z31−z21r31)(r56z36−z56r36)

Nl =
(r31(z−z1)−z31(r−r1))(r23(z−z3)−z23(r−r3))

(r31z41−z31r41)(r23z43−z23r43)

Nm = (r31(z−z1)−z31(r−r1))(r21(z−z1)−z21(r−r1))
(r31z51−z31r51)(r21z51−z21r51)

Nn = (r21(z−z1)−z21(r−r1))(r23(z−z3)−z23(r−r3))
(r21z61−z21r61)(r23z63−z23r63)

[δ](e) =
[
ui vi uj vj uk vk ul vl um vm un vn

]T

(33)
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The indexes d and t refer to the structural and thermal solutions of the problem,
respectively. By substitution of Equation (31) into Equation (26), the elastic strain matrix for
the arbitrary element (e) can be defined as

[ε](e) =
[

Bd
](e)

[δ](e) (34)

where
[

Bd
](e)

= [d][N(r, z)d]
(e)

, or more specifically

[
Bd
]
=



∂N1
∂r 0 ∂N2

∂r 0 ∂N3
∂r 0 ∂N4

∂r 0 ∂N5
∂r 0 ∂N6

∂r 0
1
r N1 0 1

r N2 0 1
r N3 0 1

r N4 0 1
r N5 0 1

r N6 0

0 ∂N1
∂z 0 ∂N2

∂z 0 ∂N3
∂z 0 ∂N4

∂z 0 ∂N5
∂z 0 ∂N6

∂z
1
2

∂N1
∂z

1
2

∂N1
∂r

1
2

∂N2
∂z

1
2

∂N2
∂r

1
2

∂N3
∂z

1
2

∂N3
∂r

1
2

∂N4
∂z

1
2

∂N4
∂r

1
2

∂N5
∂z

1
2

∂N5
∂r

1
2

∂N6
∂z

1
2

∂N6
∂r

 (35)

Note that matrix [N(r, z)](e) refers to the second-order interpolation functions in terms
of its nodal values for element (e), and [T(t)] denotes the corresponding nodal temperature
vector. In addition to the displacement components, the inhomogeneity of the material
properties of the FG-GPL porous cone can be expressed by means of their nodal values
as follows

E =
6

∑
i=1

Ei Ni = NÊ (36)

ρ =
6

∑
i=1

ρi Ni = Nρ̂ (37)

c =
6

∑
i=1

ci Ni = NĈ (38)

α =
6

∑
i=1

αi Ni = Nα̂ (39)

k =
6

∑
i=1

ki Ni = NK̂ (40)

where Ei, ρi, ci, αi, ki refer to the elasticity modulus, mass density, specific heat capacity,
thermal expansion coefficient, and heat conduction coefficient related to the arbitrary node
i. Moreover, N, Ê, ρ̂, Ĉ, α̂, and k̂ refer to the shape functions vector, elasticity modulus, mass
density, heat capacity, heat expansion coefficient, and heat conductivity coefficient for each
element, defined as

N = [N1 . . . N6], Ê = [E1 . . . E6]
T , ρ̂ = [ρ1 . . . ρ6]

T

Ĉ = [C1 . . . C6]
T , α̂ = [α1 . . . α6]

T , k̂ = [k1 . . . k6]
T

(41)

By a mathematical manipulation, Equation (22) can be simplified as

I =
∫
V

1
2

[
−2
(

Q− ρC ∂T
∂t

)
T + rkr

(
∂T
∂r

)2
+ rkz

(
∂T
∂z

)2
]

dV

+
∫
S1

q” TdS +
∫
S2

1
2 h(T − T∞)2dS

(42)

where V is the volume, S1 and S2 are the boundary surfaces of the cone, q′′ , Q, T∞, and h
stand for the heat flux, rate of energy generation per unit volume, surrounding temperature,
and heat convection coefficient, respectively.
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According to FEM, we redefine Equation (42), in a variational form [69], to yield the

following expression for capacitance [K1
t]
(e), stiffness [K2

t]
(e) and [K3

t]
(e), and force [Ft]

matrices for each element (e)

[K1
t]
(e)

=
∫

V(e)
ρ(x)C(x)[Nt]

T
[Nt]dV

=
∫

V(e)
(Nρ̂)(NĈ)[Nt]

T
[Nt]dV

(43)

[K2
t]
(e)

=
∫

V(e)

[Bt]
T
[

D(x)t
]
[Bt] dV (44)

where [
D(x)t

]
=

[
rkr(x) 0

0 rkz(x)

]
=

[
r(NK̂r) 0

0 r(NK̂z)

]
(45)

[Bt] =

 ∂Ni
∂r

∂Nj
∂r

∂Nk
∂r

∂Nl
∂r

∂Nm
∂r

∂Nn
∂r

∂Ni
∂z

∂Nj
∂z

∂Nk
∂z

∂Nl
∂z

∂Nm
∂z

∂Nn
∂z

 (46)

[K3
t]
(e)

=
∫

S(e)

h [Nt]
T
[Nt]dS (47)

[Ft]
(e)

=
∫

V(e)

Q[Nt]
TdV −

∫
S1(e)

q” [Nt]
TdS +

∫
S2(e)

hT∞[Nt]
TdS (48)

in which V(e) denotes the volume element, S1(e) and S2(e) refer to the boundary elements
subjected to a heat flux and heat convection, respectively. By assembling the element
matrices, the global heat transfer takes the following form

[K1
t]
[ .
θ
]
+
([

K2
t]+ [K3

t])[θ] = [Ft] (49)

An unconditionally stable scheme based on a Crank–Nicolson time stepping procedure
is thus applied for numerically solving the differential Equation (49), under a suitable time
step selection, see Ref. [70]. More details about the algorithm are provided in Appendix A.
Once deriving the transient temperature distribution, we solve the thermoelastic problem,
while using simplex linear triangular elements to approximate the kinematic field. Based
on a Rayleigh–Ritz energy formulation, the structural stiffness and force element matrices
owing to a varying temperature and rotational velocity are, thus, obtained as

[Kd]
(e)

=
∫

V(e)

[
Bd
]T[

Dd
][

Bd
]
dV (50)

[Fd]
(e)

=
∫

V(e)

[
Bd
][

Dd
]
[εT ] dV +

∫
A(e) NTΓdV

[εT ] = (N=)∆T[1 1 1 0]T

[
Dd
]
= (NΞ)

(1+υ)(1−2υ)


1− υ

υ
υ
0

υ
1− υ

υ
0

υ
υ

1− υ
0

0
0
0

1−2υ
2


(51)

Γ =

[
Γr
0

]
(52)
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The first term in (51) is the force due to a thermal variation and the second term is that one
due to a rotational velocity; moreover, Γr defines the body force component in the r direction

Γr = ρrω2 (53)

whereas the governing equations of the problem take the following matrix form[
Kd
]
[∆] =

{
Fd
}

(54)

This equation must be solved at each time step with the known temperature variation
as derived from Equation (49).

4. Results and Discussion
4.1. Verification

In this section we present the results from a transient stress analysis for a simply-
supported FG-GPL porous rotating truncated cone, defined geometrically by a = 1, b = 1.5,
L = 2, ϕ = 15◦, and ω = 100 rad/s. The selected structural member is made of a
homogenous material with the following thermo-mechanical properties: E = 198.8 GPa,
ρ = 8340 kg/m3, ν = 0.33, k = 512 W/(m · k), C = 876 j/(Kg · k), α = 7.74× 10−5 1/k,
while the thermal boundary conditions are enforced for T0 = 300◦k, T1 = 600◦k. Our
numerical results are compared to those ones from the commercial FEM software ANSYS
Workbench, in terms of thermal time history, radial displacement, radial stress state at the
midpoint of the cone, under the assumptions γGPL = 0% and e0 = 0, em = 0 (see Figure 2).
To model the problem in ANSYS Workbench, quadratic quadrilateral elements have been
used for the sake of accuracy, under the assumption of 2D axisymmetric elasticity like in
the present study. To get convergent results, the time step has been set equal to 1 s, and
20× 30 elements have been considered along the radial and axial directions. As visible
from all the plots in Figure 2, our results match perfectly with predictions from the ANSYS
code, thus confirming the reliability and accuracy of the proposed FEM-based formulation
to treat the selected thermomechanical problem. All the time histories in Figure 2 refer
to the center point of the cone, whose temperature (Figure 2a) and radial displacement
(Figure 2b) feature a smooth and monotonic increase up to a plateau value, while observing
a non-monotonic variation in the compressive stress state (Figure 2c) with a rapid increase
up to the maximum value in a short time-lapse, followed by a gradual decrease up to a
plateau value.
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4.2. Transient and Steady Responses

The study continuous with the analysis of the transient thermal response of a FG-GPL
porous rotating truncated cone, with material properties in Table 1 for both GPLs and
metal matrix. As plotted in Figure 3, a systematic study checks for the influence of the
GPL pattern on the thermal time history (Figure 3a), radial displacement (Figure 3b), and
stress state (Figure 3c–e) for the centered point of the selected truncated cone. Hereafter, the
stress state [σ]T = [σrr σθθ σzz τrz]

T will be labeled as [σ]T = [σr σt σz τ]T for simplicity
reasons. Based on the plots in Figure 3, the effect of the GPL pattern is much more
pronounced on the transient thermal and kinematic response compared to the stress one.
More specifically, it is worth observing that the temperature response maintains almost the
same for a GPLUD and GPLV distribution. At the same time, GPLUD, GPLV, and GPLO
patterns yield the same effect on the radial stress response. Besides, the effect of GPLUD
and GPLV patterns on the other stress components seems almost the same. The results also
denote that the maximum and minimum compressive axial and radial stress is reached for
a GPLA and GPLO, respectively. In addition, the maximum and minimum steady state of
radial, axial, and shear stresses belongs to a GPLO and GPLA distribution, respectively,
while the maximum and minimum steady state of tangential stress and radial displacement
belongs to a GPLO and GPLX distribution. Figure 4 indicates the influence of porosity
distribution on the time history of temperature (Figure 4a), radial displacement (Figure 4b),
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and stresses (Figure 4c–e) for the central point of the truncated cone. The results show that
the temperature and displacement field will be steady sooner for D1, and the maximum
and minimum magnitude of steady state temperature and displacement belongs to D1 and
D3, respectively. It is interesting to note that the distribution of porosity has a meaningful
effect on the radial and tangential stress time histories, which, in turn, show a relaxation
for a D1 porosity, since they change from a compressive to a traction state.

1 
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Table 1. Material property of metal matrix and GPLs.

Material Property E (GPa) ρ [ Kg
m3 ] υ k [ W

m k ] α [k−1] C [ j
Kg·k ]

GPL 1.01 TPa 1062.5 0.186 3000 2.35 × 10−5 644
Metal 130 GPa 8960 0.34 250 8.2 × 10−5 896
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In Figure 5 we also plot the geometrical effect of a semi-vertex angle on the time history
of temperature (Figure 5a), radial displacement (Figure 5b), and stresses (Figure 5c–e) at
the central point of the truncated cone. It can be seen that, by increasing a semi-vertex
angle, the cone behavior will be steady sooner. Figure 6 also shows the effect of the porosity
coefficient on the same time histories for the same central point of the selected structure. It
is worth observing that an increased porosity coefficient yields an increased steady state
radial displacement and stress field. Structures with higher levels of porosity will respond
more quickly to a thermal variation and reach the equilibrium conditions in a faster way.
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Figure 7 also analyzes the sensitivity of the response for different weight fractions of
nanofillers. While the weight fraction of nanofillers increases, the steady state response
significantly decreases due to an increased structural stiffness. For higher weight fractions
of nanofillers, indeed, the structure will be steady faster. As also plotted in Figure 8, we
repeat the same systematic analysis for a varying circular velocity, where it is clearly evident
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that an increased circular velocity causes an increased steady state stress field (Figure 8a–d)
and radial displacement (Figure 8e).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 29 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Influence of GPLγ  on the transient temperature (a), radial displacement (b), and stress 

state (c–f) for a center point of truncated cone (D1-GPL X; 0e  = 0.4; φ  = 30°; ω  = 100 rad/s). 
Figure 7. Influence of γGPL on the transient temperature (a), radial displacement (b), and stress state
(c–f) for a center point of truncated cone (D1-GPL X; e0 = 0.4; φ = 30◦; ω = 100 rad/s).



Appl. Sci. 2022, 12, 3932 18 of 26Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 29 
 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8. Influence of the circular velocity on the transient stress state (a–d) and radial displacement 
(e) for a center point of truncated cone (D1-GPL X; 0e  = 0.4; φ  = 30°; GPLγ  = 0.01). 

The influence of various GPL patterns on temperature, radial displacement, and 
stresses along the r  direction (at / 2z L= ) is depicted in Figure 9. Note that the effect of 
a GPLV and GPLUD pattern on the overall thermo-mechanical response is quite similar. 
As also plotted in Figure 10, for different porosity patterns, the D1, D3, and D2 patterns 
provide a higher level of temperature and radial displacement, respectively. The effect of 

Figure 8. Influence of the circular velocity on the transient stress state (a–d) and radial displacement
(e) for a center point of truncated cone (D1-GPL X; e0 = 0.4; φ = 30◦; γGPL = 0.01).

The influence of various GPL patterns on temperature, radial displacement, and
stresses along the r direction (at z = L/2) is depicted in Figure 9. Note that the effect of
a GPLV and GPLUD pattern on the overall thermo-mechanical response is quite similar.
As also plotted in Figure 10, for different porosity patterns, the D1, D3, and D2 patterns
provide a higher level of temperature and radial displacement, respectively. The effect of D1
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on the radial stress state is nonlinear, while D3 and D2 provide almost a linear distribution
in the radial direction. The influence of the porosity coefficient on temperature, radial
displacement, and stresses along the r–direction at z = L/2 is shown in Figure 11. As
expected, by increasing the porosity coefficient, the radial displacement increases, owing
the structure to achieve a lower stiffness. At the same time, the temperature increases for
an increased porosity level in the structure; see also the final contour plots in Figure 12 for
the radial, axial, tangential, and shear stresses in Figure 12 in the steady state situation.

1 
 

 

Figure 9. Temperature (a), radial displacement (b), and stress state (c–f) at z = L/2 for various GPL
patterns (D1; e0 = 0.4; γGPL = 0.01; ω = 100 rad/s).
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Figure 10. Temperature (a), radial displacement (b), and stress state (c–f) at z = L/2 for various po-
rosity distribution. (GPL V; 0e  = 0.4; φ  = 30°; GPLγ  = 0.01; ω  = 100 rad/s). 
Figure 10. Temperature (a), radial displacement (b), and stress state (c–f) at z = L/2 for various
porosity distribution. (GPL V; e0 = 0.4; φ = 30◦; γGPL = 0.01; ω = 100 rad/s).
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Figure 11. Temperature (a), radial displacement (b), and stress state (c–f) at z = L/2 for various po-
rosity coefficient (D1-GPL X; φ  = 30°; GPLγ  = 0.01; ω  = 100 rad/s). 
Figure 11. Temperature (a), radial displacement (b), and stress state (c–f) at z = L/2 for various
porosity coefficient (D1-GPL X; φ = 30◦; γGPL = 0.01; ω = 100 rad/s).
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5. Conclusions

This work focused on the transient thermal stress response of porous rotating truncated
cones reinforced by GPLs based on a classical linear thermos-elasticity. A finite element
approach based on a Rayleigh–Ritz formulation and Crank–Nicolson time-stepping algo-
rithm was employed to model and solve the problem, while checking for the influence
of the porosity coefficient and distributions, GPL dispersion pattern, weight fraction of
nanofillers, semi vertex angle, and rotational velocity, on the transient temperature, radial
displacement, and stress state of the structure. Based on a large systematic investigation, it
seems that GPLUD and GPLV distributions of GPLs provide almost the same temperature
response. In addition, GPLUD, GPLV, and GPLO patterns have the same effect on the
radial stress response. Besides, the effect of GPLUD and GPLV patterns on the other stress
components seems almost the same. Results denote that the maximum and minimum
compressive axial and radial stress state is reached for a GPLA and GPLO, respectively.
Moreover, the maximum and minimum steady state for the radial, axial, and shear stresses
correspond to GPLO and GPLA, respectively, while the maximum and minimum steady
state of tangential stress and radial displacement is reached for a GPLO and GPLX distribu-
tion. The temperature and displacement response will be steady sooner for a D1 porosity,
and the maximum and minimum magnitude of steady state temperature and displacement
correspond to a D1 and D3 porosity, respectively.
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The distribution of porosity has a meaningful effect on the stress time histories. More
specifically, a D1 porosity gets a relaxation in the stress state, since the nature of radial and
tangential stresses changes from a compressive to a tensional state. Moreover, the influence
of a D1 porosity on the radial stress state is nonlinear, while a D3 and D2 porosity features
almost a linear distribution throughout the radial direction.

For an increased semi-vertex angle, the cone behavior will be steady sooner. The steady
state radial displacement and stress field increases for an increased porosity coefficient.
A conic structure with an increased amount of porosity will also react more quickly to
a thermal condition variation, reaching a faster equilibrium condition. For an increased
weight fraction of GPLs, the steady state radial displacement significantly decreases, and
the structure becomes steady faster. At the same time, conic structures with an increased
circular velocity feature an increased steady state radial displacement and stress field. The
present findings could serve as theoretical predictions for design purposes of high-speed
centrifugal separators, gas turbines, or high-power aircraft jet engines.
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Appendix A

The direct integration method may be used to integrate Equation (49) in time do-
main. Two states of {θ} separated by time increment ∆t denoted by {θ}t and {θ}t+∆t are
considered. According to the trapezoidal rule, the two vectors are related as

{θ}t+∆t = {θ}t +
[
(1− β)

.
{θ}t + β

.
{θ}t+∆t

]
∆t (A1)

where β is a constant which may be selected by the analyst. Equation (49) is written at
times t and t + ∆t, the first equation is multiplied by (1− β) and the second equation is
multiplied by β to give

(1− β)
([

Kt
1
] .
{θ}t +

[
Kt

2 + Kt
3
]
{θ}t

)
= (1− β)

{
Ft}

t (A2)

β
([

Kt
1
] .
{θ}t+∆t + [K]{θ}t+∆t

)
= β

{
Ft}

t+∆t (A3)

These two equations are added and Equation (A1) is used to eliminate the time
derivatives of {θ}. The resulting equation is solved for {θ}t+∆t, which yields(

1
∆t
[
Kt

1
]
+ β

[
Kt

2 + Kt
3
])
{θ}t+∆t =

(
1

∆t
[
Kt

1
]
− (1− β)

[
Kt

2 + Kt
3
])
{θ}t + (1− β){F}t + β

{
Ft}

t+∆t (A4)

For β = 1
2 , we obtain the Crank–Nicolson algorithm, which is unconditionally stable,

regardless of the value of ∆t.
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