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NMR-based metabolomics is a very effective tool to assess the tumor response to drugs by providing insights for their mode of
action. Recently, a novel Pt(II) complex, [Pt(r]l-CsziOMe)(DMSO)(phen)]+ (phen = 1,10-phenanthroline), Pt-EtOMeSOphen,
was synthesized and studied for its antitumor activity against eight human cancer cell lines. Pt-EtOMeSOphen showed higher
cytotoxic effects than cisplatin in most of the cancer cell lines and in particular against the neuroblastoma cell line (SH-SY5Y). In
this study, the mechanism of action of Pt-EtOMeSOphen on SH-SY5Y cells was investigated using "H NMR-based metabolomics
and compared with cisplatin. The observed time response of SH-SY5Y cells under treatment revealed a faster action of Pt-
EtOMeSOphen compared with cisplatin, with a response already observed after six hours of exposure, suggesting a cytosolic
target. NMR-based metabolomics demonstrated a peculiar alteration of the glutathione metabolism pathway and the

diacylglycerol expression.

1. Introduction

Cancer still remains one of the major causes of death worldwide
with chemotherapy, radiation, and surgery representing the
common therapeutic treatment of oncological patients [1].
Among these, chemotherapy constitutes the most significant
treatment and cisplatin is one of the most efficient and globally
used antitumor drugs [2, 3]. However, the side effects and
resistance phenomena related to the use of cisplatin triggered
many researchers toward the development of new platinum-
based antitumor drugs [4-11], even finding other interesting
properties and possible therapeutic applications [12]. Among
the investigated new platinum species, organometallic com-
pounds (OCs) have been recently considered as promising
anticancer drugs. These metal complexes are characterized by

the presence of at least one direct covalent metal-carbon bond
in their structure. The presence of a coordinating central metal
ion allows greater structural diversity (from linear to octahe-
dral), thus a more flexible stereochemistry compared with
organic compounds. Interestingly, this specific feature can also
provide a better control of kinetic properties, such as the hy-
drolysis rate of ligands [13]. The marked differences of OCs
from the “classical” coordination metal complexes together with
their specific pharmacological potential render this type of
complex very attractive for new drug design. On the other hand,
only a limited number of studies on platinum OCs tested as
antitumor drugs were performed [13], suggesting further
commitment in the field.

Many research projects have demonstrated cancer cells
have a reprogrammed and specific metabolism that is very
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different from healthy cells [14-22]. For this reason, the
study of tumors at the molecular level using a metabolomic
approach is a useful tool for drug development. NMR
spectroscopy has emerged as a critical tool for metabolomics
in drug discovery and is defined a “gold standard method”
for medical and pharmacological studies [23]. In the last few
years, NMR-based metabolomics has been extended to the
study of metal-based antitumor drugs for assessing mode of
action and specific targets in cancer cells [24, 25]. The ap-
plication of NMR spectroscopy in this research field opened
new perspectives for the study of new potential drugs by
providing a metabolic fingerprint of biological systems and
simplifying preclinical trials [24-28].

In these contexts, we have recently reported the synthesis
and the cytotoxic activity of a novel Pt(II) organometallic
complex of the type [Pt(n'-C,H;OMe)(DMSO)(phen)]*
(Pt-EtOMeSOphen) (Figure 1) [29].

The cytotoxic activity of Pt-EtOMeSOphen has been
evaluated on different cancer cells lines (SH-SY5Y, SK-OV-
3, Hep-G2, Caco-2, HeLa, MCF-7, MG-63, ZL-55), showing
a higher cytotoxicity compared with cisplatin in many of the
tested cell lines and in particular against the neuroblastoma
cell line SH-SY5Y. Moreover, we have recently demon-
strated that Pt-EtOMeSOphen is able to inhibit SH-SY5Y
cancer cells’ survival, motility, and invasion [29].

In this work, a 'H NMR metabolomic approach was used to
explore, in comparison with cisplatin, the possible mechanisms
ofaction and to define the relevant targets of Pt-EtOMeSOphen
on neuroblastoma model cancer cells (SH-SY5Y).

2. Materials and Methods

2.1. Synthesis of Complexes. All solvents and reagents were
purchased from Aldrich Chemical Company and used as
received, except otherwise stated. Cisplatin, cis-
[PtCl,(NH3),], and Pt-EtOMeSOphen were synthesized
according to previously reported procedures and gave sat-
isfactory analytical data [29, 30].

2.2. Cell Cultures and Treatments. SH-SY5Y cells were cul-
turedin 1:1 mixture of DMEM (high glucose) and Ham’s F-12
Nutrient Mixture (Sigma, St. Louis, MO, USA) supplemented
with 10% heat-inactivated fetal bovine serum (FBS), glutamine
2 mM, penicillin (100 U/mL), and streptomycin (100 mg/mL)
in a humidified incubator containing 5% CO, in air at 37°C.
Cells were grown to 70-80% confluence and then treated with
the half maximal inhibitor concentration (ICso) at 24h of
cisplatin and Pt-EtOMeSOphen (50 uM) for different incu-
bation periods (6, 12, and 24 h). For control cells, fresh me-
dium without drug was added. Then, cells were harvested by
trypsinization, washed with PBS, and pelleted by centrifu-
gation (1000 rpm x 10 min). The same procedure was rigor-
ously used for all samples to minimize experimental
variability. For each condition, three independent assays were
performed. A total of 36 samples were analyzed.

2.3. Cell Sampling for NMR Analysis. NMR samples were
prepared from pelleted SH-SY5Y cells and from each re-
spective recovered culture medium. A combined extraction
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FiGUure 1: Chemical structure of the novel [Pt(n'-C,H,OMe)
(DMSO)(phen)]” organometallic Pt(II) complex, Pt-EtOMeSO
phen.

of polar and lipophilic metabolites from cell pellets, using a
methanol/chloroform/water mixture, was carried out,
according to reported literature [31]. Each sample was stored
at —80°C until analysis.

The preparation of samples was carefully carried out
following a specific protocol in order to minimize the
possible NMR chemical shift variations in the subsequent
analysis, according to reported literature [26-28, 31].

In detail, each polar cell extract was resuspended in
580 uL NMR buffer (0.1M K,HPO,, 0.2mM TSP, 2mM
NaN3;), pH 7.4, in D,0. Samples were vortexed and
centrifuged at 12,000 g for 5 min at 4°C to remove any solid
debris, and 550 uL of the supernatant was transferred into
5mm NMR tubes. The lipid cell extracts were resuspended
in 580 uL of deuterated solvent (CDCl;) containing 0.03 vol/
vol TMS, then vortexed, and centrifuged (1000g for 5min),
and 550 uL of the supernatant was transferred into 5mm
NMR tubes. For culture media, 900 4L of each sample was
added with 100 4L of NMR buffer (1.5M K,HPO,, 2mM
TSP, 2mM NaN3), pH 7.4, in D,0. Samples were vortexed,
and 600 uL of the supernatant was placed in 5mm outer
diameter NMR tubes, as reported [26, 27, 31].

2.4. NMR Measurements. All measurements were per-
formed on a Bruker Avance III 600 Ascend NMR spec-
trometer (Bruker, Ettlingen, Germany), operating at
600.13MHz for 'H observation, equipped with a TCI
cryoprobe (triple resonance inverse cryoprobe) incorpo-
rating a z-axis gradient coil and automatic tuning matching
(ATM). Experiments were acquired at 300 K in automation
mode after loading each sample on a Bruker automatic
sample changer, interfaced with the software IconNMR
(Bruker).

For each aqueous and culture media sample, a standard
1D 'H spectrum with presaturation and composite pulse for
selection (ZGCPPR Bruker standard pulse sequence) and
Carr-Purcell-Meiboom-Gill (CMPG) spin-echo sequence
was acquired with 64 transients, 16 dummy scans, 5-s re-
laxation delay, size of FID (free induction decay) of 32 K data
points and zero-filling by a factor of 2 to give 64 K frequency
domain data points, P1 11.38us, a spectral width of
12,019.230 Hz (20.0276 ppm), an acquisition time of 1.36 s, a
total spin-spin relaxation delay of 1.2 ms, and solvent signal
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saturation during the relaxation delay. The resulting FIDs
were multiplied by an exponential weighting function
corresponding to a line broadening of 0.3 Hz before Fourier
transformation, automated phasing, and baseline correction.
All spectra were referenced to the trimethylsilyl propionate
(TSP) signal (6=0.00 ppm).

For lipid extracts, a one-dimensional experiment (ZG
experiment) was run with 64 scans, 16 dummy scans, 5-s re-
laxation delay, 64 K time domain, spectral width 20.0276 ppm
(12019.230 Hz), and P1 8 us. All spectra were referenced to the
tetramethylsilane (TMS) signal (6 =0.00 ppm).

Cell extracts are multicomponent systems; for this
reason, for all samples, the NMR characterization of the
extracts was performed by using 1D (‘H) and 2D (‘H-'H
J-resolved, 'H-"H COSY correlation spectroscopy) NMR
spectra. Moreover, '"H-">C HSQC (heteronuclear single
quantum correlation) and 'H-">C HMBC (heteronuclear
multiple bond correlation) were randomly acquired for
metabolite assignment purposes. Metabolite identification
was carried out from 1D and 2D NMR profiles using as-
sociated databases of pure compounds such as Human
Metabolome Database (HMDB) and ChenomX NMR Suite
8 (ChenomX Inc., Edmonton, Canada) software and com-
pared with other published data [32]. To evaluate the
presence of variations in metabolites’ chemical shifts (of
aqueous and lipid extracts and of culture media), in the
prebucketing processing, the alignment of the acquired
spectra was performed. No variations were observed con-
firming the reliability of the NMR analysis for the subse-
quent buckets processing and multivariate data analysis. The
NMR spectra were processed for the visual inspection and
the bucketing process using Topspin 3.6.1 and Amix 3.9.13
(Bruker, Biospin, Italy).

2.5. Data Processing and Multivariate Data Analysis. The 'H
NMR chemical shifts for detected metabolites are reported
in Tables S1-S2. The bucketing preprocessing procedure was
applied on the CMPG spectra, for both aqueous extracts and
culture media, and on the ZG spectra, for lipid extracts,
covering the range 10.0-0.5 ppm. Each NMR spectrum was
automatically divided in rectangular buckets of fixed
0.01 ppm width and integrated using Bruker Amix 3.9.13
software (Bruker, Biospin) software. The spectral regions
between 5.10 and 4.7 ppm (containing the residual peak
from the suppressed water resonance) for aqueous extracts
and culture media and between 7.60 and 7.00 and 3.60 and
3.00 ppm (containing signals of chloroform and its carbon
satellites and the residual methanol, respectively) for lipid
extracts were excluded. The remaining buckets were nor-
malized to total area to minimize small differences and
subsequently mean-centered. Multivariate statistical ana-
lyses (unsupervised principal component analysis (PCA)
and the supervised orthogonal partial least squares dis-
criminant analyses (OPLS-DA)) were performed to examine
the intrinsic variation in the data using SIMCA 14 software
(Sartorius Stedim Biotech, Umed, Sweden) [33-35]. The
Pareto scaling procedure was performed by dividing the
mean-centered data by the square root of the standard

deviation [14, 15]. The robustness of the statistical models
was tested by the cross-validation default method (7-fold)
and further evaluated with a permutation test (100 per-
mutations) [35]. The total variations in the data and the
internal cross-validation, thus the quality of the statistical
models, were described by R* (cum), Q* (cum) parameters,
and p values (p [CV-ANOVA], a p-value <0.05, confidence
level of 95%, was considered statistically significant) ob-
tained from the analysis of variance testing of cross-validated
predictive residuals (CV-ANOVA) [15, 16, 31, 33].

The variation in the metabolites content between the two
different conditions of treatment (Pt-EtOMeSOphen, cis-
platin) were calculated as the —log, fold change (FC) ratio of
the normalized median intensity for the distinctive metabo-
lites in the spectra, identified by OPLS-DA analysis, with
respect to controls. The Box-and-Whisker plots illustrating
the trend of significant metabolites for Pt-EtOMeSOphen at
six hours of treatment were obtained by using the biomarker
analysis on MetaboAnalyst software. The statistical signifi-
cance was evaluated using a two-sample #-test considering
p-values <0.05 as statistically significant.

2.6. Metabolic Pathway Analysis. The most relevant meta-
bolic pathways potentially involved in the metabolomic study
were identified using MetaboAnalyst software [17, 18]. The
aim was to investigate if certain metabolic pathways are
significantly different in the treated SH-SY5Y aqueous ex-
tracts (all condition of treatment) when compared with
control samples. Metabolites of interest previously quantified
by selected distinctive unbiased NMR signals were used as the
input matrix for the metabolic pathway analysis. The pathway
impact was calculated as the sum of the importance measures
of the matched metabolites normalized by the sum of the
importance measures of all metabolites in each pathway.

3. Results

3.1. Endo- and Exo-Metabolome '"H NMR Profiling of SH-
SY5Y Cells and Unsupervised Principal Components Analysis
(PCA). In the present study, a 'H NMR metabolomic
analysis of cell lysates (aqueous and lipid extracts) and their
growth media was performed to study the metabolic effects
of Pt-EtOMeSOphen treatment on SH-SY5Y cells. The cells
were treated (for 6, 12, and 24 h) with Pt-EtOMeSOphen
50 uM, concentration corresponding to the ICs, value for
SH-SY5Y cells at 24 h [29]. Moreover, a further parallel assay
with cisplatin using the same experimental setup and design
(the cisplatin ICs, value and same times of cells treatment)
was performed. Both treatments (Pt-EtOMeSOphen and
cisplatin) were also compared with untreated control cells.

Figure 2 (left panels) shows the 600 MHz 'H NMR
spectra obtained from the aqueous extract (A), lipid extract
(B), and growth media (C) of SH-SY5Y cells. The expansion
of the NMR spectra is available in Figures S1-S3. The 'H
NMR resonances assignment is listed in Tables S1 and S2.

The aqueous extract (Figure 2(a)) was constituted by
amino acids (isoleucine, valine, leucine, alanine, gluta-
mine, glutamate, tyrosine, phenylalanine, glycine, serine,
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FIGURE 2: Representatives 600 MHz 'H NMR spectra (left panels) and corresponding PCA score plot models (right panels) of SH-SY5Y cells:

(a) aqueous extracts (R*X =0.566; Q*=0.297); (b) lipid extracts (R*X =

0.946; Q*=0.913); and (c) growth media (R*X = 0.879; Q> =0.851).

Iso: isoleucine, leu: leucine, val: valine, but: butyrate, lac: lactate, thr: threonine, ala: alanine, ace: acetate, glu: glutamate, gln: glutamine, GSH:

glutathione, lys: lysine, for: formate, met: methionine, pyr: pyruvate, suc:

succinate, cre: creatine, cre-P: creatine phosphate, cho: choline, PC:

phosphocholine, GPC: glycerophosphocholine, m-ino: myo-inositol, phe: phenylalanine, tyr: tyrosine, his: histidine, tau: taurine, gly:

glycine, ser: serine, UDP-glucose: uridine diphosphate glucose, AXP:
tidylcholine, GPL: glycerophospholipids.

threonine, creatine, and creatine phosphate), osmolytes
(free choline, phosphocholine, glycerophosphocholine,
and taurine), organic acids (acetate, pyruvate, succinate,
formate), inositol (myo-inositol), and nucleoside deriv-
atives (AMP, ADP, ATP, UDP-glucose) (Table S1).

The lipid fraction (Figure 2(b)) was characterized by the
resonances from protons of fatty acids, phosphatidylcholine,
mono- and polyunsaturated lipids, and mono- and tri-
glycerides (Table S2). Interestingly, only in the lipid fraction
of the Pt-EtOMeSOphen-treated cells was found also the
resonances ascribable to diglycerides.

Nutrient substrates essential for cell growth such as amino
acids (isoleucine, valine, leucine, tyrosine, histidine, lysine,
glutamine, phenylalanine, alanine, glycine, and glutamate)
and sugars (glucose) characterize the culture medium NMR
spectra (Figure 2(c)). Moreover, other specific metabolic
intermediates released in culture media such as glycolysis and
TCA cycle compounds (pyruvate, succinate, acetate, lactate)
and waste metabolites (formate) were found (Table S1).

In order to investigate the differences between treated
cells (Pt-EtOMeSOphen and cisplatin) and controls, at in-
creasing incubation times (6, 12, and 24h), a preliminary
multivariate data analysis was performed. Bucket tables
obtained using the cell growth media and lysate aqueous
extracts ("H CPMG NMR spectra) and cell lipid extracts (‘H
ZG NMR spectra) were used as input variables.

The PCA showed for both endo- (intracellular) and
exo- (culture medium) metabolome (Figure 2(a)-2(c) right
panels) marked changes in the metabolic profile for Pt-
EtOMeSOphen treated with respect to untreated and
cisplatin-treated SH-SY5Y cells. Moreover, the PCA score

adenosine mono- (M), di- (D), triphosphate (T), PTC: phospha-

plot suggested a drug incubation time dependence of the
endo-metabolome profile for both treatments not observed
for the controls (dispersion along the PC1 and PC2 for Pt-
EtOMeSOphen and cisplatin, respectively). On the other
hand, the PCA for the exo-metabolome profiles showed a
clear separation along PC1 (but minimal dispersion along
both PC1 and PC2 components) for Pt-EtOMeSOphen
treated compared with untreated and cisplatin-treated
samples (both scattered along the PC2 component)
(Figure 2(c) right panel).

In detail in all obtained PCA models (Figure 2(a)-
2(c)), only the samples treated with Pt-EtOMeSOphen
separated along the PC1 component, with respect to the
controls (with a clear time dependence for the endo-
metabolome profile). On the contrary, cisplatin-treated
samples nearly overlapped with controls at short drug
incubation time (6 h) and a clear separation from these
latter was only observed later (after 12-24 h) and essen-
tially along the PC2 component. Coherently, the decrease
in cell viability of SH-SY5Y cells was already observed
after six hours of exposure for Pt-EtOMeSOphen, while
twelve hours were required for cisplatin, as reported in
our previous studies [19].

3.2. Supervised Analysis (OPLS-DA) and Metabolomic Changes.
The supervised orthogonal partial least squares discrimi-
nant analysis (OPLS-DA) was used to further investigate
the treatment-related (Pt-EtOMeSOphen, cisplatin) met-
abolic differences with respect to the controls. According to
the time dependence suggested by the PCA of the endo-
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FIGURE 3: Time response pairwise comparison OPLS-DA score plot models (1+2+0 components) and corresponding color-coded
correlation coefficient S-line plots displaying the related predictive discriminant loadings variables derived from 'H CPMG NMR spectra of
SH-SY5Y cell aqueous extracts obtained from different pairwise groups. (a) Controls vs. cisplatin. (b) Controls vs. Pt-EtOMeSOphen.

metabolome, the administration times (6, 12, and 24 h)
were also considered in the OPLS-DA pairwise compari-
sons. The time-dependence analysis for the metabolic
cellular response to treatments is of crucial importance for
understanding the drug action mechanism. Useful infor-
mation can be gained about the drug-induced early or late
cellular pathways alterations. Twelve OPLS-DA models (six
for the aqueous and six for the lipid extracts) were obtained
for the endo-metabolome analysis of SH-SY5Y cells, using
one predictive and two orthogonal components
(Figures 3 and 4). In all the cases, the models were char-
acterized by good-quality parameters (R> and Q°), de-
scribing the total variations in the data and the predictive
capability.

For all the considered incubation times, the OPLS-DA
score plots (Figures 3 and 4) showed a clear separation between
treated (Pt-EtOMeSOphen, cisplatin) groups and the control
group on the model predictive component. The metabolites
responsible for the observed classes discrimination were easily
found from the S-line plot for each model. The observed fold

change (FC) ratios, for the identified metabolites (Table S1-S2),
obtained by comparison of specific representative signal
containing buckets, are reported in Figure 5.

Interestingly, faster and greater cellular alterations were
induced by Pt-EtOMeSOphen compared with cisplatin.
After six hours, SH-SY5Y cells react at Pt-EtOMeSOphen
exposure with significant changes in their endo-metabolome
expression. In detail, the decrease of the GSH, taurine,
methylhistidine, glycine, serine, creatine, alanine, glutamate,
pyruvate, phosphatidylcholine (PTC), glycerophospholipids,
and mono- and polyunsaturated fatty acids, together with the
increase of diacylglycerol (DAG), butyrate, lysine, acetate,
creatine phosphate, tyrosine, lactate, and formate, was ob-
served, compared with controls. Conversely, after six-hour
cisplatin exposure, no significant metabolic changes were
found in the SH-SY5Y cell samples for both aqueous or lipid
fractions. This result is in agreement with the known cisplatin
action mechanism characterized by a genomic target, which
requires longer exposure (about twelve hours) to induce
relevant metabolomic changes [26, 27].
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FIGURE 4: Time response pairwise comparison OPLS-DA score plot models (1+2+0 components) and corresponding color-coded
correlation coefficient S-line plots displaying the related predictive discriminant loadings variables derived from "H NMR spectra of SH-
SYS5Y cells lipid extracts obtained from different pairwise groups. (a) Controls vs. cisplatin. (b) Controls vs. Pt-EtOMeSOphen.

The further 24-hour monitoring comparison of the
treatments (Pt-EtOMeSOphen, cisplatin) with respect to the
controls showed a peculiar metabolite modulation behaviour
for the novel Pt complex. Indeed, a marked decrease of PTC,
glycerophospholipids, mono- and polyunsaturated fatty acids,
glutathione, choline, and glycerophosphocholine associated
with an increase of DAG and acetate was specifically observed
only for the Pt-EtOMeSOphen treatment. The detected met-
abolic alterations strongly suggest a different mechanism of
action for Pt-EtOMeSOphen compared with cisplatin.

Further analysis was performed on the exo-metabolome
(growth media) of treated cells. As observed from PCA
(Figure 2(c) right panel), no significant differences between
cisplatin and control growth media metabolic profiles were
observed. This evidence was also confirmed from the su-
pervised OPLS-DA analysis. Indeed, a low predictive ability
(Q? with negative values), and thus a low differentiation of
the sample classes, was obtained for cisplatin-treated vs.
control samples at six- and twelve-hour drug exposure
(Q*=-0.307 and Q*=-0.507 respectively) (Figure 6(a)). A

good separation between the growth media profiles of cis-
platin-treated and untreated samples was observed only after
twenty-four hours. In detail, at longer incubation times
(24h), the growth media of cisplatin-treated samples, in
comparison with controls, was characterized by a general
lower content of lactate, pyruvate, alanine, and acetate and
higher glucose. On the other hand, Pt-EtOMeSOphen-
treated cells’ growth medium showed, in the OPLS-DA
pairwise comparisons, a significant consumption of nutri-
ents, compared with the controls, already evident after six
hours (Figure 6(b)).

The reported full OPLS-DA pairwise comparison
(Figure 6(b)) shows a marked consumption of nutrients (amino
acids and glucose) and the decrease in the general content levels
of some metabolic intermediates (acetate, pyruvate, lactate,
formate) for Pt-EtOMeSOphen compared with controls, ob-
served for all the incubation times. Pt-EtOMeSOphen exposure
caused, already after six hours of exposure, a higher energy
supply variations on the treated SH-SY5Y cells compared with
controls. The lower levels of alanine, pyruvate, and glutamine in
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FIGURE 5: Relevant discriminant metabolites comparison of SH-SY5Y endo-metabolome obtained from different pairwise groups at the
different times of treatments: (a) six hours, (b) twelve hours, and (c) twenty-four hours. Blue: Pt-EtOMeSOphen vs. controls; red: cisplatin
vs. controls. Metabolites with -Log, (FC) negative values have lower concentration compared with controls. Metabolites with —~Log, (FC)
positive values have higher concentration compared with controls. *All the considered FC values have p value < 0.05 except for the cisplatin

in panel A in which the FCs have p value > 0.05.
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comparison OPLS-DA score plot models (1+1+0 components) and corresponding color-coded

correlation coefficient S-line plots displaying the related predictive discriminant loading variables derived from 'H NMR spectra of SH-
SY5Y cell growth media obtained from different pairwise groups. (a) Controls vs. cisplatin. (b) Controls vs. Pt-EtOMeSOphen.

cell growth media (with respect to both controls and cisplatin),
already observed at six hours after treatment, indicated early cell
death-activated processes [20, 27].

3.3. Pathway Analysis. Based on the observed metabolite
variations previously discussed, we investigated in depth the six
hour of Pt-EtOMeSOphen treatment results with respect to
controls, showing the most relevant metabolic alterations. To
reveal the most significant altered pathways associated with
these latter, the metabolic pathway analysis, using Metab-
oAnalyst, was performed (Figure 7). The potential target
pathways were determined considering both the significant
metabolites (p-value <0.05) and the impact of the metabolites
on the pathway alteration. Through this analysis, after the six
hours of Pt-EtOMeSOphen treatment, glutathione meta-
bolism, pyruvate metabolism, and the glycine, serine, and
threonine metabolism emerged as potential involved pathways.

4. Discussion

In the present study, the metabolic fingerprinting of the
effects induced by Pt-EtOMeSOphen, on the neuroblastoma

cells SH-SY5Y, has been obtained by untargeted and targeted
"H NMR metabolomics investigation of cell lysates (aqueous
and lipids extracts) and of growth media.

SH-SY5Y cells were treated at a concentration of Pt-
EtOMeSOphen and cisplatin equal to their respective cal-
culated at 24 h. Experimental exposure times of 6, 12, and 24
hours were considered. After treatments, cell lysates and
growth media were analyzed through 'H NMR spectroscopy
(Figure 2, left panel). Further multivariate unsupervised PCA
(Figure 2, right panel) and supervised OPLS-DA analysis
(Figures 3 and 4) were applied to the acquired '"H NMR
spectra. According to the quantitative output offered by
comparison of the bucket-reduced NMR spectra, the dis-
criminant metabolites (for the endo- and exo-metabolome)
identified from MV A were quantified and summarized as FC
ratios in Figure 5. The performed multivariate data analysis
defined a peculiar behaviour for Pt-EtOMeSOphen on the
SH-SY5Y cells, in comparison with cisplatin, providing in-
formation about the mechanism of action and the possible
cellular targets. After six hours of Pt-EtOMeSOphen expo-
sure, metabolomic analysis revealed major changes in the
metabolic profiles of SH-SY5Y cells, indicating a rapid re-
sponse induced by the drug. The induction of rapid changes
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plots show the trend of highly significant altered metabolites (pvalue <0.01). Black: control cells; blue: Pt-EtOMeSOphen. Glu: glutamate,
Gly: glycine, GSH: glutathione, a-KG: alpha-ketoglutarate, Ala: alanine, Pyr: pyruvate, Ser: serine, Ace: acetate, LPA: lysophosphatidic acid,
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in the cellular metabolic profile (within six hours of treat- [26]. These evidences strongly supported the hypothesis of a
ment), following treatment with platinum-based anticancer ~ cytosolic target for the novel Pt-EtOMeSOphen compound.
drugs, has generally been associated with cytosolic cell targets ~ Consistently, also in the present study, only after twelve
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hours of treatment, cisplatin (which acts through a genomic
target) showed appreciable alteration of cellular metabolite
expression levels with respect to controls. Furthermore, from
the metabolomics analysis, some metabolites were found as
peculiar of the Pt-EtOMeSOphen action mechanism. In
particular, the very low levels of expression of GSH in the Pt-
EtOMeSOphen, with respect to both cisplatin-treated and
untreated cells, were found to be of particular interest.
Glutathione (GSH) is the prevalent low-molecular-weight
thiol in mammalian cells [21]. Although in healthy cells the
removal and detoxification of carcinogens is crucial, elevated
GSH levels in tumor cells are associated with cancer pro-
gression and increased chemotherapeutic drug resistance.
Indeed, recently, several novel therapies have been developed
to target the GSH antioxidant system in tumors as a means
for increased response and decreased drug resistance [36].
GSH is biosynthesized, starting from glutamate, cysteine, and
glycine. The observed fast decrease of GSH levels in Pt-
EtOMeSOphen-treated cells strongly supports the hypothesis
of the glutathione metabolism as potential involved pathway
responsible for the activity of this complex. This is also
consistent with the observed high reactivity of Pt-EtOMe-
SOphen with thiol containing molecules, similar to that
observed for other Pt complexes characterized by non-
genomic targets in their action mechanism [37].
Furthermore, after six hours of treatment, together with
the decrease of GSH observed in aqueous cellular extracts,
the accumulation of diacylglycerol (DAG) was also found, as
specific of the Pt-EtOMeSOphen treatment in lipid extracts.
This is in accord with literature data reporting lower activity
for diacylglycerol acyltransferase (DAGT) and fatty acid
synthase when glutathione is sequestered or absent [38].
DAGT is the enzyme responsible for the conversion of DAG
to triacylglycerol (TAG). In the present study, generally
lower content levels of TAG and higher levels of DAG were
observed in Pt-EtOMeSOphen-treated samples, in com-
parison with controls and cisplatin. Therefore, in the present
case, the increased DAG levels found may be explained by
the low efficiency of DAGT to catalyze the synthesis of TGA.
Interestingly, the DAG signal resonances are peculiar for Pt-
EtOMeSOphen treatment since they are not clearly de-
tectable in the NMR spectra of other lipid fractions (cisplatin
treatment and controls). The proposed mode of action
derived from the NMR-based metabolomics analysis is
summarized in Figure 8 where box-and-whisker plots also
illustrate the trend of significant metabolites grouped
according to treatment and in comparison with control cells.

5. Conclusion

NMR-based metabolomics is a new field in the anticancer
research and only recently has been applied in the study of
the mechanism of action of metal-based drugs [24].

In this work, we explored the Pt-EtOMeSOphen mode of
action on a neuroblastoma cancer cell line, SH-SY5Y cells,
using a combination of NMR spectroscopy and pattern
recognition data techniques. To obtain an overview of the
whole changes induced by the drug, both endo- (aqueous and
lipids extracts) and exo-metabolome (culture media) were
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analyzed. From the performed multivariate data analysis, a
cytosolic target was strongly suggested for Pt-EtOMeSOphen
and possibly attributable to some intermediate of the gluta-
thione metabolism pathway. This aspect is very interesting
since several novel therapies have been specifically designed to
target the GSH antioxidant system in tumors as a means for
increased pharmacological response and decreased drug re-
sistance [36]. Indeed, GSH not only acts as a reducing agent
and a major antioxidant within the cells maintaining a tight
control of the redox status, but it is also a mediator of many
other physiological reactions, including cellular signalling
(involved in cell cycle regulation, proliferation, and apoptosis)
[39]. In Pt-EtOMeSOphen-treated SH-SY5Y cells, the ob-
served early (at 6h) depletion of GSH, caused by the drug-
induced stress, can also be associated with an early-induced
apoptosis, as already reported [21, 39]. In the present case, the
observed stress appears to be most likely due the thiol group
reactivity toward the complex of GSH or some intermediates
of its biosynthesis.

In conclusion, the NMR-based metabolomic analysis
identified the effects of Pt-EtOMeSOphen on the SH-
SY5Y cells metabolome, demonstrating a very different
mechanism of action compared with cisplatin. The
present study also confirms NMR metabolomics as an
excellent tool to explore the mode of action of metal-
based drugs.
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