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Abstract: In this work, the fatigue damage of CFRP uniaxial composite specimens were studied using
thermal methods to determine the fatigue behavior. The aim was to evaluate the fatigue damage
as a function of the number of cycles. Consequently, the damage process was studied in terms of a
global indicator, considering the stiffness decay, and in terms of local parameters, considering the
evolution of temperature maps acquired during the fatigue tests. A direct correlation between the
damage index, corresponding to 90% of the fatigue life, and the temperature variation of the most
stressed area was found. Another parameter taken into consideration was the heating rate during the
application of the first thousands cycles. This parameter was proportional to the stress amplitude,
making it a useful parameter since it refers to the initial part of the specimen fatigue life.

Keywords: composites; fatigue; thermal methods; damage

1. Introduction

Fiber-based composites, a relatively new type of material, are proving particularly
interesting to the aerospace and automotive sectors due to their ability to decrease com-
ponent weight, increase performance, and improve impact tolerance/crashworthiness,
all factors that are important in lowering fuel emissions and increasing occupant safety.
More recently, increasingly sectoral and promising applications have emerged in the field
of civil engineering, such as in bridge structures and the oil extraction industry [1,2]. In
almost all application fields, components and structures are subject to fatigue phenomena.
Over the past few decades, the fatigue performances of CFRP and GFRP have been inves-
tigated [3–6], showing that CFRP has excellent fatigue performance compared to GFRP.
On the other hand, the fatigue life of FRP is highly dependent on the properties of the
material system such as fiber–resin matrix performance, lay-up sequence, and residual
stress from the manufacturing process [7–9]. All these factors have relevant influence on
fatigue crack initiation and propagation. The fatigue failure mechanism of FRP is complex
and fatigue damage includes fiber breakage, resin matrix cracking, fiber–resin debonding,
and delamination [10]. Furthermore, stress level has a significant effect on the fatigue
damage mechanism and fatigue life. Therefore, the fatigue behavior of a polymer matrix
composite material is the result of a set of alterations, depending on the load and the
number of cycles applied, which occur in the material both globally and locally and which
are responsible for the damage. Often, the area affected by damage is only a small portion
of the entire volume of the component.However it can lead to a sudden break. In such
circumstances, a “global” measure of the damage may not provide any reliable estimate of
the extent of the evolving phenomena. During the application of fatigue loads, the material
undergoes progressive damage which often does not manifest itself with significant de-
formations but is linked to localized and sometimes sudden dissipation phenomena. The
areas where the damage accumulates are always affected by dissipative phenomena that
can be highlighted by starting from temperature maps. The development of damage in
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a composite laminate can be schematized in three phases [11]. In the first phase, there is
the primary fracture mechanism, whereby the matrix breaks along the fibers which are
oriented in a different direction with respect to the load. The number of cracks increases
exponentially with the load and tends to reach a saturation level which is a characteristic of
the laminate, called the “Characteristic Damage State” (CDS). Its achievement indicates
the end of the primary fracture phase. Subsequently, transverse fractures to the primary
ones occur. These secondary fractures cause the onset of the interlaminar fracture, initially
in limited areas and later more widely. The subsequent development of the damage is
instead strongly localized, has an unstable growth, involves the breaking of the fibers
arranged in the direction of the load, and leads to the collapse of the laminate. For both
the pre-CDS and post-CDS damage phases, experimental models have been developed
that help to evaluate the evolution of the damage and the residual life of the laminate
itself. Damage mechanisms cause degradation of the composite material’s elastic properties
without causing sudden failure. In a multidirectional laminate made of unidirectional plies,
the principal causes of stiffness degradation are crack initiation and propagation in the
matrix’s off-axis layers [12–18].

Composite fatigue behavior can therefore be related to stiffness and strength degrada-
tions resulting from damage accumulation. Several empirical evolution models have been
developed that describe a gradual macroscopic reduction in the laminate stiffness related
to the damage evolution on a microscopic scale [19,20]. Arafat et al. [21] implemented
Shokrieh’s [22] empirical stiffness and strength degradation model as the user material
subroutine UMAT in the ABAQUS FE software, validating the procedure with test data
from the literature. The authors conclude that Shokrieh’s model provides a good fatigue
life estimation for preliminary designs. Carraro and Quaresimin [23] studied stiffness loss
in a generic cracked symmetric laminate, proposing an analytical model for the elastic
properties evaluation of a multidirectional symmetric laminate with off-axis cracks. Stiff-
ness decrease estimations were in very good agreement with experimental data. In [24],
the authors presented a damage-based design procedure to predict damage evolution
and the stiffness degradation in polymeric composite laminates under fatigue loading.
The proposed models evaluated the lifetime associated with the principal damage mecha-
nisms (off-axis cracks, delamination, and fiber failure). Moreover, the stiffness degradation
caused by fatigue damage evolution was accurately explained. In [25], material property
degradation was determined by measuring the change in specimen stiffness to analyze
the progression of fatigue damage which is correlated to micro- and macroscale damage
mechanisms and biaxial fatigue loading parameters. Russo et al. [26] studied the fatigue
response of composite materials using numerical methods with Shokrieh and Lessard’s
residual strength material property degradation model. A finite element methodology was
implemented in the commercial software ANSYS MECHANICAL. In [27], a procedure was
proposed for studying the damage of composite materials using thermographic metrics.
The thermoelastic temperature signal was used as a parameter to assess the stress–strain re-
distribution in the material. Numerous models relating residual stiffness to FRP composite
fatigue behavior are presented in a comprehensive review by Wang and Zhang [28].

In the present work, the study of the fatigue behavior of uniaxial carbon fiber and
epoxy resin composite laminate specimens, made with resin transfer molding (RTM)
technology, is presented. The innovative aspect of this study is the use of thermal methods
to investigate the damage evolution in terms of stiffness decay. The goal is to evaluate
the damage as the number of load cycles increases. Differently from the cited works, the
damage process was studied here both in global terms, evaluating the decay of the stiffness
of the composite, and in local terms, evaluating the variations of the temperature maps
as a function of the number of cycles. For this purpose, fatigue tests were conducted at
constant amplitude, with R = 0.1 and a load frequency equal to 10 Hz. The thermographic
analysis, associated with the study of stiffness degradation, has the purpose of obtaining
some parameters useful to highlight the state of localized damage in a phase preceding
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the appearance of an evident crack or other rapid degradation phenomena: delamination,
detachment, or accentuated deformation.

2. Materials and Methods

The experimentation was carried out on a unidirectional composite material in carbon
fiber and epoxy resin (carbon–epoxy) obtained with resin transfer molding technology.
Principal characteristics of the material are summarized in Table 1. Data reported in Table 1
were obtained through tensile tests in the longitudinal direction. No test was carried out in
the transversal direction.

Table 1. Characteristics of the composite laminate.

% Fibers Volume Young Modulus
EL [MPa]

Strain at Break
εr [%]

Tensile Strength
Rm [MPa]

57 134,000 1.41 2005

St. DEV. 2.08 0.04 66.81

The specimens tested in this work had tabs at the ends and gauge lengths l0 equal to
150 mm, rectangular cross sections with thickness (t) equal to 2 mm, width (w) of 20 mm,
and length of the reinforcements (Lt) equal to 120 mm (Figure 1).
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Figure 1. Geometry of the tested specimens.

The fatigue characterization of the material was determined by carrying out fatigue
tests according to the requirements of the ASTM D 3479 standard [29]. The test parameters
were selected on the basis of previous works and on the basis of specific needs. The
tests were conducted at constant amplitude, with a stress ratio R = 0.1, using an Instron
8850 servo-hydraulic machine with a load capacity of 250 kN. The test frequency was kept
constant for all the specimens and limited to 10 Hz to avoid excessive localized heating
near the bonding areas of the reinforcements. Five different load levels were used, briefly
identified with the maximum stress value σmax variable between 1100 and 1445 MPa. At
least three repeated tests were carried out for each load level. Table 2 reports fatigue test
parameters. The maximum number of cycles at which the test was interrupted was 107.
Once this condition was reached, each specimen was subjected to a static test in order to
evaluate its residual strength.
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Table 2. Fatigue test parameters.

Specimen ID σmax [MPa] σa [MPa] Cycles to Failure St. DEV. Mean

1b 1445 650.25 9142 311,056 202,366
2b 1445 650.25 22,838

11b 1445 650.25 663,724
12b 1445 650.25 113,760

13b 1360 612 5341 1,108,944 793,985
14b 1360 612 2,403,990
15 1360 612 645,866

15b 1360 612 120,743

7 1275 573.75 231,627 1,714,496 1,120,118
7b 1275 573.75 5815
8b 1275 573.75 3,667,770

8 1190 535.5 2,827,231 1,889,456 2,593,927
12 1190 535.5 4,519,757
16 1190 535.5 4,298,182

16b 1190 535.5 388,787
17b 1190 535.5 935,676

9b 1100 495 10,000,000 0 10,000,000
13 1100 495 10,000,000
14 1100 495 10,000,000

During the execution of the fatigue tests, the load peaks Fmax, Fmin and the displace-
ments of the crosshead xmax, xmin were recorded at regular intervals. These data were used
to calculate the stiffness of the specimen using the following Formula (1):

R =
∆F
∆x

(1)

where ∆F is the load variation and ∆x is the variation in the gauge length l0. By doing so, it
was assumed that the variation in gauge length could be approximated using the excursion
of the crosshead, thus neglecting the deformation of the clamped part and, in general, of
the reinforced part.

Fatigue Tests: Thermographic Analysis

During the application of fatigue loads, the material undergoes progressive damage
which often does not manifest itself with significant deformations but is linked to localized
and sometimes sudden dissipation phenomena. The areas where the damage accumulates
are always affected by dissipative phenomena that can be highlighted by starting from
temperature maps. In order to detect these areas, a FLIR 7500 M thermal imaging camera
was used, with noise-equivalent thermal sensitivity (NETD) equal to 25 mK and image
resolution 320 × 256 pixels, which allowed us to observe the presence and evolution of
heterogeneity in the internal part of the material as an indication of localized damage and
to follow its propagation until the final break.

Due to the long duration of the tests, especially those at the lowest load levels near the
fatigue limit, it was necessary to limit the recording time. It was decided to record the first
20 s of each test in order to be able to capture the thermal transient and to make recordings
at regular intervals for a total duration of 1 s at an acquisition frequency of 200 Hz and an
integration time of 1000 µs. Taking into account that the frequency of application of the
load was equal to 10 Hz, each recording of 1 s corresponded to 10 load cycles, for each
of which 20 thermograms were available. The recording interval was set at 5 min for the
first 2 h of testing and was thereafter variable between 5 min and 3.5 h depending on the
expected duration of the test.

The heat maps obtained showed the onset from the first heating cycles, localized in
correspondence with the reinforcement areas; in particular on the one near the lower grip,
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which is the one connected with the fixed part of the test machine. This heating is due
to the slipping phenomena, existing between the reinforcements and the surface of the
specimen, caused by the high loads applied.

3. Results and Discussions

A first evaluation of the fatigue behavior of the tested material was carried out by
plotting the Wöhler curve in terms of amplitude stress σa (Figure 2).
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The diagram in Figure 3 shows the stiffness trend of all tested specimens that came to
break.as a function of the normalized number of cycles with respect to the cycles to failure Nf.
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For all tests, the stiffness showed a more-or-less rapid decrease from the first cycles
until it settled with an increase in N. Between 10% and 90% of the useful life, a gradual
decrease in stiffness was observed, with an almost linear trend. The slope of this segment
was, however, less pronounced than the initial one.

In the final part of the specimen’s life, beyond 90% of the useful life, failure may not
be predicted by an increase in the rate of stiffness reduction, but rather by a sudden drop.
In many cases the stiffness trend stops abruptly without undergoing a further decrease.
This phenomenon is due to the unidirectional structure of the composite and the brittleness
of the carbon fibers.

In order to better interpret the results and, in particular, evaluate the effect of the
applied load level, the trend of the normalized stiffness was analyzed. Normalized stiffness
is defined as the ratio between the stiffness at the n-th cycle and that at the first load cycle
Rn/R1. The graph in Figure 4 shows the trend of normalized stiffness as a function of the
N/Nf ratio for four specimens tested at different load levels. It can be observed that there
is no correlation between the reduction in stiffness and the level of load applied.
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The evaluation of the progressive damage of the material can be carried out through
the following expression which allows for the calculation of the damage D as a function of
the variation of the elastic modulus [16,30]:

D =
E0 − Ei

E0 − Ef
(2)

where E0 is the elastic modulus of the material in the initial test conditions; Ei is the elastic
modulus of the material corresponding to the i-th life cycle; Ef is the elastic modulus of the
material in the final or failure conditions.

In this work, Equation (2) is rewritten and explained in terms of the variation of
stiffness R:

D =
R0 − Ri

R0 − Rf
(3)

where the same meaning for subscripts is used.
The probabilistic aspect in the study of the composite materials fatigue involves a

significant dispersion in the experimental data obtained [31]. As already known, variations
in stiffness and damage are closely linked to each other. In the literature [32], it has been
proposed that the residual life of a composite material could be estimated based on the
evaluation of percentage variation of the stiffness ∆R%.

The approach used by the cited method is as follows:

• The linear part of the stiffness trend is identified as a function of the number of cycles;
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• The linear trend of the stiffness is traced as a function of the number of cycles through
two points: (0; R0

lin) and (0.9 Nfailure; R90
lin); the first point is obtained by extrapolating

the trend line up to the ordinate axis, obtaining the ideal stiffness value at cycle 0, and
the second point is obtained by considering the stiffness value at 90% of the specimen’s
life R90

lin;
• Based on these values, the percentage change in stiffness ∆R% is calculated through

the following equation:

∆R% =
Rlin

0 − Rlin
90

Rlin
0

(4)

An example of the calculation of the points mentioned above is shown in Figure 5,
while the data obtained for all the tested specimens are summarized in Table 3. The
specimens that reached run-out were excluded from the calculation of ∆R%.
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From the analysis of the obtained results, it is found that the ∆R% values are affected
by high dispersion and, contrary to what was found in other cases, this parameter cannot
be used as an indicator of imminent fatigue failure. The ∆R% value associated with failure
does not even seem to be related to the level of applied load. Figure 6 reports the evolution
of the damage index as a function of the N/Nf ratio.
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Table 3. Percentage variation in stiffness.

Specimen σmax
[MPa] ∆R% Cycles to Rupture

1b 1445 4.39 9142

2b 1445 3.41 22,838

11b 1445 8.70 663,724

12b 1445 6.07 113,760

13b 1360 4.26 5341

14b 1360 10.83 2,403,990

15 1360 9.88 645,866

15b 1360 5.80 120,743

7 1275 1.10 231,627

7b 1275 5.19 5815

8b 1275 7.00 3,667,770

8 1190 5.62 2,827,231

12 1190 10.68 4,519,757

16 1190 15.66 4,298,182

16b 1190 9.23 388,787

17b 1190 9.74 935,676

Figure 6 shows that:

• Index D increases proportionally to the applied load. The curves are placed on
increasing damage levels as a function of the load, with the exception of the minimum
load of 1190 MPa, which is at an intermediate level;

• The three regions corresponding to the different fracture mechanisms in composite
laminates are clearly identifiable [16];

• Region I, corresponding to the primary fracture of the matrix, can be highlighted by
examining the very first cycles of fatigue (Figure 6b). It is noted that the slope of this
phase is very pronounced;

• In region II, called the characteristic state of damage (CDS), the fracture mechanisms
between fibers and matrix interact with each other; as the number of cycles increases,
the curve presents, in this section, a linear trend but with a less pronounced slope than
in region I. It is noted that the behaviors relating to the various load levels present
almost identical slopes, generating almost parallel curves;

• Finally, the third region (III) was identified. In it occurs the fracture of the fibers and
the consequent rupture of the specimen. This phase takes place in a very short time.
There is no warning regarding a possible failure of the specimen in the final part of its
useful life;

• The progressive fatigue damage was then followed up by examining the recorded
temperature maps. As expected, after a short transient, the temperature of each
specimen first undergoes a slow increase, stabilizes at a steady state around a constant
value, and then rapidly increases in the terminal phase.

In all cases (Figures 7–9), areas with a higher temperature can be identified in corre-
spondence with one of the grips or both. These areas are increasingly extensive and have
higher temperatures as the number of cycles increases, highlighting how the application of
load cycles produces a local temperature increase which indicates the evolution of damage.
The temperature trend was analyzed versus the number of cycles of the higher temperature
pixel placed in the lower part of the specimen. This area is the one that undergoes lower
displacements, as it is connected to the fixed part of the testing machine. In particular, for
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each specimen, the increase in temperature compared to that at the initial instant, ∆T, was
considered as an index of damage (Table 4).
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Figure 10 shows the temperature trends as a function of the number of cycles for
specimens with different endurances. The thermal trends show a limit of the thermal
analysis in relation to long-term tests.
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Figure 10. Trend of the temperature increase ∆T as a function of the number of cycles.

The thermal profile was then observed along a horizontal segment at the selected hot
spot to analyze the temperature trend along the width of the specimen and evaluate the
increase in the damaged area and the extent of the damage. As an example, the trends for
two different load levels are shown (Figure 11), corresponding to very different endurances.

By comparing the results obtained from the thermographic analysis to those relating
to damage D, a correlation was found between the maximum temperature increase for each
specimen and the relative D index at 90% of the fatigue life (Figure 12).
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4. Conclusions

In the present work, the fatigue behavior of a unidirectional composite material in
carbon fiber and epoxy resin made with RTM technology was evaluated. In particular,
after obtaining the Wöhler curve, the damage was evaluated in terms of stiffness variation.
It was verified that the percentage change in stiffness ∆R% cannot be used as an index
of damage, due to the high dispersion of the data. On the contrary, there was a direct
correlation between the damage index corresponding to 90% of the fatigue life and the
temperature variation of the most stressed area. A ∆T equal to 34 ◦C is associated with a
D90% of 0.6, while next-to-unit damage causes a higher ∆T of 41 ◦C.

Another parameter taken into consideration is the heating rate during the application
of the first several thousand cycles. This parameter is proportional to the amplitude of stress
and is a useful parameter since it refers to the initial part of the fatigue life. It increases by an
order of magnitude from a damage of 0.6 to a damage of 0.99. Future developments of this
work will concern the study of different types of FRP composites in terms of composition,
glass fibers and layup. Future work will include microscopic analysis to better understand
the fatigue failure mechanism of composite plates.
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