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a b s t r a c t

Understanding breast cancer survival has proven to be a challenging problem for practitioners and
researchers. Identifying the factors affecting cancer progression, their interrelationships, and their
influence on patients’ long-term survival helps make timely treatment decisions. The current study
addresses this problem by proposing a Tree-Augmented Bayesian Belief Network (TAN)-based data
analytics methodology comprising of four steps: data acquisition and preprocessing, variable selection
via Genetic Algorithm (GA), data balancing with synthetic minority over-sampling and random under-
sampling methods, and finally the development of the TAN model to determine the probabilistic
inter-conditional dependency structure among breast cancer-related variables along with the posterior
survival probabilities The proposed model is compared to well-known machine learning models. A
what-if analysis has also been conducted to verify the associations among the variables in the TAN
model. The relative importance of each variable has been investigated via sensitivity analysis. Finally,
a decision support tool is developed to further explore the conditional dependency structure among
the cancer-related factors. The results produced by the proposed methodology, namely the patient-
specific posterior survival probabilities and the conditional relationships among the variables, can be
used by healthcare professionals and physicians to improve the decision-making process in planning
and managing breast cancer treatments. Our generic methodology can also accommodate other types
of cancer and be applied to manage various medical procedures.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

After skin cancer, breast cancer is the most commonly oc-
urring cancer type affecting women in the United States [1].
lthough the number of incidences has been relatively stable
ver the past decade, in the United States alone, more than
0,000 women died from breast cancer in 2020 [1]. The treatment
ptions are generally determined by the stage of cancer, which
lso influences the long-term prognosis. Advances in medical
echnology along with the higher rates of breast cancer screening
ave increased the number of early breast cancer diagnoses,
llowing treatment to be initiated in a timely manner. As a result,
he 5-year survival rate has increased from 75.2% in 1975 to 90%
n 2020 [1].
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While numerous factors determine cancer progression and
prognosis, these can be broadly grouped into (1) chronological
and (2) biological factors [2]. Chronological factors include those
that are primarily impacted by time, such as the status of the
lymph nodes, size of the tumors, and historical stage. Lymph
nodes filter the harmful substances and, if untreated, allow cancer
cells to spread through the breast, armpit, and chest wall [2,3].
Tumor size and historical stage similarly influence the likelihood
of the spread to the healthy tissues. On the other hand, biological
factors describe the behavioral status of the tumor. For example,
the histological grade indicates its aggressiveness [2,3], whereas
estrogen receptor (ER) and progesterone receptor (PR) are the
indicators of the hormonal structure of the tumor and have im-
plications for relative mortality regardless of tumor histology [4].
These and other factors are crucial for a more comprehensive
approach to treating cancer [5].

Survival rate prediction (after the first diagnosis) is vital for
helping both doctors and patients explore treatment options. In

addition, it helps patients to make important possible lifestyle
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hanges as well as financial planning. For clinicians, the pre-
iction of a 5-year timeframe is sufficient to explore different
reatment paths, analyze their respective outcomes, and utilize
his data to advise patients.

Machine learning (ML) algorithms are widely used in medical
iagnostics, including breast cancer, mammogram classification,
ammography anomalies, heart problems [6–10] and have been
roven successful in predicting the survival outputs and vari-
ble selection analysis [11–15], owing to their ability to discern
idden patterns in complex datasets including liver and kid-
ey disease diagnosis, comorbidity of cancers, and breast cancer
urvival prediction [16].
Extant research has been dedicated to (a) detecting the critical

enes that are associated with breast cancer via using cluster-
ng(unsupervised) techniques, and (b) identifying the important
emographic and clinical predictors of survival life after the time
f breast cancer diagnosis by using various supervised models.
hese studies are summarized in the following subsections to
learly identify the gaps that exist in the existing body of related
iterature.

.1. Genetic data-oriented studies

A significant number of researchers of extant studies in this
ield tended to examine genetic markers and predictors and those
hat relied on unsupervised machine learning algorithms, mostly
pplied clustering methods, to identify the most relevant genes
or each cancer type. For example, the unsupervised algorithm
eveloped by Li et al. [17] is capable of detecting groups of
enes that have not been previously recognized as risk factors for
lioma. This was a significant advantage relative to the standard
pproaches based on already identified genes that predispose
n individual to this type of brain cancer, which suffers from
lassification issues [18–20]. Instead, the unsupervised model
roposed by Li et al. [17] selects two groups of gliomas before
lustering these into six subgroups. This allows the identification
f different sets of classifiers for each of these subgroups that can
e applied to different datasets for validation purposes. The main
rawback of this approach stems from the fact that it cannot be
sed for predicting patient survival. To address this shortcoming,
apointe et al. [20] proposed a semi-supervised algorithm which
hey applied to clinical data as a preprocessing step to identify
enes for use in the subsequent unsupervised clustering. For this
urpose, 7399 genes from 240 breast cancer patients were ranked
ccording to their Cox scores and 160 training observations to
dentify the 25 most relevant genes for predicting survival times
nd corresponding probabilities. Although these models are very
seful for analyzing data, they cannot be applied in care decision-
aking and survival prediction, as genetic factors do not provide

nformation on the degree of cancer spread in a particular patient,
hich would determine the type of treatment to be used.

.2. Clinical data oriented studies

Researchers that relied on clinical data when developing their
urvival prediction models mostly utilized supervised Machine
earning (ML) algorithms. In their work, Lundin et al. [21] used
linical data obtained from 951 breast cancer patients to predict
-, 10-, and 15-year survival rates based on Artificial Neural
etworks (ANNs). Their model was also capable of identifying the
umor characteristics that are most influential on cancer survival.
elen et al. [22] similarly used ANNs, along with Decision Trees
DTs) and Logistic Regression (LR), to develop a hybrid model for
redicting 5-year cancer survival rates. These authors utilized the
33,272 patient records gathered over nearly three decades to

dentify the key tumor characteristics affecting survivability.

2

On the other hand, several authors have attempted to improve
the predictive power of existing models. Thongkam et al. [23], for
example, enhanced the Support Vector Machine (SVM) model by
augmenting it with outlier filtering and oversampling methods.
Similarly, Khan et al. [24] proposed a hybrid data mining method
based on interference techniques and fuzzy decision trees to
enhance the prediction success of an existing crisp classifica-
tion model. In an earlier study, Pendharkar et al. [25] selected
variables for their models via association analysis before rating
the importance of several clinical factors as cancer predictors.
Using ANN, data envelopment analysis, and discriminant analysis,
the authors demonstrated that the prediction accuracy of the
latter two components could be improved by utilizing a larger
training sample. Zupan et al. [26], on the other hand, developed
a prostate cancer survival model based on classification methods.
Churilov et al. [27] subsequently improved upon this approach by
clustering patients into risk groups based on demographics (age
and race), size of the tumors, test results (e.g., prostate cancer-
specific antigen concentration in the blood), and pathology scores.
Kate and Nadig [28] proposed survival prediction models for each
breast cancer stage. They employed several machine learning
algorithms such as LR, DT, and Naïve Bayes to compare the
prediction powers of the algorithms used for each stage with
that obtained for the entire dataset. As expected, survival rates
were much lower for patients whose cancer has progressed to
more advanced stages. The main advantage of this work is that
the model variables were based on the cancer stage rather than
survival time. More recently, Simsek et al. [29] employed LR and
ANN to identify the critical survival predictors that lose or gain
importance over time. The overarching goal of their study was; to
guide the medical practitioners as to how much attention should
be paid to which demographic/clinical factor and when.

1.3. The contribution of our study

The studies in the literature discussed in the preceding sec-
tions focused on predicting cancer survival rates or determining
the most critical factors for survival while overlooking the con-
ditional and probabilistic interrelationships among these factors.
These vital shortcomings have motivated the present study to
adopt a comprehensive data analytics methodology that employs;
(a) a wrapper based variable selection method to cherry-pick
the most important features/predictors and eliminate the ones
that do not contribute to the predictive power of the model,
(b) probabilistic-based supervised machine learning model, Tree-
augmented Bayesian belief network (TAN), to uncover the hidden,
conditional inter-relations among these features as well as to
calculate the survival posterior probability of a given patient, and
(c) well-known data balancing algorithms to fix the imbalance
issue. Specifically, to select the most relevant factors for cancer
survival, the purely data-driven variable selection method (GA)
is utilized to eliminate the noisy variables. Moreover, by adopting
two sampling approaches, SMOTE and RUS, the aim is to increase
the sensitivity of the TAN models (i.e., increase the likelihood of
detecting patients that will survive less than five years). Lastly,
the variable set identified through GA is incorporated into TAN
models, allowing the hidden conditional, probabilistic depen-
dencies among the cancer factors to be explored. Finally, the
contribution of each variable to the model outcomes is studied via
What-if Sensitivity Analysis (SA). As the proposed methodology
is not specific to breast cancer, it can be tailored to establish
complex interdependent conditional relations among risk fac-
tors for other cancer types, thus assisting with timely treatment
decisions.

The remainder of the manuscript is structured as follows. Sec-
tion 2 describes the dataset, data cleaning methodology, variable
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Fig. 1. Proposed Bayesian belief network (BNN)-based data analytics methodology.
election process, sampling methods, and the predictive models
tilized in this work. The results and insights obtained are ex-
lained in Section 3. Finally, in Section 4, the main conclusions
nd suggestions for future research are presented.

. Research methodology

The study proposes a four-step framework for exploring the
ignificant variables affecting the 5-year survival by uncovering
he probabilistic relations among all the features. As shown in
ig. 1, The steps include (1) preprocessing, (2) deploying a feature
election algorithm, (3) generating TAN to uncover probabilis-
ic, conditional interrelationship among variables, (4) conducting
ensitivity analysis by using the TAN model. In Step 1, the data
3

has been prepared for further analysis with the methods de-
scribed in the Cross-Industry Standard Process for Data Mining
(CRISP-DM). In Step 2, GA is used to select the significant features.
In Step 3, the predictor variables chosen in Step 2 are deployed
into the TAN model. The predictive performance of the model is
evaluated using 10-fold cross-validation, where the train datasets
are balanced using two sampling techniques: SMOTE and RUS.
In Step 4, the performance of the TAN models is compared, and
the best performing TAN model is used to obtain the condi-
tional probabilistic dependency among the predictor variables.
These relations are further investigated by conducting a what-if
analysis. Lastly, a decision support tool that can be adopted by
practitioners without having any background in machine learn-
ing, statistics, or optimization is developed as a proof of concept.
Each step is explained in detail in the following sections.
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Table 1
Explanation and data structure of the variables.
Variable code Variable Description Variable type

MAR_STAT Marital Status Marital status at the time of diagnosis Nominal
SEX Sex Sex of the patient Nominal
AGE_DX Age Age of the patient at the time of diagnosis Numeric
SEQ_NUM Sequence number Number and sequence of all reportable tumors

over the lifetime of the patient
Numeric

PRIMSITE Primary site The site in which the primary tumor originated Nominal
HISTO3V Histologic type Microscopic composition of the tumor Nominal
BEHO3V Behavior code Malignancy level of the tumor Nominal
GRADE Grade The factor that represents how fast the cancer

may grow and spread.
Ordinal

EOD10_SZ Tumor size Largest dimension of the tumor in millimeters Numeric
EOD10_EX Extension Farthest documented spread of the tumor

away from the originated site
Nominal

EOD10_ND Lymph node
involvement

Chain of lymph nodes involved with tumor Numeric

EOD10_PN Regional nodes
positive

Number of lymph nodes that contains tumor
cells

Numeric

TUMOR_1V Tumor marker Prognostic indicators for breast cancer Nominal
SURGPRIF Surgical Procedure Surgical procedure at the primary site Nominal
RAC_RECA Race Race of the patient Nominal
HST_STGA Historic stage Stage of the cancer Ordinal
ERSTATUS Estrogen-receptor-

positive
The factor that represents whether tumor cells
receive signals from estrogen that could
promote their growth

Nominal

PRSTATUS Progesterone-
receptor-positive

The factor that represents whether tumor cells
receive signals from progesterone that could
promote their growth

Nominal
2.1. Data and data preprocessing

The feature-rich dataset utilized in this project was obtained
rom the Surveillance, Epidemiology, and End Results (SEER) pro-
ram of the US National Cancer Institute. For the purpose of
dvanced research, SEER collects detailed data on cancer patients,
uch as demographics, primary tumor site, morphology and stage
t diagnosis, the first course of treatment, and the follow-ups for
ital status.
Particularly, the breast cancer dataset that the present study

tilizes comes from 1975–2015 in the SEER Program, and it
ncludes 133 variables and over 100,000 observations. In order
o clean the dataset, all missing and irrelevant variables, such
s patient ID, registry ID, and other non-cancer-related variables,
ave been removed. Moreover, we excluded the patients who
ied of any causes but breast cancer, leaving us a dataset with
ver 50,000 observations and 18 variables. The description of
hese variables is given in Table 1.

The purpose of this research is to model the conditional impact
f cancer-related factors on 5-year breast cancer survivability.
hus, a binary target variable is created using the existing two
ariables, namely the survival month and the vital status (pa-
ient’s current status after the follow-up date, either alive or
ead). A patient with a survival month of 60 or more is considered
s alive and dead otherwise. Besides, alive patients with a survival
onth of less than 60 have been censored as their exact survival

ime is unknown.
The creation of the binary variable causes an uneven num-

er of survivors (accounting for ∼80% of the entire dataset)
nd deaths (accounting for the remaining ∼20%), thereby being
n imbalanced dataset. When a dataset is imbalanced, machine
earning algorithms can produce a high predictive accuracy for
he majority class (survivors in our case) while producing rela-
ively low accuracy for the minority class (deaths in our case)
ecause the overall accuracy contribution of the minority class
s negligible. SMOTE and RUS are utilized to balance the accuracy
or both the minority and majority classes and achieve improved
UPR results.
4

2.2. Variable selection

Variable selection is an essential part of the model-building
process that allows researchers to model the underlying re-
lationship between the dependent and independent variables
with fewer variables. The variable selection process brings cer-
tain advantages. For instance, it renders the model to a simpler
one, thereby enhancing its interpretability [30]. It also elimi-
nates unnecessary variables from the dataset, which regularizes
the model, thus improving its performance [31]. Moreover, per-
forming variable selection leads to dimensionality reduction and
decreases the computation expense—the time required to train
the model. In the preliminary analysis stage of our study, we
have employed several both filter- and wrapper-based variable
selection techniques such as Simulated Annealing (SA), Genetic
Algorithm (GA), and Relaxed Lasso (RL), to cherry-pick, potentially,
the most important variables. Our findings show that the set
of variables selected by GA (wrapper-based variable selection
method) yields the best performing TAN model with a desirable
level of parsimony compared to the other variable selection
algorithms employed. Therefore, we chose not to include the
RL, SA for the sake of the readability of our paper. The detailed
description of GA, which outperformed all the other competing
ones, is provided in Section 2.2.1

2.2.1. Genetic algorithm
GA is a metaheuristic optimization technique inspired by the

natural selection process and creates a set of sufficiently high-
quality solutions to continuous and discrete functions [32]. GAs
have been used in many research fields for various reasons [33,
34], including variable selection [16,35,36] and prediction [37].

The operationalization of the algorithm starts with an initial
set of potential solutions, called a population. The initial pop-
ulation goes through ‘‘selection’’, ‘‘crossover’’, and ‘‘mutation’’
operations to select the fittest individual solutions. A population
is composed of chromosomes, and chromosomes are bit strings
that are consisted of genes. Each gene is encoded as binary values
‘‘0’’ and ‘‘1’’, ‘‘0’’, indicating the absence of a predictor, and ‘‘1’’,
indicating otherwise. A fitness score indicates the strength of an
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ndividual for survival. Until the convergence of fitness scores,
election, crossover, and mutation processes repeat.
In this paper, GA has been used as a variable selection tool, and

he pseudocode of the proposed/customized genetic algorithm
s given in Algorithm 1. For the algorithm, we set the initial
opulation size to 50, use a random forest model as the fitness
unction, and tune the parameters with k-fold cross-validation.
he parameter γ in Algorithm 1 represents the rate of mutation,
hich is set to 0.3, allowing the algorithm to make diversification
n individuals. Choosing a high mutation probability, such as 0.05
nd above, might increase the genetic algorithm’s convergence
ime to an optimal solution. However, the reason we set the
utation probability high was for the algorithm to escape the

ocal optima, even though it increases the execution time.
The rate of elitism (η) indicates the number of fittest chro-

osomes that move from the current generation to the next
eneration. After experimenting with several levels, we set the
ate of elitism to 3. The elites are pushed to the next generation
ithout going through the crossover process. K indicates the

number of generations, which is initialized as 150, and τ is used
to define the multiplication of population size and the rate of
elitism. We set the crossover between the pairs of chromosomes
to 0.8, such that the algorithm can move to the next generations
with the fittest chromosomes.

2.3. Data balancing

When one or more response classes are represented less than
ther classes, then that dataset is imbalanced. This issue is innate
n many real-world datasets, causing complexities for machine
earning algorithms such as bias towards majority classes and
verfitting the training model [38]. To deal with these com-
lexities, several different techniques have been proposed to
ddress these problems [39–41]. We would like to note that
e have employed several different balancing algorithms such
s SMOTE ADASYN, and RUS [6,16,22,42]. However, we only
resented the results from SMOTE and RUS, due to the poor
erformance obtained through ADASYN.
5

Among these balancing techniques, RUS is an under-sampling
technique, which simply drops some of the instances belong-
ing to the majority class at random to equalize the number of
observations for both classes. On the other hand, the SMOTE
algorithm over samples the minority class by creating synthetic
instances, which forces the machine learning algorithm to expand
its decision boundary of the minority class into the majority class
region. The creation of the synthetic instances is based on the
following algorithm [43]:

1. Select a random sample xi from the dataset
2. Find its k-nearest neighbors in the feature space and ran-

domly select one of them, e.g., xj
3. Calculate the Euclidian difference between xi and xj and

multiply it by a random number drawn from the contin-
uous [0, 1] range.

4. Add this difference to xi to create a new synthetic instance,
x, along the straight line connecting xi and xj.

The prediction results of the TAN models obtained using the
SMOTE and RUS algorithms are provided in Section 3.1. Also, it
should be noted that SMOTE and RUS are applied only on the train
data.

2.4. Tree-augmented Bayesian Belief Network

The Tree-augmented Bayesian Belief Networks (TAN) are gain-
ing popularity in data science in recent years. Typically, a Bayesian
network is used to encode a joint distribution over a random
vector X = {X1, . . . , Xm} [44]. The network comprises of nodes
and arcs, whereby nodes represent the random variables in X
and the arcs denote the conditional relationships (dependen-
cies) between them. The equation given below shows the joint
probability distribution defined by the TAN over X :

P (X) =

m∏
j=1

P
(
Xi|Pγ (Xi)

)
(1)

where m indicates the number of variables and the set of nodes in
the joint probability distribution that is connected to Xi is denoted
by Pγ (Xi).

The Naïve Bayes (NB) is the simplest form of a Bayesian
network as it assumes independence between all nodes, due to
which all NB nodes are disconnected. However, as this is rarely
the case in practice, Friedman et al. [45] developed a TAN that
relaxes this assumption that each node can be connected to one
other node while being connected to the target variable. Thus, the
TAN can be considered a TAN network if the following conditions
are met:

Pγ (Xi) =

{{
C, Xδ(i)

}
, if δ (i) > 0.

{C} , if δ (i) = 0.
(2)

where the output variable is C , δ is the tree function, and Pγ (C) =

∅. An optimal tree structure is obtained by maximizing the log-
likelihood of δ via Chow-Liu’s algorithm for a one-dependence
estimator [46]. In the present study, the parameters of the algo-
rithm, such as Laplace’s correction, are tuned/optimized using the
k-fold cross-validation technique, which would, in turn, optimize
the TAN network, as discussed in Section 3.3.

2.5. Performance evaluation

Performance of the machine learning algorithms depends on
the prediction power of the model, which can be calculated using
a confusion matrix that represents four populated cells: True
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Table 2
Selected features by Genetic Algorithm.
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✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ositives (TP)-number of correctly predicted positive observa-
ions; True Negatives (TN)-number of correctly predicted nega-
ive observations; False Positives (FP)-number of incorrectly pre-
icted negative observations; and False Negatives (FN)-number of
ncorrectly predicted positive observations.

The most prominent performance evaluation metrics in the
iterature derived from the confusion matrix are overall accuracy
nd per class accuracies (i.e., sensitivity and specificity).

ccuracy =
TP + TN

TP + TN + FP + FN
(3)

ensitivity =
TP

TP + FN
(4)

pecificity =
TN

TN + FP
(5)

dditionally, an AUPR (area under the precision–recall curve) is
n assessment measurement representing the performance of a
lassification model at varying classification thresholds with re-
pect to the precision and the recall. Specifically, AUPR measures
he two-dimensional area under the precision–recall curve and
rovides a measure of performance across all possible thresh-
lds [47]. In this study, we use the AUPR metric to evaluate the
erformance of the TAN models, as the other metrics can be
anipulated by changing the decision probability threshold. Yet,

hey are still provided to illustrate the accuracy of the models.

. Experimental results and sensitivity analysis

.1. Feature selection and classification results

As mentioned in the earlier section of the manuscript, the
ustomized GA along with several other well-known feature se-
ection models such as Relaxed Lasso (RL) and Simulated An-
ealing (SA) are employed to perform variable selection, in the
reliminary analysis stage. However, for the sake of simplicity
nd conciseness, here we present the model that outperformed
he other variable selection models, which in this case was GA.
he variable set of the best performing gene (i.e., the variable set
hat leads to the highest accuracy) is illustrated in Table 2. It can
e observed that the variable set that is selected by GA does not
nclude the SEX, PRIMSITE, HISTO3V, and PRSTATUS variables.

The cross-validated results of GA-TAN models with SMOTE
nd RUS balancing techniques are compared to the imbalanced
enchmark model in Table 3. Each cell contains the average
nd standard deviation of the corresponding predictive perfor-
ance measure, respectively. Results show that no single model
utperforms the others in all measures. While accuracy and speci-
icity decline with SMOTE and RUS balancing methods, sensitivity
mproves significantly for all models compared to the imbal-
nced dataset. Since there is a 20:80 ratio between positive
diseased patients) and negative (alive patients) classes, the result
hows the adverse impact of imbalanced datasets on accuracy and
pecificity while predicting the positive class.
Moreover, AUPR results with RUS (0.608 (0.017)) are slightly

etter compared to AUPR results with SMOTE (0.589 (0.018)) and
6

mbalanced dataset (0.601 (0.019)). Therefore, we decide to fur-
her analyze the TAN model where the RUS sampling technique
as used, as it provided the highest AUPR value.
In addition to the proposed TAN model, we employed several

ell-known machine learning models to compare our model’s
rediction power against well-known benchmark models. Here,
t should be noted that we are not competing the proposed TAN
odel against other models that we have used, as the central
remise of our study is to uncover the hidden, conditional rela-
ions among the potential predictors of cancer. These additional
benchmark) models include Artificial Neural Networks (ANN),
andom Forests (RF), and Gradient Boosting (XGB). As these mod-
ls are popular, well-known machine learning algorithms, here
e believe that providing a detailed description of these models
ould be unnecessary for the sake of conciseness and it would
ot serve our overarching goal in the proposed study. The results
hat were obtained from these models are presented in Tables 4,
, and 6. Even though it does not carry much practical meaning,
t should be noted that the proposed TAN model outperformed
hese well-known models in terms of AUPR, which is the primary
valuation metric that we employ in the current study. This
ustifies that we are not sacrificing from the model’s perfor-
ance for the sake of uncovering conditional relations among the
redictors.

.2. Tree-augmented Bayesian Belief Network Model

Fig. 2 illustrates the developed TAN graphical model. The
igure exhibits the relationships in terms of conditional proba-
ilities/dependencies among the fourteen significant predictors
elected by the GA methodology. The constructed TAN model
rovides a holistic view and insights about the interdependencies
mong the predictor variables and the outcome variable. For
ractical reasons, one of the ten-folds had to be picked as an
xemplary model among the six models. Therefore, the TAN is
enerated using the fifth fold from the GA-TAN model with RUS
ince the AUPR is the highest in this model. The TAN structure
an assist practitioners in making better decisions.
Recall that when interpreting the TAN structure, the direction

f the arrows provides information about dependencies and indi-
ect relations among the predictors and the outcome variable. An
rrow from a predictor (parent) to another (child) indicates that
he relation between the child node and the outcome variable
s dependent on the value of the parent node [42]. For example,
GE_DX (age of the patient) and EOD10_SZ (tumor size) are the
wo variables that have only the outcome variable as a parent
ode. This means that the contribution of the two variables
redicting the outcome variable does not change with the values
f other predictor variables. In addition, there are five predictors,
amely EOD10_EX (extension), EOD10_ND (node involvement),
OD10_PN (nodes positive), SURGPRIF (surgical procedure), and
RADE that are not parents of any other predictors, yet children
f other variables. This means that while their contribution to
redicting the outcome variable depends on another variable,
hey do not impact another predictor.

Furthermore, the TAN structure depicts the effects of EOD10_
X, EOD10_ND, EOD10_PN, and SURGPRIF are dependent on
ST_STGA (stage of breast cancer) that is dependent on BEHO3V
malignancy level). This interrelation is consistent with the lit-
rature, which demonstrates that the malignancy level of the
umor, in fact, impacts the stage of breast cancer [48], which
n turn affects the prognostic factors such as extension, node
nvolvement, lymph nodes positive as well as surgery type that is
equired for the annihilation of cancer cells [49]. Our results also
eveal the relation between GRADE, ERSTATUS (estrogen receptor-
ositive), TUMOR_1V (tumor marker), BEHO3V, RAC_RECA (race),
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Fig. 2. TAN structure of breast cancer patient 5-year survival.
Table 3
Ten-fold cross-validation performance results for the proposed TAN model.
Model Number of variables Balancing technique Accuracy Sensitivity Specificity AUPR

GA-TAN 14 SMOTE 0.780 (0.004) 0.785 (0.019) 0.779 (0.006) 0.589 (0.018)
TAN 18 SMOTE 0.777 (0.005) 0.789 (0.015) 0.776 (0.008) 0.582 (0.015)
GA-TAN 14 RUS 0.813 (0.002) 0.751 (0.015) 0.822 (0.004) 0.608 (0.017)
TAN 18 RUS 0.813 (0.005) 0.750 (0.018) 0.823 (0.006) 0.601 (0.017)
GA-TAN 14 NONE 0.897 (0.004) 0.479 (0.021) 0.960 (0.003) 0.601 (0.019)
TAN 18 NONE 0.896 (0.005) 0.483 (0.019) 0.956 (0.003) 0.601 (0.018)
Table 4
Ten-fold cross-validation performance results for ANN model (Benchmark Model
1).
Model Number of variables Balancing technique AUPR

GA-ANN 14 SMOTE 0.556 (0.018)
ANN 18 SMOTE 0.519 (0.029)
GA-ANN 14 RUS 0.569 (0.023)
ANN 18 RUS 0.532 (0.035)
GA-ANN 14 NONE 0.561 (0.019)
ANN 18 NONE 0.539 (0.025)

Table 5
Ten-fold cross-validation performance results for RF model (Benchmark Model
2).
Model Number of variables Balancing technique AUPR

GA-RF 14 SMOTE 0.566 (0.035)
RF 18 SMOTE 0.571 (0.034)
GA-RF 14 RUS 0.606 (0.03)
RF 18 RUS 0.601 (0.049)
GA-RF 14 NONE 0.590 (0.031)
RF 18 NONE 0.560 (0.059)

and MAR_STAT (marital status). Tumor markers are proteins that
are produced by normal and cancer cells but higher amounts by
7

Table 6
Ten-fold cross-validation performance results for XGB model (Benchmark Model
3).
Model Number of variables Balancing technique AUPR

GA-XGB 14 SMOTE 0.542 (0.05)
XGB 18 SMOTE 0.554 (0.043)
GA-XGB 14 RUS 0.572 (0.034)
XGB 18 RUS 0.574 (0.036)
GA-XGB 14 NONE 0.566 (0.027)
XGB 18 NONE 0.570 (0.033)

cancer cells [48]. On the other hand, a cancer cell is estrogen
receptor-positive if the cancer cells have receptors that promote
the growth of cancer cells [50]. Finally, the grade of cancer
indicates how slow or fast cancer cells are proliferating: In grade
I, cancer cells are similar to normal cells and not growing rapidly;
in grade II, cancer cells are not like normal cells and grow faster
than normal cells; and in grade III, grade cells are abnormal and
grow very aggressively [51].

The TAN structure in Fig. 2 demonstrates that the contribution
of the grade of breast cancer in predicting the survival of the
patient depends on estrogen receptor, tumor marker, malignancy
level, as well as race and marital status of the patient. This means
that the malignancy of cancer cells impacts the over-production
of proteins and cancer-related substances, which are considered
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Table 7
Cancer survival probability for race according to marital status.
Race Marriage status Posterior survival probability

White Married 48%
Black 41%
White Not Married 31%
Black 30%

as tumor markers [52]. Moreover, although the relation between
tumor marker and ER-status is not clearly defined in the cancer
literature, Dunnwald et al. (2007) expressed that resulting tumor
gene mutations due to the malignancy level of cancer can also
affect the estrogen receptor status of the cancer cells, which is
consistent with the TAN structure. Besides, consistent with [4,50],
Fig. 2 proves that ER-status significantly impacts the grade of
breast cancer. Finally, according to The TAN structure, the impact
of race on breast cancer survival needs to be studied per marital
status, which we analyze in Section 3.3 below.

3.3. Scenario analysis of conditional dependency structure with DSS
tool

As discussed in Section 3.2, the GA-TAN model reveals the
onditional dependency structure among the variables. This sug-
ests that the individual impact of each variable on 5-year breast
ancer survivability can change depending on the status of its
arent variable and thus needs to be interpreted accordingly.
n order to enable practitioners to conduct scenario analysis, a
ecision support (DS) tool that incorporates the GA-TAN model
s developed. Such a tool can be used by practitioners to not only
uantify the strength and the impact of each variable on breast
ancer survival but also analyze their conditional impacts.
For example, according to the Bayesian network created by the

AN model, the race of patients plays an important role in 5-year
urvivability. However, its impact depends on the marital status
f the patients. In order to explore this relationship, we conduct
cenario analysis via the DS tool. Table 7 shows the posterior
urvival probabilities obtained by using the tool. One can observe
rom the table that the chances of 5 or more years of survival for
nmarried black and white patients, with all else being the same,
re 30% and 31%, respectively.
However, even though being married positively affects the

urvival change according to the provided posterior survival
robabilities, its impact on the white race survivability is signif-
cantly higher than the black race. In other words, the survival
hance of a married white patient is 17% higher than an unmar-
ied white patient, while this rate is only 11% higher for the black
ounterparts.
This interesting interrelation between race and marital status

as also been pronounced in the existing literature. For example,
artinez et al. (2016) indicated that the mortality rate for un-
arried non-Hispanic patients is up to 24% higher than married
on-Hispanic patients. However, this change between unmarried
nd married patients drops down to 6% for Hispanic patients.
his signifies the dependency between race and marital status
n breast cancer survival. In another study, Zhai et al. (2019)
nvestigated the effect of marital status based on race. They
oncluded that married patients with breast cancer had a better
rognosis than divorced or widow counterparts while noting that
ace affects the correlation between marital status and breast
ancer survival.
The lower mortality rate for married patients, compared to

nmarried patients, might exist because married patients are able
o make easier decisions on receiving breast-conserving surg-
ries (BCS) – that damages the body cosmetic – which enables
8

physicians to remove cancerous cells, thus improving the progno-
sis [53]. However, its correlation with race can stem from the fact
that black cancer patients have a greater degree of difficulty with
the treatment decision compared to white patients [54]. Thus
they are less likely to make a surgical decision, although there
is professional consensus that BCS is a good treatment option for
early-stage breast cancer patients [55].

Similar to the race and marital status discussion above, differ-
ent scenario analyses can be conducted by physicians to better
understand the complex nature of breast cancer as well as the
conditional dependencies among the cancer-related factors. With
that said, the DS tool can also be utilized by patients to learn their
5+ year survival chance and can make their decisions accordingly.
A screenshot of the proposed tool is given in Fig. 3, and the tool
can be accessed via the following link: https://rsearch.shinyapps.
io/breast_cancer/.

Lastly, to verify the associations and relations between vari-
ables, we performed a what-if analysis by removing each predic-
tor from the TAN model while keeping the other thirteen pre-
dictors and analyzing the network structure. With this analysis,
we tried to answer the question of what would have happened
if the GA feature selection algorithm has not selected a given
feature. Also, the what-if analysis has been performed to verify
the sparsity of the TAN structure (See appendix, Fig. A1). Even
though TAN is sensitive to variable addition and removal [56], the
direction of the relations and associations do not change in the
acyclic graph unless BEHOV3, RAC_RECA, or HST_STGA is removed
from the TAN model (Figs. A1-e, m, n, respectively). The most
likely reason for the change in the TAN structure when one of the
three variables is removed from the model is that these variables
are in the center of the TAN structure.

3.4. Sensitivity analysis

The most important advantage of employing the TAN model
is to investigate parameter uncertainty and sensitivity. Sensitiv-
ity analysis provides evidence about the amount of information
each variable suggests in establishing the model, namely, their
importance. This can be calculated using entropy function [57]
as follows: I = H(Q ) − H(Q |F ) where H(Q ) and H(Q |F ) represent
the entropy of Q before and after findings, respectively. Results in
Fig. 4 show that the historic stage is the most significant variable
for predicting the survival of breast cancer patients. As the stage
of breast cancer increases, the likelihood of survival decreases.
This is consistent with Simsek et al. (2020), which states that 5-
year survival of stage-0 and −1 breast cancer are 100%, while
the 5-year survival is 21% for stage-4 breast cancer patients. It is
shown that the sequence number is the least important predictor
in predicting the 5-year survival.

4. Summary, conclusion, and future research directions

The main objectives of this research were (1) to reveal the
complex interrelations among the breast cancer-related factors,
(2) to find the most important variables contributing to cancer
survival. To that end, in this study, we proposed a holistic an-
alytical framework consisting of multiple steps. The framework
has been developed using the SEER dataset that spans the period
of 1975–2015. As the number of patients who survived over five
years is excessively more than the patients who died in 5 years,
RUS and SMOTE have been employed to balance the dataset. In
order to select the most important variables that relate to breast
cancer survival, a genetic algorithm is employed. Afterward, the
selected variables are deployed into Tree-augmented Bayesian
Belief Network to find complex inter-relation among the cancer-
related factors. In order to validate the associations and relations

https://rsearch.shinyapps.io/breast_cancer/
https://rsearch.shinyapps.io/breast_cancer/
https://rsearch.shinyapps.io/breast_cancer/
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Fig. 3. A Screenshot of the proposed DSS tool.
Fig. 4. Variable importance via sensitivity analysis.
etween variables, we performed a what-if analysis by removing
ne predictor at a time from the TAN model to analyze the im-
acts of variable elimination on the TAN tree structure. Finally, we
onducted a sensitivity analysis to find the relative importance of
ach variable in cancer survival.
The findings of the study indicate that the GA-TAN model was

ble to predict cancer survival with 0.608, 0.813, 0.751, and 0.822
or AUPR, Accuracy, Sensitivity, and Specificity values, respec-
ively, when the data is balanced with RUS. The employment of
he balancing algorithms increases the sensitivity of the model in
ifferentiating patients who are likely to die in 5 years. Moreover,
n interesting dependency structure among the cancer-related
actors (i.e., 14 variables) are revealed, which can help medical
ractitioners to have a better understanding and estimation of the
ourse of the disease, and consequently, can make better, more
fficient treatment plans. The study findings reveal that stage
9

of cancer is relatively the most important factor affecting breast
cancer survival while the sequence number variable (i.e., count of
the reportable tumors) has the least importance.

Some of the perceived limitations of the study can be listed
as follows. First of all, although the dataset covers a long-time
window, years from 1975–2015, there are some important vari-
ables that have been recorded in the SEER dataset after 2010, and
have not been included in this study due to their absence in the
cases recorded prior to 2010. These variables include HER2, which
represents the presence of a gene type that can play a role in the
development of breast cancer; Dx-Bone/Brain/Liver/Lung, which
represents where the metastasis happens in stage 4; and AJCC
−7 T/N/M, which gives detailed information about the tumor,
node, and metastasis of the cancer tumor. Second, other than
the TAN method, Markov blanket [58] could have been used as a
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tructural learning algorithm, for which, however, more detailed
atient-level data would be required.
In summary, this paper proposes a probabilistic framework

hat provides the interrelations among the important variables
n the tree-augmented network along with the conditional sur-
ival probabilities. The proposed methodology not only provides
he prediction for breast cancer survival but also reveals the
idden nonlinear interrelations among the variables in different
cenarios. The methodology can also be integrated into a decision
upport tool to help medical practitioners by augmenting their
nowledge to make better treatment decisions.
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