
Evaluating the Performance and Scalability of the
Ceph Distributed Storage System

Diana Gudu
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: diana.gudu@kit.edu

Marcus Hardt
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: marcus.hardt@kit.edu

Achim Streit
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: achim.streit@kit.edu

Abstract—As the data needs in every field continue to grow,
storage systems have to grow and therefore need to adapt to
the increasing demands of performance, reliability and fault
tolerance. This also increases their complexity and costs. Im-
proving the performance and scalability of storage systems while
maintaining low costs is thus crucial. The evaluated open source
storage system Ceph promises to reliably store data distributed
across many nodes. Ceph is targeted at commodity hardware.
This study investigates how Ceph performs in different setups
and compares this with the theoretical maximum performance
of the hardware. We used a bottom-up approach to benchmark
Ceph at different architectural levels. We varied the amount of
storage nodes and clients to test the scalability of the system. Our
experiments revealed that Ceph delivers the promised scalability,
and uncovered several points with improvement potential. We
observed a significant increase of the write throughput by moving
the Ceph journal to a faster location (in memory). Moreover,
while the system scaled with the increasing number of clients
operating the cluster, we noticed a slight performance degra-
dation after the saturation point. We tested two optimisation
strategies—increasing the available RAM or the object size—
and noted a write throughput increase of up to 9% and 27%,
respectively. Our findings improve the understanding of Ceph
and should benefit future users through the presented strategies
for tackling various performance limitations.

I. INTRODUCTION

The advent of Big Data led many scientific communities
to shift their focus towards this field, causing their needs for
efficient data storage and management to constantly increase.
Therefore, there is a growing interest in developing and
evaluating new storage solutions. In this paper, we evaluate the
performance of Ceph [1], an emerging distributed storage sys-
tem designed for scalability, performance, cost efficiency and
reliability. The larger context of this evaluation is supporting
the needs of such a scientific community—the Human Brain
Project (HBP) [2]—in which KIT will provide a Ceph-based
object store. Use cases include: data publication/archival,
content delivery network and Neuroinformatics data analytics.

The complexity of the distributed approach calls for careful
configuration and tuning to obtain the maximum performance
for given hardware and use cases. A comprehensive perfor-
mance evaluation of the system is thus essential. In this paper
we formulate and answer questions that will help fulfil our use
cases, and at the same time improve our understanding of Ceph
and distributed storage systems. Under which circumstances
does the system work best? What are the limiting factors to

its performance? How does the system behave when adding
more storage units or more clients using the system? Does the
performance degrade with too many clients (i.e. under extreme
stress)? Ceph’s layered architecture adds complexity to the
system—what is the performance loss at each layer?

This paper is organised around these questions, as follows.
Section II describes the architecture and main features of
Ceph, as well as other storage technologies. In Section III
we present related work that evaluates Ceph and other storage
solutions. Section IV gives an overview of our testing environ-
ment, the hypotheses we set out to test and the benchmarking
procedure. In Section V we discuss our performance results.
Finally, in Section VI we summarise our work and findings.

II. STORAGE SOLUTIONS

Ceph is an open-source distributed storage system. Its
core, RADOS, is a fully distributed, reliable and autonomous
object store. Ceph’s building blocks are called OSDs—Object
Storage Daemons. OSDs are responsible for storing objects
on local filesystems, as well as working together to replicate
data, detect and recover from failures, or migrate data when
OSDs join or leave the cluster. Ceph’s design is ultimately
rooted in the premise that failures are common in large-
scale storage systems. Thus, Ceph aims to ensure reliability
and scalability by leveraging the intelligence of the OSDs.
Each OSD uses a journal to speed-up the write operations by
coalescing small writes and flushing them asynchronously to
the backing filesystem when the journal is full. The journal
can be a different device, partition or file.

Ceph’s most interesting feature is the CRUSH algorithm
(Controlled Replication Under Scalable Hashing) [3]. CRUSH
is a pseudo-random placement algorithm that allows OSDs and
clients to compute object locations instead of looking them up
in a centralised table. Then clients can directly interact with
the OSDs for I/O. This promises, in theory, extreme scalability.
The CRUSH map also allows for defining hierarchies of failure
domains—for placing object replicas—at different levels, e.g.
disk, host, rack and room. Based on these hierarchies and on
so-called CRUSH rules, CRUSH maps objects to placement
groups (logical aggregations of objects inside one pool) and
then maps each placement group to one or more OSDs.

Ceph’s system architecture is illustrated in Fig. 1. The
monitors (MONs) are responsible for maintaining the cluster

RADOS

librados
(support for

C, C++, Java,
Python, Ruby,

PHP)

RadosGW
(REST API,
S3 and Swift
compatible)

RBD
(Linux kernel

client,
QEMU/KVM

driver)

CephFS
(POSIX

compliant,
Linux kernel
client, FUSE

support)

MONs OSDs MDSs
mon.1

mon.2

mon.n

osd.1

osd.2

osd.m

mds.1

mds.2

mds.p
...

APP host/VM client

... ...

APP

Fig. 1. The Ceph Architecture

map. Clients contact one of the monitors to obtain the most
recent cluster map, which includes information on the cluster
topology, a list of OSDs, pools, placement groups, mapping
of placement groups to OSDs—all the information needed to
further interact with the OSDs directly. The metadata servers
(MDSs) store and manage Ceph filesystem’s metadata.

Ceph exposes different interfaces to storage: a POSIX-
compliant filesystem (CephFS), block storage (Rados Block
Device/RBD) and a RESTful API (Rados Gateway). Clients
can directly access RADOS through librados, with support for
several programming languages, including: C/C++ and Python.

There is a set of alternative distributed storage systems and
NoSQL databases that could fulfil our use cases.

The General Parallel File System (GPFS) [4] is widely used
in HPC with good performance. However, GPFS is a propri-
etary filesystem, usually deployed on proprietary hardware.
Thus, high costs and vendor lock-in were two of our arguments
against GPFS.

The Hadoop Distributed File System (HDFS) [5] has been
deployed on large production clusters with massive through-
put capabilities. However, HDFS uses only one NameNode
to manage the filesystem namespace (nevertheless, there is
work in the direction of high availability by using a standby
NameNode for automatic failover, feature released in Hadoop
2.0 [6]). This centralisation and single point of failure can
limit the scalability and reliability of the system.

NoSQL (Not Only SQL) [7] approaches promise similar
scalability to Ceph by using sharding—automatically partition-
ing and distributing the data across the cluster. However, they
use a different data model—highly flexible and schema-less,
but more appropriate for complex and specialized workloads.
NoSQL databases can store data as key-value pairs, columns,
documents, graphs, etc. The key-value approach that Ceph
offers is sufficient for our use cases. Furthermore, NoSQL
databases suffer from a lack of standardised interfaces, which
often impedes their adoption, as opposed to Ceph, which
exposes three most common interfaces: POSIX, block and S3.

As a result, despite being a young technology, we believe
that Ceph fits our use cases best, due to the flexible access
interfaces and low requirements for hardware.

III. RELATED WORK

Performance of storage systems has been a topic of interest
for many years, especially with the emergence of different
parallel files systems, each designed to fill in certain gaps.

GPFS scalability and availability were evaluated by
Schmuck et al. [8]. The authors investigated possible bottle-
necks, such as distributed locking (used to guarantee POSIX
semantics), which scaled surprisingly well. They also pre-
sented lessons learnt from the few hundred deployments at
customer sites, related to load balancing, inode prefetching and
GPFS replication as extra measure to RAID for fault tolerance.

Shvachko et al. evaluated the HDFS performance [9] on a
25 PB cluster with 3500 nodes at Yahoo, used for indexing
the web with MapReduce as part of their search engine.
The authors observed a linear scaling of bandwidth with the
number of nodes, as well as an aggregated throughput of
34.2 GB/s during a large-scale sorting benchmark. They also
discuss the scalability issues caused by the single NameNode
and propose solutions to address them, some of which were
later implemented in Hadoop [5] [6].

Wang et al. [10] evaluated the file and block I/O perfor-
mance and scalability of Ceph, using a commercial high-
end storage system. The authors measured the read and write
throughput over different numbers of OSD servers and differ-
ent number of clients. They found the best Ceph configuration
for their system through a parameter sweep over a reduced
parameter space, improving the RADOS performance by up
to 16.3%. After repeated tuning, their Ceph system was able
to reach 70% of the raw hardware capability at RADOS level,
and 62% at the filesystem level. The paper’s most important
contributions, however, stem from the collaboration with the
Ceph developers—their findings were incorporated to directly
improve Ceph’s performance and code quality.

Van der Ster et al. [11] from CERN IT describe a petabyte-
scale deployment of Ceph, used as back-end block storage
for the CERN Tier-0 OpenStack cluster. In this paper, the
authors focus on their experience with deploying and running a
large-scale cluster, best practices and their use cases for Ceph.
They also report on various functionality and performance
tests: they observed a decrease by 35% in the single client
write throughput when increasing the replication from 1 to
3. Furthermore, they evaluated the scalability of Ceph with
respect to the number of files written to the cluster and
observed no load or memory consumption increase. However,
they found that by adding a new OSD server in this case,
the rebalancing took a long time (24 hours). In a subsequent,
unpublished work [12], the authors report on IOPS limitations
due to the co-location of the Ceph journal and the OSD data
on spinning disks, and speculate that SSD journals could at
least double the IOPS capacity.

Our work sets out to make two contributions over other
Ceph evaluations—by using commodity hardware to quantify
and explain performance overheads at different levels, and also
by analysing Ceph’s scalability over a larger, multidimensional
parameter space.

IV. TESTING METHODOLOGY

We devised a set of hypotheses that encompass the most
important performance aspects of distributed systems, such as:
scalability, overhead caused by complexity and specific hard-
ware configuration. We then focused our benchmarking efforts
towards exploring and validating the following hypotheses:

H1 the system scales when adding more OSDs
H2 the system scales with more clients
H3 the RBD on top of RADOS incurs some overhead
H4 the journal configuration is an important factor; placing

the journal on disk limits scalability
To this end, we employed a bottom-up testing strategy in

order to establish the theoretically expected maximum perfor-
mance and the performance loss incurred at every additional
layer of Ceph. We defined the following layers for testing:

1) raw disks and network
2) individual OSDs
3) distributed object store (RADOS)
4) block device (RBD)

As there is no unified tool for testing, we used different tools
for each layer (tools cross-referenced with layers):

• netcat [13] and iperf [14] for the network (layer 1)
• dd [15] for the raw disk (layer 1)
• osd tell for the journaled write on each OSD (layer 2)
• rados bench for RADOS (layer 3)
• fio [16] for RBD (layer 4)

The tools osd tell and rados bench are shipped with Ceph
and have a simple command line interface, where one can
pass different parameters, such as: I/O operation, number of
concurrent operations, duration of run or object size. Due to
the low-level, custom interfaces to OSDs and RADOS, there
are no alternative tools for benchmarking I/O at these layers.

fio is a widely used, highly flexible tool for benchmarking
I/O. It supports several operating systems and I/O engines. It
works on block devices, as well as files. Deutsche Telekom
added support for a new I/O engine to fio [17] [18]—the librbd
engine—that talks directly to Ceph RBD and the Ceph internal
Filestore. We chose this modified version to eliminate the need
for the RBD kernel client (not integrated in our chosen CentOS
6.4’s kernel). The typical use case for RBD (back-end for IaaS)
also uses the librbd API. An alternative tool for RBD is Ceph’s
rbd bench. Only using tools from the Ceph ecosystem has the
advantage of a more consistent comparison, ensuring that the
metrics are computed in the same way. However, tools like
fio guarantee platform independence, reproducible results and
make the comparison with other storage systems much easier.

Assembling the set of tools is challenging, especially with
respect to comparing the performance reported by each tool.
To alleviate this, we used the same synthetic, simple workloads
for all tests—sequential write operations of fixed block/object
size, followed by sequential reads. Moreover, we used a single
performance metric at all layers—the bandwidth (throughput).

The scalability tests were performed by launching single
client benchmarks in parallel on several clients. For the
RADOS tests, we created a separate pool for each client, since

TABLE I
OSD SERVER CONFIGURATION

Processor Intel Xeon E5430, 2.66 GHz, 8 cores
Network 2 × 1G Ethernet
Memory 32 GB
Disks 2 × SATA drives, 7200 RPM, 750 GB
Operating System CentOS 6.4

TABLE II
CEPH CLUSTER—WITH TWO DIFFERENT JOURNAL CONFIGURATIONS

Ceph release v0.72 (Emperor)
MONs | OSDs 3 | 8 (one per node)
OSD filesystem XFS
Ceph journal 1 GB, either in memory (tmpfs)

or a partition on the same disk as OSD data
Networks 1 public (for client access), 1 private (for OSD traffic)

rados bench cannot deal with multiple processes reading the
objects written in a previous run. For the RBD tests, different
RBD images in the same pool were sufficient. The metric for
parallel tests was the aggregated throughput—the sum of the
throughput measured at each client.

The test environment comprised 32 commodity servers. The
hardware specification of one server is summarised in Table I,
and the Ceph cluster configuration in Table II. We tested two
different journal configurations. First, the default installation
of Ceph was used, which places the journal on the same disk as
the OSD data, on a partition at the beginning of the disk; this
means the expected write bandwidth is significantly lower. For
our second test environment, we placed the journal in memory,
thereby measuring the real overhead of the journal. We tested
the system with cold cache by clearing the memory caches
before every run (pagecache, dentries, inodes). We repeated
the tests 3 times, plotted the average and standard deviation.

V. PERFORMANCE RESULTS

A. Performance Baseline

We first established the performance baseline imposed by
the hardware. The limiting factors in this case are the network
and disk. We measured a 111 MB/s network bandwidth and a
72 MB/s raw disk throughput (with dd writing 1 GB of zeroes).
Furthermore, we measured the overhead of Ceph’s journal on
individual OSDs with osd tell. With Ceph, any write to an
OSD translates to two write operations: one to the journal and
another to the back-end filesystem. With the journal placed
on the same disk as the OSD data, we observed a 30 MB/s
throughput, compared to 62.5 MB/s for the in-memory journal.

These results entail theoretical limits for maximal read/write
performance as functions of the number of OSDs (Table III).

TABLE III
THEORETICAL LIMITS FOR MAXIMAL THROUGHPUT WITH 8 OSDS

Per-client network throughput 111 MB/s
Cluster read throughput 8 × 72 = 576 MB/s
Cluster write throughput (journal on disk) 8 × 30 = 240 MB/s
Cluster write throughput (journal in memory) 8 × 62.5 = 500 MB/s

4 16 128 1024 8192 65536
0

20

40

60

80

100

120

object size (KB)

th
ro

ug
hp

ut
(M

B
/s

)

no replica
1 replica
2 replicas

(a) RADOS: Write throughput

4 16 128 1024 8192 65536
0

5

10

15

20

25

30

object size (KB)

la
te

nc
y

(s
)

no replica
1 replica
2 replicas

(b) RADOS: Write latency

4 16 128 1024 8192 65536
0

20

40

60

80

100

120

write size (KB)

th
ro

ug
hp

ut
(M

B
/s

)

read
write

(c) RBD: Throughput

Fig. 2. Single client tests: RADOS and RBD performance over different object sizes and different replication levels, 16 threads. Journal located in memory.

B. Single Client Tests

The first set of tests was performed using a single client.
We observed that the journal configuration does not have a
significant impact in this case, therefore it is sufficient to show
the results of the in-memory journal configuration.

Using rados bench, we performed sequential write and
read to the RADOS layer for 200 seconds and 100 seconds,
respectively. The total size of data used by the benchmark was
therefore variable. We measured the throughput with either a
varying number of threads (or operations in-flight) at the client
side and a fixed object size, or vice versa, with a varying object
size and a fixed number of threads.

We observed that increasing the number of threads or the
object size saturates the network bandwidth at the client side
for both read and write. Replication can hinder the write
performance, since it is done synchronously, with a perfor-
mance penalty of up to 50% for 3-way replication. The read
performance is not affected by replication because operations
are always performed on the primary copy of an object.

Fig. 2(a) and Fig. 2(b) show the RADOS write throughput
over varied object sizes. Note the low throughput for small
object sizes—quite common for storage systems. The band-
width reaches the network limit for medium-sized objects. An
interesting result is the drop in performance for objects larger
than 32 MB, doubled by an increase in latency. The reason for
this high latency could be that large objects need to be split
up into smaller sizes to be transmitted to the storage device.

The performance at the RBD layer over different block
sizes is displayed in Fig. 2(c). No replication was used. A
total amount of 1 GB of data was written to the RBD image.
Though limited by the network bandwidth as well, RBD
performs better than RADOS, because the RBD images are
striped over objects of fixed size (by default, 4 MB).

To overcome the performance limit imposed by the client
network, we had to increase the number of clients and OSDs
to find the cluster’s maximum performance.

C. Scaling OSDs

To verify hypothesis H1, we ran parallel tests (8 clients) on
different deployments of the cluster—increasing the number
of OSDs (8, 12, 16, 20). For each set-up, we used two journal
configurations: on disk and in memory. We matched all other

parameters to the ones that yielded the best results in the single
client tests: 4 MB objects, 16 threads per client, no replication.

Fig. 3 shows that performance increases steadily with the
number of OSDs, so H1 is valid, but it does not approach
the hardware limit. The read performance, for example, scales
almost linearly—the throughput for 16 OSDs is 1.91 times
the one for 8 OSDs. However, compared to the hardware
limits discussed in Subsection V-A, the throughput is at most
64% of the OSD-imposed limit (with 12 OSDs), and 93%
of the network-imposed limit (with 20 OSDs). The write
performance ranges from 33% to 70% of the theoretical limit
with memory journal, and from 28% to 70% with disk journal.

These results indicate that the current set-up does not use the
disks efficiently. Possible explanations are: not enough clients
to saturate any of the hardware resources; suboptimal Ceph or
kernel configurations. We investigate these ideas in the next
sections, as well as why RBD performs better than RADOS,
despite RADOS being closer to the hardware.

D. Scaling Clients

We tested our system’s performance with increasing number
of clients (hypothesis H2) by running the parallel tests on
all the different Ceph configurations. The results for RADOS,
with 8 and 16 OSDs, are shown in Fig. 4(a) and 4(b).

We note that hypothesis H2 was validated, up to a cer-
tain point, limited by disk throughput. With 16 OSDs, read
throughput scales linearly up to 5 clients, while write through-
put scales up to 4 and 2 clients, for memory and disk journal
configuration, respectively. In the regions with linear scalabil-
ity, the throughput reaches the theoretical network limit.

More interestingly, we observed a slight degradation in
the RADOS write performance with increasing number of
clients. Benchmarks performed at Intel [19] report a similar
behaviour—with a different test set-up that involves virtual
machines with attached volumes on top of RBD images. They
believe the cause is an increase in disk seek: even though the
I/O pattern at the client side is sequential, the I/O streams
from each client get distributed across the OSDs and mixed
together with streams from the other clients, resulting in a
random access pattern on the OSD disks. Random disk access
involves more disk seek, which has a strong impact on the
disk performance. Two solutions were proposed:

8 12 16 20
0

100

200

300

400

500

600

700

800

900

OSDs

ag
gr

eg
at

ed
th

ro
ug

hp
ut

(M
B

/s
)

read, journal mem
read, journal disk

write, journal mem
write, journal disk

theoretical max

(a) RADOS

8 12 16 20
0

100

200

300

400

500

600

700

800

900

OSDs

ag
gr

eg
at

ed
th

ro
ug

hp
ut

(M
B

/s
)

(b) RBD

Fig. 3. Scaling OSD nodes—throughput over increasing number of OSDs. 8 clients, 16 threads per client, 4 MB block size. The theoretical maximum
performance for each case is depicted with an empty rectangle.

1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

clients

ag
gr

eg
at

ed
th

ro
ug

hp
ut

(M
B

/s
)

read, memory
read, disk

write, memory
write, disk

(a) 8 OSDs

1 2 3 4 5 6 7 8 9 10
100

200

300

400

500

600

700

800

clients

ag
gr

eg
at

ed
th

ro
ug

hp
ut

(M
B

/s
)

(b) 16 OSDs

1 2 3 4 5 6 7 8 9 10
100

150

200

250

300

350

400

450

500

550

clients

ag
gr

eg
at

ed
ba

nd
w

id
th

(M
B

/s
)

4 MB
16 MB

(c) 20 OSDs, changing the I/O pattern

Fig. 4. Scaling clients with different journal configurations (in memory and on disk): throughput at RADOS level over increasing number of clients, 16
threads per client, 4 MB object size, with 8 OSDs (a) and 16 OSDs (b). Improving this scalability by changing the I/O pattern (c): journal on disk, 20 OSDs,
16 threads per client, writing objects of different sizes.

1) improve the random I/O performance by speeding
up the filestore, e.g. by increasing the RAM available
or adding SSD for write-back/through cache in a tiered
storage. The second option requires a radical hardware
reconfiguration and Ceph’s tiering feature (introduced in
release v0.80). We examined the first option by tuning
the Linux kernel: increasing the memory allocated for
receive/send sockets, and the TCP read/write buffer size,
to 12 MB. We observed an increase in write throughput
as high as 9% (on average 5% after the saturation
point). However, a side-effect was a decrease in the read
throughput (on average 5% after the saturation point).

2) change the I/O pattern, by increasing the write size or
enabling the RBD cache. Changing the object size from
4 MB to 16 MB boosted the write bandwidth by up to
27%, for 20 OSDs with the journal on disk (on average
21% after the saturation point), as shown in Fig. 4(c).

E. Different Journal Configurations

We measured the performance impact of Ceph’s journal by
running our parallel tests on different configurations of the
Ceph cluster—placing the journal in memory (1 GB tmpfs
partition) or co-located with the OSD data on a spinning disk
(1 GB partition at the beginning of the disk, since it is faster).

Fig. 4 shows a doubling in write throughput by placing
the journal in memory, which validates our hypothesis H4.

The result is also a strong argument to test the placement
of journals on SSDs. Even though SSDs and memory have
different read/write performance, it is clear that a faster journal
is required. In-memory journals are much faster, but extremely
unreliable in the event of OSD crashes. SSDs are also fast,
more reliable (except for the limited erase cycles), but orders
of magnitude slower than memory. A more thorough analysis
could shed more light on the best journal configuration.

F. RADOS versus RBD Performance

To test hypothesis H3, we quantified the impact of system
complexity by measuring the performance loss at each layer.
We postulated that there is a decrease in throughput from the
raw disk, to the OSD level, to RADOS and finally, RBD; we
then set out to measure this decrease. Fig. 5 illustrates this for
writes to a Ceph set-up with 8 OSDs and journal in memory.

Note that, with enough clients (more than 5 in this case),
the network capability does not count in establishing the max-
imum theoretical performance, but rather the disk capability.
The penalty of writing objects first to the in-memory journal
and then to the disk is around 13% of the disk capability.
These are both theoretical limits measured on one OSD.

Moreover, the measured RBD write throughput has a
penalty of 29% compared to the maximum journaled write
on one OSD. A surprising finding was that the measured
RADOS write performance is 6% to 23% less than the RBD

1 2 3 4 5 6 7 8 9 10
100

200

300

400

500

600

700

800

900

clients

ag
gr

eg
at

ed
th

ro
ug

hp
ut

(M
B

/s
)

rados
rbd

disk max
osd max
net max

Fig. 5. Write performance of RADOS vs RBD over increasing number of
clients. Journal in memory, 8 OSDs, 16 threads per client, 4 MB write size.

performance, worsening with more clients. Therefore, our
hypothesis H3 was invalidated: the performance is better at
the RBD layer than at the lower RADOS layer.

However surprising this may seem, we first must establish
whether the comparison makes sense. Although all parameters
are the same for the RADOS and RBD tests (write size, repli-
cation, number of clients, threads per client), the tools we used
for testing are different, and they can behave differently, e.g.
by applying implicit optimisations. We believe that one factor
causing better performance of RBD is the client-side buffered
I/O done by fio: by default, fio caches writes in memory and
flushes/syncs them periodically, when the buffer cache is full.
We then compared results from fio runs with buffered and
direct I/O, and observed a difference of approximately 5%
in throughput—which only amounts for less than half of the
performance difference of 13% between RBD and RADOS.

VI. CONCLUSION

In this paper, we evaluated the Ceph distributed storage
system. Our work makes two unique contributions. Firstly, our
multidimensional scalability evaluation led to a better under-
standing of how each dimension (number of OSDs, number of
clients, object size) affects performance, not necessarily in a
liner fashion. Secondly, the tests were carried on commodity
hardware, for which Ceph was initially designed, and therefore
focused on unraveling and overcoming the limitations of the
undelying platform; the results can benefit Ceph users that
do not have access to high-end storage systems, but wish to
maximise the performance of available hardware.

Our experiments provide several important insights:
• Ceph scales almost linearly when adding more storage

nodes. Though an expected outcome—due to the Ceph
design based on failure ubiquity and deterministic data
distribution—it is now backed by empirical proof.

• The journal setting has a significant impact on the write
performance: when the journal is placed in memory, the
write throughput is double or higher than the case when
the journal is co-located with the OSD data.

• Ceph scales well with many clients operating the cluster
in parallel, up to the saturation of some resource—usually
disk bandwidth. After saturation, the write performance
degrades slightly with more clients, due to an increase in

disk seek; this can be alleviated by improving the random
I/O performance on OSDs or by changing the I/O pattern.

• RBD outperforms RADOS in most cases, which is un-
expected, since RADOS is closer to the hardware than
RBD. Partly explained by different optimisations included
in the RBD client, this result raises the question of how to
properly compare the performance of different interfaces
to storage when there is no common testing tool available.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 604102 (Human
Brain Project).

REFERENCES

[1] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 307–320.

[2] H. Markram, K. Meier, T. Lippert, S. Grillner, R. Frackowiak, S. De-
haene, A. Knoll, H. Sompolinsky, K. Verstreken, J. DeFelipe et al.,
“Introducing the human brain project,” Procedia Computer Science,
vol. 7, pp. 39–42, 2011.

[3] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Crush:
Controlled, scalable, decentralized placement of replicated data,” in
Proceedings of the 2006 ACM/IEEE conference on Supercomputing.
ACM, 2006, p. 122.

[4] J. Barkes, M. R. Barrios, F. Cougard, P. G. Crumley, D. Marin, H. Reddy,
and T. Thitayanun, “Gpfs: a parallel file system,” IBM International
Technical Support Organization, 1998.

[5] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.
[6] A. Oriani and I. C. Garcia, “From backup to hot standby: High

availability for hdfs,” in Proceedings of the 2012 IEEE 31st Symposium
on Reliable Distributed Systems. IEEE Computer Society, 2012, pp.
131–140.

[7] R. Cattell, “Scalable sql and nosql data stores,” ACM SIGMOD Record,
vol. 39, no. 4, pp. 12–27, 2011.

[8] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk file system for
large computing clusters.” in FAST, vol. 2, 2002, p. 19.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[10] F. Wang, M. Nelson, S. Oral, S. Atchley, S. Weil, B. W. Settlemyer,
B. Caldwell, and J. Hill, “Performance and scalability evaluation of
the ceph parallel file system,” in Proceedings of the 8th Parallel Data
Storage Workshop. ACM, 2013, pp. 14–19.

[11] D. van der Ster and A. Wiebalck, “Building an organic block storage
service at cern with ceph,” in Journal of Physics: Conference Series,
vol. 513, no. 4. IOP Publishing, 2014, p. 042047.

[12] D. van der Ster. (2014, May) Ceph at cern: one year on. [Online].
Available: http://indico.cern.ch/event/274555/session/16/contribution/10

[13] *Hobbit*. (1996, Mar.) Netcat (version 1.10). [Online]. Available:
http://nc110.sourceforge.net/

[14] (2010, Jul.) Iperf (version 2.0.5). [Online]. Available: http://iperf.fr
[15] P. Rubin, D. MacKenzie, and S. Kemp. (2014, Mar.) dd

(coreutils) (version 8.4). [Online]. Available: http://www.gnu.org/
software/coreutils/manual/html node/dd-invocation.html

[16] J. Axboe. (2013, Jan.) Fio (version 2.0.13). [Online]. Available:
http://freecode.com/projects/fio

[17] ——. (2014, May) Fio (version 2.1.9-17-gd9b1). [Online]. Available:
http://git.kernel.dk/?p=fio.git;a=summary

[18] D. Al-Gaaf and D. Gollub. (2014, Feb.) Telekomcloud
devops team – ceph performance analysis: fio and rbd.
[Online]. Available: http://telekomcloud.github.io/ceph/2014/02/26/
ceph-performance-analysis fio rbd.html

[19] J. Duang. (2013, Nov.) Measure ceph rbd per-
formance in a quantitative way (part ii). [On-
line]. Available: https://software.intel.com/en-us/blogs/2013/11/20/
measure-ceph-rbd-performance-in-a-quantitative-way-part-ii

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Gudu, D.; Hardt, M.; Streit, A.

Evaluating the performance and scalability of the Ceph distributed storage system

2014. Proceedings of the IEEE International Conference on Big Data 2014, Washington,

D.C., October 27-30, 2014. Ed.: J. Lin, IEEE Computer Society.

doi: 10.554/IR/170098804

Zitierung der Originalveröffentlichung:

Gudu, D.; Hardt, M.; Streit, A.

Evaluating the performance and scalability of the Ceph distributed storage system

2014. Proceedings of the IEEE International Conference on Big Data 2014, Washington,

D.C., October 27-30, 2014. Ed.: J. Lin, 177–182, IEEE Computer Society.

doi:10.1109/BigData.2014.7004229

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/170098804
https://publikationen.bibliothek.kit.edu/170098804
https://publikationen.bibliothek.kit.edu/170098804
https://doi.org/10.1109/BigData.2014.7004229
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

