

Structured chemical reactors: experimental analysis and simulation

Benjamin Dietrich*, Sebastian Meinicke* Xuan Cai[#], Mino Woo[#], <u>Martin Wörner</u>[#]

ACHEMA, Frankfurt/Main, June 16, 2015

*INSTITUTE OF THERMAL PROCESS ENGINEERING and #INSTITUTE OF CATALYIS RESEARCH AND TECHNOLOGY

Outline

Introduction

- Structured reactors
- Computational fluid dynamics (CFD)
- Solid sponge reactors
 - Single-phase flow and heat transfer
 - Gas-liquid flow
- Periodic open cell structures
 - Bubble structure interaction
- Monolith reactor
 - Taylor flow in a single channel
- Conclusions and outlook

Introduction

Typical structured elements for chemical reactors

packed beds

honeycombs/monoliths

Main properties

- Porosity

3

- Cross-mixing
- Heat transfer

low (~ 40 %) (→high pressure drop) good high resistances (point contact) high (~ 75 - 95 %) (→low pressure drop) not existing low resistances (continuous solid phase)

Introduction

Typical structured elements for chemical reactors

packed beds

honeycombs/monoliths

Main properties

- Porosity
- Cross-mixing
- Heat transfer

low (~ 40 %) (→high pressure drop) good high resistances (point contact)

high (→low pressure drop) not existing low resistances (continuous solid phase)

Sponges and POCS

Open-cell foams (sponges) and periodic open cell structures (POCS)

combine advantageous properties

- High porosity
 - Low pressure drop
 - Low weightiness
- High specific surface area
 - Advantageous for heterogeneous reactions and fluid-solid heat/mass transfer
- Continuous solid phase
 - Advantageous for heat transport
 - Possibility for utilizing heat of highly exothermic reactions in a separate process (→ *energy efficiency*)

For manufacturing, characterization and functionalization of sponges and POCS see the presentation of A. Inayat in this session

Modeling approaches

- Modeling is essential for ...
 - A better understanding of the interactions of chemistry and physics (het./hom. chemical reactions ↔ mass and heat transport)
 - Support of reactor design and engineering
 - Optimization of the operation conditions (maximization of desired product yield, minimization of undesired side-products)
- Modeling hierarchies
 - Process simulations (Model-based design of optimal reactors and processes, FAU Erlangen)
 - Scale-reduced CFD simulations (Euler-Euler approach, HZDR)
 - Scale-resolved CFD simulations ("Direct numerical simulation", KIT)
- Advantages/disadvantages of scale-resolved simulations
 - Getting insight in phenomena which are experimentally difficult accessible
 - Utilization of data for development of models on larger level of abstraction
 - High computational costs

CFD tools used here

Solution of the incompressible Navier-Stokes equations (for two-phase flows with surface tension term)

- OpenFOAM[®]: open-source library for computational continuum mechanics
 - FOAM = Field Operation and Manipulation (not related to foam/sponge reactor)
 - simpleFoam (steady laminar flow)
 - porousSimpleFoam (steady laminar flow, multi-region approach)
 - buoyantBoussinesqSimpleFoam (steady laminar flow, Boussinesq approx. for heat tr.)
 - phaseFieldFoam (unsteady laminar two-phase flow)
 - Phase-field method for two-phase flows
 - Under development in cooperation with Dr. H. Marschall (TU Darmstadt)
- TURBIT-VOF: in-house code based on geometric volume-of-fluid method
 - Used for Taylor flow in single channel of monolith reactor

code for single-phase flow code for two-phase flow

Outline

Introduction

- Structured reactors
- Computational fluid dynamics (CFD)

Solid sponge reactors

- Single-phase flow and heat transfer
- Gas-liquid flow
- Periodic open cell structures
 - Bubble structure interaction
- Monolith reactor
 - Taylor flow in a single channel
- Conclusions and outlook

General procedure

Institute of Catalysis Research and Technology

Multi-region approach

combined modeling approach for hydrodynamics and heat transfer in sponges:

- → simulation geometry consisting of ...
 - \dots inlet zone (①)
 - ... resolved sponge REV (2)
 - ... outlet zone (3)
- → specification of **boundary conditions**
 - → radially constant inlet/ outlet boundary values
 - → embedding of sponge REV T_{ein}=const. into hydrodynamic surrounding

About 18 million mesh cells (cell size at sponge surface \approx 25 μ m)

Selected numerical results for single-phase pressure drop

- → focus on well-(heat-)conducting **SiSiC** sponges (e.g. 20 pores per inch, $\psi \approx 85\%$)
- → presentation of results in terms of **dimensionless numbers**:

- → CFD simulation results obtained from different modeling approaches are in good agreement with literature data and experimental results (same sponge samples)
- [1] Dietrich et al., Pressure drop measurements of ceramic sponges determining the hydraulic diameter, Chem. Eng. Sci. 64 (2009) 3633-3640

Selected numerical results for single-phase heat transfer

- → simplifying assumption: **isothermal** sponge surface (e.g. $T_S = 40$ °C)
- → balancing of REV's energy gives term for (volumetric) heat transfer coefficient:

→ acceptable agreement with reasonably comparable literature data and exp. results from similar (but transient) heat transfer coefficient measuring method

→ directly comparable experiments ongoing

[2] Dietrich, Heat transfer coefficients for solid ceramic sponges – Experimental results and correlation, Int. J. Heat Mass Transfer 61 (2013) 627-637
[3] Giani et al., Heat transfer characterization of metallic foams, Ind. Eng. Chem. Res. 44 (2005) 9078-9085

µPIV measurements as a novel validation technique for results of numerical simulations

insertion into flow channel

Integration into µPIV test loop; Fluid: aqueous DMSO solution

 SiO_2 glass sponge sample

13 June 16, 2015 Structured chemical reactors: experimental analysis and simulation

Institute of Thermal Process Engineering Institute of Catalysis Research and Technology

µPIV measurements as a novel validation technique for results of numerical simulations

Institute of Catalysis Research and Technology

µPIV measurements as a novel validation technique for results of numerical simulations

Institute of Catalysis Research and Technology

Outline

Introduction

- Structured reactors
- Computational fluid dynamics (CFD)

Solid sponge reactors

- Single-phase flow and heat transfer
- Gas-liquid flow
- Periodic open cell structures
 - Bubble structure interaction
- Monolith reactor
 - Taylor flow in a single channel
- Conclusions and outlook

Two-phase flow – phase-field method

- The gas-liquid flow is influenced by the wettability of the sponge structure
- For dynamic wetting/dewetting processes accurate modeling of the moving contact line is necessary
- Development and implementation of a phase-field method in OpenFOAM with adaptive mesh refinement at the "diffusive" interface
- The (equilibrium) contact angle θ_e is an input parameter for the simulation
- Validation for various fundamental wetting phenomena [4]

[4] Cai et al., Numerical simulation of wetting phenomena with a phase-field method using OpenFOAM®, Chem. Eng. Technol., submitted

Two-phase flow in sponge – approach

- Problem: realistic inlet conditions for phase distribution
- Solution: mirror domain and use periodic boundary conditions

Two-phase flow in sponge – approach

- Specify initial phase distribution in domain and axial pressure drop which drives the flow (source term in N-S equation)
- Simulations for different parameters are under way
- <u>Goal</u>: derive closure relations for use in Euler-Euler model
 - Specific wetted surface area
 - Specific gas-liquid interfacial area
 - ...
 - as function of superficial velocities
 - ..
 - under variation of materials, porosity and pore size

(about one million mesh cells, $\theta_{\rm e}$ = 90°)

Outline

Introduction

- Structured reactors
- Computational fluid dynamics (CFD)
- Solid sponge reactors
 - Single-phase flow and heat transfer
 - Gas-liquid flow

Periodic open cell structures

- Bubble structure interaction
- Monolith reactor
 - Taylor flow in a single channel
- Conclusions and outlook

Bubble rise in POCS – results

POCS as internals in bubble column reactors can **enhance gas-liquid mass transfer** (by disturbing/renewing the liquid concentration boundary layer) while only slightly increasing the pressure drop (\rightarrow *energy efficiency*)

- POCS with window size 4 mm tilted by 45°
- Water and air are initially at rest
- Spherical bubble (diameter 4 mm) is placed so that it will hit the strut during its rise
- Structure is partially wetting (contact angle $\theta_e = 90^\circ$)

POCS from FAU Erlangen

Institute of Thermal Process Engineering Institute of Catalysis Research and Technology

Bubble rise in POCS – results

Structure is hydrophilic (contact angle $\theta_e = 0^\circ$)

Bubble rise in POCS – results

- Structure is hydrophobic (contact angle $\theta_e = 135^\circ$)
- Though at this stage, our simulations are qualitative, they show that the bubble interaction with the structure depends on wettability
- Planed cooperation with TU Hamburg-Harburg (O. Möller, Prof. M. Schlüter) to compare simulations with experiments

Outline

Introduction

- Structured reactors
- Computational fluid dynamics (CFD)
- Solid sponge reactors
 - Single-phase flow and heat transfer
 - Gas-liquid flow
- Periodic open cell structures
 - Bubble structure interaction

Monolith reactor

- Taylor flow in a single channel
- Conclusions and outlook

Taylor flow in a single channel of a monolith reactor

- Simulation of gas-liquid flow and mass transfer with TURBIT-VOF
- Modeling of elementary reactions in washcoat with DETCHEMTM code
- Validation of coupled codes
 - Single- and multi-phase multispecies reactive-diffusive mass transfer (→ use effective diffusivity model)
- Simulations for hydrogenation of nitrobenzene to aniline
 - 2D simulations to determine flow regime map and range with Taylor flow
 - Simulations for interfacial mass transfer of hydrogen are in progress
 - Simulations with detailed reaction kinetics to follow

Flow regime map

Reynolds no. for variable channel height and bubble velocity

Bubble velocity $U_{\rm B}$ [m/s]

Microreactor for hydrogenation of nitrobenzene from Kataoka et al., Applied Catalysis: General 427-428 (2012) 119-124

Ca > 0.01 *Re* < 200

 \rightarrow small channel height required for Taylor flow

For Taylor flow in a capillary see also the presentation of H. Kryk in this session

Conclusions and outlook

- Single phase flow and heat transfer in sponges
 - Characterization of pressure drop (and heat transfer) by rather "universal" experimental correlations
 - Experimental pressure drop is very well recovered by CFD computations, exp. heat transfer coefficient till now less good
 - First steps towards a local validation (velocity field in a pore)
- Scale-resolved simulations for gas-liquid flows
 - Phase-field method is promising approach
 - Successful validation for *fundamental* wetting phenomena
 - Validation for *complex* wetting phenomena in sponges and POCS requires suitable experimental data
 - Potential to provide closure relations for Euler-Euler approach
 - Taylor flow simulations in monolith channel with detailed chemistry (hydrogenation of nitrobenzene) are underway

Thanks to ...

F HELMHOLTZ

- The Helmholtz Gemeinschaft for funding the Energy Alliance "Energy-efficient chemical multiphase processes"
- All partners within the alliance, especially
 - TU Hamburg-Harburg
- Cooperation partners outside the alliance
 - Dr. H. Marschall (TU Darmstadt)
 - Prof. P. Yue (Virginia Tech, USA)
 - Prof. H. Alla (USTO, Oran, Algeria)

... you, for your attention

Invent the Future