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ABSTRACT
Over the last years, the zebrafish (Danio rerio) has become a key model organism in genetic and
chemical screenings. A growing number of experiments and an expanding interest in zebrafish
research makes it increasingly essential to automatize the distribution of embryos and larvae into
standard microtiter plates or other sample holders for screening, often according to phenotypical
features. Until now, such sorting processes have been carried out by manually handling the larvae
and manual feature detection. Here, a prototype platform for image acquisition together with a
classification software is presented. Zebrafish embryos and larvae and their features such as
pigmentation are detected automatically from the image. Zebrafish of 4 different phenotypes can
be classified through pattern recognition at 72 h post fertilization (hpf), allowing the software to
classify an embryo into 2 distinct phenotypic classes: wild-type versus variant. The zebrafish
phenotypes are classified with an accuracy of 79–99% without any user interaction. A description of
the prototype platform and of the algorithms for image processing and pattern recognition is
presented.
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Introduction

Today the zebrafish has become a key model
organism in drug discovery,1 toxicity2 and genetic
screening.3 The genetic parallels to humans, com-
bined with the advantage of external fertilization
and a fast developmental process as well as its
translucent body, make the zebrafish ideal for sci-
entific research. Many assays use a large number of
zebrafish embryos for high-throughput screening
(HTS) using automation technology and computer
aided feature detection.4-10 For such screens, often
transgenic embryos or embryos with different mor-
phological features have to be separated from wild-
type embryos. To increase the throughput in these
screens, it is essential to automatize this sorting
step using image analysis methods

This study focuses on 4 different zebrafish pheno-
types at 72 h post fertilization (hpf). The first
phenotype is the wild-type, which also forms the stan-
dard template for classification. The second phenotype

consists of 1-phenyl 2- thiourea (PTU)-treated wild-
type embryos, which do not form melanin and appear
brighter than the wild-type.11

The third phenotype consists of transgenic kita-
HRAS expressing embryos, which exhibit an over-pro-
liferation of melanocytes and develop melanoma at
later stages. Therefore, these embryos/larvae have an
increased amount of pigment and hence a darker phe-
notype than the wild-type.12 The fourth phenotype
consists of homozygous rx3-mutants which lack
eyes.13

A prototype platform for image acquisition was
designed and image-sets (360 images per line) of the 4
different phenotypes were generated. Algorithms for
feature extraction and pattern recognition were
designed according to the phenotypical differences
and applied to the image-sets. The classification task
was hampered by variations in intensity of the fea-
tures. This variation in the test data sets was used to

CONTACT Christian Pylatiuk pylatiuk@kit.edu Institute for Applied Computer Science (IAI), Karlsruhe Institute of Technology (KIT), 76344
Eggenstein-Leopoldshafen, Germany

Color versions of one or more of the figures in this article can be found online at www.tandfonline.com/kbie.
© 2016 Taylor & Francis

BIOENGINEERED
2016, VOL. 7, NO. 4, 261–265
http://dx.doi.org/10.1080/21655979.2016.1197710

http://www.tandfonline.com/kbie
http://dx.doi.org/10.1080/21655979.2016.1197710


improve the robustness and thereby the applicability
of the algorithms to newly acquired data.

The sorting-methods used so far are mostly manual
and thus time-consuming. The method proposed here
is able to acquire images of zebrafish and automati-
cally classify them according to their phenotype. In
the long-term, the aim is to develop a high-throughput
system that is capable of sorting hatched larval zebra-
fish (48–72 hpf) by phenotype.

Method

The automated classification process is a pipeline
composed of image acquisition, feature extraction and
pattern recognition. For the image acquisition, a pro-
totype platform to generate numerous and compara-
ble test images was designed. In order to get
meaningful results during the feature extraction step,
the implemented approaches differ with respect to the
phenotypes which were to be distinguished from wild-
types. In the final step a fault-tolerant and non-linear
radial basis function (RBF) support vector machine
(SVM) to train a classifier which is capable of classify-
ing newly acquired images was used.

Image acquisition

The image acquisition is carried out using a prototype
platform which consists of 2 cameras that are arranged
in a 90� angle to each other (Fig. 1). The optical axes
intersect in a cuvette, in which the zebrafish are
located and positioned. This way enabled the genera-
tion of 1 transversal and 1 sagittal image per acquisi-
tion, thereby avoiding the need for manual orientation
of the zebrafish inside the glass capillary. Using both
images of 1 acquisition enabled to generate a classifier
while using only 1 feature. Image properties can be
manipulated through lighting and aperture settings.
The image sets consist of around 160 acquisitions per
phenotype.

Feature extraction

During feature extraction the aim was to convert the
phenotypical features of the zebrafish that are
expressed in the images into a numeric representa-
tion. Depending on the phenotypes to be discrimi-
nated different approaches were used. The PTU
treated zebrafish and the kita-HRAS zebrafish are
analyzed in accordance to their pigmentation and

thus gray value distribution of the image. In contrast,
the rx3-mutant is with respect to the eye segment of
the image.

Pigmentation
In Fig. 2a, an example input image with cuvette bor-
ders and a transversal view of a zebrafish is shown.
The image is converted into a binary image by edge
detection using a Sobel-filter. The threshold for
the edge detection is calculated from the mean gray
value of the input image and multiplied by 0.5 to sen-
sitize the edge detection. Furthermore, the binary
image is dilated in order to close gaps in the edge con-
tour (Fig. 2b). The closed contours are then filled
(Fig. 2c). The segment with the highest amount of pix-
els is assumed to be the “zebrafish” segment. It is ori-
ented according to the horizontal line and the outline
is smoothed. The position of the head is determined
quantifying the amount of pixels, and is thereafter sep-
arated from the “zebrafish” segment (Fig. 2d). Next, a
histogram of the segment is generated. The obtained
gray-value-bins of the histogram are subtracted from
the corresponding gray-value-bins of a standardized

Figure 1. Image acquisition setup: R1&R2 D reservoirs with
zebrafish embryos, C1&C2 D cameras, perpendicular to each
other, GC D glass capillary in a dark chamber.

262 M. SCHUTERA ET AL.



wild-type histogram. The numerical value obtained in
this manner is further used as the feature for the pat-
tern recognition.14

Eyesegment
In Figure 3a, an example input image with cuvette
borders and a sagittal view of a zebrafish is shown.

The image is converted into a binary image by thresh-
olding and subsequently inverted (Fig. 3b). Remaining
small structures are filtered out by a morphological
opening – dilation after erosion with the same mask
size. Furthermore, segments with less than 3000 pixels
are removed (Fig. 3c). In the next step, a geometric
similarity measurement which uses the length of the
major and minor axis to ascertain the best fitting seg-
ment according to zebrafish eye geometry is applied.
To further minimize the influence of “eye” segment
misclassifications, the position of the “eye” segment
inside the “zebrafish” segment is taken into account.
Therefore, the distance between the center of the “eye”
segment and the center of the “zebrafish” segment is
determined (Fig. 3d). For images in which no “eye”
segment is found, mostly in the case of rx3-mutants,
the distance is set to zero. The distance generated in
this manner is further used as the feature for the pat-
tern recognition.

Pattern recognition
In the training of classifiers a fault-tolerant and non-
linear radial basis function support vector machine
with cross-validation was used. With a set of training
images, each referring to 1 of the phenotypes to be
classified, a SVM creates a decision rule that is able to
classify new images. This is done by generating a
hyper-plane that separates the 2 phenotype patterns
(i.e. wild-type and phenotype of interest). New images
are then classified based on which side of the hyper-
plane they fall on. Control variables to adjust the SVM
are “C”, the weighting parameter for the fault-toler-
ance and “s”, the RBF Kernel-parameter.15

Resulting classifiers
Figure 4 presents the generated classifiers. Each data
point represents a single acquisition. The acquisitions
are further colored according to their phenotype
membership. The nonlinear projection of the hyper-
plane is shown as black curve. On the x-axis the fea-
ture of the sagittal image is plotted. The transversal
feature is plotted on the y-axis, respectively. The PTU
classifier achieves a classification rate of 79 %. Misclas-
sifications are mostly due to shadows forming inside
the cuvette and different developmental stages in
terms of pigment formation and hence gray value
expression (Fig. 4a).

The kita-HRAS classifier achieves a classification
rate of 99%. This is due to the closely located data

Figure 2. Steps for feature extraction (pigmentation): (A) Input
image; (B) Binary image after edge detection and dilation; (C)
Binary image after filling; (D) Output segment for feature extrac-
tion after segment selection, smoothing and orientation.

Figure 3. Steps for feature extraction considering the eye seg-
ment: (A) An input image; (B) Inverted binary image through
thresholding; (C) Binary image after opening and selection; (D)
Output distance for feature extraction after geometric similarity
measurement and location condition of the eye segment.
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points of the kita-HRAS line. The reason for this can
be found in the increased amount of pigmentation
and hence decisively smaller gray values (Fig. 4b).

The rx3-mutant classifier achieves a classification
rate of 89%. The data clouds are well separated. Mis-
classifications mostly arise from inaccurately gener-
ated segments and resulting mistakes in distance
calculation (Fig. 4c).

Conclusions

A prototype platform has been introduced, with a 2-
camera-system, using which classifications of early
stage (72hpf) zebrafish phenotypes can be carried out
automatically. Classifiers that are able to assign images
of different zebrafish to 1 out of 2 phenotypes are pro-
posed. The classification always takes place between
the wild-type and another pigment or eye phenotype.
The algorithms and classifiers are brought together in
a GUI providing an interface for the mechanical sort-
ing machine, which is being developed. Future work
includes the application on larger datasets and differ-
ent phenotypes, dealing with the variation of features
used for discrimination, and further developments on
the sorting system regarding both software and
hardware.
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