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Abstract—Significant increases in computational resources
have enabled the development of more complex and spatially bet-
ter resolved weather and climate models. As a result the amount
of output generated by data assimilation systems and by weather
and climate simulations is rapidly increasing e.g. due to higher
spatial resolution, more realisations and higher frequency data.
However, while compute performance has increased significantly
because of better scaling program code and increasing number
of cores the storage capacity is only increasing slowly. One way
to tackle the data storage problem is data compression.

Here, we build the groundwork for an environmental data
compressor by improving compression for established weather
and climate indices like El Niño Southern Oscillation (ENSO),
North Atlantic Oscillation (NAO) and Quasi-Biennial Oscillation
(QBO). We investigate options for compressing these indices
by using a statistical method based on the Auto Regressive
Integrated Moving Average (ARIMA) model. The introduced
adaptive approach shows that it is possible to improve accuracy
of lossily compressed data by applying an adaptive compression
method which preserves selected data with higher precision. Our
analysis reveals no potential for lossless compression of these
indices. However, as the ARIMA model is able to capture all rel-
evant temporal variability, lossless compression is not necessary
and lossy compression is acceptable. The reconstruction based on
the lossily compressed data can reproduce the chosen indices to
such a high degree that statistically relevant information needed
for describing climate dynamics is preserved. The performance of
the (seasonal) ARIMA model was tested with daily and monthly
indices.

I. INTRODUCTION

Climate models simulate, contrary to weather prediction
models, decades of weather dynamics and climate influences
on a global scale.

The current European ReAnalysis (ERA5) dataset outputs
hourly data starting from 1979 to the present on a 1440
x 721 (about 31 km) horizontal and 137 level vertical (to
0.01 hPa = 80 km) grid 1. If we assume 16-Bit Integer values

1European Centre for Medium-Range Weather Forecasts (ECMWF)
Newsletter No. 147 – Spring 2016 (p.7)

for each variable this amounts to 2.26 TiB p.a. per variable2.
These high resolution climate models are only feasible

because of sophisticated and suitable dynamical cores of
the new models e.g. with solvers for fluid mechanics. The
introduction of non-hydrostatic model equations accompanied
by an increase of computational power lead to high resolution
models [1]. Unfortunately, the storage capacities did not in-
crease proportionally with the computational power and today
it’s common practice not to save the data on every timestamp
simulated.

One way to solve the data storage problem is to compress
the datasets by removing redundant information. Compression
reduces the space needed for storing and archiving of the
output data. Additionally compression enables the possibility
to run simulations with higher resolution, while consuming the
same storage.

Here we explore possibilities to improve compression of
predicative climate indices using a statistical method based
on the Auto Regressive Integrated Moving Average (ARIMA)
model [2] with the aim to generalise the knowledge later for
more generic data.

The ARIMA model helps identify interdependencies in the
dataset. We than take advantage of the interdependencies and
improve the correlation between the original and reconstructed
index while using negligible more storage.

The remainder of this paper is divided into five sections:
Related work is presented in Section 2. Section 3 describes our
approach and explains methods and metrics. Finally in Section
4 our results are presented and discussed. In the concluding
section we give a short summary and outlook for future work.

II. RELATED WORK

The ARIMA model is being used in environmental research
for forecasting individual weather observations [3]–[5]. These
studies focus on very narrow timesteps (e.g. hourly) and

2ERA5 supports circa 120 variables. While some of these variables are
simulated, others can be deduced from simulated variables. For reference
http://apps.ecmwf.int/codes/grib/param-db



concentrate on specific regional areas. Little attention is being
paid for relationships of longer time periods with a larger
spatial scope.

A hybrid model for forecasting water resources has been
developed by Banihabib et. al [6]. This model uses an ARIMA
model with exogenous inputs. After model generation the
output is fed to Neural Networks (NN) for the detection
of non-linear correlations. Several other studies looked at
ARIMA models in connection with NN [4], [7] to improve
forecasting of future observations. These studies show that
ARIMA models coupled with NN can improve the forecasting
ability of models. Since the focus of this paper is not on
forecasting possible future values, but finding a better repre-
sentation of given values, the results from the ARIMA model
were satisfactory.

Note that Guenni et. al [8] focuses on the ENSO33 index
being successfully used for the prediction of precipitation,
thus supporting our idea to investigate climate indices for
predicative purposes in compression.

The ARIMA model is also being used in other research
areas like economics [9], [10], telecommunications and multi-
media [11]–[13] and social studies [14], but so far few studies
have looked at ARIMA models in connection with compres-
sion. Zordan et. al [15] evaluate among others ARIMA models
in connection with lossy compression of energy-constrained
wireless sensor-networks. While overhead like memory and
calculation efficiency during compression is important for
energy-constrained sensor-network, for the application de-
scribed in this paper it is not relevant.

III. METHODS

We use two different approaches to obtain compressed
indices. Figure 1 illustrates both workflows. Our proposed
method using an ARIMA model is depicted as “ARIMA ap-
proach”. The second approach illustrates the usual process by
applying compression directly on the indices and is described
as “Direct approach”.

After calculating the indices we build an ARIMA model for
each index. The results from the ARIMA model will then be
compressed. After this step several data points will be chosen
by the replacement methods defined in Chapter III-E. These
data points will then be replaced by ones with higher precision.
These replacement methods use information about the model
and output the final compressed indices.

The following chapter describes the steps to create the
climate indices, the ARIMA model, the compression method
used, metrics and the replacement methods.

A. Indices calculation

The data used in this paper was obtained from a reanaly-
sis created by the ECHAM/MESSy4 Atmospheric Chemistry

3There are several ENSOx indices. The main difference is the spatial area
being used for calculation of the index. Although there are subtle differences
between each ENSO index, for the purpose of this paper these differences are
irrelevant.

4ECMWF Hamburg (ECHAM)/Modular Earth Submodel System (MESSy)
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Fig. 1: Flowchart of analysis.

TABLE I: Spatial borders and variables used for calculating
indices with temperature (T), pressure (p) and westerly wind
(u).

Index Variable Lat [N] Lon [E] Lev [hPa]

ENSO34 T -5 to 5 190 to 240 1000
QBOx u -5 to 5 0 to 360 indicated by x
NAO p Lisbon and Reykjavı́k 1000

(EMAC) [16] model. It consisted of a 128x64 (longitude,
latitude) grid with six vertical levels (from 1000 hPa to 10 hPa)
and spanned a time period from the beginning of 1979 till
the end of 2013 with 10 h time steps. The following variables
were available as single-precision floating-point values: ozone,
pressure, dry air temperature and westerly wind.

The following climate indices have been created for our
investigation: El Niño Southern Oscillation 3.4 (ENSO34),
North Atlantic Oscillation (NAO), Quasi-Biennial Oscillation
at 30 (QBO30) and 50 hPa (QBO50). These indices show
high significance in climate research [8], [17]–[19] and help
in numerical weather predictions and seasonal forecasting.
ENSO34 is being used in forecasting rainfall, NAO in fore-
casting seasonal temperature for Europe while QBO is being
used for predicting monsoon precipitation.

Each index was created with two temporal resolutions:
monthly and daily. For the calculation of ENSO34 and QBOx
a spatial subset of the data according to Table I was se-
lected. Next the zonal and meridional means were calculated.
The NAO index was calculated using the surface pressure
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Fig. 2: Histogram of each weather index with monthly reso-
lution. The indices are dimensionless.

difference between Lisbon and Reykjavı́k. Afterwards yearly
monthly mean and multi-year monthly mean for all indices
were calculated. The multi-year monthly mean was then
subtracted from the corresponding yearly monthly mean and
divided by the multi-year standard deviation for each month.
This concluded the process for the monthly indices. For the
daily indices these steps were repeated with respective daily
resolution.

This concluded the preprocessing of the data. A histogram
of each index is depicted in Figure 2 and a summary of their
characteristics are given in Table II.

B. Model

The Auto Regressive Integrated Moving Average (ARIMA)
model was first introduced by Box and Jenkins [2] and has
been extended several times [20]. The ARIMA model tries to
find interdependencies in the dataset. It uses the premise that

TABLE II: Information about the monthly indices.

ENSO34 NAO QBO30 QBO50

count 420 420 420 420
mean 0.000 0.000 0.000 0.000
std 0.936 0.822 0.997 0.995
min -2.208 -2.626 -1.876 -2.464
25% -0.656 -0.421 -1.011 -0.934
50% 0.001 -0.016 0.097 0.364
75% 0.693 0.397 0.999 0.869
max 2.273 3.097 1.472 1.383

skew 0.028 0.393 -0.161 -0.565
kurt -0.481 2.055 -1.474 -1.149

a datum in a time series is dependent on its previous values
and can be expressed by a function of its former values.

Because of seasonal dependence in weather dynamics we
used a seasonal ARIMA model [20] for monthly and the
original ARIMA model [2] for daily datasets.

The seasonal ARIMA model is being described by the
following notation:

ARIMA(p, d, q)x(P,D,Q)s

with (p, d, q) representing the non-seasonal auto-regressive (p),
difference (d) and moving-average (q) order and (P,D,Q) the
equivalent seasonal order with period length s.

The general equation for seasonal ARIMA is as following:

Φ(Bs)φ(B)(xt − µ) = Θ(Bs)θ(B)εt (1)

with xt representing the target value at time t, µ the expected
mean value of the data, εt the error term of the model,
Bk the backpropagation with Bkxt = xt−k and following
components:

Seasonal AR : Φ(Bs) = 1− Φ1B
s − · · · − ΦPB

P ·s

AR : φ(B) = 1− φ1B − · · · − φpBp

Seasonal MA : Θ(Bs) = 1 + Θ1B
s + · · ·+ ΘQB

Q·s

MA : θ(B) = 1 + θ1B + · · ·+ θqB
q

with i representing the timestep before the target value, Φ(Bs)
the seasonal auto-regressive (AR) parameter, φ(B) the AR
parameter, Φi the seasonal AR coefficients, φi the AR coeffi-
cients, Θ(Bs) the seasonal moving-average (MA) parameter,
θ(B) the MA parameter, Θi the seasonal MA coefficients and
θi the MA coefficients of the model.

For information about the data and choosing the range
of AR and MA parameters the (partial) Auto-Correlation
Function (ACF) defined as following was used:

ACF =

∑n
t=k+1(Yt − Y )(Yt−k − Y )∑n

t=1(Yt − Y )2
(2)

with k ∈ N representing the temporal lag, Yt time series
with start at time t and Y the mean value of the time series.
The coefficients Φi, φi, Θi and θi were optimised using the
Akaike’s Information Criterion (AIC) [21].



C. Compression

For compression we used the zfp compression method
introduced in [22]. It has already been applied successfully on
climate data [23] and supports lossy as well as lossless data
compression. We will use the following notation throughout
the paper: zfpPR. Here PR denotes the precision of the
applied compression. In case of single-precision floating-point
numbers (32 bits) a lossless compression would be denoted as
zfp32.

D. Metrics

For evaluating the forecasting models the Root Mean Square
Deviation (RMSD) was used. The reconstructed index from
the lossy compression was evaluated using the Pearson Cor-
relation coefficient [24]:

rs,e =

∑e
i=s(xi − x̄)(yi − ȳ)√∑e

i=s(xi − x̄)2
√∑e

i=s(yi − ȳ)2
(3)

with xi representing the original value, x original mean
value, yi the reconstructed value, y reconstructed mean value,
start (s) and end (e) indices of the observed time series. The
reason for choosing the Pearson correlation coefficient as a
metric was that most of the time the correlation between
the index and other weather phenomena is being analysed.
Therefore it is of utmost importance to reconstruct an index
correlated to the original index.

The compression rate was measured using the so called
bits per float (bpf) metric (Eq. 4). This metric represents the
average number of bits needed to save a floating-point number.

bpf =
Bitsize of file

Number of float values represented
(4)

Another metric being used was the compression ratio (cr):

cr =
Size of file after compression

Size of file before compression
(5)

A ratio closer to zero would suggest ideal compression and
close to one a bad compression.

The introduced ARIMA approach improves compression by
replacing several data points by ones with higher precision.
Those points are chosen by the replacement methods described
in the following chapter.

E. Replacement methods

Let xb = {xb1, xb2, . . . , xbn} be a lossily compressed time
series with b representing the bits preserved from the orig-
inal time series. A lossless compression for single-precision
floating-point numbers would be depicted as x32 while the
most lossy compression would be x1. Further, let k ∈ N be
the number of data points we are going to replace, let l ∈ N
be the number of additional precision bits we want to save and
blocksize bs = max{p, q} represent either the auto-regressive
or moving-average order of the ARIMA model. The parameter
bs helps identify the data contributing to the calculation of
a datum xbi . The updated time series will be represented by

x̂ = {x̂1, x̂2, . . . , x̂n}. Further on let sort(X) be the sorted
set of X , argsort(X) be the arguments of the sorted set of X
and S(t,X) the t previous values of each element of X:

sort(X) =

{
xi | xi ≤ xi+1 ∧ xi ∈ X

}
(6)

argsort(X ) =

{
arg xi | xi ≤ xi+1 ∧ xi ∈ X

}
(7)

S(t,X) =

{
x− j | j ≤ t ∧ j ∈ N ∧ x ∈ X

}
(8)

The algorithm differentiates between the following methods
to choose the data points being replaced:

1) First: The first k values will be replaced.

x̂i =

{
xb+l
i if i ≤ k
xbi else

(9)

2) Even: The k values being replaced are evenly distributed
over the whole time series. The time series is split in bl =⌊

k
bs

⌋
+1 evenly distributed blocks with size

⌊
n
bl

⌋
and midpoints

M =
{
j ·
⌊
n
bl

⌋
| j ∈ N ∧ j ≤ bs

}
x̂i =

{
xb+l
i if i ∈ [m−

⌊
bs
2

⌋
, . . . ,m+

⌊
bs
2

⌋
) with m ∈M

xbi else
(10)

3) Special: The cumulative correlation (Eq. 11) of the time
series will be calculated, the results sorted and those data
replaced, which contribute to the calculation of the data with
the lowest correlation.

C =

{
r1,j | j ∈ N ∧ j ≤ n

}
(11)

C ′ = argsort(C)

x̂i =

{
xb+l
i if arg i ≤ k with i ∈ S(bs, C ′)

xbi else
(12)

4) Rolling: The rolling correlation (Eq. 13) with window
size bs will be calculated, the results sorted and those data
replaced which contribute to the calculation of the data with
the lowest correlation.

R =

{
rj−bs,j | j ∈ N ∧ bs < j ≤ n

}
(13)

R′ = argsort(R)

x̂i =

{
xb+l
i if arg i ≤ k with i ∈ S(bs,R′)

xbi else
(14)

5) Cumcorr: The cumulative correlation of the time series
will be calculated (Eq. 11) and the datum identified which is
followed by the biggest consecutive drop in correlation. The
data responsible for the calculation of this datum will then be
replaced. Afterwards the process will be repeated until k data
points have been replaced.



TABLE III: Results of (seasonal) ARIMA model run for
monthly and daily data.

Index Model AIC RMSD

Monthly
ENSO34 ARIMA(3, 0, 2)(1, 0, 0)12 290.164 5.067e−8
NAO ARIMA(1, 0, 0)(1, 0, 0)12 1020.352 8.195e−9
QBO30 ARIMA(2, 0, 3)(1, 0, 0)12 -456.730 1.0877e−7
QBO50 ARIMA(1, 1, 1)(1, 0, 1)12 -164.427 2.909e−6

Daily
ENSO34 ARIMA(5, 2, 4)(0, 0, 0)0 -10245.442 4.686e−4
NAO ARIMA(2, 0, 2)(0, 0, 0)0 31267.670 1.440e−7
QBO30 ARIMA(5, 0, 4)(0, 0, 0)0 -54091.415 1.084e−7
QBO50 ARIMA(5, 0, 4)(0, 0, 0)0 -52112.790 4.488e−8

C =

{
r1,j | j ∈ N ∧ j ≤ n

}
(15)

C ′ =


ci if ci+1 ≥ 0
b∑

j=0

ci+j else with ci+j < 0 ∧ b ∈ N
(16)

C ′′ = argsort(C ′)

x̂i =

{
xb+l
i if arg i ≤ k with i ∈ S(bs, C ′′)

xbi else
(17)

F. Experiments

Several tests were carried out to investigate possible com-
pression methods. First we focused on lossless compression.
Since the datasets were single-precision floating-point num-
bers we used zfp32 for compression.

Further we analysed a lossy compression with the goal
to achieve a deviation as small as possible for a given
error bound. For this experiment we choose the error bound
τ = 1e−5 so that r1,n ≥ 1.0 − τ with r1,n representing the
Pearson Correlation coefficient (details in following section).

A third experiment was conducted to see what effect a
gradual decline in precision from zfp32 to zfp01 has on the
correlation coefficient and if replacing several data points with
a higher precision would improve the correlation coefficient.
These indices with updated data will be described by the
following notation: zfpPR+l with l representing the number
of additional precision bits. The notation zfp06+02 depicts
a lossy compression method with six precision bits where
several data points have additional two bits of precision. For
the following experiments we replaced five and ten percent of
the data with l ∈ {1, 2, 3}.

In the following chapter we will evaluate and discuss our
findings and applied methods.

IV. EVALUATION

A. Model

The (seasonal) ARIMA model can reconstruct all indices
with good accuracy. The RMSD of the reconstructed index
for monthly data is better than the one for the daily dataset.
The ARIMA models with differentiation step, QBO50 for

TABLE IV: Results of the DF-Test for stationariness.

ENSO34 NAO QBO30 QBO50

DFT Test Statistic -5.341 -17.571 -7.447 -9.257
Critical Value (1%) -3.446 -3.446 -3.447 -3.447
Critical Value (5%) -2.869 -2.868 -2.869 -2.869
Critical Value (10%) -2.571 -2.570 -2.571 -2.571

TABLE V: Results for lossless compression of daily (dm) and
monthly (mm) datasets for the residuals of the ARIMA model
and directly on the dataset. Header files are excluded.

ARIMA Direct ARIMA Direct
Index mm mm dm dm

ENSO34 33.371 32.762 33.072 32.300
NAO 33.371 33.067 33.071 32.821
QBO30 33.219 32.152 33.031 30.753
QBO50 33.451 32.457 33.051 31.009

monthly data and ENSO34 for daily data, perform worst in
their respective group. Detailed results are described in Table
III.

The Pearson correlation coefficient r1,n for all indices is
1.0±2e−12. Figure 3 illustrates the ARIMA model for NAO
and QBO30. It can be seen, that the reconstructed index
defined by the ARIMA model represents the original index
very well.

Since ARIMA models can only be applied to stationary data
we conducted the Dickey-Fuller-Test (DF-Test) [25] to test
for stationariness. All indices are stationary with a confidence
level of 99 %. The results of the DF-Test are represented in
Table IV.

B. Compression

In this section we will compare the ARIMA approach
without replacements with the direct approach. This first
comparison builds the groundwork for further comparisons.
Afterwards in section IV-C we will compare the results of the
replacement methods with the original ARIMA results and the
direct approach.

1) Lossless: Our results show that lossless compression of
the ARIMA output is resulting into bigger files than without
compression. A lossless compression applied directly on the
indices returns similar results. The only exception being the
QBO30 and QBO50 indices with a daily resolution. The
filesize of the QBO30 and QBO50 daily dataset is slightly
decreasing by four percent for QBO30 and three percent for
QBO50. Detailed results are presented in Table V.

2) Strict lossy compression: A lossy compression with τ =
1e−5 achieves in most cases a compression ratio of ∼.4. The
ARIMA approach (monthly and daily) achieved an average
compression ratio of 0.381. The only exceptions were QBO50
(monthly) and ENSO34 (daily) which were only compressed
with a ratio of 0.663 until the boundary condition τ was met.
Detailed results are presented in Table VI.

This deviation is due to the differentiation step during
model building. This additional calculation step increases error
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Fig. 3: This Figure illustrates the NAO (top) and QBO30 (bottom) indices and their respective reconstruction via the ARIMA
model. Error bars have been omitted for plotting purposes.

TABLE VI: Ratios for lossy compression of daily (dm) and
monthly (mm) datasets with τ = 1e−5 as error threshold.
Header files are excluded.

ARIMA Direct ARIMA Direct
Index mm mm dm dm

ENSO34 0.386 0.371 0.658 0.322
NAO 0.386 0.386 0.377 0.370
QBO30 0.381 0.357 0.376 0.273
QBO50 0.668 0.362 0.377 0.281

propagation and results in additional precision bits needed to
meet the threshold τ .

It is no surprise that the direct approach has improved the
cr of these two indices. The compression ratio of QBO50
(monthly) went down from 0.668 to 0.362 and ENSO34
(daily) from 0.658 to 0.322. While applying lossy compression
directly on the monthly indices did not improve the NAO
index, the compression ratio for QBO30 and ENSO34 slightly
improved by three respectively one percent.

The daily datasets show better results on average (from 0.37
to 0.30). Only the NAO (daily) index did not show such a
decrease in compression ratio and gained no percentage points.

3) Lossy compression with gradual decline: The third and
last experiment was conducted to analyse the effects of a
more and more aggressive lossy compression on the Pearson
correlation coefficient (Eq. 3). The precision level of the lossy
compression algorithm was gradually reduced from zfp32 to
zfp01.

Applying lossy compression on daily and monthly data

directly showed that the NAO index was performing worst
regarding both metrics r1,n and cr. The results of the ARIMA
approach was similar to the strict lossy compression (described
in IV-B2). The indices NAO (monthly) and ENSO34 (daily)
performed worst in every step regarding cr. It looks like the
difference step of the ARIMA models (Table III) has a big
effect on the correlation levels.

The results we gathered until now suggests that additional
calculation steps needed for generating the ARIMA model
has a negative effect on the compressed indices. This effect
was expected because of the interdependence and hence error
propagation in the ARIMA model. The accuracy of each datum
depends on all calculations done until that point. The later
the datum is in the time series, the greater is the effect of
calculation errors. This effect is even more significant if an
ARIMA model with a differentiation step is being used. This
can be seen in the cr of QBO50 in the monthly dataset and
ENSO34 in the daily dataset (see Table VI). Otherwise, the
ARIMA approach (without replacement) is causing a 1-3 %
loss in storage space for the monthly indices and ten percent
for the daily indices.

Most interesting are the results for the NAO index. While
the other indices show similar behaviour in gain and loss
of cr with both approaches, the NAO index does not. The
direct and ARIMA approach have no effect on the cr of
the monthly indices and only negligible effect on the daily
indices with 0.007 difference in compression ratio. A closer
look at the index (Tab II and Fig. 2) reveals properties
which may be reasons for the difficulties in compression.
The standard deviation of the NAO index is the lowest with



0.822 and the first and third quartile are the closest to the
mean with -0.421 and 0.397. Additionally the NAO index has
several outliers. The minimum and maximum have the highest
absolute distance to mean of all indices. This properties are
supported by the unbiased skewness and kurtosis of the NAO
index given in Table II. The NAO index is heavy tailed with
a slight asymmetry on the right tail.

This behaviour can also be observed in the replacement
methods. The ENSO34, QBO50 and QBO30 indices behave
similar to each other. For reasons of brevity and because of
these similarities only the replacement results for NAO and
QBO30 will be presented in the next chapter.

C. Replacement methods

The results of the former chapter show that cr and r1,n for
lossy compression with the ARIMA approach is worse than
the direct approach. This is due to the interdependence of the
data. In the ARIMA model a single datum xbi is dependent on
previous data. If one or several of these data points deviate
too far from its original datum, then it will negatively effect
the calculation of the dependent data. The consequence of this
is error propagation.

But there is the possibility to use this interdependence to
our advantage. We can identify those data points which have
a negative impact on the reconstruction of the index. These
can then be replaced by ones with higher precision. In the
following we will first compare the indices reconstructed by
the different replacement methods with the original ARIMA
output and afterwards with the directly compressed indices.

1) Replacement of 5% and 10% of data: Several tests were
carried out to see how many data points needed to be replaced
to see an effect on the correlation coefficient r1,n. Table VII
illustrates this effect for the monthly indices.

Most of the time the gain in correlation by replacing ten
instead of five percent of the data is small. There were two
exceptions to this: The increase in correlation from 0.468 to
0.624 with zfp02+01 on the NAO index and an increase from
0.691 to 0.935 with zfp04+01 on the QBO30. It should be
pointed out that the correlation value of 0.935 with zfp04+01
is almost as good as using zfp05 for the whole index which
has a correlation coefficient of 0.972.

A more striking and disappointing finding was that replac-
ing data with higher precision did not always increase the
correlation coefficient. The NAO index showed no decline,
but the correlation coefficient of QBO30 dropped in several
cases. While most of the time the drops where < .01, the
most significant drop was from 0.139 to 0.027 with zfp02+01.
Further research is needed to analyse why these drops occurred
in the lowest precision level. Figure 4 shows the correlation
coefficient of each replacement method from zfp02+01 to
zfp06+03.

In the next section the replacement methods will be com-
pared with each other.

2) Replacement methods: Figure 5 illustrates the correla-
tion coefficient r1,t at month t for zfp06+03 and ten percent
replacement. The NAO index is best represented by the special

TABLE VII: Pearson correlation coefficient by replacing five
and ten percent of the monthly indices. The replacement
method being used is “Special” (see section III-E3 for details).

zfp02 zfp03 zfp04 zfp05 zfp06

NAO (5%)
l = 0 0.354 0.725 0.924 0.979 0.994
l = 1 0.468 0.825 0.950 0.983 0.996
l = 2 0.506 0.826 0.952 0.984 0.996
l = 3 0.519 0.831 0.953 0.984 0.996

NAO (10%)
l = 0 0.354 0.725 0.924 0.979 0.994
l = 1 0.624 0.864 0.959 0.987 0.997
l = 2 0.692 0.870 0.964 0.989 0.997
l = 3 0.705 0.878 0.965 0.989 0.997

QBO30 (5%)
l = 0 0.139 0.482 0.635 0.972 0.986
l = 1 0.027 0.566 0.691 0.967 0.996
l = 2 0.039 0.591 0.692 0.973 0.993
l = 3 0.042 0.596 0.677 0.985 0.995

QBO30 (10%)
l = 0 0.139 0.482 0.635 0.972 0.986
l = 1 0.050 0.575 0.935 0.968 0.996
l = 2 0.082 0.615 0.940 0.973 0.993
l = 3 0.084 0.607 0.944 0.987 0.996

method described in III-E3. The reason for this seems to be
twofold.

First, the special method decides which datum to replace
depending on the lowest correlation coefficient. The correla-
tion coefficients at each timestep are being sorted and those
data replaced, which contribute to the calculation of the lowest
correlation coefficient. With this property the special method
can compensate for sudden changes in the index. Especially
the first drop at the beginning of the NAO index and at t = 50
is not having as big of an impact on the correlation coefficient
with the replacements defined by the special method. The
closeup on the right of Figure 5 illustrates this well.

Second, the model being used for the NAO index is
ARIMA(1, 0, 0)(1, 0, 0)12. Every single datum is only de-
pending on its immediate predecessor and the one from last
year. A single datum is only depending on two previous values.
This small dependence helps correcting more data points and
error propagation has not as much of an impact.

The ARIMA approach improves the reconstruction of the
NAO index. The reconstruction has on each time step t a better
correlation coefficient r1,t than the direct approach with using
only negligible more storage (see Table IX).

For the QBO30 index the rolling method described in III-E4
has the highest correlation coefficient (see Figure 5). The
rolling method calculates the rolling correlation coefficient
with window size bs = max{p, q} where p describes the auto-
regressive and q the moving-average of the ARIMA model.
The coefficients will then be sorted and those data replaced
which contribute to the calculation of the data with the lowest
correlation.

Unfortunately, in the case of the QBO30 index the ARIMA
approach is not consistently better. In the beginning of the
time series with t < 50 it performs significantly better. The
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Fig. 4: Pearson correlation coefficient based on replacement method for ten percent replacement. Left: Replacement methods
from zfp02+01 to zfp06+03. Right: A zoom on the replacement methods with r1,n > .97.

direct approach drops to 0.991 while the ARIMA approach
stays constantly above 0.999. After this both methods behave
similar.

For the daily indices the results are different. The increased
number of calculation steps and error propagation has a
more severe impact. While the correlation coefficient for the
direct approach is at 0.999 for the QBO30 and 0.997 for the
NAO index, the best ARIMA approach can achieve 0.994 for
QBO30 and 0.996 for the NAO index. Table VIII show the
results for zfp06+03 on daily and monthly data.

3) Effects on storage space: Until now we analysed the
impact of the replacement methods on the Pearson correlation
coefficient (see Eq. 3). The additional precision bits used
by the replacement methods have a negative impact on the
compression ratio. The cr after using the replacement methods
is depicted in Table IX where l is the number of additional
precision bits.

The introduced replacement methods were conceptualised
to use only a certain amount of additional storage space. They
were designed to use only l additional precision bits for k data
points of the indices (see Section III-E for details).

TABLE VIII: Correlation coefficient for zfp06+03 for daily
and monthly data.

NAO QBO30 NAO QBO30
monthly monthly daily daily

CUMCORR 0.99469 0.99726 0.99598 0.98400
EVENLY 0.99500 0.98690 0.99611 0.98814
FIRST 0.99478 0.99755 0.99600 0.99404
ROLL 0.99428 0.99779 0.99608 0.99409
SPECIAL 0.99686 0.99575 0.99598 0.98899

ARIMA 0.99428 0.98633 0.99583 0.98825
Direct 0.99476 0.99774 0.99669 0.99938

This design decision allowed an upper limit on how much
additional storage space was being used by the method.
This precaution reflects in Table IX. In the worst case we
need one percent more storage space. This occurred when
using zfp06+03 and replacing ten percent of the data. The
compression ratio increased from 0.200 to 0.210.
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of the data. The left part depicts the whole index, while the right part only the first 70 months. For illustration purposes the
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The right figure illustrates all replacement methods.

TABLE IX: Compression ratio cr for NAO and QBO30 index
after invocation of the ARIMA approach and replacing ten
percent of the data. Header files are excluded.

zfp02 zfp03 zfp04 zfp05 zfp06

NAO (daily)
l = 0 0.094 0.120 0.150 0.182 0.213
l = 1 0.097 0.123 0.153 0.185 0.217
l = 2 0.100 0.126 0.156 0.188 0.220
l = 3 0.104 0.129 0.159 0.191 0.223

NAO (monthly)
l = 0 0.100 0.133 0.167 0.200 0.229
l = 1 0.103 0.137 0.170 0.203 0.232
l = 2 0.106 0.140 0.173 0.206 0.235
l = 3 0.110 0.143 0.176 0.209 0.238

QBO30 (daily)
l = 0 0.099 0.117 0.134 0.151 0.169
l = 1 0.103 0.121 0.137 0.154 0.172
l = 2 0.106 0.124 0.140 0.157 0.176
l = 3 0.109 0.127 0.143 0.160 0.179

QBO30 (monthly)
l = 0 0.105 0.124 0.148 0.171 0.200
l = 1 0.108 0.127 0.151 0.174 0.203
l = 2 0.111 0.130 0.154 0.178 0.206
l = 3 0.114 0.133 0.157 0.180 0.210

V. SUMMARY AND OUTLOOK

We investigate the efficiency of compression algorithms
for environmental data. We have developed a test framework
for the compression of climate indices based on a statistical

method known as the Auto Regressive Integrated Moving
Average (ARIMA) model. The indices examined are the El
Niño Southern Oscillation (ENSO), North Atlantic Oscillation
(NAO) and Quasi-Biennial Oscillation (QBO). Each index de-
scribes a different aspect of large-scale atmospheric dynamics
and shows different variance.

To improve the lossily compressed indices we have intro-
duced an adaptive approach. This approach shows that it is
possible to improve accuracy of the reconstructed data by
replacing several data points with slightly higher precision.
The improved reconstruction based on lossy compressed data
can reproduce the chosen indices to such a high degree that
statistically relevant information needed for describing climate
dynamics is preserved. The compressed indices have the same
diagnostic performance than the original indices.

The study showed that ARIMA models using a differenti-
ation step have difficulties and performed worse than other
models. Our findings indicate that time series which can
be expressed with small auto-regressive and moving-average
order can be improved significantly.

Further analysis will focus on the aspect why certain time
series like the QBO30 do not show the same improvement in
reconstruction like the NAO index.

The same way ENSO indices are used to predict and diag-
nose climate dynamics ( [8], [26]), these reconstructed indices
will be used to improve the compression of environmental
data.



CODE AND DATA AVAILABILITY

The data of the environmental indices and an implemen-
tation of the replacement methods described above will be
made available under GNU GPLv3 license at https://github.
com/ucyo/adaptive-lossy-compression.
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P. Hoor, A. Kerkweg, M. G. Lawrence, R. Sander, B. Steil,
G. Stiller, M. Tanarhte, D. Taraborrelli, J. van Aardenne, and
J. Lelieveld, “The atmospheric chemistry general circulation model
ECHAM5/MESSy1: consistent simulation of ozone from the surface to
the mesosphere,” Atmospheric Chemistry and Physics, vol. 6, no. 12,
pp. 5067–5104, 2006. [Online]. Available: http://www.atmos-chem-
phys.net/6/5067/2006/

[17] P. J. Nowack, P. Braesicke, N. Luke Abraham, and J. A. Pyle, “On the
role of ozone feedback in the ENSO amplitude response under global
warming,” Geophysical Research Letters, 2017.

[18] J. W. Hurrell and H. Van Loon, “Decadal variations in climate associated
with the North Atlantic Oscillation,” in Climatic change at high elevation
sites. Springer, 1997, pp. 69–94.

[19] M. M. Hurwitz, P. Braesicke, and J. A. Pyle, “Sensitivity of the mid-
winter Arctic stratosphere to QBO width in a simplified chemistry–
climate model,” Atmospheric Science Letters, vol. 12, no. 3, pp. 268–
272, 2011.

[20] J. D. Cryer and K.-S. Chan, Time Series Analysis, ser. Springer Texts
in Statistics. New York, NY: Springer New York, 2008, no. January.

[21] H. Akaike, “A New Look at the Statistical Model Identification,” IEEE
Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[22] P. Lindstrom, “Fixed-Rate Compressed Floating-Point Arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20,
no. 12, pp. 2674–2683, dec 2014. [Online]. Available: http:
//ieeexplore.ieee.org/document/6876024/

[23] A. H. Baker, D. M. Hammerling, S. A. Mickleson, H. Xu, M. B.
Stolpe, P. Naveau, B. Sanderson, I. Ebert-Uphoff, S. Samarasinghe,
F. De Simone, F. Carbone, C. N. Gencarelli, J. M. Dennis, J. E.
Kay, and P. Lindstrom, “Evaluating Lossy Data Compression on
Climate Simulation Data within a Large Ensemble,” Geoscientific
Model Development Discussions, no. July, pp. 1–38, jul 2016. [Online].
Available: http://www.geosci-model-dev-discuss.net/gmd-2016-146/

[24] K. Pearson, “Mathematical Contributions to the Theory of Evolution.
III. Regression, Heredity, and Panmixia,” Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, vol. 187, pp. 253–318, 1896.
[Online]. Available: http://www.jstor.org/stable/90707

[25] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for
autoregressive time series with a unit root,” Journal of the American
statistical association, vol. 74, no. 366a, pp. 427–431, 1979.

[26] P. Braesicke, O. Morgenstern, and J. Pyle, “Might dimming the
sun change atmospheric ENSO teleconnections as we know them?”
Atmospheric Science Letters, vol. 12, no. 2, pp. 184–188, 2011.
[Online]. Available: http://dx.doi.org/10.1002/asl.294

https://github.com/ucyo/adaptive-lossy-compression
https://github.com/ucyo/adaptive-lossy-compression
http://doi.wiley.com/10.1002/qj.2378
http://linkinghub.elsevier.com/retrieve/pii/S002216941200981X
http://ieeexplore.ieee.org/document/5069932/
http://ieeexplore.ieee.org/document/5069932/
http://linkinghub.elsevier.com/retrieve/pii/S2214242816300584
http://linkinghub.elsevier.com/retrieve/pii/S0925231201007020
http://linkinghub.elsevier.com/retrieve/pii/S0925231201007020
http://dx.doi.org/10.1007/s00704-016-1828-4
http://ieeexplore.ieee.org/document/4666600/
http://www.atmos-chem-phys.net/6/5067/2006/
http://www.atmos-chem-phys.net/6/5067/2006/
http://ieeexplore.ieee.org/document/6876024/
http://ieeexplore.ieee.org/document/6876024/
http://www.geosci-model-dev-discuss.net/gmd-2016-146/
http://www.jstor.org/stable/90707
http://dx.doi.org/10.1002/asl.294

