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Abstract

Contact between complex bodies and simple counterparts like straight lines or circles occur in many two-dimensional
mechanical models. The corresponding contact detection problems are complicated and thus far, no explicit formulas
have been available. In this paper, we address the contact detection problem between two planar bodies: one being
either a straight line or a circle and the other an almost arbitrary geometry — the only requirement is a unique contact
point for all possible contact situations. To solve this general problem, a novel procedure is applied which provides
necessary conditions for the description of the geometry based on the special case of a rolling contact. This results
in a parameterization of the geometry which gives the potential contact point depending on the relative orientation
between the two bodies. Although the derivation is based on a rolling contact, the result is valid in general and can
also be used for efficient contact detection when the bodies are separated. The derived equations are simple and easy
to implement, which is demonstrated for two examples: a foot-ground contact model and a cam-follower mechanism.

Keywords: Contact detection, Contact kinematics, Two-dimensional contact, Analytical solution, Cam-follower
mechanism, Foot-ground contact

1. Introduction

Contact problems occur frequently in many mechanical models. However, there are almost no explicit analytical
solutions to calculate (potential) contact points directly except for combinations of simple geometric primitives, e.g.
point-plane, point-sphere, sphere-sphere, plane-sphere, plane-ellipsoid and plane-superellipsoid [1, 2]. An analytical
solution for the contact between two hard ellipses was published as late as 2007 [3] while the three-dimensional contact
between two ellipsoids is yet to be solved analytically. Therefore, solutions of the contact detection problem usually
rely on numerical methods [4] even if the counterparts are ellipsoids [5], superellipsoids [1], or more general quadric
and superquadric surfaces [6] and even superovoids [7]. Due to the iterative nature of the numerical approaches
they are computationally more expensive and time consuming than explicit solutions. Furthermore, the dynamics of
such systems cannot be formulated in a set of minimal coordinates because the implicit constraint equations cannot
be eliminated. The result is a set of differential algebraic equations for the system dynamics instead of an ordinary
differential equation, which requires an appropriate technique for the numerical solution [8]. It is also very difficult,
if not impossible, to investigate these models analytically.

The basic definition of the potential contact point on two lines or surfaces follows from the normal vectors, also
known as common normal concept. If both counterparts are regular, which means the curvature is well-defined
and non-singular, the normal vectors in both potential contact points are anti-parallel. Numerical methods in literature
predominantly use one of the following three approaches: one approach is to calculate these points iteratively [1, 6, 9].
Another approach is to distribute a finite number of points on every surface and solve the combinatorial problem
of which points are the closest ones [4, 10]. The gaps between the points are interpolated to detect contacts and
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Figure 1: (a) Rolling contact of rigid foot model on flat ground, (b) sliding contact of camshaft and bucket tappet, and (c) rolling/sliding contact of
camshaft and roller tappet

penetration. A different approach can be used if one of the contacting bodies has a simple geometry. For instance in
cam-follower mechanisms, the counterpart of the cam is often a circle. The constant radius of the circle means that
its center is equidistant from the cam. Thus, this special contact problem can be solved by calculating an equidistant
curve, which is possible for parameterizations via pythagorean-hodograph curves [11].

There is a variety of contact problems where only one of the involved bodies has a complex shape and the coun-
terpart is a plane or cylinder – a straight line or circle when projected onto two dimensions. Some examples are
the foot-ground interaction model in Fig. 1a with applications in biomechanics and kinesiology, the sliding contact
between a cam and a bucket tappet in Fig. 1b, and the rolling contact between a cam and a roller tappet in Fig. 1c.
The latter two examples are models for cam-follower mechanisms which are frequently used to control the valves in
internal combustion engines.

In this paper, explicit solutions for the two-dimensional contact detection problem between a body with complex
shape and a straight line or a circle are derived which require only uniqueness of the (potential) contact point and
piecewise differentiability of the body’s boundary. In the case of a circular counterpart, uniqueness of the contact
point means that the geometry of the body under consideration does not have to be strictly convex (or strictly concave).
Rather, the body’s boundary may consist of convex and concave sections, as long as the assumption of the uniqueness
of the contact point is not violated. A shape whose boundary consists mainly of convex (concave) sections and which
meets this condition is hereinafter referred to as almost convex (almost concave), whereby strictly convex (strictly
concave) shapes are also included in this definition.

The paper is organized as follows. The contact between a circular wheel and a straight line is reviewed in Sect. 2.
This highlights the advantage of an explicit analytical solution of the contact kinematics for the special case of rolling
constraints and its consequences for the formulation of the system’s dynamics. The consideration of rolling constraints
introduces necessary conditions for the position of the contact point. This approach is first motivated with the contact
between an ellipse and a straight line in Sect. 3. It is then generalized further for contacts between arbitrary convex
shapes and a straight line in Sect. 4 and finally for almost convex and almost concave shapes and a circle in Sect. 5.
The resulting contact detection approach is applied to two examples in Sect. 6. A generic model of a rolling foot is
treated in Sect. 6.1, and the contact of camshaft and roller tappet in Sect. 6.2. Finally, the described approach for
explicit solutions of planar contact detection problems with straight or circular counterparts is briefly summarized and
a proposition for future work is given in Sect. 7.

2. Contact between a circular wheel and a straight line

The circular wheel rolling on flat ground in Fig. 2a is a textbook example for a constrained rigid body motion which
can be described by minimal coordinates. This problem is often discussed in introductory lectures on mechanics due
to its simplicity. The aim is to derive the equation of motion using the angle as coordinate. However, since the
problem is so simple, conceptually important steps in the solution are often not written out explicitly because they
are trivial in case of the circular wheel. Therefore, it is difficult to apply this procedure to other geometries where the
calculation of the contact point in particular is considerably more complicated. Before the general contact between a
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Figure 2: Contact between a straight line and (a) a circular wheel, and (b) an ellipse

complex geometry and a straight line is addressed in the following sections, two different perspectives on this problem
are discussed using this simple example: the geometrical perspective in which the contact point is derived from the
common normal concept, and the mechanical perspective in which the contact point is the wheel’s instantaneous
center of rotation due to the rolling constraints. Usually these two steps — determination of the contact point with
the common normal concept and introduction of constraints at the contact point in order to restrict the movement —
are executed in this order. Before we use the example of a rolling ellipse in the next section to demonstrate that this
sequence is not absolutely necessary and that the mechanical approach provides useful geometric relationships, the
standard procedure is discussed using the rolling wheel.

The three generalized coordinates of the unconstrained body must satisfy two (holonomic) constraint equations
which can be formulated explicitly, thus allowing for a reduction to one minimal coordinate. Without loss of generality
let the straight line be fixed in the inertial frame I with the origin O somewhere on the line. The tangential and normal
vectors of the line are ix and iz, respectively. A body-fixed reference frame B with by = iy is attached to the wheel
with center M and radius R. The position and orientation of the unconstrained wheel in the {ix, iz}–plane is described
by the three generalized coordinates q = [xM(t), zM(t), α(t)]T . For the sake of clarity, the explicit time dependency of
all variables is dropped below. The position of the wheel’s center is

rM = xM ix + zM iz (1)

and its angular velocity ω = α̇ iy (time derivatives are denoted by a dot) is positive in clockwise direction. The outer
normal vector of any point given by the angle φ on the wheel’s boundary is nb(φ) = sin(φ+α) ix + cos(φ+α) iz. There
is one point C on the wheel’s boundary where the normal vector nb(φC) is anti-parallel to the normal vector nl = iz of
the line. C is the potential contact point1 which is defined by the implicit equation

nb(φC) · nl = −1 (2)

which yields

cos(φC + α) = −1 ,
φC = π − α (3)

1The potential contact point is defined as the point on the boundary which is in contact with the body’s counterpart when there is no gap. If the
counterpart is a straight line it is also the point which is the closest to the line when there is a gap. However, this is not the case if the counterpart’s
curvature is non-zero, cf. Sect. 5.
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for the circle. Therefore, the position of C is

rMC = R sin(φC + α) ix + R cos(φC + α) iz
= −R iz , (4a)

rC = rM + rMC

= xM ix + (zM − R) iz (4b)

and its velocity is

ṙC = vC = vM + ω × rMC

= (ẋM − Rα̇) ix + żM iz . (4c)

Contact of the wheel and the line arises from the normal constraint

rC · iz = zM − R = 0
⇒ zM(t) = R , żM(t) = 0 , z̈M(t) = 0 (5)

and rolling from the tangential constraint

vC · ix = ẋM − Rα̇ = 0 . (6)

This holonomic constraint can be integrated yielding

xM(t) = Rα(t) + xM,0 (7)

with the constant xM,0. The constrained problem can thus be expressed by one minimal coordinate, e.g. α(t) or xM(t).
It is important to recall that this is only possible because there is an explicit solution for Eq. (2) which defines

the contact point on the wheel’s boundary and on the line. If the rolling condition holds, the velocity vC = 0 and the
contact point C is the wheel’s instantaneous center of rotation. The explicit solution Eq. (4a) for the kinematics of
point C is also useful if the interaction between the wheel and the line is assumed to be elastic and the interaction
is defined by a different contact force law2 like a normal stiffness from the Hertz model [13] and any friction law in
tangential direction [4, 9].

Explicit solutions of Eq. (2) exist only for the contact between special shapes, cf. Sect. 1. In general, Eq. (2) has
to be solved numerically. However, the considerations above show that the specification of Eqs. (4a) and (5) – the
position of the potential contact point relative to the wheel’s center – gives a complete parameterization of the circular
boundary and allows for the explicit solution of the constraint equations. The parameterization of the potential contact
point for a certain counterpart is not restricted to the circular wheel but applicable to many shapes. As first step in the
generalization of this concept, the contact between an ellipse and a straight line is treated in the next section.

3. Contact between an ellipse and a straight line

The contact between an ellipse and a straight line which is displayed in Fig. 2b is similar to the example of
the rolling circular wheel but with a non-constant distance between the center and the boundary. Without loss of
generality let again the straight line be fixed in the inertial frame I with the origin O somewhere on the line. The
tangential and normal vectors of the line are ix and iz, respectively. A body-fixed reference frame B with by = iy
is attached to the ellipse’s center M such that the semiaxes a and b are in the directions bx and bz, respectively.

2A widespread approach in multibody simulations is to weaken the assumption of rigidity and allow for small penetrations of two contacting
bodies. The perceived penetrations result in deformations of both bodies in a small neighborhood of C which are then described via half space
models, assuming the contact area is much smaller than the bodies’ dimensions. The contact forces at C follow from the integration of the respective
pressure over the contact area and act like nonlinear spring-damper-elements, cf. [12].
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The position and orientation of the unconstrained ellipse in the {ix, iz}–plane is described by the three generalized
coordinates q = [xM(t), zM(t), α(t)]T . A calculation of the potential contact point

rMC = xMC ix + zMC iz (8)

analogously to Eqs. (1) – (3) yields

zMC(α) = −

√
b2 cos2(α) + a2 sin2(α) , (9)

which only depends on the ellipse’s orientation relative to the straight line. For the special case R = a = b this is equal
to Eq. (4) for the circular wheel.

The distance xMC can either be obtained by geometrical considerations which make use of relationships which are
unique for the ellipse, or from the observation in the previous example, that the contact point becomes the instanta-
neous center of rotation if the normal and tangential constraints for rolling are imposed. The position and velocity of
C are

rC = rM + rMC

= (xM + xMC) ix +

(
zM −

√
b2 cos2(α) + a2 sin2(α)

)
iz , (10a)

vC = vM + ω × rMC

=

(
ẋM − α̇

√
b2 cos2(α) + a2 sin2(α)

)
ix + (żM − xMCα̇) iz (10b)

and the rolling constraints yield

zM =

√
b2 cos2(α) + a2 sin2(α) , (11a)

żM = xMC(α)α̇ . (11b)

The last equation can be simplified using chain rule

żM = z′M(α)α̇ = xMC(α)α̇ (12)

(derivatives with respect to a function’s argument are denoted by prime) which yields the relationship

xMC(α) = z′M(α) =

(
a2 − b2

)
sin(2α)

2
√

b2 cos2(α) + a2 sin2(α)
. (13)

Therefore, Eq. (9) gives a complete parameterization of the ellipse because xMC follows directly from Eq. (13).
However, this relationship is not limited to circles and ellipses. The considerations above can be generalized to
arbitrary shapes as long as the contact point is unique for all angles α. The special case of rolling is used to derive
consistency conditions for the position of the potential contact point on the bodies boundary. A generalization for the
contact detection problem between arbitrary convex bodies and straight lines is given in the next section.

4. Contact between a convex body and a straight line

The contact problem of an arbitrary convex body with a straight line is depicted in Fig. 3a. Example models of
applications with this kind of contact are the foot model on flat ground in Fig. 1a and the cam-follower mechanism in
Fig. 1b.

Let the line again be fixed in the inertial frame I with the origin O somewhere on the line. The tangential and
normal vectors of the line are ix and iz, respectively. A body-fixed reference frame B with by = iy is attached to
the convex body at some point P. The body’s three degrees of freedom are described by the generalized coordinates
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Figure 3: (a) Contact between a convex body and a straight line (observed in the inertial frame I), and (b) parameterization of its boundary in polar
coordinates (observed in the body-fixed frame B)

q = [xP(t), zP(t), α(t)]T . As observed in the previous example and the depiction in Fig. 3a, the position of the potential
contact point C relative to P depends only on the orientation α. Assuming that C is unique for all α, this relative
position rPC(α) follows from a scalar function fP : S → R, fP ∈ C2. The function fP(α) is a parameterization of
the minimal distance between P and the line – the projection of the vector from P to C onto the line’s normal iz (cf.
Eq. (19)). Its specific form depends on the shape of the body’s boundary which must be 2π–periodic with respect to
α. C being unique means that there are no straight line segments of the boundary meaning its curvature is non-zero
everywhere.

The dependency of rPC(α) on fP(α) can be derived considering the special case of a rolling contact between the
body and the plane. The system is then reduced to one degree of freedom and the positions of P and C become
functions of the angle

rP = xP(α) ix + zP(α) iz , (14)
rC = xC(α) ix , (15)

rPC = rC − rP

= xPC(α) ix + zPC(α) iz , (16)

and thus

zP(α) = −zPC(α) . (17)

The definition of

zP(α) = fP(α) (18)

for this case thus also yields

zPC(α) = − fP(α) . (19)

The dependency of xPC(α) on fP(α) follows from the velocity of P for an arbitrary angular velocity ω = α̇ iy which
can be derived in two ways: differentiation of the position yields

ṙP = vP = ẋP(α) ix + żP(α) iz
= x′P(α)α̇ ix + z′P(α)α̇ iz
= x′P(α)α̇ ix + f ′P(α)α̇ iz , (20)
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and the rolling condition

ṙC = vC = 0 (21)

results in

vP = vC + ω × rCP

= 0 + rPC × ω

= −zPC(α)α̇ ix + xPC(α)α̇ iz
= fP(α)α̇ ix + xPC(α)α̇ iz . (22)

Comparison of the coefficients in Eqs. (20) and (22) yields

xPC(α) = f ′P(α) , (23)

xP(α) = xP,0 +

∫ α

0
fP(ᾱ) dᾱ , (24)

xC(α) = xP,0 +

∫ α

0
fP(ᾱ) dᾱ + f ′P(α) . (25)

Therefore, the relative position of the potential contact point is

rPC(α) = f ′P(α) ix − fP(α) iz (26)

and an implicit definition of the boundary in polar coordinates r and ϕ

‖rPC(α)‖2 = r(α) =

√
f ′P(α)2 + fP(α)2 , (27)

ψ(α) = arctan
(

f ′P(α)
fP(α)

)
, (28)

α + ψ(α) = ϕ(α) = α + arctan
(

f ′P(α)
fP(α)

)
(29)

follows from Fig. 3b. The continuity of this parameterization of the geometry via rPC(α) depends on the definition of
f ′P(α). If f ′P(α) ∈ Ck then rPC(α) ∈ Ck−1 which means a continuous boundary requires k ≥ 1. The curvature of the
boundary at the current point C(α) can be derived as follows: the position of C in B is

rPC = f ′P(α) ix(α) − fP(α) iz(α) (30)

with

ix(α) = cos(α) bx + sin(α) bz , (31a)
iy(α) = by , (31b)
iz(α) = − sin(α) bx + cos(α) bz . (31c)

The tangent and normal vectors are

t(α) = ix(α) , (32a)
n(α) = iz(α) (32b)

with the derivatives

d
dα

t(α) = iz(α) = n(α) , (33a)

d
dα

n(α) = −ix(α) = −t(α) , (33b)
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and the curvature κ(α) follows from the differentiation of the tangent vector t with respect to the arclength s

d
ds

t(α) =
d

dα
t(α)

dα
ds

= κ(α) n(α) , (34)

⇒ κ(α) =
dα
ds

=

(
ds
dα

)−1

. (35)

Due to the rolling condition, the arclength on the body’s boundary between two points C(α1) and C(α2) is equal to
the length of the line segment between the two corresponding points. Therefore, the derivative of the arclength s with
respect to α follows from the derivative of the position of C in the inertial frame I

ds
dα

=
d

dα
xC(α) = f ′′P (α) + fP(α) . (36)

The curvature is thus

κ(α) =
(
f ′′P (α) + fP(α)

)−1 . (37)

A necessary restriction for admissible functions fP(α) is κ(α) > 0, ∀α as assumed above. As for the examples of the
rolling circular wheel and the ellipse, it is important to stress that the relationship Eq. (30) holds also when there is no
rolling, or even no contact between the body and the line.

Although the condition of positive curvature on the body’s boundary results in uniqueness of C, the parameteri-
zation of the boundary itself is not unique. In fact, there are infinitely many parameterizations of the same boundary
which differ only in their respective body-fixed reference point. The transformation of the parameterization from the
reference point P to the reference point Q is straightforward, cf. Fig. 3b. The kinematics of Q relative to P are

rPQ = xPQ(α) ix + zPQ(α) iz
= rPQ sin(α + δPQ) ix + rPQ cos(α + δPQ) iz , (38)

the absolute position is

rQ = rP + rPQ

= xQ(α) ix + zQ(α) iz
=

(
xP(α) + rPQ sin(α + δPQ)

)
ix +

(
zP(α) + rPQ cos(α + δPQ)

)
iz , (39)

and the relative position of C is

rQC = rQP + rPC = rPC − rPQ

= xQC(α) ix + zQC(α) iz
=

(
xPC(α) − rPQ sin(α + δPQ)

)
ix +

(
zPC(α) − rPQ cos(α + δPQ)

)
iz

=
(
f ′P(α) − rPQ sin(α + δPQ)

)
ix −

(
fP(α) + rPQ cos(α + δPQ)

)
iz . (40)

Therefore,

rC = rP + rPC

= rP + rPQ − rPQ + rPC

=
(
rP + rPQ

)
+

(
rPC − rPQ

)
= rQ + rQC , (41)

which means the parameterization

fQ(α) = fP(α) + rPQ cos(α + δPQ) (42)

results in the same contact point and boundary as before. This transformation is valid for any body-fixed point Q ∈ R2,
not just for points inside the body’s boundary.

8



5. Contact between a body and a circle

The contact between a body and a straight line from Sect. 4 can be generalized further to the contact between a
body and a circle. The procedure is the same as in the previous section, albeit more complex because the orientation of
the circle’s outer normal vector is not constant in the inertial frame. Furthermore, there are two contact scenarios which
are displayed in Figs. 4a and 4b, and referred to as almost convex and almost concave, respectively. As discussed in
Sect. 1, the body’s boundary may consist of convex and concave sections, as long as the assumption of the uniqueness
of the contact point is not violated. Therefore, the term almost convex (almost concave) refers to a geometry which
consists mainly of convex (concave) sections, whereby strictly convex (strictly concave) shapes are also included in
this definition. Both scenarios follow from the same initial approach and the distinction of two cases for the solution
of a quadratic equation.

Let the circle with radius R be fixed in the inertial frame I with the origin O at its center. A body-fixed reference
frame B with by = iy is attached to the contacting body at point P. A moving reference frame K with ky = iy and
origin O is introduced so that kz is always pointing from O to P. The rotation ofK relative to I around iy is described
by the angle φ. As is evident from Fig. 4, the position of the potential contact point C relative to P depends only on
its orientation relative to K which is described by the angle α. Furthermore, if there is contact between the body and
the circle, the distance from the body’s boundary to the circle’s center O is equal to the radius R; the point O is then
in contact with a curve which is equidistant to the boundary. In the same way as in the previous section, the relative
position of the potential contact point rR,PC(α) follows from a scalar function gR,P : S → R, gR,P ∈ C2 where the
subscript R is shorthand for rR,PC(α) = rPC(α,R) and gR,P(α) = gP(α,R). The function gR,P(α) is a parameterization
of the equidistant curve with distance R from the body’s boundary. If there is contact, this is equal to the distance
between O and P (cf. Eq. (48)) which depends on the shape of the body’s boundary and has to be 2π–periodic with
respect to α. It is again assumed that C is unique for all α which is discussed below (cf. Eq. (72)).

The dependency of rPC(α) on fP(α) follows again from the special case of rolling of the body on the circle. The
system is then reduced to one degree of freedom and the positions of P and C become functions of the angle α

rR,P = zR,P(α) kz , (43)
rR,C = xR,C(α) kx + zR,C(α) kz , (44)

rR,PC = rR,C − rR,P

= xR,PC(α) kx + zR,PC(α) kz (45)

which yields

xR,C(α) = xR,PC(α) , (46)
zR,C(α) = zR,P(α) + zR,PC(α)

= ±

√
R2 − x2

R,C(α) . (47)

The two solutions of Eq. (47) correspond to the two different contact scenarios. Let

zR,P(α) = gR,P(α) , gR,P(α) > 0 ∀α (48)

under the condition that the body is in contact with the circle. Due to the definition of reference frame K , gR,P(α)
cannot be negative. The velocity of P for an arbitrary angular velocity ω(α̇) =

(
α̇ + φ̇(α, α̇)

)
ky is

ṙR,P = vR,P = zR,P(α)φ̇(α, α̇) kx + żR,P(α) kz

= gR,P(α)φ̇(α, α̇) kx + ġR,P(α) kz

= gR,P(α)φ̇(α, α̇) kx + g′R,P(α)α̇kz , (49)

and, with the rolling condition

ṙR,C = vR,C = 0 , (50)
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Figure 4: Contact between a circle and (a) an almost convex body, and (b) an almost concave body (observed in the inertial frame I)

also

vR,P = vR,C + ω(α, α̇) × rR,CP(α)
= 0 + rR,PC(α) × ω(α, α̇)

= −zR,PC(α)
(
α̇ + φ̇(α, α̇)

)
kx + xR,PC(α)

(
α̇ + φ̇(α, α̇)

)
kz . (51)

Equations (49) and (51) yield

φ̇(α, α̇) = −
zR,PC(α)

zR,P(α) + zR,PC(α)
α̇

= −
zR,PC(α)
zR,C(α)

α̇ . (52)

Furthermore, because the velocity at C is zero it is the body’s instantaneous center of rotation. Therefore, rR,PC is
perpendicular to the velocity vector in P: rR,PC ·vR,P = 0. Since the problem is two-dimensional, the direction of rR,PC

follows from vR,P by interchanging of the kx– and the kz–components and negation of the kz–component. Division of
both components by α̇ and scaling with a(α) ∈ R yields

rR,PC(α) = a(α)g′R,P(α)kx − a(α)
gR,P(α)zR,PC(α)

zR,C(α)
kz (53)

and comparison with Eq. (45) results in

xR,PC(α)
g′R,P(α)

=
zR,C(α)zR,PC(α)
gR,P(α)zR,PC(α)

. (54)

Expressing zR,C(α) via Eq. (47) and squaring both sides yields

xR,PC
2(α) gR,P

2(α) =
(
g′R,P

2(α)
) (

gR,P(α) + zR,PC(α)
)2
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which can be simplified further using xR,PC
2(α) =

(
R2 −

(
gR,P(α) + zR,PC(α)

)2
)

(
gR,P(α) + zR,PC(α)

)2
=

gR,P
2(α)

gR,P
2(α) +

(
g′R,P

2(α)
) R2 .

This gives the solutions3

zR,PC(α) = −gR,P(α) +
gR,P(α)√

gR,P
2(α) + g′R,P

2(α)
R , (55a)

xR,PC(α) =
g′R,P(α)√

gR,P
2(α) + g′R,P

2(α)
R = xR,C(α) , (55b)

zR,C(α) =
gR,P(α)√

gR,P
2(α) + g′R,P

2(α)
R (55c)

for the almost convex case (Fig. 4a) and

z̄R,PC(α) = gR,P(α) +
gR,P(α)√

gR,P
2(α) + g′R,P

2(α)
R , (56a)

x̄R,PC(α) = −
g′R,P(α)√

gR,P
2(α) + g′R,P

2(α)
R = x̄R,C(α) , (56b)

z̄R,C(α) = −
gR,P(α)√

gR,P
2(α) + g′R,P

2(α)
R (56c)

for the almost concave case (Fig. 4b). Analogously to the result in Sect. 4, the continuity of this parameterization
via rR,PC(α) depends on the definition of g′R,P(α). If g′R,P(α) ∈ Ck then rR,PC(α) ∈ Ck−1 which means a continuous
boundary requires k ≥ 1. The restriction of the solution to either one case makes it unique. Indeed, for any shape
with one contact point in the upper (lower) half circle with zR,C(α) > 0 (z̄R,C(α) < 0) for any α, all contact points are
on the upper (lower) half circle. To change from the upper (lower) half circle to the lower (upper) one, the point with
zR,C(α) = 0 has to be passed which results in a singularity in Eq. (52)

φ̇ = −
zR,PC(α)
zR,C(α)

α̇ .

Because

gR,P(α) > 0 ∀α

via Eq. (48), this singularity cannot occur. As in Sect. 4, the body’s boundary is implicitly defined in polar coordinates
r, ϕ

‖rR,PC(α)‖2 = r(α) =

√
xR,PC

2(α) + zR,PC
2(α) , (57)

ψ(α) = arctan
(

xR,PC(α)
−zR,PC(α)

)
, (58)

α + ψ(α) = ϕ(α) = α − arctan
(

xR,PC(α)
zR,PC(α)

)
(59)

3In Eqs. (55) – (73) all expressions which correspond to the almost concave case (Fig. 4b) are distinguished by a bar; expressions which
correspond to the almost convex case (Fig. 4a) are without bar.
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and r̄, ϕ̄

‖r̄R,PC(α)‖2 = r̄(α) =

√
x̄R,PC

2(α) + z̄R,PC
2(α) , (60)

ψ̄(α) = arctan
(

x̄R,PC(α)
−z̄R,PC(α)

)
, (61)

α + ψ̄(α) = ϕ̄(α) = α − arctan
(

x̄R,PC(α)
z̄R,PC(α)

)
. (62)

This parameterization of the boundary is depicted in Fig. 5 in the body-fixed reference frame B. The boundary is
given by

rR,PC = xR,PC(α) kx(α) + zR,PC(α) kz(α) , (63a)
r̄R,PC = x̄R,PC(α) kx(α) + z̄R,PC(α) kz(α) (63b)

in the reference frame

kx(α) = cos(α) bx + sin(α) bz , (64a)
ky(α) = by , (64b)
kz(α) = − sin(α) bx + cos(α) bz . (64c)

with

d
dα

kx(α) = kz(α) , (65a)

d
dα

ky(α) = 0 , (65b)

d
dα

kz(α) = −kx(α) . (65c)

Let θ (θ̄) be the angle between rP and rC , then

sin θ =
xR,C(α)

R
, cos θ =

zR,C(α)
R

, (66a)

sin θ̄ =
x̄R,C(α)

R
, cos θ̄ =

z̄R,C(α)
R

(66b)

and the tangent and normal vectors at C are

t(α) =
zR,C(α)

R
kx(α) −

xR,C(α)
R

kz(α) , (67a)

n(α) =
xR,C(α)

R
kx(α) +

zR,C(α)
R

kz(α) , (67b)

t̄(α) =
z̄R,C(α)

R
kx(α) −

x̄R,C(α)
R

kz(α) , (67c)

n̄(α) =
x̄R,C(α)

R
kx(α) +

z̄R,C(α)
R

kz(α) . (67d)

Differentiation of the tangent vector t (t̄) with respect to the arclength s (s̄) yields the curvature κ(α) (κ̄(α)) of the
boundary

d
ds

t(α) =
d

dα
t(α)

dα
ds

= κ(α) n(α) , (68a)

d
ds̄

t̄(α) =
d

dα
t̄(α)

dα
ds̄

= κ̄(α) n̄(α) . (68b)
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The derivative of the tangent vector t(α) (t̄(α)) with respect to α in normal direction is

n(α) ·
d

dα
t(α) =

xR,C(α)
(
xR,C(α) + z′R,C(α)

)
+ zR,C(α)

(
zR,C(α) − x′R,C(α)

)
R2 , (69a)

n̄(α) ·
d

dα
t̄(α) =

x̄R,C(α)
(
x̄R,C(α) + z̄′R,C(α)

)
+ z̄R,C(α)

(
z̄R,C(α) − x̄′R,C(α)

)
R2 (69b)

and the derivative of the arclength s (s̄) with respect to α is equal to the change of the position of C in tangential
direction

ds
dα

= t(α) ·
d

dα
rR,PC(α) =

zR,C(α)
(
x′R,PC(α) − zR,PC(α)

)
− xR,C(α)

(
z′R,PC(α) + xR,PC(α)

)
R

, (70a)

ds̄
dα

= t̄(α) ·
d

dα
r̄R,PC(α) =

z̄R,C(α)
(
x̄′R,PC(α) − z̄R,PC(α)

)
− x̄R,C(α)

(
z̄′R,PC(α) + x̄R,PC(α)

)
R

(70b)

which yields the curvature

κ(α) =
xR,C(α)

(
xR,C(α) + z′R,C(α)

)
+ zR,C(α)

(
zR,C(α) − x′R,C(α)

)
R

(
zR,C(α)

(
x′R,PC(α) − zR,PC(α)

)
− xR,C(α)

(
z′R,PC(α) + xR,PC(α)

)) , (71a)

κ̄(α) =
x̄R,C(α)

(
x̄R,C(α) + z̄′R,C(α)

)
+ z̄R,C(α)

(
z̄R,C(α) − x̄′R,C(α)

)
R

(
z̄R,C(α)

(
x̄′R,PC(α) − z̄R,PC(α)

)
− x̄R,C(α)

(
z̄′R,PC(α) + x̄R,PC(α)

)) . (71b)

The assumed uniqueness of C follows from two conditions: the curvature of the circle is always smaller than that of
the body

Rκ(α) =
xR,C(α)

(
xR,C(α) + z′R,C(α)

)
+ zR,C(α)

(
zR,C(α) − x′R,C(α)

)
zR,C(α)

(
x′R,PC(α) − zR,PC(α)

)
− xR,C(α)

(
z′R,PC(α) + xR,PC(α)

) > −1 , (72a)

Rκ̄(α) =
x̄R,C(α)

(
x̄R,C(α) + z̄′R,C(α)

)
+ z̄R,C(α)

(
z̄R,C(α) − x̄′R,C(α)

)
z̄R,C(α)

(
x̄′R,PC(α) − z̄R,PC(α)

)
− x̄R,C(α)

(
z̄′R,PC(α) + x̄R,PC(α)

) > −1 . (72b)

and the position of C on the boundary increases monotonically

d
dα
ϕ(α) = 1 +

x′R,PC(α)zR,PC(α) − xR,PC(α)z′R,PC(α)

xR,PC
2(α) + zR,PC

2(α)
> 0 , (73a)

d
dα
ϕ̄(α) = 1 +

x̄′R,PC(α)z̄R,PC(α) − x̄R,PC(α)z̄′R,PC(α)

x̄R,PC
2(α) + z̄R,PC

2(α)
> 0 . (73b)

The almost convex case contains the contact problem between the body and a straight line from Sect. 4 as border-
line case for the limit R→ ∞. Because

lim
R→∞

gR,P(α)→ ∞

a transformation to

g̃R,P(α) = gR,P(α) − R (74)

is required to treat this case. The definition of g̃R,P(α) is equal to the definition of fP(α) in Sect. 4: both describe the
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Figure 5: Boundary of (a) the almost convex body, and (b) the almost concave body in polar coordinates (observed in the body-fixed frame B).
The tangent and normal vectors at C are t, n and t̄, n̄, respectively. (a) displays the contact between the almost convex body and two circles with
radii R and R + ∆R, respectively, for the same angle α

minimum distance from P to the circle or line, respectively. Substitution of Eq. (74) and evaluation of the limit yields

z∞,PC(α) = lim
R→∞

zR,PC(α) = g̃∞,P(α) , (75a)

x∞,PC(α) = lim
R→∞

xR,PC(α) = g̃′∞,P(α) , (75b)

lim
R→∞

κ(α) =
(
z∞,PC(α) + x′∞,PC(α)

)−1

=
(
g̃′′∞,P(α) + g̃∞,P(α)

)−1
(75c)

for Eqs. (55a), (55b) and (71a). These expressions are equal to Eqs. (19), (23) and (37) from Sect. 4. Furthermore, the
borderline case for the limit R→ 0

z0,PC(α) = lim
R→0

zR,PC(α) = g0,P(α) , (76a)

x0,PC(α) = lim
R→0

xR,PC(α) = 0 , (76b)

lim
R→0

κ(α) = lim
R→0

√
1 −

( xR,PC (α)
R

)2
−

x′R,PC (α)
R(

zR,PC(α) + x′R,PC(α)
)

=
g0,P

2(α) + 2g′0,P
2(α) − g′′0,P(α)(

g0,P
2(α) + g′0,P

2(α)
) 3

2

, (76c)

where g0,P(α) = g̃0,P(α), is an explicit parameterization of the body’s boundary in polar coordinates with angle α and
radius g0,P(α). These observations motivate the investigation of whether there is an explicit transformation of gR,P(α)
from one circle radius R to another. An implicit transformation from any radius to R→ 0 is already given by Eqs. (57)
and (59).

One approach for the explicit transformation of gR,P(α) = gP(α,R) from one circle radius R to another is to derive
a partial differential equation (PDE) in R and α and then examine if there are analytical solutions of the arising initial
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value problem. Only the almost convex case is treated below; the procedure is analogous for the almost concave case.
The PDE follows from the geometry in Fig. 5a which displays the contact between the body and the original circle
with radius R, origin O and contact point C, and with another circle with radius R + ∆R, origin Ô and contact point Ĉ
for the same angle α. The position of Ô in the body-fixed frame B is

rPÔ = −gP(α,R + ∆R) kz(α) , (77)

but also

rPÔ = rPĈ + rĈÔ . (78)

The position of Ĉ is equal to the contact point of the original circle with radius R for the angle α + ∆α

rPĈ = xPC(α + ∆α,R) kx(α + ∆α) + zPC(α + ∆α,R) kz(α + ∆α) . (79)

The point Ô is in direction of the normal vector at Ĉ, therefore

rĈÔ = −(R + ∆R) n(α + ∆α)

= −(R + ∆R)
xPC(α + ∆α,R)

R
kx(α + ∆α)

− (R + ∆R)

√
R2 − xPC

2(α + ∆α,R)
R

kz(α + ∆α) (80)

and

rPÔ = −∆R
xPC(α + ∆α,R)

R
kx(α + ∆α)

−

zPC(α + ∆α,R) + (R + ∆R)

√
R2 − xPC

2(α + ∆α,R)
R

 kz(α + ∆α) . (81)

The goal is to derive a differential equation with respect to R and α which means the limits ∆R → 0 and ∆α → 0 will
be evaluated below. Therefore, the linearization of Eq. (81) is admissible and a comparison with the coefficient of
Eq. (77) yields

∆α =
xPC(α,R)

R
(
−zPC(α,R) +

√
R2 − xPC

2(α,R)
)∆R , (82)

gP(α,R + ∆R) = gP(α,R) +

√
1 −

(
xPC(α,R)

R

)2

∆R . (83)

The desired differential equation follows from Eq. (83) for the limit

lim
∆R→0

gP(α,R + ∆R) − gP(α,R)
∆R

= ∂RgP(α,R) =
gP(α,R)√(

gP(α,R)
)2

+
(
∂αgP(α,R)

)2
(84)

(the shorthand ∂R = ∂
∂R is used for partial derivatives). Unfortunately, we failed to find an explicit analytic solution

gP(α,R1) for a general initial condition gP(α,R0), cf. Appendix A. Therefore, this approach does not yield the desired
explicit transformation.

6. Examples

The results from Sect. 4 and 5 are applied to two example applications: a simple model of a rigid foot rolling on
flat ground in Sect. 6.1 and a roller tappet in contact with a camshaft in Sect. 6.2.
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6.1. Rigid foot on flat ground
A simple example for the contact of a convex rigid body with a straight line is motivated by two-dimensional

models for human walking and running. Although human feet are complex structures which consist of several bones,
tendons, muscles and other tissue, a common model simplification in biomechanics is the rigid body approximation,
so called rollover shapes [14]. This approximation does not model the feet’s internal structure, however, it captures
their influence on the whole body dynamics and can be used for contact detection and force calculations. The goal
of this example is to derive the equations of motion for a single detached foot (no connection to the remainder of the
body) which is rolling on the ground. The contact forces are derived to check the rolling condition (no slipping).

For the sake of simplicity, we do without fitting to experimental data and use the simple ansatz

fP(α) = R
(
1 +

9
10

cos
(
α −

π

5

)
+

1
6

sin
(
2
(
α −

π

5

))
+

1
15

sin
(
3
(
α −

π

5

)))
(85)

α ∈
[
−
π

2
,
π

2

]
,

to generate the shape in Fig. 6a. The coefficients have been tuned to satisfy condition of positive curvature via Eq. (37).
The reference point P is representing the assumed center of mass (mass m, inertia JP) and the limits for α restrict the
rolling motion to the foot’s sole. The kinematics of the ankle joint A can be derived by Eqs. (38) – (42) with rPA and
αPA via Fig. 6a. There are no external forces except for gravity (g). The equation of motion can be derived from the
kinetic and potential energy

T =
1
2

m
(
ẋ2

P + ż2
P

)
+

1
2

JPα̇
2

=
1
2

(
m x′P

2(α) + m z′P
2(α) + JP

)
α̇2

=
1
2

(
m fP

2(α) + m f ′P
2(α) + JP

)
α̇2 , (86a)

V = m g zP(α)
= m g fP(α) (86b)

using Lagrange equations

d
dt

∂

∂α̇
(T − V) −

∂

∂α
(T − V) = 0

⇒
(
m fP

2(α) + m f ′P
2(α) + JP

)
α̈ + m f ′P(α)( fP(α) + f ′′P (α))α̇2 + m g f ′P(α) = 0 . (87)

The forces at the contact point C are

FC,x = mẍP = m
(

fP(α)α̈ + f ′P(α)α̇2
)

, (88a)

FC,z = mz̈P + m g = m
(

f ′P(α)α̈ + f ′′P (α)α̇2 + g
)

(88b)

from the balance of forces via Fig. 6b. The equation of motion (87) can be solved numerically. The rolling conditions
are

0 ≤ FC,z , (89a)∣∣∣FC,x
∣∣∣ ≤ µ0

∣∣∣FC,z
∣∣∣ (89b)

with the coefficient of static friction µ0.

6.2. Camshaft and roller tappet
The combination of a camshaft and roller tappets is a frequently used mechanism for the control of valves in

internal combustion engines. This contact is typically lubricated which means the contact forces follow from the
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Figure 6: (a) Model of a rigid foot rolling on flat ground, and (b) corresponding free body diagram. The foot’s sole is illustrated in black, the
remaining boundary in gray. The dotted line is the trajectory of P

elastohydrodynamic lubrication theory [15]. However, this level of complexity is beyond the scope of this paper,
which is why the dissipative contact model which was proposed by Hunt and Crossley [16] is used in the treatment
below.

The system is displayed in Fig. 7a. The roller tappet is guided in vertical kz–direction and preloaded by a linear
spring with stiffness c and relaxed position z0. The center of mass of the roller tappet (total mass m) is assumed to be
in its center M. The roller’s radius is R and the rotational inertia with respect to M is JM . The camshaft is rotating
around the origin P. Its orientation with respect to the inertial system K is α(t) = α̇0t with the constant angular
velocity α̇ = α̇0. The translation and rotation of the roller are described by the position zM and its angle φ. The
problem follows from the description in Sect. 5 by a rotation with the angle φ and a shift of the origin from M to P.
For the sake of simplicity gravity is neglected.

The almost convex cam geometry in Fig. 7a is described by the piecewise function

gR,P(α) =

2 R +

(
1
3

(
α − 2

3π
)3 (

4
3π − α

)4
)

R if 2
3π < α <

4
3π

2 R otherwise
(90)

with gR,P(α) ∈ C2 for α ∈ S. Because gR,P(α) is twice continuously differentiable, the cam’s curvature is continuous
which is a necessary requirement for the contact force model. There is a concave section of the cam’s boundary with
negative curvature, however, there is always a unique contact point with the roller. The positions of the potential
contact points C on the cam’s boundary and C′ on the roller follow from

rC = xR,PC(α) kx + zR,PC(α) kz , (91)
rC′ = rM + rMC′ , (92)

rMC′ = xR,C(α) kx + zR,C(α) kz (93)

with the roller’s position

rM = zM kz (94)
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Figure 7: (a) Model of camshaft and roller tappet, and (b) corresponding free body diagram. The dotted line is an illustration of gR,P(α) which
is equidistant from the cam. The dashed lines are fixed orientations on the cam and the roller, respectively. The constraint forces of the tappet
guidance and the camshaft bearings are FM,x, FP,x, and FP,z, the camshaft’s drive torque is T

and

zR,PC(α) = −gR,P(α) +
gR,P(α)√

gR,P
2(α) + g′R,P

2(α)
R , (55a revisited)

xR,PC(α) =
g′R,P(α)√

gR,P
2(α) + g′R,P

2(α)
R = xR,C(α) , (55b revisited)

zR,C(α) =
gR,P(α)√

gR,P
2(α) + g′R,P

2(α)
R (55c revisited)

and the velocities of both potential contact points are

vC = (α̇ky) × rC , (96)
vC′ = vM + (−φ̇ky) × rMC′ (97)

with the roller’s velocity

vM = żM kz , (98)

and the cam’s curvature at C is

κ(α) =
xR,C(α)

(
xR,C(α) + z′R,C(α)

)
+ zR,C(α)

(
zR,C(α) − x′R,C(α)

)
R

(
zR,C(α)

(
x′R,PC(α) − zR,PC(α)

)
− xR,C(α)

(
z′R,PC(α) + xR,PC(α)

)) . (71a revisited)

The tangential and normal directions at the potential contact points are given by

t(α) =
zR,PC(α)

R
kx(α) −

xR,PC(α)
R

kz(α) , (67a revisited)

n(α) =
xR,PC(α)

R
kx(α) +

zR,PC(α)
R

kz(α) (67b revisited)
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and the contact force is

FC = FC,t t + FC,n n
= FC,x kx + FC,z kz . (100)

The dissipative force contact model which was proposed by Hunt and Crossley [16] assumes small deformations of
the bodies’ boundaries at the contact point which are an extension of the Hertz contact theory [12]. The deformation
is calculated from the penetration of the original (rigid) geometries

δ = (rC′ − rC) · n (101)

and the corresponding relative velocity in normal and tangential direction

δ̇ = (vC′ − vC) · n , (102a)
vrel,t = (vC′ − vC) · t . (102b)

This results (cf. [12, Eqs. (18) – (30)]) in a force law for the normal component

FC,n =

K δ3/2
[
1 +

3(1−cr)
2

δ̇
δ̇(−)

]
for δ ≥ 0

0 for δ < 0
(103)

with

K =
4
3

1 − ν2
1

E1
+

1 − ν2
2

E2

−1
√(

1
R

+ κ(α)
)−1

, (104)

where E1, E2 are the bodies’ Young’s moduli, ν1, ν2 are their Poisson’s ratios, cr denotes the coefficient of restitution
and δ̇(−) is the initial impact velocity. The bodies are separated if δ < 0 and there is no interaction at the potential
contact points. The tangential component of the contact force is modeled via

FC,t = µ tanh
(vrel,t

k

)
FC,n (105)

which is a regularization of Coulomb’s friction law with the coefficient of sliding friction µ. For large values of the
regularization parameter k the hyperbolic tangent approximates the sign function

lim
k→∞

tanh
(vrel,t

k

)
= sign(vrel,t) .

This model for the contact force does not consider rolling friction due to the fact that the material contact points of
the rotating bodies change constantly. Furthermore, due to the exponent in Eq. (103) a point contact is considered,
although a line contact may seem more plausible for a planer model. However, the purpose of this example is to
demonstrate the simple implementation of the presented approach and its combination with more complex descriptions
of the interaction force at the contact points.

The system’s equations of motion

m z̈M = c(z0 − zM) − FC,z , (106a)
JM φ̈ = R FC,t (106b)

are solved numerically using Matlab using the following parameters: E1 = E2 = 2.1 · 1011 N/m2, ν1 = ν2 = 0.3,
cr = 0.6, µ = 0.6, k = 100 m/s, c = 200 N/m, z0 = 0 m, R = 0.01 m, m = 0.025 kg, JM = 1.25 · 10−6 kg m2 and
α̇0 = 100 rad/s. This choice of parameters causes the roller to lift-off during every revolution of the cam. It is then
pushed back by the spring until it collides with the roller. The solution for zM and δ are displayed in Fig. 8. A video of
the solution as well as the Matlab-implementation used for the simulation are provided as electronic supplementary
to this paper.

Both examples highlight the simple application of the presented approach in mechanical models of planar systems.
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Figure 8: (a) Distance between P and M, and (b) gap (negative penetration −δ) for the cam-follower system with lift-off of the roller

7. Conclusion

In this paper a solution for two-dimensional contact detection problems between a body with complex geometry
and a straight line or a circle is presented. Explicit formulas for the position of the (potential) contact point C which
depend on the body’s orientation α relative to the counterpart are derived. An arbitrary body-fixed reference point P
is chosen and its distance from the line or the circle’s center is parameterized as an explicit function of α assuming
there is contact. The position of C relative to P as well as the corresponding curvature follow from the special case
of a rolling contact as explicit functions of α. The presented procedure requires uniqueness of C for all angles α and
piecewise smoothness of the body’s boundary. The smoothness of the resulting parameterization depends only on
the smoothness of the generating functions which have to be derived once. The contact detection problem between a
body and a circle has two solutions which correspond to the almost convex and the almost concave case, respectively
(cf. Sect. 5). For the limit of an infinite circle radius the expressions for the almost convex case are equal to the ones
for the contact with a straight line.

The developed method is applied to two examples in Sect. 6: the biomechanical model of a rigid foot rolling on
flat ground and the technical system of a camshaft actuating a roller tappet. In the first example, a Fourier series
with three harmonics is used to parameterize the rigid foot. Its equation of motion can be derived as an ordinary
differential equation for the angle α. In the second example, the cam geometry is parameterized by a piecewise
function with continuous curvature. The interaction is described by a dissipative contact force model (Hunt and
Crossley [16]). A numerical solution which includes separation of the roller from the cam and subsequent impacts is
presented. Both examples highlight the easy application of the derived relationships to specific systems which involve
the discussed contact detection problems. They can also be implemented as special contact elements in multibody
software environments, e.g. modellica [17]. The presented procedure can be generalized to three-dimensional contact
detection problems. A solution for the contact between a convex body and a planar counterpart will be provided
shortly.

Appendix A. Analytical solution of initial value problem for PDE (84)

Stating PDE (84) from Sect. 5 in the conventional analysis notation gives

∂yu(x, y) =
u(x, y)√

u2(x, y) + (∂xu(x, y))2
, (A.1)
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u : S × R0+ → R+ which is a nonlinear PDE of the first order. Amongst the many methods for the analytical solution
of PDEs, there are two which follow a strict procedure4: separation of variables and the calculation of a characteristic
strip. Equation (A.1) can indeed be solved by the separation ansatz

u(x, y) = X(x) · Y(y) (A.2)

which yields

X(x)Y ′(y) =
X(x)Y(y)√

X(x)2Y2(y) + X′2(x)Y2(y)

⇔ sign (Y(y)) Y ′(y) =
1√

X2(x) + X′2(x)
= k (A.3)

with k ∈ R+. The only solution is

X(x) =
cos(x + c1)

k
, c1 ∈ S , (A.4a)

Y(y) = k (y + c2) , c2 ∈ R , (A.4b)
u(x, y) = (y + c2) cos(x + c1) . (A.4c)

However, this solution cannot be adjusted to arbitrary initial conditions u(x, y0) = u0(x) and, furthermore, u < R+ due
to the alternating sign of the cosine rendering it useless for the desired application.

Therefore, the calculation of a characteristic strip is investigated, cf. [18]. Equation (A.1) equals

0 = q
√

z2 + p2 − z = F(x, y, z, p, q) (A.5)

with

z = u(x, y) ,
p = ∂xu(x, y) ,
q = ∂yu(x, y) .

This results in a set of ordinary differential equations in the new variable t

x′(t) = ∂pF(x, y, z, p, q) =
q2(t)p(t)

z(t)
, (A.6a)

y′(t) = ∂qF(x, y, z, p, q) =
z(t)
q(t)

, (A.6b)

z′(t) = p∂pF(x, y, z, p, q) + q∂qF(x, y, z, p, q) = z(t)
(
2 − q2(t)

)
, (A.6c)

p′(t) = −∂xF(x, y, z, p, q) − p∂zF(x, y, z, p, q) = p(t)
(
1 − q2(t)

)
, (A.6d)

q′(t) = −∂yF(x, y, z, p, q) − q∂zF(x, y, z, p, q) = q(t)
(
1 − q2(t)

)
(A.6e)

4Other methods also follow strict procedures. However, these procedures include steps like finding a suitable transformation (e.g. Bäcklund
transformation) which is not trivial even if it exists.
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with the recursive solution

q(s, t) =
c1(s)√

c2
1(s) + e−2t

, (A.7a)

p(s, t) =
c2(s)√

c2
1(s) + e−2t

, (A.7b)

z(s, t) =
c1(s)√

c2
1(s) + e−2t

c3(s) et , (A.7c)

y(s, t) = c3(s) et +c4(s) , (A.7d)

x(s, t) =
c2(s)
c3(s)

arctan
(
c1(s) et

)
+ c5(s) . (A.7e)

The unknowns ci(s), i = 1, . . . , 5 are determined by the initial conditions for t = 0:

c1(s) =
q0(s)√

1 − q2
0(s)

, (A.8a)

c2(s) =
p0(s)√

1 − q2
0(s)

, (A.8b)

c3(s) =
z0(s)
q0(s)

, (A.8c)

c4(s) = y0(s) −
z0(s)
q0(s)

, (A.8d)

c5(s) = x0(s) −
p0(s)
z0(s)

q0(s)√
1 − q2

0(s)
arctan

 q0(s)√
1 − q2

0(s)

 . (A.8e)

One possibility to transform the initial condition u(x, y0) = u0(x) to the coordinates s, t is

x(s, t = 0) = f (s) = s , (A.9a)
y(s, t = 0) =g(s) = y0 , (A.9b)
z(s, t = 0) =h(s) = u0(s) , (A.9c)
p(s, t = 0) =φ(s) , (A.9d)
q(s, t = 0) =ψ(s) (A.9e)

where φ(s) and ψ(s) must be such that

h′(s0) = φ(s0) f ′(s0) + ψ(s0)g′(s0) , (A.10a)
0 = F(x0, y0, z0, p0, q0) , (A.10b)
0 , f ′(s0)Fq(x0, y0, z0, p0, q0) − g′(s0)Fp(x0, y0, z0, p0, q0) . (A.10c)

Equation (A.10a) implies

φ(s) = u′0(s) (A.11)

which in turn yields

ψ(s) =
u0(s)√

(u0(s))2 + (u′0(s))2
. (A.12)

22



Equations (A.11) and (A.12) also satisfy Eq. (A.10c) because z0 ∈ R+. Adjusting the general solution to these initial
conditions results in

x(s, t) = s + arctan
(

u0(s)
u′0(s)

et
)
− arctan

(
u0(s)
u′0(s)

)
, (A.13a)

y(s, t) = y0 +
(
et −1

) √
(u0(s))2 + (u′0(s))2 , (A.13b)

z(s, t) =

√
(u0(s))2 + (u′0(s))2√

(u0(s))2 + e−2t(u′0(s))2
u0(s) et . (A.13c)

The general solution z(x, y) = z(x(s, t), y(s, t)) thus obtained is still implicit in x and y. To finish the characteristic strip
method, explicit expressions s(x, y) and t(x, y) are required. However, there is no explicit solution of Eqs. (A.13) for s
and t which means that this approach does not yield an explicit solution of PDE (A.1).
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