Impact of nitrate on the redox chemistry and solubility of Tc(IV) in alkaline, dilute to concentrated aqueous NaCl solutions

A. Baumann^{a,*}, X. Gaona^{a,**}, E. Yalçıntaş^{a,b}, K. Dardenne^a, T. Prüßmann^a, J. Rothe^a, S. Duckworth^a, M. Altmaier^a, H. Geckeis^a

^a Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, P.O. Box 3640, 76021, Karlsruhe, Germany ^b Los Alamos National Laboratory, Carlsbad, NM, 88220, USA

ARTICLE INFO

ABSTRACT

Keywords: Technetium Redox Nitrate Solubility Kinetics Thermodynamics The impact of nitrate on the redox behaviour and solubility of $^{99}\text{Tc}(\text{IV})$ was investigated in 0.1–5.0 M NaCl–NaNO₃–NaOH solutions with 0.1 M $\leq [\text{NO}_3^-] \leq 1.0$ M and 8.5 $\leq \text{pH}_m \leq 14.5$ (with $\text{pH}_m = -\log [\text{H}^+]$) in the presence of absence of reducing agents (as Fe powder, Na₂S₂O₄, Sn(II)). The evolution of the redox conditions as a function of time (for $t \leq 450$ days) was investigated: (i) in the absence of technetium (inactive samples), (ii) in the presence of $^{99}\text{Tc}(\text{IV})$ (added as 1–2 mg of TcO₂·0.6H₂O(am)), and (iii) in the presence of $^{137}\text{Cs}(\text{I})$ (and absence of $^{99}\text{Tc}(\text{IV})$ (added as 1–2 mg of TcO₂·0.6H₂O(am)), and (iii) in the presence of $^{127}\text{Cs}(\text{I})$ (and absence of ^{99}Tc). All experiments were conducted in an Ar-glovebox (O₂ < 1 ppm) at $T = (22 \pm 2)$ °C. An improved understanding of Tc redox processes in nitrate-rich alkaline solutions is relevant to predict Tc behaviour in specific nuclear waste disposal scenarios and a topic of fundamental scientific interest.

Nitrate induces a clear increase in $E_{\rm h}$ over time in the investigated aqueous solutions both in the presence and absence of reducing agents. In the case of Fe powder, this increase is observed almost immediately whereas in the presence of Na₂S₂O₄ or Sn(II) the oxidizing effect is only observed after several months in inactive systems (absence of Tc). In the presence of technetium, the increase in $E_{\rm h}$ occurs within a few days (5–50, depending upon reducing system, pH_m and ionic strength). The evolution of $E_{\rm h}$ in the presence of ¹³⁷Cs (with similar β dose as in solubility experiments with ⁹⁹Tc) was analogous to that in the inactive systems. These observations indicate that the solid TcO₂·0.6H₂O(am) may play a role in catalysing nitrate reduction and radiation induced reactions have no significant impact in our experiments. Liquid-liquid extraction and XANES measurements confirm that technetium in the aqueous phase is mostly present as Tc(VII). Colorimetric nitrate/nitrite tests show the formation of nitrite, confirming that the oxidation of Tc(IV) to Tc(VII) is coupled to the reduction of nitrate. Our experimental observations support that, although kinetically hindered, nitrate can effectively oxidize Tc(IV).

1. Introduction

⁹⁹Tc is one of the main fission products of ²³⁵U and ²³⁹Pu in nuclear reactors. Due to its long half life (2.1 10^5 a) and redox sensitive che mical behaviour, ⁹⁹Tc is a very relevant radionuclide in the Safety Case of repositories for radioactive waste. Tc can be present in different oxidation states ranging from 0 to + VII (Rard et al., 1999; Guillaumont et al., 2003). Tc(VII) and Tc(IV) are predominant oxidation states in aqueous solutions in the absence of strong complexing ligands. Tc(VII) is known to be very soluble in aqueous media and forms the highly mobile TcO₄⁻ aqueous species under weakly reducing to oxidizing conditions. In reducing alkaline systems as those expected in deep un derground repositories for the disposal of nuclear waste, Tc is found as Tc(IV) which forms the sparingly soluble hydrous oxide $TcO_2 xH_2O(am)$ (Duro et al., 2006; SKB, 2010; Giffaut et al., 2014).

Nitrate is a relevant component in certain waste forms expected in repositories for nuclear waste disposal. Nitrate containing radioactive waste mostly originates from reprocessing activities (e.g. PUREX pro cess) and is often conditioned as bituminized (ANDRA, 2005; International Atomic Energy Agency (IAEA), 1970; Irisawa et al., 2014; Kienzler, 2017; Weetjens et al., 2006) or cementitious (Atkins and Glasser, 1992; Bénard et al., 2008; Borkel et al., 2016; International Atomic Energy Agency (IAEA), 1993; Kienzler, 2017; Palmer and Fairhall, 1992) waste forms. The contact of water with this type of waste may lead to the formation of highly concentrated nitrate plumes (up to 10 M, especially in the case of bitumen) (André et al., 2007;

** Corresponding author.

^{*} Corresponding author.

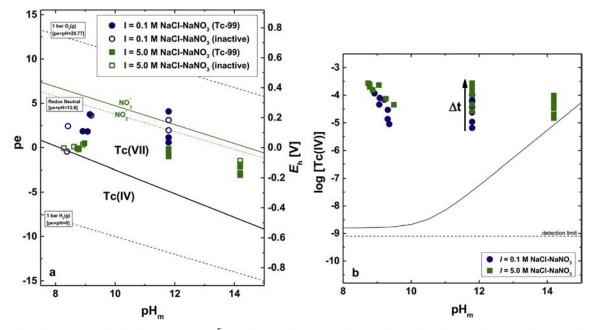
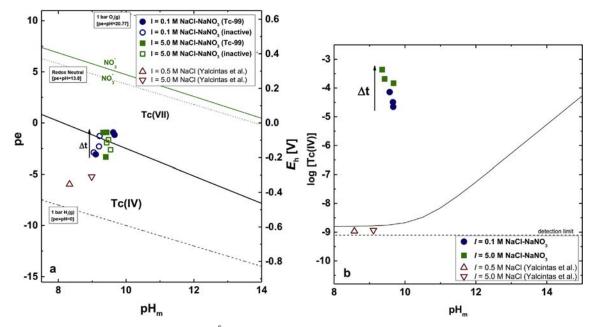

E-mail addresses: alexander.baumann@kit.edu (A. Baumann), xavier.gaona@kit.edu (X. Gaona).

Table 1

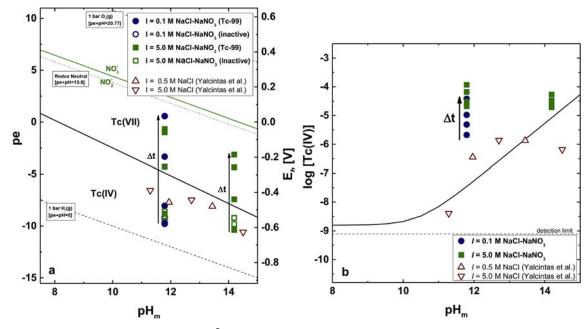
Chemical composition of the samples prepared for the redox experiments in 0.1 and 5.0 M NaCl-NaNO₃-NaOH systems.

Radionuclide	Ionic strength $I([NaCl] + [NaNO_3] + [NaOH])$ in [mol·l ¹]	[NaNO ₃] in [mol·l ¹]	Reducing agent	pH _m -range
no Tc, "inactive"	0.1	0.1, 0.09 ^a	none	≈9, 11.8
	0.1	0.1	Fe powder	≈9
	0.1	0.09	$Na_2S_2O_4$	11.8
	0.1	0.1, 0.09 ^a	Sn(II)	≈9, 11.8
	5.0	1.0	none	≈9, 11.8, 14.2
	5.0	1.0	Fe powder	≈9
	5.0	1.0	$Na_2S_2O_4$	11.8, 14.2
	5.0	1.0	Sn(II)	≈9, 11.8, 14.2
1–2 mg ⁹⁹ TcO ₂ ·0.6H ₂ O(am) "active"	0.1	$0.1, 0.09^{a}$	none	≈9, 11.8
	0.1	0.1	Fe powder	≈9
	0.1	0.09	$Na_2S_2O_4$	11.8
	0.1	0.1, 0.09 ^a	Sn(II)	≈9, 11.8
	5.0	1.0	none	≈9, 11.8, 14.2
	5.0	1.0	Fe powder	≈9
	5.0	1.0	$Na_2S_2O_4$	11.8, 14.2
	5.0	1.0	Sn(II)	≈9, 11.8, 14.2
5·10 ⁵ Bq ¹³⁷ Cs	0.1	0.09	none	11.8
	0.1	0.09	$Na_2S_2O_4$	11.8
	0.1	0.09	Sn(II)	11.8
	5.0	1.0	none	11.8
	5.0	1.0	$Na_2S_2O_4$	11.8
	5.0	1.0	Sn(II)	11.8

^a Nitrate concentration was decreased to 0.09 M in those samples with [NaOH] = 0.01 M, in order to maintain constant ionic strength (I = 0.1 M).


Fig. 1. (a) Pourbaix diagram of Tc calculated for $[Tc]_{tot} = 10^{-5}$ M and I = 0, and experimental pH_m and pe values determined in 0.1 and 5.0 M NaCl–NaNO₃–NaOH systems with $[NaNO_3] = 0.1$ and 1.0 M. Samples marked as "inactive" do not contain Tc; (b) Experimental solubility data of Tc(IV) (added as 1–2 mg of TcO₂·0.6H₂O (am)) in NaCl–NaNO₃–NaOH systems at 8.5 \leq pH_m \leq 14.5. Black solid line provides the reference Tc(IV) solubility at I = 0. All Tc calculations performed with thermodynamic data reported in (Yalçıntaş et al., 2016) and (Guillaumont et al., 2003). Redox borderline NO₃⁻/NO₂⁻ calculated at I = 0 using thermodynamic data reported in (Puigdomenech and Taxen, 2000).

Cannière et al., 2010; Hicks et al., 2017). Very high nitrate con centrations are also present in several waste tanks of the Hanford Site (Washington, USA) (Chaiko et al., 1995; Hill et al., 2011; Serne and Rapko, 2014).


The biotic and abiotic reduction of nitrate (mostly to $N_2(g)$ and NH_4^+) under repository conditions has been described in a number of studies (Albrecht et al., 2012; André et al., 2007; Bertron et al., 2014; Libert, 2011; Truche et al., 2013). Such reduction processes are fa cilitated by high H₂ pressures, elevated temperatures, presence of Fe or bacterial activity, but the fate of this electron acceptor in the repository is yet largely unclear. Under environmental conditions, nitrate has been shown to oxidize different types of Fe phases (Fe(0), green rust, Fe(II)

silicates, pyrite, etc.) (Alowitz and Scherer, 2002; Hansen et al., 2001; Jørgensen et al., 2009; Postma, 1990), although kinetics of such redox processes are strongly affected by pH, surface area of the corresponding Fe phase or presence of certain reducing bacteria.

Previous studies have shown that in the absence of nitrate and in the presence of strongly reducing chemicals (such as Sn(II), $Na_2S_2O_4$, hy drazine, Eu(II) or Fe powder), Tc is characterized by a very low solu bility (controlled by $TcO_2 xH_2O(am)$) and an amphoteric behaviour (predominance of cationic and anionic hydrolysis species in acidic and alkaline pH conditions, respectively) (Baumann et al., 2017; Eriksen et al., 1992; Guillaumont et al., 2003; Hess et al., 2004; Kobayashi et al., 2013b; Liu et al., 2007; Meyer et al., 1991; Warwick et al., 2007;

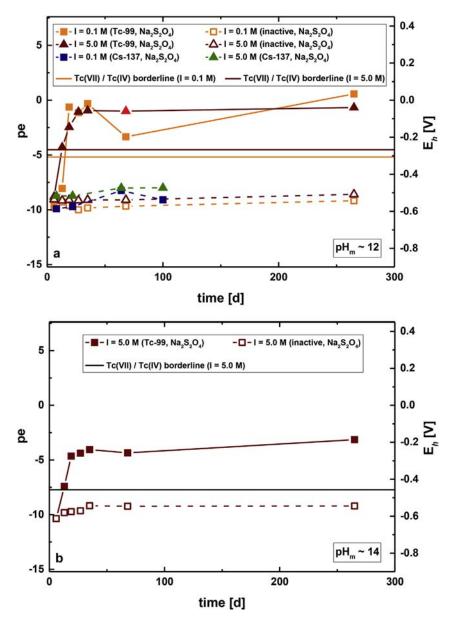
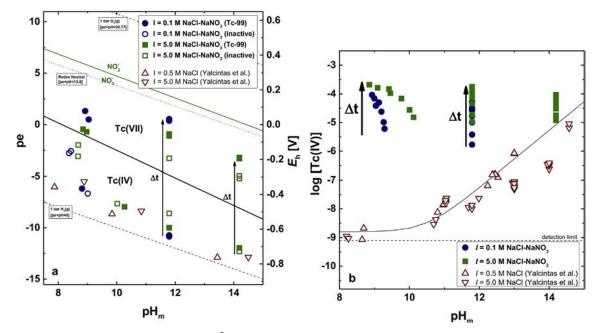

Fig. 2. (a) Pourbaix diagram of Tc calculated for $[Tc]_{tot} = 10^{-5}$ M and I = 0, and experimental pH_m and pe values determined in 0.1 and 5.0 M NaCl–NaNO₃–NaOH systems with $[NaNO_3] = 0.1$ and 1.0 M NaNO₃ in the presence of 10 mg Fe powder. Samples marked as "inactive" do not contain Tc. (b) Experimental solubility data of Tc(IV) (added as 1–2 mg of TcO₂0.6H₂O(am)) in NaCl–NaNO₃–NaOH systems at $8.5 \le pH_m \le 14.5$ in the presence of Fe powder. Black solid line provides the reference Tc(IV) solubility at I = 0. All Tc calculations performed with thermodynamic data reported in (Yalçıntaş et al., 2016) and (Guillaumont et al., 2003). Redox borderline NO₃⁻/NO₂⁻ calculated at I = 0 using thermodynamic data reported in (Puigdomenech and Taxen, 2000). Triangles in figures a and b correspond to experimental data (pH_m, *E*_h and [Tc]) reported in (Yalçıntaş et al., 2015) under analogous conditions but absence of nitrate.

Fig. 3. (a) Pourbaix diagram of Tc calculated for $[Tc]_{tot} = 10^{-5}$ M and I = 0, and experimental pH_m and pe values determined in 0.1 and 5.0 M NaCl–NaNO₃–NaOH systems with $[NaNO_3] = 0.1$ and 1.0 M NaNO₃ in the presence of 2 mM Na₂S₂O₄. Samples marked as "inactive" do not contain Tc. (b) Experimental solubility data of Tc(IV) (added as 1–2 mg of TcO₂·0.6H₂O(am)) in NaCl–NaNO₃–NaOH systems at $11.5 \le pH_m \le 14.5$ in the presence of Na₂S₂O₄. Black solid line provides the reference Tc(IV) solubility at I = 0. All Tc calculations performed with thermodynamic data reported in Yalçıntaş et al. (2016) and (Guillaumont et al., 2003). Redox borderline NO₃⁻/NO₂⁻ calculated at I = 0 using thermodynamic data reported in (Puigdomenech and Taxen, 2000). Triangles in figures a and b correspond to experimental data (pH_m, E_h and [Tc]) reported in Yalçıntaş et al. (2015) under analogous conditions but absence of nitrate.

Yalçıntaş et al., 2015, 2016). As a rather hard Lewis acid, the solubility of Tc(IV) can be enhanced by the complexation with strong Lewis bases such as carbonate (Alliot et al., 2009; Baumann et al., 2018; Eriksen et al., 1992). Weaker ligands can hardly outcompete hydrolysis, and thus complexes of Tc(IV) with chloride are only described in extremely acidic conditions with very high chloride concentrations (Poineau et al.,

2006; Vichot et al., 2002, 2003) and hydroxide complexes prevail at higher pH conditions. No Tc(IV) nitrate complexes are described so far in the literature. Based on the similar strength reported for complexes of chloride and nitrate with hard Lewis cations (Brown et al., 2005; Gamsjäger et al., 2012; Guillaumont et al., 2003; Pearson, 1988; Wiberg and Hollemann, 2008), no Tc(IV) nitrate complexes are expected to


Fig. 4. Evolution of pe with time in NaCl–NaNO₃–NaOH systems in the presence of Na₂S₂O₄, both in the absence and presence of TcO₂0.6H₂O(am) (denoted as "inactive" and "Tc-99", respectively). Selected systems investigated also in the presence of Cs-137 (and absence of Tc-99). Figure a: $pH_m \sim 12$; Figure b: $pH_m \sim 14$. Sample selected for XANES marked as red triangle. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

form in the weakly alkaline to hyperalkaline pH conditions of relevance in the context of repositories for nuclear waste disposal.

The oxidation of Tc(IV) to Tc(VII) is usually controlled by the het $TcO_2 \cdot 1.6H_2O(am)$ erogeneous reaction + $0.4H_{2}O(1)$ ⇒ $TcO_4^- + 4H^+ + 3e^-$ with log K° = -37.8 (Guillaumont et al., 2003). The redox borderline Tc(VII)/Tc(IV) (1:1 distribution of both redox states) is calculated at $pe \approx 1$ for pH = 7 and $[Tc]_{tot} = 10^{-5} M$, thus indicating that the oxidation of Tc(IV) already takes place under mildly reducing conditions. The stepwise reduction of nitrate proceeds through the formation of nitrite according to NO_3^- + 2H^+ + 2e ~ \rightleftharpoons $NO_2^- + H_2O(l)$, with log K° = 27.8 (Puigdomenech and Taxen, 2000). This chemical reaction and equilibrium constant define a N(V)/N(III) redox borderline at pe \approx 7 as calculated for pH = 7. This implies that according to thermodynamic considerations and in the absence of other redox couples, nitrate should oxidize Tc(IV) to Tc(VII) with the con sequent increase in Tc solubility. Existing literature on Tc redox in the presence of nitrate mostly focusses on sediment and aquifer systems

(Burke et al., 2005; Icenhower et al., 2010; Istok et al., 2004; Law et al., 2010; Li and Krumholz, 2008) or in Hanford wastetanks (Chaiko et al., 1995; Levitskaia et al., 2014; Qafoku et al., 2015; Schroeder et al., 2001), conditions which can hardly be extrapolated to deep under ground repository conditions and nitrate containing wasteforms. Ko bayashi, Sasaki, Kitamura and co workers performed the most com prehensive solubility study with Tc(IV) in the presence of nitrate available to date (Japan Atomic Energy Agency (JAEA), 2014; Kobayashi et al., 2013a). The authors observed a significant increase of the Tc(IV) solubility in some of the investigated systems, but did not provide conclusive evidence on the role of nitrate in the oxidative dissolution of $TcO_2 xH_2O(am)$.

In this context, our work targets the investigation of Tc solubility and redox behaviour in nitrate containing solutions under repository relevant conditions, covering a broad range of nitrate and salt con centrations (0.1 1.0 M and 0.1 5.0 M, respectively), pH (8.5 \leq pH_m \leq 14.5) in presence of reductants (Sn(II), Fe(0), Na₂S₂O₄)

Fig. 5. (a) Pourbaix diagram of Tc calculated for $[Tc]_{tot} = 10^{-5}$ M and I = 0, and experimental pH_m and pe values determined in 0.1 and 5.0 M NaCl–NaNO₃–NaOH systems with $[NaNO_3] = 0.1$ and 1.0 M NaNO₃ in the presence of 2 mM Sn(II). Samples marked as "inactive" do not contain Tc. (b) Experimental solubility data of Tc (IV) (added as 1–2 mg of TcO₂-0.6H₂O(am)) in NaNO₃–NaCl–NaOH systems at 8.5 \leq pH_m \leq 14.5 in the presence of Sn(II). Solid line provides the reference Tc(IV) solubility at I = 0. All Tc calculations performed with thermodynamic data reported in (Yalçıntaş et al., 2016) and (Guillaumont et al., 2003). Redox borderline NO₃⁻/NO₂⁻ calculated at I = 0 using thermodynamic data reported in (Puigdomenech and Taxen, 2000). Triangles in figures a and b correspond to experimental data (pH_m, E_h and [Tc]) reported in (Yalçıntaş et al., 2015) under analogous conditions but absence of nitrate.

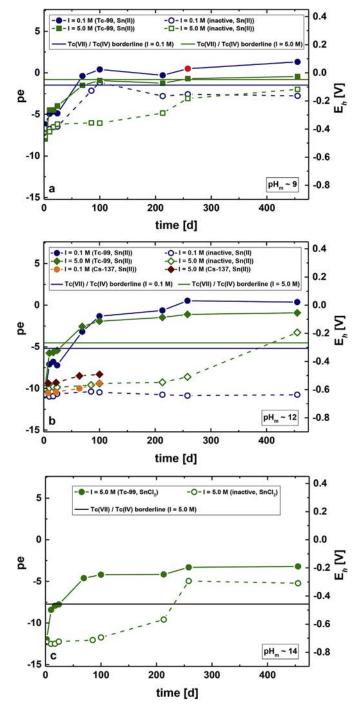
as well as in absence of reducing chemicals. For this purpose a com bination of wet chemistry methods (solubility, pH and E_h measure ments) and redox speciation approaches (solvent extraction and X ray Absorption Near Edge Structure, XANES) is used and compared with thermodynamic calculations (Pourbaix and solubility diagrams) using a consistent set of thermodynamic data (Baumann et al., 2017; Rard et al., 1999; Yalçıntaş et al., 2016).

2. Experimental

2.1. Chemicals

NaNO₃ (p.a.), NaCl (p.a.), Na₂S₂O₄ (p.a.), Fe powder, CHCl₃ (p.a.), NaOH (Titrisol^{*}), HCl (Titrisol^{*}) and colorimetric Nitrate Test (MQuant[™]) were purchased from Merck. Tetraphenylphosphonium chloride (TPPC, C₂₄H₂₀ClP, 98%) and SnCl₂ (98%) were purchased from Sigma Aldrich. The Fe powder was first washed with a HCl solu tion (pH ~ 3.5) and then with ultrapure water before adding the solid Fe to the NaCl NaNO₃ NaOH background solutions. A purified and radiochemically well characterized ⁹⁹Tc(VII) stock solution (1.3 M NaTCO₄) was used for the electrochemical preparation of an acidic Tc (IV) stock solution (see Section 2.4). A¹³⁷Cs(I) stock solution (37 MBq Cs 137 in 0.1 M HCl) was purchased from Isotope Products Labora tories, Burbank, CA, USA and used in test redox systems in the absence of ⁹⁹Tc (see Section 2.4). Perkin Elmer Ultima Gold[™] XR was used as liquid scintillation counting (LSC) cocktail.

All sample preparation and handling was performed in an Ar glo vebox at $T = (22 \pm 2)$ °C. All solutions were prepared with ultrapure water purified with a Millipore Milli Q Advantage A10 (18.2 M Ω cm at 25 °C, 4 ppb TOC) with Millipore Millipak^{*} 40 0.22 µm, purged with Ar for 1 h before use to remove traces of O₂(g) and CO₂(g).


2.2. pH_m measurements and E_h measurements

The determination of the proton concentration $(pH_m = \log [H^+],$ in molal units) was performed using combination pH electrodes (type ROSS, Orion) calibrated against standard pH buffers ($2 \le pH \le 12$, Merck). In salt solutions of ionic strength $I_m \ge 0.1 \text{ mol kg}^{-1}$, the measured pH value (pH_{exp}) is an operational apparent value related to [H^+] by $pH_m = pH_{exp} + A_m$. The empirical correction factor A_m entails both the liquid junction potential and the activity coefficient of H^+ . The A_m values for the ternary system NaCl NaNO₃ were taken from (Herm et al., 2015). In NaCl NaOH solutions with [OH⁻] ≥ 0.01 M, the proton concentration was calculated using γ_{H^+} , γ_{OH^-} (as calculated by SIT) and the activity of water (a_{H2O}), at each ionic strength, as reported in the NEA TDB (Rard et al., 1999).

Redox potential measurements were performed with Au and Pt combination electrodes with Ag/AgCl reference system (Metrohm) and converted to E_h versus the standard hydrogen electrode by correction for the potential of the Ag/AgCl reference electrode (+208 mV for 3 M KCl at 22 °C). All samples were measured for 15 30 min while agitating continuously. The apparent electron activity (pe = loga_e) was calcu lated from pe = 16.9 E_h [V], according to the equation $E_h = -\frac{RT \ln 10}{F} \log a_e^{-}$. The performance of the redox electrode was tested with a standard redox buffer solution (Schott, +220 mV vs. Ag/AgCl) and provided readings within ± 10 mV of the certified value.

2.3. Determination of Tc total concentration and redox speciation in solution

The total concentration of Tc in the aqueous phase was quantified by LSC. For each sample, $500 \,\mu$ l of supernatant were removed from the sample and centrifuged in 10 kD filters (2 3 nm cut off, Nanosep^{*} and Mikrosep^{*} centrifuge tubes Pall Life Sciences) at 4020 g for 5 min to separate colloids or suspended solid phase particles. $400 \,\mu$ l of the fil trate were then pipetted into $600 \,\mu$ l of 1.0 M HCl. Under standard ambient temperature and pressure, $600 \,\mu$ l of this solution were added to 10 ml of LSC cocktail (Perkin Elmer Ultima GoldTM XR) in a screw cap (PP, 20 ml, Zinsser Analytic) and measured with a LKB Wallac 1220 Quantulus Liquid Scintillation Counter for 30 min each. The back ground count rate in LSC was determined by repeated measurements of inactive blanks, and the resulting detection limit (3 times the standard

Fig. 6. Evolution of pe with time in for NaCl–NaNO₃–NaOH systems in the presence of Sn(II), both in the absence and presence of TcO₂·0.6H₂O(am) (denoted as "inactive" and "Tc-99", respectively). Selected systems investigated also in the presence of Cs-137 (and absence of Tc-99). Figure a: $pH_m \sim 9$; Figure b: $pH_m \sim 12$; Figure c: $pH_m \sim 14$. Sample selected for XANES marked as red circle. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

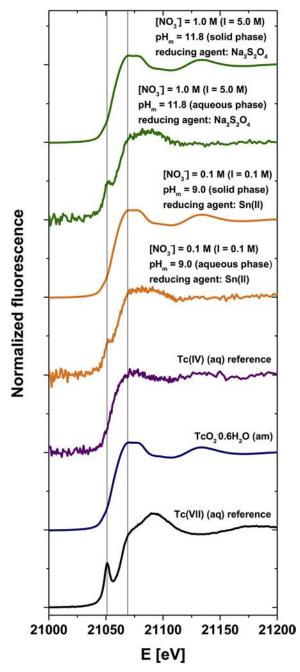
deviations of the blank) was calculated as $8 \cdot 10^{-10}$ M.

Liquid liquid extraction was used for the quantification of the redox speciation of Tc in the aqueous phase. $500 \ \mu$ l of the supernatant of each of the technetium containing samples were centrifuged in 10 kD ul trafiltration vials at 4020 g for 5 min 400 μ l were then acidified with 1.0 M HCl and pipetted into 400 μ l of a solution of 50 mM TPPC in chloroform and shaken for 60 s(Kopunec et al., 1998). After subsequent separation of the aqueous and organic phases by centrifugation, the

Table 2

Fraction of Tc(VII) in the supernatant solution of selected solubility samples as quantified by liquid-liquid extraction with TPPC. Uncertainties: $pH_m \pm 0.1$, liquid-liquid extraction $\pm 10\%$.

Reducing agent	Equilibration time	[NaNO ₃] [M]	I [M]	\mathbf{pH}_{m}	Tc(VII) [%]
none	245 d	0.1	0.1	9.0	99
none	245 d	0.1	0.1	11.8	85
none	245 d	1.0	5.0	8.8	96
none	245 d	1.0	5.0	11.8	92
none	245 d	1.0	5.0	14.2	67
Fe(0)	54 d	0.1	0.1	9.6	99
Fe(0)	54 d	1.0	5.0	9.4	97
$Na_2S_2O_4$	62 d	0.1	0.1	11.8	48
$Na_2S_2O_4$	62 d	1.0	5.0	11.8	82
$Na_2S_2O_4$	62 d	1.0	5.0	14.2	27
Sn(II)	245 d	0.1	0.1	9.0	99
Sn(II)	245 d	0.1	0.1	11.8	72
Sn(II)	245 d	1.0	5.0	9.0	95
Sn(II)	245 d	1.0	5.0	11.8	88
Sn(II)	245 d	1.0	5.0	14.2	67


technetium concentration in the aqueous phase was determined by LSC as described above and attributed to the presence of Tc(IV).

2.4. Redox behaviour and solubility of Tc(IV) in nitrate systems

The Tc(IV) solid phase used in the solubility experiments was pre pared and characterized in a previous study (Baumann et al., 2017). Briefly, a Tc(IV) stock solution was prepared by electrochemical re duction of Tc(VII) in 1 M HCl under Ar atmosphere in a glovebox used exclusively for Tc studies. The resulting Tc(IV) suspension was quan titatively precipitated in a strongly reducing solution (5 mM Na₂S₂O₄) at pH_m ~ 12.5 and aged for two months. The solid phase was char acterized as TcO₂·0.6H₂O(am) by means of X ray diffraction (XRD), scanning electron microscopy energy disperse spectrometry (SEM EDS), quantitative chemical analysis (Tc by LSC and Na by inductively coupled plasma optical emission spectroscopy, ICP OES) and thermo gravimetric analysis (TG DTA).

The solubility experiments with TcO₂·0.6H₂O(am) were performed from undersaturation conditions in 0.1 and 5.0 M NaCl NaNO3 NaOH solutions with $[NaNO_3] = 0.1$ and 1 M, respectively. Each sample composition was prepared as a redox buffered (presence of 10 mg Fe powder (per sample), 2 mM Sn(II)^1 or $2 \text{ mM Na}_2\text{S}_2\text{O}_4$ as reducing agent) and an unbuffered (absence of reducing agent) sample. The samples of each ionic strength were divided into solutions with pH_m values ranging from 8.5 to 14.5. The pH_m values were adjusted using HCl NaCl and NaCl NaOH solutions under conservation of the corresponding ionic strengths. A second series of samples was prepared under the same boundary conditions (ionic strength, [NaNO₃], pH_m and presence/ab sence of reducing agents) but in the absence of Tc. A third series of samples prepared in the absence of Tc was spiked with 5 10⁵ Bq ¹³⁷Cs (β emitter with $t_{1/2} = 30.17$ years). Such activity is similar to the one resulting from the decay of ≈ 0.5 mg 99 Tc as used in the Tc solubility experiments. This series of samples aimed at evaluating the possible role of a β radiation dose in redox processes between nitrate and the reducing chemicals used in the present study, although it should be noted that the decay energy of ¹³⁷Cs is slightly higher than that of ⁹⁹Tc. This set of samples resulted in a total of 36 independent batch

 $^{^1}$ Sn(II) forms sparingly soluble oxo-hydroxides and is characterized by an amphoteric behaviour (formation of cationic and anionic hydrolysis species in acidic and alkaline pH conditions, respectively). Although originally introduced in the system as SnCl₂, the presence of Sn(II) solid phase/s (possibly Sn(OH)₂(s) and/or Sn₆O₄(OH)₄(s)) was observed in all samples at pH_m < 12. For these samples, the total concentration of Sn(II) in solution was clearly below than the original [SnCl₂], although [Sn]_{aq} was not quantified experimentally.

Fig. 7. Tc K-edge XANES spectra of Tc(VII)(aq) reference, original Tc(IV) solid phase (TcO₂ $0.6H_2O(am)$), Tc(IV)(aq) reference and 4 selected solubility samples (2 solid + 2 aqueous) in the presence of nitrate.

experiments (see Table 1). pH_m and E_h values of prepared background electrolytes were measured after 2 days to ensure stable pH_m conditions and, in the case of buffered samples, that the targeted reducing starting conditions for Tc(IV) samples had been reached. After confirming that all solutions met the necessary requirements, 1 2 mg of Tc(IV) solid were washed three times with 1 ml of the respective background elec trolyte solution and then added to 20 ml of matrix solution in 50 ml screw cap centrifuge vials (NalgeneTM, Thermo Scientific) to form the final active Tc(IV) samples. pH_m , E_h and Tc concentrations in the so lubility samples were measured at regular time intervals for up to 460 days.

2.5. XANES measurements

XANES spectra were recorded at the ACT Beamline for Actinide Research (2.5 T superconducting wiggler source) at the 2.5 GeV KIT synchrotron radiation source, KIT Campus North (Zimina et al., 2017).

Both solid and aqueous phases were characterized by XANES to evaluate the redox state of Tc. Three reference samples were used in the XANES characterization: (i) $1 \ 10^{-3} \ M \ TcO_4^{-}$ solution, (ii) the original TcO₂0.6H₂O(am) solid phase before contacting nitrate solutions and (iii) the corresponding Tc(IV) aqueous supernatant at pH_m ≈ 12.5 (absence of nitrate, [Tc] $\approx 3.8 \ 10^{-5} \ M$). Two solid and two aqueous samples were selected for XANES measurements: (a) solid phase and corresponding supernatant solution equilibrated for 307 days in 0.1 M NaNO₃ with $I = 0.1 \ M \ at \ pH_m = 9 \ ([Tc] \approx 6.9 \ 10^{-5} \ M)$ in the presence of Sn(II), and (b) solid phase and corresponding supernatant solution equilibrated for 124 days in 1.0 M NaNO₃ with $I = 5.0 \ M \ at \ pH_m = 11.8 \ ([Tc] \approx 5.9 \ 10^{-5} \ M)$ in the presence of Na₂S₂O₄.

In all cases, approximately 300 μ l of the suspension were transferred to a 400 μ l polyethylene vial under Ar atmosphere and centrifuged at 4020 g for 10 min to obtain a compacted solid phase at the bottom of the vial. The vials were mounted in a gas tight cell with windows of Kapton^{*} film (polyimide) inside an Ar glovebox and transported to the ACT Beamline, where it was kept under continuous flow of Ar during the course of the measurements.

A pair of Si(311) crystals is used in the double crystal mono chromator (DCM, FMB Oxford, Oxford, United Kingdom). The mono chromatic radiation delivered by the DCM is focused by a Rh coated toroidal mirror into a spot size below 1 mm diameter at the sample position. The intensity of the beam is optimized at 21.5 keV. The in tensity of the incoming beam (I0) is monitored using an Ar filled io nization chamber at ambient pressure. A five pixel LEGe solid state detector (Canberra, Olen, Belgium) is used for collecting Tc K_{α} fluor escence radiation. The fluorescence signal emitted by the sample is analyzed and filtered by a digital X ray pulse processing system (XMAP DXP module, XIA LLC, Hayward (CA), USA). Tc K edge XAFS spectra of liquid samples are recorded in fluorescence detection mode by re gistering the Tc $K_{\alpha 1,2}$ fluorescence yield (18.367 keV (K_{\alpha 1}) and 18.251 keV ($K_{\alpha 2}$)) as a function of the incident photon energy. For solid samples XAFS spectra are recorded simultaneously in fluorescence and transmission mode. The Tc K edge spectra ($E(Tc^0 1s) = 21.044 \text{ keV}$) are calibrated against the first derivative X ray absorption near edge structure (XANES) spectrum of a molybdenum metal foil (energy of first inflection point set to $E(Mo^0 \ 1s) = 20.000 \text{ keV}$ recorded simulta neously. XAFS data analysis is based on standard procedures, normal izing energy calibrated XANES spectra to their edge jump as im plemented in the Demeter suit of programs version 0.9.26 (Ravel and Newville, 2005).

3. Results and discussion

3.1. Redox behaviour and solubility of Tc(IV) in nitrate systems

In the absence of reducing chemicals, thermodynamic calculations suggest that all nitrate containing samples should feature $E_{\rm h}$ conditions above the Tc(VII)/Tc(IV) borderline in the pH_m region investigated, considering the redox couple NO₃⁻/NO₂⁻. Redox borderlines shown in the following Pourbaix diagrams represent a 1:1 distribution of the respective redox partner (e.g. Tc(VII)/Tc(IV) or NO₃⁻/NO₂⁻). As shown in Fig. 1 a, this is true for all systems investigated both in the presence and absence of TcO₂·0.6H₂O(am). Subsequently and due to the partial oxidation of Tc(IV) to Tc(VII)O₄⁻, the solubility of technetium (IV) in the presence of nitrate is strongly increased relative to the low solubility expected for Tc(IV) systems in the absence of nitrate (see Fig. 1 b). We note however that a (smaller) fraction of solid phase re mained in all solubility experiments, thus indicating that the oxidation of TcO₂·0.6H₂O(am) to Tc(VII) was incomplete. The maximum

concentration of Tc in solution is estimated as 5 $10 \ 10^{-4}$ M, assuming the complete dissolution of 1 2 mg 99 Tc(IV) solid in 20 ml of solution.

Previous studies have shown that reducing agents such as Sn(II), Na₂S₂O₄ or Fe powder are able to retain technetium as Tc(IV) for prolonged periods of time (Baumann et al., 2017; Kobayashi et al., 2013b; Liu et al., 2005; Liu et al., 2007; Steigman and Eckelman, 1992; Steigman et al., 1975; Warwick et al., 2007; World Nuclear Association (WNA), 2014; Yalçıntaş et al., 2016; Yalçıntaş et al., 2015). In a recent study on the redox behaviour of Tc(IV)/Tc(VII), long term stable re ducing conditions were observed in 0.5 and 5.0 M NaCl solutions con taining Fe powder and $pH_m \le 9$ (see red triangles in Fig. 2a) (Yalçıntaş et al., 2015). In the present work, Fe powder was not able to retain persistent reducing conditions at $pH_m \sim 9$ in the presence of 0.1 1.0 M NaNO₃. Within hours of adding NaNO₃ to the Fe(0) systems, $E_{\rm h}$ in creased towards the Tc(IV)/Tc(VII) redox borderline and subsequently established more oxidizing conditions (compared to nitrate free systems in the presence of Fe powder) during the course of the experiments (see Fig. 2 a and b). Note that a fast reaction between nitrate and Fe(0) under near neutral pH conditions has been previously described in the literature (Alowitz and Scherer, 2002).

 $Na_2S_2O_4$ has been reported to buffer strongly reducing conditions under hyperalkaline pH_m conditions (Riedel and Janiak, 2015; Wiberg and Hollemann, 2008). The impact of nitrate in $Na_2S_2O_4$ buffered sys tems is shown in Fig. 3 a (pH_m and pe values) and Fig. 3 b (solubility of Tc). Because of the known decomposition of $Na_2S_2O_4$ in weakly alkaline and acidic pH_m conditions (with consequent increase in E_h) (Lem and Wayman, 1970; Wayman and Lem, 1970), only samples with $pH_m \ge 11.5$ were considered in the present study.

Fig. 3 a shows that (within the time frame investigated for this system, $t \le 260$ days) nitrate induces only a slight increase in $E_{\rm h}$ for those Na₂S₂O₄ buffered systems in the absence of TcO₂·0.6H₂O(am). On the contrary, all samples containing $TcO_2{\cdot}0.6H_2O(am)$ show a sig nificant increase in $E_{\rm h}$ above the Tc(IV)/Tc(VII) redox borderline in dependent of nitrate concentration or ionic strength. This observation is consistent with experimental solubility data shown in Fig. 3 b, where the significant increase in [Tc] (compared to the solubility of Tc(IV) in the absence of nitrate) can be attributed to an oxidative dissolution of TcO2·0.6H2O(am) with the corresponding formation of Tc(VII) in the aqueous phase. Colorimetric tests to distinguish nitrate from reduced nitrite performed in selected samples of both systems (absence/pre sence of TcO₂·0.6H₂O(am)) show the presence of nitrite only in those systems containing TcO₂·0.6H₂O(am), thus confirming that the ob served oxidation of Tc(IV) is induced by the reduction of nitrate to nitrite.

Fig. 4 a and 4 b show the experimental pe values as a function of time for NaCl NaNO3 NaOH systems in the presence of Na2S2O4, both in the absence and presence of $TcO_2{\cdot}0.6H_2O(am).$ Both figures show that the significant increase in pe observed in the presence of TcO2·0.6H2O(am) (6 10 pe units) occurs within the first 20 days of contact time, whereas a far smaller increase in pe (< 1 pe unit) is ob served in the absence of TcO2.0.6H2O(am) within 270 days. These re sults suggest a catalytic effect of TcO2.0.6H2O(am) on the redox process occurring under these conditions. Many transition metals (e.g. Fe, Pt, Pd, Rh, among others) are known to catalyse both inorganic and or ganic reactions (Appl, 2000; Brückner, 2004; Carey and Sundberg, 2007a; b; Ostwald, 1907). Technetium itself has also been reported to exhibit catalytic behaviour e.g. in hydrocarbon reforming but is also known to accelerate the oxidation of hydrazine by nitric acid which in the absence of technetium is very slow except at increased temperatures and acidities (Blackham and Palmer, 1973; Garraway and Wilson, 1984).

Sn(II) is known to be a strong reducing agent (close to the border of water reduction to H_2) in a broad pH_m range extending from very acidic to hyperalkaline conditions (Riedel and Janiak, 2015; Wiberg and Hollemann, 2008). The impact of nitrate in Sn(II) buffered systems is shown in Fig. 5 a (p H_m and pe values) and Fig. 5 b (solubility of Tc).

Fig. 5 a shows that nitrate promotes an increase of E_h in Sn(II) buffered systems, both in the absence and presence of $TcO_2{\cdot}0.6H_2O$ (am). Fig. 5 b confirms that, for the samples containing Tc, this increase in *E*_h is correlated with a significant increase in the concentration of Tc as expected for the oxidative dissolution of TcO2.0.6H2O(am) to Tc(VII). The colorimetric nitrate/nitrite test shows the presence of nitrite in these samples, thus supporting that oxidation is triggered by the re duction of nitrate. Fig. 6 a 6 c show the experimental pe values as a function of time for NaCl NaNO3 NaOH systems in the presence of Sn (II), both in the absence and presence of $TcO_2 \cdot 0.6H_2O(am)$. These fig ures confirm that the increase in $E_{\rm h}$ is significantly accelerated in the presence of TcO₂·0.6H₂O(am), again underpinning the role of this solid phase in catalysing the redox reaction between nitrate and the reduced species in the system. The precise mechanism for the technetium case is not fully known yet, but heterogeneous catalysis is generally considered to proceed by surface adsorption processes (Riedel and Janiak, 2015; Wiberg and Hollemann, 2008). Amorphous surfaces, due to their in creased overall surface area, are known to exhibit increased catalytic properties compared to more crystalline structures(Wiberg and Hollemann, 2008). Fig. 6 a 6 c also show that $E_{\rm h}$ values reach the stability field of Tc(VII) faster with increasing pH_m. This can be quali tatively rationalised by the known stabilisation of higher oxidation states with increasing pH_m , and further quantitatively assessed with the chemical reaction (1) and corresponding chemical equation (2) de scribing the oxidative dissolution of TcO₂·0.6H₂O(am):

 $TcO_2 \cdot 0.6H_2O(am) + 1.4H_2O(l) \Rightarrow TcO_4^- + 4H^+ + 3e^-$ (1)

 $\log K^{\circ}_{\text{IVs VII}} = \log a(\text{TcO}_4^{-}) \quad 4 \text{ pH } 3 \text{ pe} \quad 1.4 \log a_{\text{w}}$ (2)

 $E_{\rm h}$ measurements performed for up to 100 days in Sn(II) and Na₂S₂O₄ systems in the presence of ¹³⁷Cs showed no significant changes in the initial redox conditions (see Figs. 4 and 6). This observation is in line with $E_{\rm h}$ measurements in "inactive" systems, and thus indicates that the β radiation dose in these samples (as well as in presence of ⁹⁹Tc) does not play a relevant role in the redox processes on going in the investigated systems.

3.2. Tc redox speciation

The results of liquid liquid extraction in the supernatant solution are shown in Table 2 as the fraction of Tc(VII) present in the supernatant of selected solubility samples. In most cases, liquid liquid extraction confirms the predominance of Tc(VII) in solution. This observation is in line with E_h and solubility measurements, as well as with thermo dynamic calculations considering the excess of nitrate in the system.

3.3. XANES measurements

Fig. 7 shows the XANES spectra of the selected 3 reference systems and 4 solubility samples (2 solid + 2 aqueous) in the presence of ni trate. The shape of the individual XANES spectra and the presence of the characteristic Tc(VII) pre peak (transition 1s→4d signature) un equivocally prove the predominance of Tc(VII) in the supernatant so lution of the samples investigated (Allen et al., 1997; Lukens et al., 2004; Saslow et al., 2017). The shape of the individual XANES spectra and the energy position of the respective inflection points of the solid phases measured show the sole presence of Tc(IV) above the detection limit of the technique (< 10% in mol fraction) in all solid phases and thereby suggest that there was no solid phase transformation during the course of the experiments. These results are in line with the pre dominance of Tc(VII) expected in the aqueous phase according to (pe + pH_m) values measured experimentally and the redox speciation data obtained by liquid liquid extraction.

4. Conclusions

The impact of nitrate on the redox potential of different reducing systems (Fe powder, Na₂S₂O₄, Sn(II)) and the corresponding effect on the Tc redox and solubility were investigated in alkaline, dilute to concentrated NaCl systems.

Nitrate induces an increase in E_h in most of the evaluated systems. This increase is especially important (6 10 pe units) and faster (5 50 days) in the presence of a Tc(IV) solid phase, TcO₂·0.6H₂O(am). This observation hints towards a catalytic role of the Tc(IV) solid phase in the redox processes between nitrate and the reducing systems in vestigated. Nitrate also promotes a very significant increase in the Tc solubility in samples with a Tc(IV) solid phase (1 6 log units, de pending upon pH_m and ionic strength). Liquid liquid extraction and XANES confirm that technetium is predominantly found as Tc(VII) in the aqueous phase, thus supporting that the increase in solubility is due to the oxidative dissolution of TcO2·0.6H2O(am). The identification of nitrite in solution by a colorimetric test confirms that nitrate is the redox counterpart responsible of the oxidation of Tc(IV). The evolution of $E_{\rm h}$ in nitrate containing systems with ¹³⁷Cs (and absence of ⁹⁹Tc) is analogous to that of inactive systems, thus indicating that the catalytic role of technetium is not driven by the $\beta\,$ radiation dose of ^{99}Tc in the solubility experiments with TcO₂·0.6H₂O(am).

Our new experimental observations indicate that nitrate is able to oxidize Tc(IV) if present in excess over reducing agents. Such conditions are also conceivable in a repository for low and intermediate level waste. Our data clearly show that the role of nitrate as oxidant is fa cilitated by the presence of a Tc(IV) solid phase, although kinetically hindered. This catalytic effect possibly extends to other transition me tals available in the repository (e.g. Fe). Further experiments are on going at KIT INE to evaluate the effect of nitrate on other redox sen sitive systems of relevance in the context of nuclear waste disposal. Such investigations are of relevance for correctly assessing the source term of specific ILW/LLW wastes featuring large nitrate inventories.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors would like to acknowledge the contribution of collea gues at KIT INE. The technical support provided by M. Böttle is highly appreciated. V. Metz, B. Kienzler and D. Fellhauer are gratefully ac knowledged for fruitful discussions on nitrate containing wastes.

References

- Albrecht, A., Bertron, A., Berger, G., Bleven, N., Cannière, P.D., Erable, B., Libert, M., Pauwels, H., Pointeau, I., Sergeant, C., Small, J., Truche, L., Valcke, E., 2012. Behaviour of Nitrate Present in Nuclear Waste and Impact on Repository Chemistry and Safety. Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, Montpellier.
- Allen, P.G., Siemering, G.S., Shuh, D.K., Bucher, J.J., Edelstein, N.M., Langton, C.A., Clark, S.B., Reich, T., Denecke, M.A., 1997. Technetium speciation in cement waste forms determined by X-ray absorption fine structure spectroscopy. Radiochim. Acta 76, 77
- Alliot, I., Alliot, C., Vitorge, P., Fattahi, M., 2009. Speciation of technetium(IV) in bicarbonate media. Environ. Sci. Technol. 43, 9174-9182.
- Alowitz, M.J., Scherer, M.M., 2002. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal, Environ, Sci. Technol. 36, 299-306.
- ANDRA, 2005. Dossier 2005 Argile: Architecture and Management of a Geological Repository. ANDRA Report Series.
- André, L., Pauwels, H., Azaroual, M., Albrecht, A., Romero, M.-A., 2007. Reactivity of nitrates in the different storage compartments of type-b wastes. In: Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, Lille, France.
- Appl, M., 2000. Ammonia, Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA.
- Atkins, M., Glasser, F.P., 1992. Application of portland cement-based materials to radioactive waste immobilization. Waste Manag. 12, 105-131.
- Baumann, A., Yalçıntaş, E., Gaona, X., Altmaier, M., Geckeis, H., 2017. Solubility and

hydrolysis of Tc(IV) in dilute to concentrated KCl solutions: an extended thermodynamic thermodynamic model for Tc⁴⁺-H⁺-K⁺-Na⁺-Mg²⁺-Ca²⁺-OH -Cl -H2O (1) mixed systems. New J. Chem. 41, 9077-9086.

- Baumann, A., Yalçıntaş, E., Gaona, X., Polly, R., Dardenne, K., Prüßmann, T., Rothe, J., Altmaier, M., Geckeis, H., submitted to Dalton Transactions on 19.01.2018. Thermodynamic Description of Tc(IV) Solubility and Carbonate Complexation in Alkaline NaHCO3-na2CO3-nacl Systems.
- Bénard, P., Coumes, C.C.D., Garrault, S., Nonat, A., Courtois, S., 2008. Dimensional stability under wet curing of mortars containing high amounts of nitrates and phosphates. Cement Concr. Res. 38, 1181-1189.
- Bertron, A., Jacquemet, N., Erable, B., Sablayrolles, C., Escadeillas, G., Albrecht, A., 2014. Reactivity of nitrate and organic acids at the concrete-bitumen interface of a nuclear waste repository cell. Nucl. Eng. Des. 268, 51-57.
- Blackham, A.U., Palmer, J.L., 1973, Technetium Catalyst for Hydrocarbon Reforming, United States of America.
- Borkel, C., Schlieker, M., Kienzler, B., Metz, V., 2016. Degradation of Real Scale Cemented Simulated Waste Forms over 35 Years in Salt Solutions, Mechanisms and Modelling of Waste/Cement Interactions 2016, Murten, Switzerland.
- Brown, P.L., Curti, E., Grambow, B., Ekberg, C., 2005. Chemical Thermodynamics of Zirconium. North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands.
- Brückner, R., 2004. Reaktionsmechanismen, third ed. ed. Springer Spektrum, Berlin, Heidelberg.
- Burke, I.T., Boothman, C., Lloyd, J.R., Mortimer, R.J.G., Livens, F.R., Morris, K., 2005. Effects of progressive anoxia on the solubility of technetium in sediments. Environ. Sci. Technol. 39, 4109-4116.
- Cannière, P.D., Maes, A., Williams, S., Bruggeman, C., Beauwens, T., Maes, N., Cowper, M., 2010. Behaviour of Selenium in Boom Clay, External Report of the Belgian Nuclear Research Centre. SCK•CEN, Mol, Belgium.
- Carey, F.A., Sundberg, R.J., 2007a. Advanced Organic Chemistry Part A: Structure and
- Mechanisms, fifth ed. Springer US, New York. Carey, F.A., Sundberg, R.J., 2007b. Advanced Organic Chemistry Part B: Reaction and Synthesis, fifth ed. Springer US, New York,
- Chaiko, D.J., Vojta, Y., Takeuchi, M., 1995. Extraction of technetium from simulated Hanford tank wastes. Separ. Sci. Technol. 30, 1123-1137.
- Duro, L., Grivé, M., Cera, E., Gaona, X., Domènech, C., Bruno, J., 2006. Determination and Assessment of the Concentration Limits to Be Used in SR-can, SKB Technical Report TR-06-32.
- Eriksen, T.E., Ndalamba, P., Bruno, J., Caceci, M., 1992. The solubility of TcO2 nH2O in neutral to alkaline solutions under constant p_{CO2}. Radiochim. Acta 58/59, 67-70.
- Gamsjäger, H., Gajda, T., Sangster, J., Saxena, S.K., Voigt, W., 2012. Chemical Thermodynamics of Tin. OECD Publications, Paris, France.
- Garraway, J., Wilson, P.D., 1984. The technetium-catalysed oxidation of hydrazine by nitric acid. J. Less Common Met. 97, 191-203.
- Giffaut, E., Grivé, M., Blanc, Ph, Vieillard, Ph, Colàs, E., Gailhanou, H., Gaboreau, S., Marty, N., Madé, B., Duro, L., 2014. Andra thermodynamic database for performance assessment: ThermoChimie. Appl. Geochem. 49, 225-236.
- Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H., 2003. Update on the Chemical Thermodynamics of U, Np, Pu, Am and Tc. North
- Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands. Hansen, H.C.B., Guldberg, S., Erbs, M., Koch, C.B., 2001. Kinetics of nitrate reduction by green rusts-effects of interlayer anion and Fe(II):Fe(III) ratio. Appl. Clay Sci. 18, 81-91.
- Herm, M., Gaona, X., Rabung, T., Fellhauer, D., Crepin, C., Dardenne, K., Altmaier, M., Geckeis, H., 2015. Solubility and spectroscopic study of AnIII/LnIII in dilute to concentrated Na-Mg-Ca-Cl-NO3 solutions. Pure Appl. Chem. 87 (5), 487-502.
- Hess, N.J., Xia, Y., Rai, D., Conradson, S.D., 2004. Thermodynamic model for the solubility of $TcO_2 xH_2O(am)$ in the aqueous $Tc(IV) - Na^+ - Cl - H^+ - OH - H_2O$ system. J. Solut. Chem. 33.
- Hicks, T., Baldwin, T.D., Hooker, P.J., Richardson, P., Chapman, N., McKinley, I., Neall, F., 2017. Concepts for the Geological Disposal of Intermediate-level Radioactive Waste. Galson Sciences Ltd, Rutland, UK
- Hill, R.C.P., Reynolds, J.G., Rutland, P.I., 2011. In: A Comparison of Hanford and Savannah River Site High-level Wastes, United States.
- Icenhower, J.P., Qafoku, N.P., Zachara, J.M., Martin, W.J., 2010. The biogeochemistry of technetium: a review of the behavior of an artificial element in the natural environment. Am. J. Sci. 310, 721-752.
- International Atomic Energy Agency (IAEA), 1970. Bituminization of radioactive wastes. In: International Atomic Energy Agency (IAEA). Technical Reports Series, Vienna. International Atomic Energy Agency (IAEA), 1993. Improved Cement Solidification of
- Low and Intermediate Level Radioactive Wastes. International Atomic Energy Agency (IAEA), Vienna.
- Irisawa, K., Ohsone, O., Meguro, Y., 2014. Effects of salt content on leaching properties of synthetic bituminized wastes. J. Nucl. Sci. Technol. 51, 323-331.
- Istok, J.D., Senko, J.M., Krumholz, L.R., Watson, D., Bogle, M.A., Peacock, A., Chang, Y.J., White, D.C., 2004. In situ bioreduction of technetium and uranium in a nitratecontaminated aquifer. Environ. Sci. Technol. 38, 468-475.
- Japan Atomic Energy Agency (JAEA), 2014. The project for validating assessment methodology in geological disposal system in FY 2013. In: Japan Atomic Energy Agency (JAEA) (Ed.), Japan.
- Jørgensen, C.J., Jacobsen, O.S., Elberling, B., Aamand, J., 2009. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ. Sci. Technol. 43, 4851-4857.
- Kienzler, B., 2017. Schwach- und mittelradioaktive Abfälle: Organische Matrices. KIT Scientific Reports, Karlsruhe.
- Kobayashi, T., Sasaki, T., Kitamura, A., 2013a. Solubility of TcO2:xH2O(s) in Dilute to

 $\label{eq:concentrated NaNO_3 Solutions, 14th International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere (MIGRATION 2013). Brighton, England.$

- Kobayashi, T., Scheinost, A.C., Fellhauer, D., Gaona, X., Altmaier, M., 2013b. Redox behavior of Tc (VII)/Tc (IV) under various reducing conditions in 0.1 M NaCl solutions. Radiochim. Acta 101, 323–332.
- Kopunec, R., Abudeab, F.N., Skragkovfi, S., 1998. Extraction of pertechnetate with tetraphenylphosphonium in the presence of various acids, salts and hydroxides. J. Radioanal. Nucl. Chem. 230, 51–60.
- Law, G.T.W., Geissler, A., Boothman, C., Burke, I.T., Livens, F., Lloyd, J.R., Morris, K., 2010. Role of nitrate in conditioning aquifer sediments for technetium bioreduction. Environ. Sci. Technol. 44, 150–155.
- Lem, W.J., Wayman, M., 1970. Decomposition of aqueous dithionite. Part I. Kinetics of decomposition of aqueous sodium dithionite. Can. J. Chem. 48, 776–781.
- Levitskaia, T.G., Rapko, B.M., Anderson, A., Peterson, J.M., Chatterjee, S.D., Walter, E.D., Cho, H.M., Washton, N.M., 2014. Speciation and oxidative stability of alkaline soluble, non-pertechnetate technetium. In: Laboratory, P.N.N. (Ed.), Pacific Northwest National Laboratory, Richland, Washington.
- Li, X., Krumholz, L.R., 2008. Influence of nitrate on microbial reduction of pertechnetate. Environ. Sci. Technol. 42, 1910–1915.
- Libert, M.-F., 2011. Nitrate Reducing Bacterial Activity under Alkaline Conditions Found in Intermediatelevel Nuclear Waste Repositories. Nuwcem 2011, Avignon, France.
- Liu, D., Fan, X., Yao, J., 2005. Reduction kinetics of TcO4- by Sn(II) in basic medium. J. Nucl. Radiochem. 27 (2), 70–74.
- Liu, D.J., Yao, J., Wang, B., Bruggeman, C., Maes, N., 2007. Solubility study of Tc(IV) in a granitic water. Radiochim. Acta 95, 523–528.
- Lukens, W.W., Shuh, D.K., Schroeder, N.C., Ashley, K.R., 2004. Identification of the nonpertechnetate species in Hanford waste tanks, Tc(I) Carbonyl complexes. Environ. Sci. Technol. 38, 229–233.
- Meyer, R.E., Arnold, W.D., Case, F.I., O'Kelley, G.D., 1991. Solubilities of Tc(IV) oxides. Radiochim. Acta 55, 11–18.
- Ostwald, W., 1907. Process of Manufacturing Nitric Acid, United States of America.

Palmer, J.D., Fairhall, G.A., 1992. Properties of cement systems containing intermediate level wastes. Cement Concr. Res. 22, 325–330.

- Pearson, R.G., 1988. Chemical hardness and bond dissociation energies. J. Am. Chem. Soc. 110, 7684–7690.
- Poineau, F., Fattahi, M., Montavon, G., Grambow, B., 2006. Condensation mechanisms of tetravalent technetium in chloride media. Radiochim. Acta 94, 291–299.

Postma, D., 1990. Kinetics of nitrate reduction by detrital Fe(II)-silicates. Geochem. Cosmochim. Acta 54, 903–908.

- Puigdomenech, I., Taxen, C., 2000. In: Thermodynamic Data for Copper Implications for the Corrosion of Copper under Repository Conditions, in: Co., S.N.F.a.W.M. (Ed.), SKB-TR–00-13, Stockholm, Sweden.
- Qafoku, N.P., Serne, R.J., Neeway, J.J., Westsik, J.J.H., Lawter, A.R., Snyder, M.M.V., Levitskaia, T.G., 2015. Technetium and iodine getters to improve cast stone performance. In: Laboratory, P.N.N. (Ed.), Pacific Northwest National Laboratory, Richland, Washington.
- Rard, J.A., Rand, M.H., Anderegg, G., Wanner, H., 1999. Chemical Thermodynamics of Technetium. North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands.
- Ravel, B., Newville, M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray

absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541.

- Riedel, E., Janiak, C., 2015. Anorganische Chemie, ninth ed. ed. de Gruyter, Berlin, Boston.Saslow, S.A., Um, W., Pearce, C.I., Engelhard, M.H., Bowden, M.E., Lukens, W., Leavy, I.I.,
- Saslow, S.A., Um, W., Pearce, C.I., Engelhard, M.H., Bowden, M.E., Lukens, W., Leavy, I.I., Riley, B.J., Kim, D.-S., Schweiger, M.J., Kruger, A.A., 2017. Reduction and simultaneous removal of ⁹⁹Tc and Cr by Fe(OH)₂(s) mineral transformation. Environ. Sci. Technol. 51, 8635–8642.
- Schroeder, N.C., Radzinski, S.D., Ashley, K.R., Truong, A.P., Whitener, G.D., 2001. Feed adjustment chemistry for Hanford 101-SY and 103-SY tank waste: attempts to oxidize the non-pertechnetate species. J. Radioanal. Nucl. Chem. 250, 271–284.
- Serne, R.J., Rapko, B.M., 2014. Technetium Inventory, Distribution, and Speciation in Hanford Tanks. Pacific Northwest National Laboratory, Richland, Washington.

SKB, 2010. Data Report for the Safety Assessment SR-site. SKB Report TR-10-52. Steigman, J., Eckelman, W.C., 1992. The Chemistry of Technetium in Medicine, Nuclear

- Science Series. National Research Council, Washington, D.C., USA. Steigman, J., Meinken, G., Richards, P., 1975. The reduction of pertechnetate-99 by stannous chloride—I. The stoichiometry of the reaction in HCl, in a citrate buffer and
- in a DTPA buffer. Int. J. Appl. Radiat. Isot. 26, 601–609. Truche, L., Berger, G., Albrecht, A., Domergue, L., 2013. Abiotic nitrate reduction induced by carbon steel and hydrogen: implications for environmental processes in waste repositories. Appl. Geochem. 28, 155–163.

Vichot, L., Fattahi, M., Musikas, C., Grambow, B., 2003. Tc(IV) chemistry in mixed chloride/sulphate acidic media. Formation of polyoxopolymetallic species. Radiochim. Acta 91, 263–271.

- Vichot, L., Ouvrard, G., Montavon, G., Fattahi, M., Musikas, C., Grambow, B., 2002. XAS study of technetium(IV) polymer formation in mixed sulphate/chloride media. Radiochim. Acta 90, 575–579.
- Warwick, P., Aldridge, S., Evans, N., Vines, S., 2007. The solubility of technetium(IV) at high pH. Radiochim. Acta 95, 709–716.
- Wayman, M., Lem, W.J., 1970. Decomposition of aqueous dithionite. Part II. A reaction mechanism for the decomposition of aqueous sodium dithionite. Can. J. Chem. 48, 782–787.
- Weetjens, E., Sillen, X., Valcke, E., 2006. Deep disposal of eurobitum bituminised waste: scoping calculations of nitrate release. MRS Proceedings 932.

Wiberg, N., Hollemann, A.F., 2008. Lehrbuch der Anorganischen Chemie, 102nd Edition. De Gruyter, Berlin.

World Nuclear Association (WNA), Radioisotopes in Medicine, http://www.worldnuclear.org/info/Non-Power-Nuclear-Applications/Radioisotopes/Radioisotopes-in-Medicine/, (accessed 13.02.2014).

Yalçıntaş, E., Gaona, X., Altmaier, M., Dardenne, K., Polly, R., Geckeis, H., 2016. Thermodynamic description of Tc(IV) solubility and hydrolysis in dilute to concentrated NaCl, MgCl₂ and CaCl₂ solutions. Dalton Trans. 45, 8916–8936.

- Yalçıntaş, E., Gaona, X., Scheinost, A.C., Kobayashi, T., Altmaier, M., Geckeis, H., 2015. Redox chemistry of Tc(VII)/Tc(IV) in dilute to concentrated NaCl and MgCl₂ solutions. Radiochim. Acta 103, 57–72.
- Zimina, A., Dardenne, K., Denecke, M.A., Doronkin, D.E., Huttel, E., Lichtenberg, H., Mangold, S., Pruessmann, T., Rothe, J., Spangenberg, T., Steininger, R., Vitova, T., Geckeis, H., Grunwaldt, J.-D., 2017. CAT-ACT—a new highly versatile x-ray spectroscopy beamline for catalysis and radionuclide science at the KIT synchrotron light facility ANKA. Rev. Sci. Instrum. 88, 113113.

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Baumann, A.; Gaona, X.; Yalçıntaş, E.; Dardenne, K.; Prüßmann, T.; Rothe, J.; Duckworth, S.; Altmaier, M.; Geckeis, H.
<u>Impact of nitrate on the redox chemistry and solubility of Tc(IV) in alkaline, dilute to</u>
<u>concentrated aqueous NaCl solutions</u>
2018. Applied geochemistry, 98
doi: 10.554/IR/1000086755

Zitierung der Originalveröffentlichung:

Baumann, A.; Gaona, X.; Yalçıntaş, E.; Dardenne, K.; Prüßmann, T.; Rothe, J.; Duckworth, S.; Altmaier, M.; Geckeis, H.
Impact of nitrate on the redox chemistry and solubility of Tc(IV) in alkaline, dilute to concentrated aqueous NaCl solutions
2018. Applied geochemistry, 98, 321–330.
doi:10.1016/j.apgeochem.2018.10.007

Lizenzinformationen: CC BY-NC-ND 4.0