
A Modular Software Framework for Compression of Structured
Climate Data

Ugur Cayoglu†, ‡
Ugur.Cayoglu@kit.edu

Jennifer Schröter‡
Jennifer.Schroeter@kit.edu

Jörg Meyer†
Joerg.Meyer2@kit.edu

Achim Streit†
Achim.Streit@kit.edu

†Steinbuch Centre for Computing
Karlsruhe Institute of Technology

Germany

Peter Braesicke‡
Peter.Braesicke@kit.edu

‡Institute of Meteorology and
Climate Research

Karlsruhe Institute of Technology
Germany

ABSTRACT
Through the introduction of next-generation models the climate
sciences have experienced a breakthrough in high-resolution simu-
lations. In the past, the bottleneck was the numerical complexity of
the models, nowadays it is the required storage space for the model
output. One way to tackle the data storage challenge is through
data compression.

In this article we introduce amodular framework for the compres-
sion of structured climate data. Our modular framework supports
the creation of individual predictors, which can be customised and
adjusted to the data at hand. We provide a framework for creating
interfaces and customising components, which are building blocks
of individualised compression modules that are optimised for partic-
ular applications. Furthermore, the framework provides additional
features such as the execution of benchmarks and validity tests for
sequential as well as parallel execution of compression algorithms.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; Software design techniques; Reusability; Designing soft-
ware;

KEYWORDS
Usability, compression, software, framework, climate research

ACM Reference Format:
Ugur Cayoglu†, ‡, Jennifer Schröter‡, Jörg Meyer†, Achim Streit†, and Peter
Braesicke‡. 2022. A Modular Software Framework for Compression of Struc-
tured Climate Data. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
New high-resolution climate models such as ICON-ART [13] sim-
ulate decades of weather dynamics and atmospheric interactions
on a global scale. These models are validated with, for example,
reanalysis datasets. One of them, the current European ReAnalysis
(ERA5) dataset outputs hourly data starting from 1979 to the present
on a 1440 × 721 (about 31 km) horizontal and 137 level vertical (up
to 0.01 hPa = 80 km) grid1. If we assume 16-Bit Integer values for
each variable this amounts to 2.26 TiB p.a. per variable with support
for 120 variables2. One way to tackle the storage problem is to use
compression.

A successful compression algorithm would allow to save the
output of even higher resolutioned models on the same available
disk space or reduce the currently used disk space. Until recently, the
development of compression methods focused rather on text files
than numerical data. This has changed in recent years. A number of
algorithms have been developed, which focus on the compression of
floating-point values. Other developments specifically address data
generated in climate sciences [1, 3, 5, 7]. Most of these methods use
prediction-based compression [6, 11] which is particularly suited
for climate data due to its gridded nature. Although these methods
are based on the same principle of prediction-based compression,
there is currently no easy way to test and adapt them to the data at
hand. Our framework introduced here does provide this flexibility.

Our framework supports the creation of individual predictors,
which can then be customised by the scientist. It defines neces-
sary interfaces and components for the development of custom
compression algorithms.

In the next section we will give a brief overview of prediction-
based compression. Afterwards we will introduce our proposed
framework. In Section 4 we will take a closer look at the implemen-
tation details. In the concluding section, we will outline how the
community can contribute to the framework and give recommen-
dations for future work.

1European Centre for Medium-Range Weather Forecasts (ECMWF) Newsletter No.
147 – Spring 2016 (p.7)
2While some of these variables are simulated, others can be deduced from simulated
variables. For reference http://apps.ecmwf.int/codes/grib/param-db

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA U. Cayoglu et al.

2 PREDICTION-BASED COMPRESSION
In this section we will give a brief introduction to prediction-based
compression. A prediction-based compression algorithm consists
of the following steps:

(1) Reading in the data
(2) Mapping the data to integers
(3) Defining a traversal sequence
(4) Giving a prediction for each value
(5) Calculating the residual between prediction and true value
(6) Encoding these residuals and saving them on disk

Figure 1 depicts the state diagram of the above described com-
pression algorithm. The decompression process follows through
the states in reverse order. Prediction-based compression relies on
the following premise:

The better the prediction is, the more zeros are leading the resid-
ual from step five. The number of zeros at the beginning of a binary
number is called its leading zero count (LZC). The next step differs
depending on whether lossy compression or lossless compression
is desired. With lossless compression, the LZC and the residual are
stored. With lossy compression, the deviation from the true value
is compared with an error tolerance determined in advance and a
decision is made whether or not the residual should be stored. The
true value can then be reconstructed using the prediction model
and residual.

After this brief introduction to prediction-based compression,
we will now describe how this concept has been implemented in
the framework.

3 FRAMEWORK
The main goal of the framework is to provide state of the art com-
pression algorithms for environmental sciences. It should provide
off-the-shelf solutions, but at the same time have a low barrier for
customisation. In this section we will describe the structure of the
proposed framework and how it achieves these goals.

Figure 1: State diagram of a prediction-based compression
algorithm. The label on the arrows define transitions ap-
plied to the previous state. The coloured options emphasise
the similarity of the states. Data files are yellow and multi-
dimensional arrays are green.

Algorithm 1: Default compression function using our
framework.
1 Function compress(arr, mapper, sequencer, ...)
2 iarr = mapper.map(arr) ; /* Mod 1 */

3 seq = sequencer.flatten(iarr) ; /* Mod 2 */

4 pred = [];
5 for 𝑖 = 0 to seq.size do
6 p = predictor.predict();
7 pred.append(p) ; /* Mod 3 */

8 predictor.update(seq[i]);
9 rarr = subtractor.subtract(iarr, seq, pred) ; /* Mod 4 */

10 coded = encoder.encode(rarr) ; /* Mod 5 */

11 return coded;

The framework consists of two core components: objects and
modifiers.

Object. The purpose of objects is to represent the current state
of the data to be compressed like the states depicted in Figure 1.
They may include metadata about previous states, but once created
are immutable.

Modifier. Modifiers operate on objects and are the only way to
transform one object to the other. Each modifier has exactly one
method and can only operate on one kind of object. This prevents
a mistake in change of modifiers and enhances interoperability.

An ordinary compression algorithm consists of five modifiers
with the following tasks:

• Mapper Mapping floating-point values to integers
• Sequencer Transforms an array into a data stream
• Predictor Predicts next datum on the data stream, based on
past values

• Subtractor Calculates the residual between prediction and
true value

• Encoder Prepares residuals to be written on disk

Themodifiers are designed for the tasks detailed in Section 2. The
objects are the outcome of these tasks. The default compression
function of the framework is shown in Algorithm 1. Since the
interface of each modifier is standardised it is very easy to replace
each modifier of the compression algorithm.

Next to these components the framework provides additional
modules to help the scientist design a compression algorithm: en-
semble predictors, quality assessment, parallel compression and
random subsetting.

Ensemble predictors. It is rather unlikely that there is one pre-
dictor to rule them all. For example, if it is known that predictor 𝑥
performs very good for temperature, but bad for greenhouse gas
ozone, the framework should provide the possibility to switch be-
tween predictors or to average the result of several predictors. For
this case the framework supports ensemble predictors. An ensem-
ble instance is defined by a list of predictors and a cost function.
The predictors of the list are run in parallel during compression.
The cost function determines the rank of these predictors. There

A Modular Software Framework for Compression of Structured Climate Data Conference’17, July 2017, Washington, DC, USA

might also be a consolidation function in case the prediction of
the ensemble instance should be an average of all predictions in-
stead of the one with the least costs. An example for an ensemble
predictor is given in Algorithm 2. Here the predictors are ranked
based on their performance on the data processed prior, given the
pre-defined traversal sequence (step four in Section 2). Please note
the similarities in the syntax of Alg. 1 and Alg. 2: Since there is no
distinguishing property of ensemble and non-ensemble predictors,
the framework supports the nesting of ensemble predictors.

Quality Assessment. The Quality Assessment (QA) module pro-
vides information about the achievable compression rate by the
current setup and dataset. QA hooks into the compression process
at step five (see Section 2) and calculates the LZC of the residual
array. The residual array provides enough information about the
performance of the predictors. The average LZC can then be com-
pared to the Shannon Entropy [14] of the dataset. The Shannon
Entropy quantifies the average amount of information represented
by a random datum of the dataset.

Parallel compression. An additional module, which can support
the scientist in search for a compression method is parallel process-
ing. The proposed framework contains a parallelisation module,
which can either chunk the data in blocks and compress each on a
different thread or run a predictor on each thread with the same
input file. This would lead to a less time-consuming search for a
compression algorithm.

Random subsetting. Since the design of a compression algorithm
is an iterative process, it would be a daunting task for the scientist to
have to compress gigabytes of data on each test-run, only to realise
that a certain parameter needs to be fixed or a predictor can be
eliminated. Therefore the framework supports random subsetting
of datasets. The subsetting is defined by its size, error margin and
possible dimension constraints. The constraints limit the number
of dimensions considered for a subset.

Algorithm 2: An ensemble compression algorithm using
the best predictor from previous prediction [?].
1 Function predict()
2 pred = defaultpredictor;
3 if lastbestpredictor is not NaN then
4 pred = lastbestpredictor
5 return pred.predict();
6 Function cost(prediction, truth)
7 return abs(truth - prediction);
8 Function update(truth)
9 predictions = dict();

10 forall predictor 𝑝 in predictors do
11 prediction = p.predict();
12 predictions[p] = cost(prediction, truth);
13 sorted = sortByValue(predictions, ascending=True);
14 lastbestpredictor = sorted[0]

These features should help the scientist define a custom com-
pression method for the data at hand. The framework defines the
necessary components and helper modules for customisation and
grading of compression algorithms, while at the same time provid-
ing easy to use pre-defined algorithms. In the next section we will
discuss the implementation of the framework.

4 IMPLEMENTATION
An implementation of the framework will be made available at [2].
The provided framework is implemented in Python 3 and uses as
backend modules scipy [10], pandas [8] and xarray [4]. It has
been tested with files in NetCDF format with Climate and Forecast
Metadata Conventions. We hope the use of established open source
software provides a good basis for uptake, future co-operations and
possible extensions of the framework. For reasons of brevity we
restrict details about our implementation to the core components.

The class diagram used for the implementation of the object
components is shown in Fig. 2. As described in Section 3 the ob-
jects do not have the possibility to mutate itself or others. With the
exception of Float Array none of the objects have methods to ma-
nipulate their content. The methods implemented in Float Array
are for initialisation from common data types such as numpy [9]
arrays or netcdf [12] data files.

The Prediction Array and Residual Array classes inherit
from the Integer Array class. While these classes do not provide
additional functionality compared to the Integer Array, they are
necessary to provide easy distinction of objects on which each
modifier can operate.

Figure 3 depicts possible modifiers to be used as components
of the framework. This is a none exhaustive list of modifiers and
should exemplify the large number of possible options in designing
a compression algorithm. The modifiers which are implemented at
the time of publication are emphasised. A documentation for each
modifier is omitted for reasons of brevity, but is included in the
provided implementation.

5 SUMMARY AND OUTLOOK
In the last couple of years the climate sciences have experienced a
breakthrough in terms of possible fine-granular simulations. Next-
generation climate models allow high-resolution simulations to
be run on high-performance computers. This resulted in a signifi-
cant increase of storage space. We present a modular framework
for the compression of climate data to tackle this challenge. We
briefly described the steps of a prediction-based compression meth-
ods in Section 2 and explained in Section 3 how these steps are
implemented using the concept of modifiers and objects.

The framework provides all necessary components to design,
test and grade various prediction-based compression algorithms. It
further supports the use of ensemble predictors tomerge predictions
based on different predictors, quality assessment methods to help
grade the prediction methods, parallel compression for concurrent
execution of predictors as well as random subsetting for unbiased
results during the design of a compression algorithm. Although
the framework was currently only used with climate data, it is
conceivable to use it in conjunction with environmental data such
as measurement data or any other grid data.

Conference’17, July 2017, Washington, DC, USA U. Cayoglu et al.

Figure 2: UML class diagram for object components.

Figure 3: A none exhaustive list of modifiers to exemplify the large number of possible combinations. Emphasised are the
modifiers which are implemented and part of the framework at the time of publication.

CODE AVAILABILITY
An implementation of the framework described above will be made
available under GNU GPLv3 license at [2].

REFERENCES
[1] Allison H. Baker, Dorit M. Hammerling, Sheri A. Mickleson, Haiying Xu, Martin B.

Stolpe, Phillipe Naveau, Ben Sanderson, Imme Ebert-Uphoff, Savini Samaras-
inghe, Francesco De Simone, Francesco Carbone, Christian N. Gencarelli, John M.
Dennis, Jennifer E. Kay, and Peter Lindstrom. 2016. Evaluating Lossy Data Com-
pression on Climate Simulation Data within a Large Ensemble. Geosci. Model
Dev. Discuss. July (jul 2016), 1–38. https://doi.org/10.5194/gmd-2016-146

[2] Ugur Cayoglu. 2018. Prediction-based Compression Framework. https://github.
com/ucyo/cframework. (2018). [Online; accessed 27-May-2018].

[3] Ugur Cayoglu, Peter Braesicke, Tobias Kerzenmacher, Jörg Meyer, and Achim
Streit. 2017. Adaptive Lossy Compression of Complex Environmental Indices
Using Seasonal Auto-Regressive Integrated Moving Average Models. In 2017 IEEE
13th International Conference on e-Science (e-Science). 315–324. https://doi.org/10.
1109/eScience.2017.45

[4] Stephan Hoyer and Joe Hamman. 2017. xarray: N-D labeled arrays and datasets
in Python. Journal of Open Research Software 5, 1 (2017). https://doi.org/10.5334/
jors.148

[5] Xiaomeng Huang, Yufang Ni, Dexun Chen, Songbin Liu, Haohuan Fu, and
Guangwen Yang. 2016. Czip: A Fast Lossless Compression Algorithm for
Climate Data. Int. J. Parallel Program. 44, 6 (dec 2016), 1248–1267. https:
//doi.org/10.1007/s10766-016-0403-z

[6] Peter Lindstrom and Martin Isenburg. 2006. Fast and Efficient Compression of
Floating-Point Data. IEEE Trans. Vis. Comput. Graph. 12, 5 (sep 2006), 1245–1250.
https://doi.org/10.1109/TVCG.2006.143

[7] Songbin Liu, Xiaomeng Huang, Yufang Ni, Haohuan Fu, and Guangwen Yang.
2014. A High Performance Compression Method for Climate Data. In 2014 IEEE
Int. Symp. Parallel Distrib. Process. with Appl. IEEE, 68–77. https://doi.org/10.
1109/ISPA.2014.18

[8] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van derWalt and Jarrod
Millman (Eds.). 51 – 56.

[9] Travis E Oliphant. 2006. A guide to NumPy. Vol. 1. Trelgol Publishing USA.
[10] Travis E. Oliphant. 2007. Python for Scientific Computing. Computing in Science

Engineering 9, 3 (May 2007), 10–20. https://doi.org/10.1109/MCSE.2007.58
[11] Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. 2006. Fast Lossless Com-

pression of Scientific Floating-Point Data. In Data Compression Conf. IEEE, 133–
142. https://doi.org/10.1109/DCC.2006.35

[12] Russ Rew and Glenn Davis. 1990. NetCDF: an interface for scientific data access.
IEEE computer graphics and applications 10, 4 (1990), 76–82.

[13] Jennifer Schröter, Daniel Rieger, Christian Stassen, Heike Vogel, Michael Weimer,
Sven Werchner, Jochen Förstner, Florian Prill, Daniel Reinert, Günther Zängl,
Marco Giorgetta, Roland Ruhnke, Bernhard Vogel, and Peter Braesicke. 2018.
ICON-ART 2.1 – A flexible tracer framework and its application for composition
studies in numerical weather forecasting and climate simulations. Geoscien-
tific Model Development Discussions 2018 (2018), 1–37. https://doi.org/10.5194/
gmd-2017-286

[14] Claude E. Shannon. 1948. A Mathematical Theory of Communication. Bell
Syst. Tech. J. 27, 3 (jul 1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.
tb01338.x arXiv:chao-dyn/9411012

https://doi.org/10.5194/gmd-2016-146
https://github.com/ucyo/cframework
https://github.com/ucyo/cframework
https://doi.org/10.1109/eScience.2017.45
https://doi.org/10.1109/eScience.2017.45
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
https://doi.org/10.1007/s10766-016-0403-z
https://doi.org/10.1007/s10766-016-0403-z
https://doi.org/10.1109/TVCG.2006.143
https://doi.org/10.1109/ISPA.2014.18
https://doi.org/10.1109/ISPA.2014.18
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/DCC.2006.35
https://doi.org/10.5194/gmd-2017-286
https://doi.org/10.5194/gmd-2017-286
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://arxiv.org/abs/chao-dyn/9411012

	Abstract
	1 Introduction
	2 Prediction-based compression
	3 Framework
	4 Implementation
	5 Summary and Outlook
	References

