
Balancing load of GPU subsystems to accelerate
image reconstruction in parallel beam tomography

Suren Chilingaryan
Karlsruhe Institute of Technology

chilingaryan@kit.edu

Evelina Ametova
KU Leuven

evelina.ametova@kuleuven.be

Andreas Kopmann
Karlsruhe Institute of Technology

kopmann@kit.edu

Alessandro Mirone
ESRF

mirone@esrf.fr

Abstract—Synchrotron X-ray imaging is a powerful method to
investigate internal structures down to the micro- and nanoscopic
scale. Fast cameras recording thousands of frames per second
allow time-resolved studies with a high temporal resolution.
Fast image reconstruction is essential to provide the synchrotron
instrumentation with the imaging information required to track
and control the process under study. Traditionally Filtered Back
Projection algorithm is used for tomographic reconstruction.
In this article, we discuss how to implement the algorithm on
nowadays GPGPU architectures efficiently. The key is to achieve
balanced utilization of available GPU subsystems. We present
two highly optimized algorithms to perform back projection on
parallel hardware. One is relying on the texture engine to perform
reconstruction, while another one utilizes the Core computational
units of the GPU. Both methods outperform current state-of-
the-art techniques found in the standard reconstructions codes
significantly. Finally, we propose a hybrid approach combining
both algorithms to better balance load between GPU subsystems.
It further boosts the performance by about 30% on NVIDIA
Pascal micro-architecture.

I. INTRODUCTION

Recent advances in X-ray optics and detector technology
have paved the way for a variety of new X-ray imaging
experiments aiming to study dynamic processes in materials
and to analyze small organisms in vivo [1], [2], [3]. The
instrumentation used at imaging beamlines has also recently
undergone a major update. The installed streaming cameras
are able to deliver thousands of frames per second with a
continuous data rate of up to 8 GB/s [4]. Newly developed
control systems use the acquired imaging information to track
the processes under study and adjust the instrumentation
accordingly [4], [5]. In order to achieve higher temporal
resolution and prolong experiment duration, advanced and
compute intensive methods are developed [6], [7]. These
methods are able to produce high quality images from un-
dersampled and underexposed measurements by incorporating
existing a priori knowledge and solving the reconstruction as
an iterative optimization problem. Consequently, the amount
of data generated at imaging beamlines quickly grows and the
computational demands are on a steep rise.

To tackle the performance challenge several reconstruction
frameworks have been developed and optimized to use parallel
capabilities of nowadays computing architectures [8], [9],
[10], [11]. For online monitoring and control, normally fast
analytical methods are used to reconstruct 3D images. There
are two main approaches: Filtered Back Projection (FBP) and

methods based on the Fourier Slice Theorem [12]. The later
methods are asymptotically faster, but due to the involved
interpolation in the Fourier domain are more sensitive to the
quality of the available projections. Recent study suggests
to implement back projection as convolution in log-polar
coordinates in order to gain high reconstruction speed with
interpolation in the image domain [13]. However, this new
method has not yet been adopted in production environments.
Still, Filtered Back Projection is the method of choice, largely
due to its simplicity and robustness.

To provide high performance, GPU architectures include
multiple components that are operating independently. Tex-
ture fetches, memory operations, several types of arithmetic
instructions are executed by the different blocks of a GPU
in parallel. Hence, the execution time is not determined by
the sum of all operations, but rather by the slowest execution
pipeline. The strategy to implement an efficient algorithm is
to balance operations between the available GPU blocks and
to minimize the time required to execute the slowest pipeline.
While many imaging frameworks use GPUs to speed-up the
reconstruction, the known implementations solely use the
texture engine to implement the back-projection. Furthermore,
specific features of the GPU architecture are not considered
and, consequently, the full performance of the texture engine
is not utilized. Only a few papers discuss GPU architectures in
details, but are mostly addressing conic beam geometry [14],
[15]. To our knowledge, there are no papers available on the
NVIDIA Pascal and newer architectures yet.

In this article, we present an optimized implementation
of the FBP algorithm. The focus is on the back projection
step of the algorithm which dominates the reconstruction
time. We discuss two approaches to adapt back projection
to GPU architecture and show how both algorithms can be
executed in parallel to better balance load between available
hardware units. While multiple tasks are often scheduled to
the same GPU to achieve better hardware utilization, it is a
new technique to execute two algorithms optimized to utilize
a different set of hardware units in order to solve a single
problem. Up to our knowledge, it was not studied in the
literature yet. The article is organized as follows. Parallel beam
tomography and the data-flow are discussed in section II. Two
modifications of the back-projection algorithm are developed
in section III. The performance achieved on NVIDIA Pascal
micro-architecture is discussed in section IV.

II. PARALLEL BEAM TOMOGRAPHY

At synchrotron imaging beamlines, samples are typically
placed at a rotating stage in front of a pixel detector. It
registers a series of 2D projections while the sample is turning.
Information about X-ray attenuation or/and phase changes
in the sample are used to reconstruct its internal structure.
Due to the rather large source-to-sample distance, imaging
at synchrotron light sources is well described by a parallel-
beam geometry. The beam direction is perpendicular to the
rotation axis and to the lines of the pixel detector. Therefore,
the 3D reconstruction problem can be split into a stack of
2D reconstructions performed with cross-sectional slices. The
coordinate system is defined so that the center of rotation is
located at the center of the sample coordinate system and the
sample is rotating about the vertical axis. To reconstruct a
slice, the projection values are smeared back over the 2D cross
section and are integrated over all projection angles, see Fig. 1.
To compensate blurring effects inherent to back-projection,
high-pass filtering of the projection data is performed prior
to back projection [12].

1 Projection

α0

45

90
135 α

0

45
90

135

Sinogram

2 Projections 8 Projections 1024 Projections

Reconstructions

Fig. 1: Reconstruction of 2D slice. A sample is rotated in front
of a pixel detector which measures the attenuation of X-rays
in the sample under different rotation angles (top-left). The
recorded projections are arranged in sinogram (top-right). For
image reconstruction, all projections are smeared back onto
the cross section along the direction of incidence yielding an
accumulated image (bottom).

To perform reconstruction, first the projections are rear-
ranged to group together chunks of data required to reconstruct
each slice. A single row of pixels is extracted from each
projection and all such rows are stacked together in a 2D
image, i.e. y-coordinates correspond to projections and x-
coordinates to detector bins (pixels) in a row. These images
are called sinograms and are reconstructed independently. To
enable multi-GPU support, sinograms are distributed between
the parallel accelerators available in the system in a round-
robin fashion. The FBP algorithm is executed in 4 steps.

First the sinogram is transferred to GPU memory. Next, it is
convolved with the configured high-pass filter and the result is
stored in 2D texture. Then, the back projection is performed
and finally the reconstructed slice is transferred back to system
memory.

To allow overlapping of memory transfers with kernel
executions, the page-locked (pinned) system memory is used
to store the data and all steps of FBP algorithm are pipelined.
The sinograms are transferred to GPU memory in groups of 4.
While one group is transferred to GPU, the sinograms already
residing in the GPU memory are reconstructed, and the results
of a third group are transferred back to the system memory. A
double-buffering technique and a stream-based asynchronous
API are used to allow parallel execution. Two pairs of buffers
are used to store input and output data in the GPU memory.
The workload is executed in 3 CUDA streams. One stream
is used to download data, one for processing, and one for
upload. In each iteration, the download stream is synchronized
to ensure that data is ready for filtering. Then, the input buffers
are switched and the new transfer is scheduled asynchronously.
In parallel filtering and back-projection are started in another
CUDA stream. Upon completion, also the upload stream
is synchronized to ensure that previous transfers have been
finished. Then, the data upload is scheduled asynchronously,
the output buffers are switched, and the next iteration is started.

The convolution with a high-pass filter is performed as
multiplication in Fourier domain using standard FFT libraries.
For optimal performance, the sinogram rows are padded to the
next power of 2 and all rows are converted to and from Fourier
domain together using a single batched transformation. Most
available FFT libraries do not support real-to-complex and
complex-to-real transforms. While NVIDIA cuFFT does, the
performance improvement over the complex-to-complex trans-
form is minimal. Therefore, we convert each pair of sinograms
into a single complex vector and execute a single complex con-
volution instead of two convolutions with real numbers [16].
The first sinogram is stored in the real components of the
complex vector and the imaginary components contain the sec-
ond sinogram. Two complex-to-complex transformations are
executed to perform convolution and the resulting sinograms
are similarly interleaved in the memory. The approach results
in a 65-75% performance increase compared to the standard
convolution with real numbers.

III. BACK-PROJECTION

To determine a function of the sample object at a given po-
sition with coordinates (x, y),

∑
p I(x·cos(αp)−y ·sin(αp), p)

is computed over all projections, where I is a sinogram and
αp is rotational angle of p-th projection. The widely adopted
parallel implementation is rather straightforward. Each GPU
thread is responsible for a single pixel of the output slice
and iterates over all projections to sum up the contribution
of each one. At each iteration, a projection is performed to
find the coordinate where the ray passing through the pixel
hits the detector. The value at the corresponding position in
the sinogram is fetched using the texture engine and summed

up with the contributions from other projections. The texture
engine is configured to perform either nearest-neighbor or
linear interpolation as desired. Since trigonometric functions
are relatively slow in GPU architectures, sine and cosine of
all projection angles are pre-computed at the CPU and are
stored in the GPU constant memory during the initialization
phase. The performance of this approach is dominated by
the throughput of the texture engine, but keeps all other
components of the GPU architecture rather under-utilized.
Furthermore, it even does not make use of the full potential
of the texture engine available on the newer GPUs. In this
section we first discuss how the standard implementation can
be optimized to use throughput and cache of the texture engine
more efficiently. In addition we will introduce an alternative
algorithm which caches data in shared memory and performs
the interpolation using GPU Core units. Finally, we will
discuss a hybrid method that combines both approaches and is
able to balance the computational load between all available
GPU resources.

A. Notation

We use mixture of a mathematical and a C-style notation
to describe the algorithms. All variables used across the
algorithms are listed in TABLE I and use the following
naming scheme to simplify reading. We group related variables
together. The same letter is used to refer all variables of the
group and the actual variable is specified using subscript. The
superscript indicates a memory domain where the variable is
located: ·S refers variables in shared memory, ·C - constant
memory, and ·G - global memory. The local variable is
referenced if superscript is not used. For instance, cSs points to
the sine of the projection angle stored in the shared memory.
We use~· symbol to denote all vector variables. The assignment
between vector variable and scalars are shown using curly
braces. Furthermore, all proposed algorithms are capable to
reconstruct 1, 2, or 4 slices in parallel. ·̃ is used to indicate
variables which have a variable size depending on the number
of reconstructed slices. All arithmetic operations in this case
are performed in vector form and affect all slices. The vector
multiplication is performed element wise. We also use the

shfl xor operation to perform reduction on a vector data.
In fact, the vector types are not supported. The operation is
implemented as several calls to the corresponding function
using all vector components one after another. We use integer
division and modulo operations across the code listings. These
operations are very slow on GPUs, but the optimizing com-
piler will replace them by the faster bit-mangling instructions
automatically. Therefore, we use the notation which is easier
to read. There are a few other cases where the optimization is
left to the compiler.

B. Multi-slice reconstruction

The reconstruction performance in the standard approach
is bound to the filtering rate of the texture engine. Up to a
certain limit, the filter rate is independent from the actually
used data type. The same number of texels is returned per

TABLE I: List of variables used in code snippets

Var Type Description
np int Number of projections
~nt int2 Dimensions of thread block
nq int Number of pixels assigned per GPU thread
ns int Size of an area assigned to a thread block
sd int Size of data cache in projections
st int Caching threads per projection row
~va float2 The position of rotation axis
cc float[] Cosine values of the projection angles
cs float[] Sine values of the projection angles
ca float[] Coordinates of the rotational axis
cm float[] Coefficients to find bins required by a block
mp int Projection index in a group
md int Mapping to select an offset in the cache
~mb int2 Index of a thread block within the grid
~mt int2 Index of a thread within the block
~mg int2 Index of a thread within the grid
~m′∗ int2 Re-mapped index
~f∗∗ float2 Pixel coordinate according to the mapping
d float[][] The cache storing a subset of sinogram
s̃ float[] Accumulator of a resulting pixel value
r̃ float[][] The reconstructed slice
p∗ int Projection number; iterators (pb, pi)
q∗ int Pixel block iterators
h∗ various Positions in cache/sinogram

second if either 8, 16, or 32-bit format is used to encode
the texel values. All modern GPUs are capable to filter 64-
bit data at the full speed including 64-bit vector types, like
float2. The tomographic reconstruction is typically performed
using 32-bit single-precision numbers. In parallel tomography,
however, exactly the same operations are performed for all the
reconstructed slices. Therefore, it is possible to reconstruct
multiple slices in parallel if the back projection operator is
applied to a compound sinogram which encodes bins from
multiple simple sinograms as a vector value. Particularly, it is
possible to construct such sinogram using float2 vector type
and interleave values from one sinogram as x components
and from another as y. The bandwidth of the texture engine is
fully utilized and two slices are reconstructed in parallel if the
appropriate float2-typed texture is mapped on this sinogram.
The interleaving is done as an additional data preparation step
before the back projection kernel is started. The kernel is
adjusted to use the float2 type and writes the x component
of the result into the first output slice and the y component
into the second.

The proposed approach can be further scaled to 4 slices
if 16-bit half-precision floating-point data is used. While the
reduced precision might affect the quality of reconstruction,
the majority of cameras has only a dynamic range of 16 bits
or bellow. High-speed cameras actually used for time-resolved
synchrotron tomography have even a lower resolution of 10-
12 bits only. Therefore, using a half-precision representation
to store the input data should have a limited impact on the
resulting image quality if all further arithmetic operations are
performed in single-precision. The half-precision textures are
not supported in the latest available version of CUDA yet
(CUDA 8.0). While one can store the half-precision numbers
in the GPU memory, it is impossible to map the corresponding

texture. Still, it is possible to speed-up the reconstruction
if the nearest-neighbor interpolation mode is utilized. The
texture-mapping is created using the float2 data type. Upon
request the texture engine returns the nearest value without
performing any operations on it. Therefore, the appropriate
data is returned even if an incompatible format is configured.
It is important that the data size is correct. To avoid further
penalty to the precision, the half-precision numbers are im-
mediately cast to single-precision and all further operations
are performed in single-precision as usual. Using the standard
Shepp Logan phantom [17], the penalty on quality due to the
described optimization is negligible. The difference in gray
values between reconstructions is bellow 1% for all pixels.
The achieved speed-up depends on a performance of half- to
single-precision type conversions. While significant speed-up
is measured on NVIDIA Pascal, no performance improvements
are reported for NVIDIA Kepler architecture and for all AMD
GPUs lacking support of half-float OpenCL extension.

C. Texture-based back-projection kernel

Only 70% of the theoretical throughput of the texture
engine is actually reached on NVIDIA Pascal if 4 slices
are reconstructed in parallel. The performance is limited by
the bad locality of the texture fetches and an excessive load
of the Special Function Units (SFU) units. The CUDA C
Programming Guide states that the SFUs are used to compute
approximates of transcendent functions [18]. In fact, they
are also used to perform bit-mangling, type-conversion, and
integer multiplication on Pascal GPUs. In this case, the SFUs
are busy resolving indexes of the array with the geometrical
constants and converting data between half-precision and
single-precision representations.

While it is not possible to reduce the number of type
casts, the constants can be re-used multiple times if each
GPU thread reconstructs several pixels. As different pixels
are reconstructed completely independently, the thread pro-
cessing multiple pixels would also benefit from a flow of
independent operations allowing the GPU scheduler to dual-
issue instructions. There are two approaches to do it. The
first option is to reduce the size of the computational grid
and to assign to each thread the corresponding amount of
output pixels. Alternatively, the number of threads is kept
unchanged, but several projections are processed in parallel.
Then, each thread contributes to multiple resulting pixels, but
iterates over only a subset of all projections while another
thread contributes to the same group of pixels, but from a
different set of projections. Both methods perform similarly
if properly optimized. However, the second approach allows
to keep the dimensions of a computational grid unchanged
and only re-defines how the work is performed by the threads
of the grid. Therefore, it has an advantage for reconstructing
small images or if only a region-of-interest (ROI) is required.

Further it is necessary to ensure a good locality of the
texture fetches. The locality of fetches within a block, a
warp, and also within a group of 4 consecutive threads is
important to keep the texture engine running at full speed.

Fig. 2 illustrates the proposed mapping. Blocks of 256 threads
are responsible for an output area of 16x16 pixels and this
area is further subdivided in 4x4 pixels squares. 64 threads
are assigned to process each square and 4 such squares are
reconstructed in parallel. A full set of 16 squares requires 4
iterations to complete. At each iteration, the squares on the
same line are reconstructed. Compared to the other possible
arrangements, this mapping results in a slightly better cache
hit rate and reduces the register usage as only a single pixel
coordinate is incremented for each thread. Each pixel is
reconstructed using 4 threads. Each thread is responsible to
compute the contribution to the pixel value from a quarter of
all available projections. To avoid costly atomic operations, the
contributions of the projection subsets are summed completely
independently. Then, the threads are re-assigned to perform
reduction in the shared memory and to compute the result-
ing pixel value. To avoid serialization of the warps due to
unaligned constant memory requests, all threads of a warp
are always used to process the same projection. Consequently,
the lowest 4 bits of the thread number in a block define the
mapping within pixel square, next 2 bits define a square, and
the top 2 bits define the processed projection. To ensure good
fetch locality, the threads within the square are mapped along
Z-order curve.

The pseudo-code for the proposed approach is presented in
Algorithm 1. Two distinct processing stages are executed. First
the partial sums are computed in an 4-element array. The outer
loop starts from the first projection assigned to the current
thread and steps over the projections which are processed in
parallel. At each iteration the constants are loaded and inner
loop is executed to process 4 pixels. After completion of all
projections, the reduction loop is started. The partial sums are
written into the shared memory and reduction is performed
using the shuffle operation. On architectures without shuffle
instruction, a standard reduction in shared memory can be
executed instead.

D. ALU-based back-projection kernel

The previously described approach is based on the texture
engine to perform the interpolation, but the Core floating-point
units can be used instead. The loads from global memory limit
performance severely. The L1 cache is small and suffers from
cache poisoning. Therefore, the shared memory is used instead
as explicit cache. Due to the caching overhead the performance
improves if a large number of pixel is reconstructed in each
block. The actual size is determined by the amount of registers
provided by the hardware. Either 32x32 or 64x64 pixel per
thread block are suitable for Pascal GPUs.

A subset of a single sinogram row is required to reconstruct
a square region of an output slice with side N . The smallest
bin (hm) is always accessed while reconstructing one of
the corners. The actual corner is only depending on the
projection angle and is the same across all squares in a slice.
Consequently, the hm can be computed as floor(hb + cm),
where hb is the bin accessed by the first thread of a block
and cm = N · max(0, cos(α),− sin(α), cos(α) − sin(α)).

1-16 17-32 33-48 49-64

65-80 81-96 97-112 113-128

129-144 145-160 161-176 177-192

193-208 209-224 225-240 240-256

4
 p

ro
je

ct
io

ns
Z-order curve

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

16 of 4x4 blocks

Iteration 2

4x4

Iteration 3

Iteration 4

16 pixels

1
6

pi
xe

ls

4x4 Iter.
2

Iter.
3

Iter.
4

4x4
Iteration

2

Iteration
3

Iteration
4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Alternative less efficient mappings

...

Multiple projections,
the same area

Fig. 2: GPU thread to pixel/projection mapping. A block
with 256 threads is assigned to each square of 16x16 pixels.
The threads within each small 4x4 square are mapped along
Z-order curve (top). A group of 64 consecutive threads is
responsible to process a rectangular area of 16x4 pixels
(middle). Multiple consecutive projections are processed in
parallel using 4 such groups (bottom). The complete square is
reconstructed over 4 iterations. Alternative possible mappings
are less efficient due to worse cache utilization or higher
register usage (right). For each output pixel or block of pixels,
the assigned range of threads is stated in the corresponding
cells. The area processed by the threads of a block in parallel
are shown in gray/orange.

This value is pre-computed during initialization stage and
is stored in the constant memory along with other per-
projection constants. The number of required bins is equal
to (x0 − x1) · cos(α)− (y0 − y1) · sin(α), where (x0, y0) and
(x1, y1) are some coordinates in the region. For some angle
β, it is equivalent to:

√
(x0 − x1)2 + (y0 − y1)2 · cos(α+ β)

and does not exceed N ·
√
2. One extra bin is required to

perform linear interpolations. For sake of simplicity, we always
cache 3

2N bins starting at offset hm. Furthermore, the value
of hm is required by both steps of the algorithm. First it is
needed to perform caching and, then, to locate the required
value in the cache. The rounding operation is performed to
find hm. On NVIDIA architectures it adds significantly to the
computational balance of SFU units which are also heavily
loaded by rounding and type-mangling operations required to
resolve cache indexes. To reduce the load, the hm is cached in
shared memory during the first stage of algorithm and re-used
in the second. The complete scheme is illustrated in Fig. 3.

Since no interpolation is required while the data is read

Input: Texture, projection constants (cC∗), dimensions (n∗), cache
sizes (s∗), and other parameters (v∗)

Shared: s̃S [64][4], r̃S [16][16]
Output: Reconstructed slice r̃G

begin
/* Computing sequential numbers of 4x4 square,

quadrant, and pixel within quadrant */
square = mt.y % 4
quadrant = mt.x / 4
pixel = mt.x% 4
/* Computing projection and pixel offsets */
mp = mt.y / 4
m′t.x = 4 ∗ square+ 2 ∗ (quadrant% 2) + (pixel% 2)
m′t.y = 2 ∗ (quadrant / 2) + (pixel / 2)
/* Computing pixel coordinates */
~m′g = ~mb ∗ ~nt + ~m′t
~f ′g = ~m′g − ~va
/* Computing partial sums */
s̃[4] = {0}
for (p = mp; p < np; p += 4)

cs = cCs [p].y
h = cCa [p] + f ′g .x ∗ cCc [p]− f ′g .y ∗ cCs [p] + 0.5f
for (q = 0; q < 4; q += 1)

s̃[q] += tex2d(h− 4 ∗ q ∗ cs, p+ 0.5f)
end

end
/* Reduction */
~m′′t = {mt.x% 4, 4 ∗mt.y +mt.x / 4}
for (q = 0; q < 4; q += 1)

/* Moving partial sums to shared memory */

s̃S [nt.x ∗m′t.y +m′t.x][mp] = s̃[q]
syncthreads

/* Performing reduction */

r̃ = s̃S [m′t.y][m
′
t.x]

for (i = 2; i ≥ 1; i /= 2)
r̃ += shfl xor(r̃, i, 4)

end
/* Grouping results in shared memory to coalesce

global memory writes */
if m′′t .x == 0 then

r̃S [4 ∗ q +m′′t .y / 16][m′′t .y % 16] = r̃
end

syncthreads
end
r̃G[mg .y][mg .x] = r̃S [mt.y][mt.x]

end

Algorithm 1: Optimized implementation of the back-projection kernel
relaying on the texture engine to perform interpolation

from the global memory, it is possible to access the sinograms
directly rather than using texture fetches. However, NVIDIA
relays on the same LD units to perform the shared and global
memory operations. I.e. either a shared memory or a global
memory instruction can be executed at each clock. On other
hand, texture fetches and shared memory loads are performed
in parallel. The corresponding pseudo-code is presented in
Algorithm 2. A block of 256 threads is used and each thread is
responsible to reconstruct 4 to 16 pixels. The reconstruction is
performed in two stages. At first, the bins required by a thread
block are determined and cached for a set of projections.
Afterwards, the reconstruction is performed using the data in
the cache. To perform caching, the threads of a block are split
into several groups. Each group is responsible for caching
bins for a single projection. The number of threads in the
group is selected to avoid bank conflicts in shared memory
and a sufficient number of projections is cached to utilize

bins

pro
jec tio

ns Offset
cache

16

Sinogram Shared-memory caches

x

y

32x32 pixels

48 bins
48 bins

48 bins

-

For each projection
find the required position
in the sinogram

Compute offset
 In the cache

Load values
from the
cache and
interpolate

Computing and caching
the cache offsets

Caching the
sinogram
subset at the
computed
offsets

Reconstructed Slice

16 projections
48 bins

Sinogram
cache

Fig. 3: Reconstruction using GPU Core units. The projections
are processed in groups of 16 iteratively. For each square
of 32x32 pixels, a thread block extracts 48 bins from a set
of projections (top) and stores them in the shared memory
along with the corresponding offsets. Then, the thread mapping
is changed and projections are processed in a loop one
after another. Each thread is responsible for several pixels of
output slice. For each pixel, the corresponding position in a
sinogram is computed and the required offset in the cache is
determined by subtracting the cache offset (bottom). Then, one
or two values are loaded from the cache and the configured
interpolation is performed.

all available threads of a block. The group consisting of N
2

threads causes no bank conflicts on the Pascal architecture.
Consequently, either 16 or 8 projections are processed per
single step of the algorithm. It takes 3 iterations to cache all
required bins. The threads of a block are then re-assigned to
match the output pixels and process the contributions from
the cached projections in a loop. The threads determine a
position where the ray passing through the reconstructed pixel
hits the detector row. The corresponding bin in a sinogram
is computed and the offset in the cache is found. Typically
the offset is not an integer and falls in between of two cached
values. Depending on the configured interpolation mode either
the offset is rounded to the nearest integer and a single value
is loaded from the shared memory or both neighboring values
are loaded and a linear interpolation is performed to compute
the impact of the projection.

According to the documentation there is no difference in
which order the threads of a half warp are accessing the shared
memory. However, in practice we found that the performance
of 64- and 128-bit shared memory loads is slightly improved
if only 1-2 different addresses are accessed by groups of 4

consecutive threads. Therefore, the half-warps are mapped to
the pixel squares of 4x4 pixels and arranged along a Z-order
curve similarly to the texture fetches. The 256 threads of the
block are mapped to 16 such squares and the squares are
arranged linearly along x-axis. Two rows of 4x4 squares are
processed in parallel if a small 32x32 area is reconstructed. A
single row is covered for the bigger area. The remaining rows
are processed over 4-16 iterations. The threads accumulate
the sums for each pixel in a register-bound array and dump
it to the global memory once processing of all projections is
completed.

Input: Texture, projection constants (cC∗), dimensions (n∗), cache
sizes (s∗), and other parameters (v∗)

Assume: ns = 32; nq = 4, st = 16, sd = 16
Shared: d̃S [sd][32 ∗ ns], h̃S

m[sd]

Output: Reconstructed slice r̃G

begin
/* Caching mapping for st = 16 and sd = 16 */
{md,mp} = ~mt
~fb = ~mb − ~va
/* Reconstruction mapping for ns = 32 */
quadrant = mt.x / 4
pixel = mt.x% 4
m′t.x = 4 ∗ (mt.y % 8) + 2 ∗ (quadrant% 2) + (pixel% 2)
m′t.y = 4 ∗ (mt.y / 8) + 2 ∗ (quadrant / 2) + (pixel / 2)
~m′g = ns ∗ ~mb + ~m′t
~f ′g = ~m′g − ~va
/* Set accumulators to 0 and run projection loop */
s̃[nq] = {0}
for (pb = 0; pb < np; pb += sd)

/* Compute the minimal required bin */

hb = cCa [pb+mp]+fb.x∗cCc [pb+mp]−fb.y∗cCs [pb+mp]
hm = floor(hb + cCm[pb +mp])
/* Cache it in the shared memory */
if md == 0 then

hS
m[mp] = cCa [pb +mp]− hm

end
/* Cache the data in the shared memory */
for (i = 0; i < 3; i += 1)

h = i ∗ st +md

d̃S [mp][h] = tex2d(hm + h+ 0.5f , p+mp + 0.5f)
end

syncthreads
for (pi = 0; pi < sd; pi += 1)

p = pb + pi
cs = cCs [p]
h = hS

m[pi] + f ′g .x ∗ cCc [p]− f ′g .y ∗ cCs [p]
for (q = 0; q < nq; q += 1)

/* Compute the offset in cache */
hi = floor(h)
hl = h− hi

/* Iterpolate */

d̃1 = d̃S [pi][hi]

d̃2 = d̃S [pi][hi + 1]− d̃1
s̃[q] += d̃1 + hl ∗ d̃2
/* Move to the next position */
h −= (ns / nq) ∗ cs

end
end

syncthreads
end
/* Save the results to global memory */
for (q = 0; q < nq; q += 1)

r̃G[m′g .y + 8 ∗ q][m′g .x] = r̃[q]
end

end

Algorithm 2: ALU-based implementation of the back-projection kernel

E. Hybrid Approach

We have proposed two algorithms to perform back-
projection. One relies on the texture engine and is bound
to its performance. The second is using shared memory and
GPU Core units, with only a small load on the texture engine.
Therefore, it is possible to run the texture-based kernel for
one part of the blocks and ALU-based kernel for another part.
NVIDIA allows to detect the Streaming Multiprocessor (SM)
executing the block. Consequently, it is possible to ensure that
the desired ratio between threads running texture- and ALU-
based kernels is achieved. An array is statically defined in
the global GPU memory space. The first thread of a block
is resolving the SM number using get smid() instruction and
increments the corresponding cell of the array using an atomic
operation. The block number within a cell is obtained and
depending on the requested ratio one of the two algorithms is
executed. The code snippet is shown bellow.

__device__ uint smblocks[128] = {0};
__global__ static void reconstruct_hybrid() {

__shared__ uint block;
if ((threadIdx.x == 0)&&(threadIdx.y == 0)) {

uint smid = get_smid();
block = atomicAdd(&smblocks[smid], 1);

}
__syncthreads();
if (block&1) reconstruct_tex(...);
else reconstruct_alu(...);

}

In section III-C we proposed an advanced thread mapping
scheme for the texture-based kernel. The goal is to keep the
pixel to block assignment minimal in order to preserve the
performance for the small images. The ALU kernel, however,
aims for larger image sizes and works with 32-by-32 pixel
area at minimum. Therefore, an alternative simpler mapping
is utilized for the texture-based kernel if it is executed as part
of the hybrid approach. Each thread is responsible for 4 to
16 pixels and processes them in a loop. The same texture is
used to perform linear interpolation in blocks running texture-
based algorithm and to cache data in the blocks executing
ALU-based reconstruction.

The preferred algorithm depends on the relative perfor-
mance of different GPU subsystems. The ALU-based algo-
rithm is the fastest on NVIDIA Fermi architecture because of
relatively fast shared memory. Vice versa the texture engine of
the Kepler architecture got a significantly higher performance
boost compared to other components [18]. Consequently, the
texture-based version performs better on the Kepler GPUs. On
Maxwell and Pascal architectures it is possible to efficiently
balance performance using the described hybrid approach.
The highest measured performance is achieved if 2-slices are
reconstructed in parallel and 32x32 pixels are assigned to
each thread block. The blocks are uniformly split between
ALU- and texture-based kernels in this case. Extra 20% of
speed is gained if the 100% occupancy is targeted using

launch bounds annotation. If the reconstruction is limited
to a single-slice only, a larger square of 64x64 pixels is
assigned to each block and only 3 blocks out of each 8
are executing the texture-based reconstruction. The approach

is only useful in cases when the linear interpolation is per-
formed. In the nearest-neighbor mode, the ALU-based kernel
outperforms the texture-based variant significantly unless 4-
slice reconstruction is performed using the half-float data.
Consequently, there is a little effect if they are executed in
parallel. In the last case, the SFU performance becomes the
bottleneck as both Texture- and ALU-based kernels compete
for SFUs to perform rounding and type-mangling operations.

IV. PERFORMANCE EVALUATION

We are not aiming to precisely characterize the performance,
but rather try to validate the efficiency of the proposed
optimizations. In most tests, we use a data set consisting of
2048 projections with dimensions of 2048 by 2048 pixels each.
512 slices with the same dimensions are reconstructed and
the median reconstruction time is used as estimate for the
performance. The performance is shown in Giga-updates per
second (GU/s) indicating the rate at which the contribution
from projections are computed and used to update voxels
values. The complete reconstruction time can be estimated by
dividing the number of required updates, i.e. total number of
voxels multiplied by a number of projections, by the given
number in GU/s. Before the tests a heat-up procedure is
executed to avoid significant performance discrepancies due to
the GPUBoost technology employed by NVIDIA to adjust the
GPU clock based on the current load and chip temperature.
However, we do not wait until the performance completely
stabilizes, but rather avoid a steep performance spike in the
beginning, see Fig. 5. The actual hardware clock is compared
before and after measurements and the experiment is re-
run if the difference is significant. The I/O is completely
excluded. The reconstructions are executed using dummy data.
The results are dropped without transferring them back to
the system memory if the back-projection only benchmark is
executed. All tests were executed on NVIDIA GeForce GTX
Titan X GPU (Pascal-based) installed in a Supermicro 7047GT
server. The server was also equipped with dual Intel Xeon E5-
2640 and running OpenSuSE 13.1 along with NVIDIA CUDA
SDK 8.0.61 and GPU driver 375.39.

TABLE II shows the effect of optimized thread mapping
for the texture-based back projection kernel. According to the
profiling results, the number of queries to the texture cache is
significantly reduced in the optimized version. While there is
no difference in single-slice reconstruction mode, a speed-up
of 25% and 35% is measured if 2- or 4-slices are reconstructed
in parallel. In the last case, the SFU units limit the performance
due to a large number of type-mangling operations used to
convert the data between half- and single-precision formats.
While we can’t eliminate this load, the proposed optimizations
reduce the usage of SFU due to other operations 3-fold, and
about 90% of the theoretical throughput of the texture engine
is achieved in all modes. Unlike the desktop card used in this
benchmark, the professional Pascal-based Tesla GPUs have a
higher throughput of the half-precision arithmetic instructions.
Thus, the back-projection can be performed in half-precision
arithmetic completely reducing the load on SFU. The quality

TABLE II: Efficiency of texture fetches using the
standard and the optimized texture-based algorithms

Setup Cache Queries & Hits Utilization
Alg. Qa L1b L2c Texd SFUe Perf.f

1 Std. 0.43 95.7% 89.0% 100% 30% 382
Opt. 0.39 93.2% 89.1% 100% 10% 389

2 Std. 0.61 91.5% 91.8% 100% 30% 534
Opt. 0.53 90.6% 92.4% 100% 10% 739

4 Std. 0.49 86.2% 83.1% 80% 90% 1128
Opt. 0.41 90.5% 87.0% 90% 100% 1422

The measurements are obtained with the NVIDIA profiler for the 1-,
2- and 4-slice reconstruction modes. The nearest-neighbor interpola-
tion is performed in 4-slice mode and linear interpolation is used
otherwise. The table lists: a number of 32-byte queries issued to
texture cache per fetch, b hit rate of the texture cache, c L2 cache
hit rate, d utilization of texture units, e utilization of SFU units, and
f the achieved reconstruction performance.

of reconstruction, however, might further be penalized in this
case.

The performance of all developed algorithms using linear-
interpolation is summarized in TABLE III. Although the ALU-
based algorithm does not reach the performance of the texture-
based kernel, the hybrid approach outperforms the texture-
based version by 35%. But neither the texture engine nor
the GPU Core units are saturated in hybrid mode. Using the
Pascal architecture, the performance of both texture- and ALU-
based kernels is limited by the available memory throughput.
Using the hybrid approach, the data is loaded from the texture
engine and the shared memory simultaneously. A combined
utilization of 140% is achieved for the two slice reconstruction
mode. This matches the achieved speed-up well. The higher
utilization of the combined bandwidth is prevented by the high
latencies associated with memory load operations. The hybrid
kernel is executed at full occupancy. However, as only half of
the threads are accessing each type of memory it is efficiently
equivalent to running at 50% occupancy. Consequently, there
is not enough parallelism for the GPU scheduler to hide the
latency completely.

TABLE III: Performance and utilization of the GPU subsys-
tems by the proposed back-projection algorithms

Setup Utilization
Slices Alg. Texture Shared Core SFU Perf.

1
Texture 100% 10% 20% 10% 389
ALU 10% 80% 60% 90% 606
Hybrid 90% 70% 60% 70% 735

2
Texture 100% 20% 40% 10% 739
ALU 10% 90% 60% 50% 693
Hybrid 70% 70% 70% 40% 995

Fig. 4 evaluates the performance depending on the size of
reconstructed image. The size is increased from 128 up to 4096
pixels in steps of 128 pixels. The size defines the dimensions
of the reconstructed cubic volume, the number of projections
used to reconstruct the volume, and the dimensions of each
projection. The texture-based approach is faster for small im-
ages. Already for 512 pixels the hybrid approach outperforms
both other methods. The performance slightly drops due to
reduced cache efficiency for large images with the side lengths

above 2048 pixels. The right side of the figure shows the effect
of pipelining data transfers and reconstruction. The transfer
time is significant compared to the reconstruction time for
moderate image sizes. Fortunately this time is mostly hidden if
NVIDIA scheduler is able to overlap data transfer with kernel
execution. The effect of NVIDIA GPUBoost technology is
evaluated on Fig. 5. The reconstruction is started with very
low clock, but quite fast accelerated. After initial boost of
20%, the performance is reduced and fluctuates around 3-5%
above the nominal. It stabilizes only after about 40,000 frames.

The proposed back-projection algorithms outperform the
state-of-the-art method substantially. For images with dimen-
sions above 1024 pixels, the standard algorithm has throughput
in the range of 350 - 400 GU/s on NVIDIA GeForce Titan X
GPU, see Fig. 4. The hybrid reconstruction method performs
2.6 times better and achieves about 970 - 1070 GU/s. The
throughput is even faster and reaches 1420 GU/s if the nearest-
neighbor interpolation is performed, see TABLE II. This gives
a boost of 3.5 times over the performance of the standard im-
plementation. Due to pipelining and optimization of filtering,
the impact of back-projection dominates the performance also
for moderate image sizes. The new algorithms allow to reduce
the complete reconstruction time 2 - 3 times depending on the
image size and selected interpolation method. For instance,
only 21 seconds are required to reconstruct a cubic volume of
20483 voxels from 2048 projections.

0 512 1024 1536 2048 2560 3072 3584 4096pixels
0

100
200
300
400
500
600
700
800
900

1000
1100

GU
/s

hybrid tex-based standard

256 512 1024 1536 2048 2560 3072 3584
pixels

1
2
3
4
5
6
7
8
9

10

m
llis

ec
on

ds
 p

er
 G

U

reconstruction bp filter transfer

1000
500
333
250
200
166
142
125
111
100

GU
/s

Fig. 4: The performance of back-projection kernels (left) and
of complete FBP algorithm using the hybrid kernel (right). In
the right, the stacked chart sums times required for each step
of the algorithm independently and the black line indicates
the actual reconstruction time achieved by overlapping of
computation and data transfer. To allow stacking of the times,
the main axis is expressed in milliseconds per GU and the
corresponding number of GU/s is shown on the secondary
axis.

V. CONCLUSION

In this paper, we have demonstrated that a significant speed-
up is possible if low-level details of GPU architecture are
taken into the consideration. A higher utilization of the texture
engine is achieved if the data can be re-arranged in larger
vector types. Such vectors are streamed by the texture engine
at the same rate as simple floating-point numbers provided that
the high locality of the texture fetches can be ensured across
half-wraps and also within groups of 4-consecutive threads.
Even if half-precision floating point numbers are not directly

0 10 20 30 40 50
slice * 1000

700
725
750
775
800
825
850

GU
/s

700 725 750 775
GU/s

0.00

0.05

0.10

0.15

0.20

fre
qu

en
cy

Fig. 5: The influence of GPUboost on the performance of
reconstruction using hybrid algorithm. The performance is
averaged over groups of 100 slices and is shown versus con-
secutive slice number (left). The distribution of reconstruction
speed is given for each slice (right). The distribution after the
performance stabilization is shown in orange.

supported by the texture engine, we shown that they still can
be efficiently utilized by binding a texture with the forged
data type. We further explained how to improve hardware
utilization by launching several concurring algorithms which
solve the same problem but target different GPU subsystems.
The optimal ratio between GPU threads executing each of
the algorithms can be ensured within NVIDIA Streaming
Multiprocessors allowing the balanced utilization of all exe-
cution pipelines in a fashion similar to Intel Hyper-Threading
technology. We demonstrated that this approach is feasible and
brings a significant performance boost of up to 35%.

We developed a highly optimized implementation of Fil-
tered Back Projection algorithm and evaluated it on NVIDIA
Pascal micro-architecture. The proposed back-projection ker-
nel is able to reach more than 90% of the theoretical through-
put of the texture engine. We further developed a second
implementation relying on a different set of hardware units.
While the alternative algorithm is slightly slower on Pascal
GPUs, running both algorithms in parallel results in a more
balanced load of available hardware components. We measure
an additional speed-up of 35% relative to the optimized
texture-only version. Compared to the state-of-the-art imple-
mentation the hybrid reconstruction method performs 2.6 times
better in the linear interpolation mode. The performance is
boosted by 3.5 times if nearest-neighbor interpolation is per-
formed. With minor modifications, both presented algorithms
are also applicable to a wide range of other architectures
from AMD and NVIDIA. The measured speed-ups range
from 2 to 7 times depending on the considered architecture.
While the proposed hybrid approach is only suited for re-
cent NVIDIA architectures starting with Maxwell, different
strategies to balance load are available for other GPU types.
The high-speed reconstruction is of a significant importance
for imaging at synchrotron facilities and allows to improve
spatial and temporal resolutions of beam-line instrumentation.
The back-projection algorithm is also utilized in slow iterative
reconstruction techniques aimed at high-quality reconstruction.
Therefore, the faster implementation lowers the computational
demands for high-quality offline reconstruction as well.

VI. ACKNOWLEDGMENTS

This work was partially supported by the German-Russian
BMBF funding program, grant numbers 05K10CKB and
05K10VKE. The authors would like to thank to EXTREMA
COST Action MP1207 for providing the networking support.

REFERENCES

[1] R. Mokso, D. Schwyn, S. Walker, M. Doube, M. Wicklein, T. Müller,
M. Stampanoni, G. Taylor, and H. Krapp, “Four-dimensional in vivo x-
ray microscopy with projection-guided gating,” Scientific Reports, vol. 5,
p. 8727, 2015.

[2] E. Maire, C. Bourlot, J. Adrien, A. Mortensen, and R. Mokso, “20 hz
x-ray tomography during an in situ tensile test,” Int. J. Fract., vol. 200,
2016.

[3] T. dos Santos Rolo, A. Ershov, T. van de Kamp, and T. Baumbach,
“In vivo x-ray cine-tomography for tracking morphological dynamics,”
Proceedings of the National Academy of Sciences, vol. 111, no. 11, pp.
3921–3926, 2014.

[4] F. Marone, A. Studer, H. Billich, L. Sala, and M. Stampanoni, “Towards
on-the-fly data post-processing for real-time tomographic imaging at
tomcat,” Advanced Structural and Chemical Imaging, vol. 3, no. 1, p. 1,
2017.

[5] M. Vogelgesang, T. Farago, T. F. Morgeneyer, L. Helfen, T. dos
Santos Rolo, A. Myagotin, and T. Baumbach, “Real-time image-content-
based beamline control for smart 4d x-ray imaging,” Journal of Syn-
chrotron Radiation, vol. 23, no. 5, pp. 1254–1263, 2016.

[6] A. Mirone, E. Brun, and P. Coan, “A dictionary learning approach
with overlap for the low dose computed tomography reconstruction and
its vectorial application to differential phase tomography,” PLOS ONE,
vol. 9, no. 12, pp. 1–18, 2014.

[7] G. V. Eyndhoven, K. J. Batenburg, D. Kazantsev, V. V. Nieuwenhove,
P. D. Lee, K. J. Dobson, and J. Sijbers, “An iterative ct reconstruction
algorithm for fast fluid flow imaging,” IEEE Transactions on Image
Processing, vol. 24, no. 11, pp. 4446–4458, 2015.

[8] F. Marone and M. Stampanoni, “Regridding reconstruction algorithm
for real-time tomographic imaging,” Journal of Synchrotron Radiation,
vol. 19, pp. 1029–1037, 2012.

[9] A. Mirone, E. Brun, E. Gouillart, P. Tafforeau, and J. Kieffer, “The
PyHST2 hybrid distributed code for high speed tomographic reconstruc-
tion with iterative reconstruction and a priori knowledge capabilities,”
Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, vol. 324, pp. 41–48, 2014.

[10] M. Vogelgesang, S. Chilingaryan, T. dos Santos Rolo, and A. Kopmann,
“Ufo: A scalable gpu-based image processing framework for on-line
monitoring,” in Proceedings of The 14th IEEE Conference on High Per-
formance Computing and Communication & The 9th IEEE International
Conference on Embedded Software and Systems (HPCC-ICESS), ser.
HPCC ’12. IEEE Computer Society, 6 2012, pp. 824–829.

[11] W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt,
A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast
and flexible x-ray tomography using the astra toolbox,” Opt. Express,
vol. 24, no. 22, pp. 25 129–25 147, 2016.

[12] F. Natterer and F. Wübbeling, Mathematical Methods in Image Recon-
struction, ser. Mathematical Modeling and Computation. Society for
Industrial and Applied Mathematics, 2001.

[13] F. Andersson, M. Carlsson, and V. V. Nikitin, “Fast algorithms and
efficient gpu implementations for the radon transform and the back-
projection operator represented as convolution operators,” SIAM Journal
on Imaging Sciences, vol. 9, no. 2, pp. 637–664, 2016.

[14] T. Zinsser and B. Keck, “Systematic performance optimization of cone-
beam back-projection on the kepler architecture,” in Proceedings of the
12th Fully Three-Dimensional Image Reconstruction in Radiology and
Nuclear Medicine, 2013, pp. 225–228.

[15] E. Papenhausen and K. Mueller, “Rapid rabbit: Highly optimized gpu
accelerated cone-beam ct reconstruction,” in IEEE Nuclear Science
Symposium and Medical Imaging Conference (NSS/MIC), 2013.

[16] A. Hey, “The fft demystified,” 1999. [Online]. Available: http:
//www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM

[17] L. Shepp and B. Logan, “The fourier reconstruction of a head section,”
IEEE Transactions on Nuclear Science, vol. 21, 1974.

[18] “Cuda c programming guide,” Manual, NVIDIA, 2017.

Repository KITopen

Dies ist ein Postprint/begutachtetes Manuskript.

Empfohlene Zitierung:

Chilingaryan, S.; Ametova, E.; Kopmann, A.; Mirone, A.
Balancing Load of GPU Subsystems to Accelerate Image Reconstruction in Parallel Beam
Tomography
2019. 2018 30th International Symposium on Computer Architecture and High Performance
Computing: SBAC-PAD 2018 ; Lyon, France, 24-27 September 2018 ; Proceedings, Institute
of Electrical and Electronics Engineers (IEEE).
doi: 10.5445/IR/1000094351

Zitierung der Originalveröffentlichung:

Chilingaryan, S.; Ametova, E.; Kopmann, A.; Mirone, A.
Balancing Load of GPU Subsystems to Accelerate Image Reconstruction in Parallel Beam
Tomography
2019. 2018 30th International Symposium on Computer Architecture and High Performance
Computing: SBAC-PAD 2018 ; Lyon, France, 24-27 September 2018 ; Proceedings, 158–
166, Institute of Electrical and Electronics Engineers (IEEE).
doi:10.1109/CAHPC.2018.8645862

Lizenzinformationen: KITopen-Lizenz

https://publikationen.bibliothek.kit.edu/1000094351
https://publikationen.bibliothek.kit.edu/1000094351
https://publikationen.bibliothek.kit.edu/1000094351
https://publikationen.bibliothek.kit.edu/1000094351
https://publikationen.bibliothek.kit.edu/1000094351
https://publikationen.bibliothek.kit.edu/1000094351
https://doi.org/10.1109/CAHPC.2018.8645862
https://www.bibliothek.kit.edu/cms/kitopen-workflow.php

