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Abstract—In modern HPC systems, parallel (distributed) file
systems are used to allow fast access from and to the storage
infrastructure. However, I/O performance in large-scale HPC
systems has failed to keep up with the increase in computational
power. As a result, the I/O subsystem which also has to cope with
a large number of demanding metadata operations is often the
bottleneck of the entire HPC system. In some cases, even a single
bad behaving application can be held responsible for slowing
down the entire HPC system, disrupting other applications that
use the same I/O subsystem. These kinds of situations are likely
to become more frequent in the future with larger and more
powerful HPC systems.

In this work, we present a simple solution for applications
with very high I/O demands. Our proposed solution is to create
a private parallel file system on-demand for an HPC job and
use the node-local storage devices, e.g. solid-state-disks (SSD).
We show that this feature is easy to add to an existing HPC
environment and requires only minimal configuration to the
system. We conclude that the impact on running applications
is manageable and the advantages to applications that generate
a high load outweigh the disadvantages. We show that in some
cases applications may run slower, but the reduction of load on
the global file system is prevailing in these cases.

Index Terms—file system, on-demand, lustre, beegfs

I. INTRODUCTION

Today’s HPC systems utilize parallel file systems (PFSs),
e.g., Lustre [1], IBM Spectrum Scale (GPFS) [2], or
BeeGFS [3], that comply with POSIX semantics as the storage
subsystem. In the past [4], research and development on
PFSs focused on increasing the bandwidth of read and write
operations in a parallel manner.

While the computing resources can often be allocated
exclusively, the global PFS is shared by all users of a HPC
system. This environment makes it difficult for the user to
optimize the application concerning I/O as there is no clear
understanding among developers about the impact of certain
I/O patterns on the storage system. There are many possible
factors a user would have to consider. Influences from the
back-end storage device, network interface, storage servers,
data distribution, request size, and other applications slowing
down the PFS [5]. Besides the lack of optimization of the
applications, there are essential factors on the system side. One
of the reasons why PFSs struggle with certain I/O operations
is that they have to cover a wide range of applications with the
most frequent use cases. In addition, the PFS must be robust

with high availability as the HPC system is dependent on the
global storage system.

Moreover, PFSs are often shared by many users and their
jobs. Consequently, badly behaving applications can result
in poor performance of the storage subsystem and affecting
all users. These applications create either a lot of metadata
operations instead of reducing I/O through aggregation or there
is no optimization at all regarding to I/O.

In this paper, we present an approach that targets use cases
that do not work well with today’s generic PFSs by creating a
private on-demand file system. The difference of a PFS and a
on-demand file system in our context is how these are used and
created. By PFS we mean file systems which have dedicated
nodes, as they are currently commonly used as the global file
system for HPC systems and shared by all users and jobs. On-
demand file systems use the storage directly connected to the
nodes. The storage is only shared within a job. In our approach
these file systems are built for a single job and purged after
job completion. So we could also call these on-demand file
system – “private” parallel file systems.

The remainder of the paper is structured as follows. First,
we depict related work on the previously mentioned topics in
Chapter 2. In Chapters 3 and 4, we describe the components
of our idea and present benchmarks of how our concept
could help with future large-scale systems. Chapter 5 discusses
how our approach is expected behave on future systems and
wand shows additional considerations compared with today’s
supercomputers.

II. RELATED WORK

In the recent past there have been many developments and
innovations to improve I/O throughput and performance. We
cannot cover everything and try to give a brief overview
of existing solutions. Although it is difficult to separate the
solutions, four categories can be distinguished: file system
features, hardware solutions, libraries and dynamic system re-
configurations.

a) File system features: File Systems offer interesting
new features to improve I/O bottlenecks. GPFS has introduced
a Highly Available Write Cache (HAWC) [6]. HAWC uses
node-local solid-state drives (SSDs) as buffers for the global
file system. Lustre has received the Progressive File Layouts
(PFL) [7] feature. PFL adjusts dynamically the chunk size and



stripe pattern depending on I/O traffic. BeeGFS offers storage
pools [8] and allow to group storage targets in different classes,
e.g., one pool with small but fast solid state drives, and another
large pool for spinning disks. However, such solution are only
available when using the vendor software solution and coupled
with the global file system.

b) Hardware solutions: Today’s wide spread use of SSDs
in compute nodes of HPC systems has provided a new way
of accelerating storage. SSDs provide higher throughput and
better random I/O performance than spinning hard disks.
SSDs have been considered for file system metadata [9] [10],
as its meta-data performance is a major bottleneck in HPC
environments.

A different kind of hardware solutions are burst buffers,
which aim to reduce the load on the global file system [11].
These type of burst buffers can be categorized into two
groups [12]: remote-shared and node-local. While remote-
shared burst buffers [13], [14] use central, dedicated I/O
nodes to forward I/O operations, node-local burst buffers are
typically used within compute nodes and may be managed by
the PFS (e.g., PLFS [15]). Examples for such node-local burst
buffers are BurstFS [12] or BeeOND [16].

c) Libraries: There is a large number of libraries avail-
able for improving I/O behavior of an application. High-level
libraries, such as HDF5 [17], NETCDF [18] or ADIOS [19],
are trying help users to express I/O as data structures and not
only as bytes and blocks. Middleware libaries, such as MPI-
IO [20], help to improve usage of parallel storage systems, e.g.
data sieving and collective I/O [21]. SionLib [22] is another
library for task local file I/O, developed by Forschungszentrum
Jülich. When files are accessed in parallel, only the open and
close functions are collective while writing and reading files
can be done asynchronously. These libraries are not in contrast
to our approach. The advantages of using such libraries also
apply to the on-demand file systems.

d) System reconfiguration: Similar to our approach, the
configuration of the system can be modified. There are several
basic methods. A Dynamic Remote Scratch [23] implemen-
tation was developed to create an on-demand block device
and use it with local SSDs as a LVM [24] device. This
approach relies on a dedicated storage system. In our concept
such a dedicated storage is not needed for temporary storage.
Another software based solution is the RAMDISK Storage
Accelerator [25]. It introduces a additional cache layer into
HPC systems. It uses the available memory of commodity
servers to build a PFS using RAMDisks. The PFS constructed
on the RAMDISK is offered to the computing nodes as a
very high-speed and low-latency temporary storage. While this
approach is similar to our idea, we use the local disks of the
compute nodes and do not require other commodity servers to
build a on-demand file system.

III. METHODS

We deploy an on-demand file system on the allocated nodes
per job. Therefore, we use BeeGFS as the on-demand parallel

file system. BeeGFS is POSIX compliant. It offers a tool
BeeOND to deploy the file system on-demand.

A. Integration into an HPC environment

Usually HPC systems use a batch system, such as
SLURM [26], MOAB [27], or LSF [28]. The batch system
manages the resources of the cluster and starts the user jobs
on allocated nodes. At the start of the job, a prologue script
may be started on one or all allocated nodes and, if necessary,
an epilogue script at the end of a job (see Figure 1). These
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Fig. 1: Job flow for creating an on-demand file system ans
staging data.

scripts are used to clean, prepare, or test the full functionality
of the nodes. We modified these scripts to start the on-demand
file system. During job submission a user can request an on-
demand file system for the job.

MOAB offers a staging mechanism [29]. It divides a submit-
ted job into three parts. The node allocation is inherited to the
other jobs in the chain. The first part is responsible for the data
stage-in and the third for the stage-out (see Fig. 1). We have
adapted MOAB’s stage-in process so that an on-demand file
system is created and the data is staged in. After the user job
execution, the data is staged back to the global file system,
and the on-demand file system is purged. The HPC system
only needs minor modifications in the scripts. The on-demand
file system is provided as an additional feature upon request.

B. Benchmark environment

For our evaluation we used the ForHLR II [30] at Karlsruhe
Institute for Technology. The system consists of 1152 nodes
with two Intel Xeon processors E5-2660 v3 (20 cores). The
nodes are partitioned into two island, a small island with 336
and a large island with 816 nodes. The topology is a two-
layer CBB-network [31]. The nodes are connected to the fabric
via an InfiniBand HCA. 24 nodes are connected to the leaf
switches with 56 Gbit/s and from each leaf switch 12 uplinks
with 100 Gbit/s are connected to the upper core switches (see
Fig. 2). For our test we exclusively used the small island with
336 nodes. Thus, we ensure that no other jobs on this part of
the fabric can interfere with our evaluation. Brown et al. [32]
has shown that mixing large and small packet communication
can increase fabric latency in fat tree topologies. The small
island has 6 root and 14 leaf switches. The nodes have a local
SATA SSD with approximately 600 MB/s read and 400 MB/s
write performance. Lustre is used for the PFS and is connected
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Fig. 2: The small island consists of 6 core switches and 14
leaf switches. Each leaf switch has 24 nodes with 56 Gbit/s
and 2x100 Gbit/s links to each core switch.

via InfiniBand. It has a maximum throughput of 50 GB/s, one
metadata server (MDS), 10 object storage servers (OSS), and 7
object storage targets (OST) per OSS. For storage, we create
an image file on each node and offer it as loopback device
to BeeGFS. Cleaning up the nodes can be accomplished by
simply removing this image file. We decided to use a loopback
device as Yamamoto et al. [33] showed that it can increase
performance compared to storing data directly to disk due to
Linux’s internal caching mechanisms. In addition, a loopback
device also helps to manage space consumption on each SSD.

In order to assess the suitability of an on-demand file
system in an HPC environment, we have performed several
investigations. Besides simple benchmarks to determine the
throughput we have chosen two use cases of our users which
generate an excessive load on our storage systems as discussed
in the next section.

C. Applications and use cases

The first application we investigated is OpenFOAM [34].
OpenFOAM is a toolkit for computational fluid dynam-
ics (CFD) written in C++. It is a widely used open-source fluid
dynamics code [35] for engineering applications. Investigation
of I/O performance has been performed with two OpenFOAM
cases, both using OpenFOAM v1712 and a custom solver
developed for detailed combustion simulations [36], [37]:

Use case 1: A production run simulation of an experimen-
tally investigated burner of laboratory scale [38]. The focus
of this setup lies on simulating the burner flame in great
detail, including all intermediate chemical species that are
formed during combustion. Due to the physical complexity of
the flame, the computational domain consists of 150 million
cells. The simulation is typically run on 5 000–28 000 CPU
cores [39]. The challenge in terms of I/O stems from the most
efficient I/O strategy OpenFOAM offers for check-pointing:
every time the application generates data for check-pointing,
each process writes one file per solution variable which may
be temperature, pressure or the concentration of chemical
species. Due to the large number of chemical species in this
setup, generating checkpoint data creates a large number of
files. In this work, the case has been run on 240 nodes or
4800 processes, leading to the creation of 95 files per process

or half a million files in total, with about 0.2 MB per file or
25 MB per process or 120 GB in total. For previous runs with
28 800 CPU cores, the number of files which are written at
the same time increases to 2.7 million.

Use case 2: In this simulation, the inert mixing of methane
and air in a pipe leading to the burner from use case 1 is
simulated. The computational mesh consists of 150 million
cells. The case has been run on 240 nodes or 4 800 processes.
Because there is no flame in this setup, the number of solution
variables and therefore the I/O requirements for check-pointing
are much lower compared to use case 1. The I/O challenge in
this case stems from run time post-processing, because this is
a precursor simulation to use case 1, solution variables at the
opening of the pipe downstream of the burner are written after
every time-step, which afterward serve as inlet conditions for
the simulation of use case 1. The run time post-processing
data, which consists of about 20 small files per time-step, is
written at a high frequency during the whole simulation time.

The second application is the NAStJA framework [40]. It
is a massively parallel stencil code solver. It is designed for
simulations in several scientific domains. Modules for the cal-
culation of the phase-field and the phase-field crystals as used
in mesoscopic or atomistic computational material science are
available, as well as biological cells can be calculated with
the cellular Potts model, a cellular automaton. The framework
provides several modules for writing out the results. For our
purpose, we configure a single file per block per time-step.

Use case 1: A run with 4800 parallel NAStJA processes is
distributed to 240 working nodes with 20 processes each. We
choose 4 800 blocks, i.e., one block per core, of the size of
1 MB each and write out every 20th time-step of a total of
100 000 time-steps.

Use case 2: Runs with 23 nodes running NAStJA processes.
On the nodes, we reserved up to 4 cores out of the 20 available
cores for the BeeGFS processes. Runs with 16, 19 and 20
NAStJA processes per node were performed. One block and
thus one file per NAStJA process is used again. We increase
the size to 4 MB per process and decrease the write frequency
to every 100th time-step.

The reason why we have chosen these application and use
cases is illustrated in Figs. 3a) and 3b). Here the unix load [41]
of the Lustre file system server is depicted when running the
use cases. Blue line show the load of the object storage servers
and purple line is showing the load of the meta-data server.
Both applications were started with five short consecutive runs.
Writing alternately on the PFS and on-demand file system. The
valleys indicates the periods when the application uses the
on-demand file system. It clearly shows what high load these
applications generate. Considering that these applications run
for hours and create such a load, it’s obvious that there’s a
need for action here.

IV. RESULTS AND DISCUSSION

The aforementioned use cases have been performed to
evaluate the on-demand file system in an HPC environment.
We evaluated our two applications and explain how they



(a) NAStJA runs. (b) OpenFOAM use case 1.

Fig. 3: Lustre server load during simulation runs. MDS server and average linux load of 10 OSS servers.

perform. Finally, we show how data staging influences the
application.

A. Generic benchmark

We use IoZone [42] to measure the maximum throughput
of read and write operations. Figure 4 depicts the throughput
on the on-demand file system (solid line). The results show
that performance increases linearly with the number of nodes.
Our observation shows that the SATA-SSDs are the limiting
factor. The small throughput variation occurs due to normal
performance scattering of the SSDs [43]. The dotted line indi-
cates the theoretical throughput with NVMe-SSD devices. At
assumed speeds with 3500MB/s read and 2000MB/s write
performance for common PCIe x4 NVMe-SSD devices [44].
The difference between the SATA-SSD and NVMe-SSD are
the connection and communication interface. SATA-SSD are
connected via SATA (Serial AT Attachment), as were the rotat-
ing hard disks at that time. The computer communicates via an
AHCI (Advanced Host Controller Interface) protocol with the
memory controller. Nevertheless, for modern SSDs a new way
was devloped to reduce this overhead with a communication
protocol. With the introduction of NVMe (nonvolatile memory
express), the use of controllers was completely dispensed
with. NVMe-enabled SSDs are connected directly to the PCIe
bus. Compared to SATA, this reduces latencies and raises
bandwidth restrictions [45].

We also measured the initialization time of the on-demand
file system. Accordingly, we also measured how long it takes
to stop it. Table I lists the duration for starting and stopping
BeeGFS on-demand. The starting times increase up to 222
seconds on 256 nodes. The included tool BeeOND for starting
the BeeGFS on-demand file system has a parallel mode using
a parallel distributed shell [46]. At launch there is a sequential
region and by parallelizing this piece of code, we were able
to reduce startup times to under one minute at 512 nodes.

Fig. 4: Solid line: Read/write throughput. Dashed line: extrap-
olation with the theoretical peak of NVMe-SSDs.

Fig. 5: IoZone write throughput with reduced number of core
switches on 240 nodes.

Nodes 8 16 32 64 128 256
Startup (s) 10.2 16.7 29.3 56.5 152.1 222.4
Shutdown (s) 11.9 12.1 9.4 15.9 36.1 81.1

TABLE I: BeeGFS startup and shutdown



In a further test, we investigated the storage pooling feature
of BeeGFS [8]. The question here is whether it is possible
to deal with bottlenecks in topology with such a feature.
We created a storage pool for each leaf switch(see Fig. 2).
In other words, when writing to a storage pool, the data is
distributed via the stripe count and chunk size, but remains
within the storage pool and thus on a switch. Only the
communication with the meta data server is forwarded across
the core switches. Figure 5 shows the write throughput for
three scenarios. Each scenario uses a different number of
core switches with six being the full expansion level. In the
first experiment, with all six core switches, there is only a
minimal performance loss, which indicates a small overhead
when using storage pools. In the second case we turned three
switches off, and in the last case we turned off five switches.
With reduced number of core switches the throughput drops
due to the reduced network capacity. If the topology is taken
into account, and storage pools are created accordingly, it is
possible to achieve the same performance as with the full
expansion.

B. Application benchmarks

We evaluated NAStJA and OpenFOAM on 240 nodes with
20 processor cores each. Intermediate results were written to
the global and to the on-demand file system. Each test case
was run five times for each data point to eliminate possible
side effects.

Figure 6 shows the average execution time for the time-steps
of NAStJA. Figure 6 a) shows the average time for the time-
steps when using the on-demand file system. Figure 6 b) shows
the same simulation on the global file system. On the PFS, the
variation of the time-steps is significant. The black bars show
the min-max value of the five consecutive runs. Using PFS
the lowest times are around 0.02 seconds and maximum values
range up to 0.1 seconds. With the on-demand file system, there
is almost no deviation.

The two OpenFOAM use cases show a different behavior,
depicted in Figure 7. When OpenFOAM is executing the time-
steps in which data is written, both use cases show very high
spikes (cmp. 7a 7c). Again a higher variance in the execution
time is shown in Fig. 7b when using the PFS. Using the on-
demand file system may cause less variance in the execution
of the time-steps, but the execution time when writing data
is longer. With the on-demand file system these steps need
about 50 seconds, while using the PFS the same time-steps
need in average under 25 seconds the OpenFOAM use case 2
shows only high spikes when using the on-demand file system
(Figure 7d).

Table II shows the run times of the NAStJA simulations.
The average simulation time is faster when using the on-
demand file system. This is remarkable cause the compute
nodes have to manage also the on-demand file system while
running the application. Table III presents the run times for
the two OpenFOAM use cases. Here, it is apparent that the
total runtime is longer by about 60% on the on-demand file
system. However, the total computation time is only about

TABLE II: NAStJA total run time on on-demand and global
file system. Average of 5 runs.

file system used Lustre BeeGFS

fastest run (s) 304 319
slowest run (s) 435 326

average (s) 335 323

TABLE III: Initial time-step for OpenFOAM and total execu-
tion time.

use case 1 use case 2
file system used Lustre BeeGFS Lustre BeeGFS

initial time-step (s) 41 340 12 111
total computation

time (s) 1331 1481 1111 1340

clocktime (s) 1416 2335 1195 1906

10% slower in use case 1 and about 20% in use case 2. It is
quite interesting that the initial time-step is approximately ten
times slower. Here the data for the simulation is read. Reading
the initial time-step from the PFS would make more sense in
this case.

C. Data staging

We also considered the case of copying data back to the
PFS while the application is running. For this purpose, we used
different NAStJA simulations on 23 nodes with 16, 19, and 20
cores per node for the application. This allows us to evaluate
the impact of free resources for data staging. The remaining
resources on the compute nodes are then available for the on-
demand file system and data staging. Of course, when using
all 20 cores for the application there are no physical cores left,
but we wanted to evaluate how much the interference is. For
reference, each simulation is performed without data staging.
To stage the data, during the NAStJA execution, we used
the parallel copy tool dcp [47]. As the staging workflow, we
considered two cases: a single node with four dcp processes,
and a case with one dcp process per compute node. In the case
of a single node the MDS server node of the on-demand file
system was used. Figure 8 show the average execution time
per time-step of five runs in our different scenarios. With 16
cores for the application, from available 20 cores, the run times
are similar whether the run was executed with or without data
staging. When using 19 or 20 cores, the application is slowed
down when the copy is executed with one process per node.
At the beginning, the slowdown is significant (orange line)
due to the high amount of metadata operations. In this case, a
portion of the data is indexed on every node and this is causing
interference with the application. When using only the MDS-
server to copy the generated data (green line) the indexing
is done only on the node with the MDS-server. Here, only a
small influence can be observed, such that the interference to
the application is negligible. Figure 9 shows the total time for
the application run and data staging experiment. Using only
the MDS node to copy the data, needs more time than the
execution of our simulation. If there are enough free resources
on the compute nodes, the data can be staged-out without



(a) NAStJA using on-demand fs (b) NAStJA using global file system

Fig. 6: Average execution of time-steps for five NAStJA runs. (Black bars Min/Max)

(a) OpenFOAM use case 1 on-demand fs (b) OpenFOAM use case 1 global fs

(c) OpenFOAM use case 2 on-demand fs (d) OpenFOAM use case 2 global fs

Fig. 7: Average execution of time-steps for OpenFOAM use cases. (Black bars Min/Max)

slowing down the application. Staging the data back afterwards
with dcp needs approximately 30 seconds, and only 6 seconds
for the pure data transfer. This raises the question of whether
it makes sense to copy the data back during the simulation.

V. CONCLUSION & FUTURE WORK

We have shown a way to reduce the load on the global
file system. This reduces the operational effort of the storage
system. Despite the additional processes on the computing
nodes, our chosen applications run more stable and with less
variance in the run times. The applications are less affected by



Fig. 8: Execution time(NAStJA) per time-step w/o data staging.

Fig. 9: Total execution time(NAStJA) for application w/o data
staging.

side effects and generate less load on the PFS. Additionally,
a job can run independently of the PFS. As a result, these
storage systems are then only needed as staging storage.

The OpenFOAM use cases we evaluated are slower when
using an on-demand file system. These cases are usually
running for a whole day and slowing down the whole system.
The user has to take precautions that only one job like this
running at a time. Several such jobs at a time would completely
slow down the storage subsystem, ending up with slowing
down all job that are doing I/O. These jobs could be using an
on-demand file system and would not have any impact to the
storage system.

We have started the on-demand file system with standard
configuration [48] [49]. With an analysis of the scientific
applications, the on-demand file system can be optimized for

specific use cases, e.g., more metadata performance instead of
throughput. We have shown that staging back the data during
execution can be very slow, if we want to keep the interference
with the application low.

Using on-demand file systems is straightforward and the
changes to the system are minimal. The advantage of this
approach over others is that the application code does not
need to be changed. Instead of changing the user code, a
tailored file system for the application can be created. This
gives additional flexibility for further optimization, e.g., file
system permissions are not needed or file-locking could be
disabled if the application do not need them.

However, further optimizations may be necessary for a
production environment. For instance, the bootstrap time needs
to be improved. There is no exact value for a acceptable time
to create the on-demand file system. It makes little sense to
wait an hour to start the on-demand file system if the job
is not running for much longer. A few minutes for a one-
day job on the other hand is acceptable. It must be carefully
considered whether the waiting time for an on-demand file
system is advantageous.

Furthermore, the question arises whether all the data written
by the application has to be copied back to the PFS. With in-
situ post-processing of the data on the fast, private on-demand
file system, only the important data may be selected and copied
back. This would reduce the demand and the load on the PFS.

Also the case of a node failure has to be considered. In such
a situation we would lose the data on the node-local storage.
This risk can be reduced, either by staging back the data from
time to time or by using data duplication on different nodes
of the on-demand file system.

The most important effect that can be achieved immediately
is to reduce the load on the PFS. Nowadays the compute nodes
are equipped with SSDs or faster storage devices and a dis-
tributed on-demand file system makes them easily accessible to



the user. Since no code adjustments are necessary, it is possible
to provide an on-demand file system for applications with very
high I/O demand. An on-demand file system does not change
the I/O behavior of the application, but the influence on other
HPC jobs and the whole system is reduced.

VI. ACKNOWLEDGEMENT

This work as part of the project ADA-FS is funded by the
DFG Priority Program “Software for Exascale Computing”
(SPPEXA, SPP 1648), which is gratefully acknowledged. This
research was conducted using the supercomputer ForHLR II
and services offered by Karlsruher Insitute of Technology and
the Steinbuch Centre for Computing. The authors gratefully
acknowledge the time and granted access to ForHLR II.

REFERENCES

[1] Peter J Braam and Philip Schwan. Lustre: The intergalactic file system.
In Ottawa Linux Symposium, page 50, 2002.

[2] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for
large computing clusters. In Proceedings of the 1st USENIX Conference
on File and Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002.
USENIX Association.

[3] Jan Heichler. An introduction to BeeGFS. http://www.beegfs.com/docs/
Introduction to BeeGFS by ThinkParQ.pdf, 2014.

[4] Mehmet Soysal, Marco Berghoff, Thorsten Zirwes, Marc-André Vef,
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W.E. Nagel, D.H. Kröner, and M.M. Resch, editors, High Performance
Computing in Science and Engineering ’17. Springer, 2018.

[37] Thorsten Zirwes, Feichi Zhang, Thomas Häber, and Henning Bockhorn.
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